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Abstract

The optimal mechanical and geometric characteristicssfggred composite structures subject to vibroacoustic exci
tations are derived. A Finite Element description coupteBeriodic Structure Theory is employed for the considered
layered panel. Structures of arbitrary anisotropy as welj@metric complexity can thus be modelled by the pre-
sented approach. Damping can also be incorporated in thalaibns. Initially, a numerical continuum-discrete
approach for computing the sensitivity of the acoustic walvaracteristics propagating within the modelled periodic
composite structure is exhibited. The first and second aeesitivities of the acoustic transmission fiméent ex-
pressed within a Statistical Energy Analysis context alissseguently derived as a function of the computed acoustic
wave characteristics. Having formulated the gradientaresrd well as the Hessian matrix, the optimal mechanical and
geometric characteristics satisfying the considered pstifiess and vibroacoustic performance criteria are sought
by employing Newton’s optimization method.
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[Table 1 about here.]

1. Introduction

Layered and complex structures are nowadays widely usddnwiite aerospace, automotive, construction and
energy sectors with a general increase tendency, mainigusecof their high dfiness-to-mass ratio and the fact
that their mechanical characteristics can be designeditdah&iparticular purposes. Unluckily however, this high
stiffhess-to-mass ratio being responsible for the increasedanéal gficiency, at the same time induces high acous-
tic transmission through the structure. The need for siamglbusly optimising an industrial structure of minimum
mass and maximum statictiess, while attaining satisfactory dynamic response pedace levels is a challenging
task for the modern engineer; especially when considemogstic transmission through a layered structure which
depends on the mechanical and geometric characterisgéexbfindividual layer, resulting in a great number of design
parameters to be optimised.

The numerical analysis of wave propagation within periatliactures was firstly considered in [1], while the work

was extended to two dimensional media in [2]. The so calledé/¥anite Element (WFE) method was introduced in
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[3, 4] in order to facilitate the post-processing of the ajg®blem solutions and further improve the computational
efficiency of the method. The interest in predicting the viboagstic response of a structure in a wave context is far
from being new with the pioneering works of the authors ing57, 8] being probably the earliest ones. A layer-
wise model for the prediction of acoustic wave propagati@hiw continuous layered structures was presented in [9].
More recently, the prediction of the acoustic wave charésttes based on FE formulations allowed for more complex
structures to be included in the acoustic transmission coations [10, 11, 12].

Structural sensitivity analysis is of great importancedaderstanding the overall impact of a design parameter
variation to the performance characteristics which areg@ptimised. Accurate sensitivity models are an impor-
tant tool for design optimization, system identificatiorveedl as for statistical mechanics analysis. Several asthor
[13, 14, 15, 16] have been focusing on the eigenvalue dervahalysis of a structural system. With regard to the
variability analysis of the waves travelling within a sttw@l medium, the available published work is mainly fodise
on deriving expressions [17, 18] of the stochastic waverpatars from analytical models. In [19] the authors conduct
a design sensitivity analysis by a wave based approach.idssimgy numerical approaches, the authors in [20] used
Bloch’s theorem in conjunction with the FE method in ordecédculate the sensitivity of the acoustic waves within
an auxetic honeycomb, while with regard to the computatiche variability of the propagating waves, the authors
in [21, 22] have presented a stochastic WFE approach for atingpthe variability of wave propagation properties in
one dimensional media. With regard to optimising the deslaracteristics of a layered structure the developed ap-
proaches have generally focused on genetic algorithmsrticleasswarm type techniques [23, 24, 25]. When it comes
to optimising the structural design vis-a-vis the dynaregponse performance of a structure, wave based optinmzatio
techniques have been developed [26, 27, 28, 29] by adopéngdic Structure Theory (PST) assumptions.

In this work an established wave based SEA approach is emgly order to predict the vibroacoustic per-
formance of a composite layered panel. The novelty of thekvimcuses on the derivation of the first and second
order sensitivity of the acoustic transmission ffi@éent expressed through SEA with respect to the structwsibct
characteristics of the modelled structure. The considdesiyn parameters include the entirety of the mechanical
characteristics, the density as well as the thickness df galividual structural layer. Non conservative structura
systems are also modelled by the exhibited approach. Eimgiaythree dimensional FE description of the modelled
structure allows for capturing the entirety of the soundsraitting propagating structural waves, while employing a
PST formulation allows for drastically reducing the congiigtnal cost related to calculating the SEA parameters and
the Hessian matrix for each configuration. Although notussed in this work, the method is straightforward to apply
to curved structures by expressing the FE structural nestiand wave propagation properties in polar coordinates.

The paper is organized as follows: In Sec.2 the formulatfdthe sensitivity of the waves propagating within the
periodic structure is elaborated. The PST to be employedhibiged and the parametric sensitivity of the propagating
waves with regard to the design of the modelled compositelpsideduced. Both conservative and non-conservative
structural systems are considered. In Sec.3 the SEA madefoputing the vibroacoustic performance of the layered
panel is presented and its parametric sensitivity withe@esp each design parameter of the panel is also derived.
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The principal SEA quantities, namely the modal densityrdutkation éficiency and the intrinsic damping loss factor

are all considered. Once the parametric sensitivity of theoacoustic performance of the structure is computed, the
formulation of the optimization problem, including the ebjive function as well as the corresponding Hessian matrix
are formulated in Sec.4. In Sec.5 the presented approagpiied to a layered sandwich asymmetric structure and

the corresponding numerical results are discussed. Csinakion the presented work are eventually given in Sec.6.

2. Acoustic wave sensitivity

2.1. Formulation of the PST for an arbitrary structural segment

A periodic segment of a panel having arbitrary layering isshg considered (see Fig.1) with, Ly its dimensions
in thex andy directions respectively. The segment is modelled usingaetional FE software. The mass, damping
and stifness matrices of the segméit C andK are extracted and the DoF sgs reordered according to a predefined

sequence such as:

d=1{q 9s Ot d. Or die Ore Ot OrT}' 1)

corresponding to the internal, the interface edge and teefate corner DoF (see Fig.1). The free harmonic vibration
equation of motion for the modelled segment is written as:
[K +iwC - w®M]q =0 (2)
[Figure 1 about here.]

The analysis then follows as in [10] with the following retats being assumed for the displacement DoF under

the passage of a time-harmonic wave:

gr =€'"qL, dr =€ '0p

Ore =€ '*QLe, OLT =€'¥qLB, OrT =€ '*'¥(Lp

3)

with &y andey the propagation constants in thendy directions related to the phasefdrence between the sets of

DoF. The wavenumbets, ky are directly related to the propagation constants throbhghelation:

ex = kelyo & = KLy 4)

Considering Eq.3 in tensorial form gives:
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with x the reduced set of Dok = {q, gs gL qis}’. The equation of free harmonic vibration of the modelled

segment can now be written as:

[R*’KR + iwR*CR - w?R*MR]x = 0 (6)

with * denoting the Hermitian transpose. The most practical phaeefor extracting the wave propagation character-
istics of the segment from Eq.6 is injecting a set of assurmedgpation constants;, sy. The set of these constants
can be chosen in relation to the direction of propagatiomtdewhich the wavenumbers are to be sought and accord-
ing to the desired resolution of the wavenumber curves. Edtgen transformed into a standard eigenvalue problem
and can be solved for the eigenvecxowhich describe the deformation of the segment under theagassf each
wave type at an angular frequency equal to the square robéafdrresponding eigenvalile= 2. Itis noted that the
computed angular frequency quantities: w, +iw; will have| wj |> 0 implying complex values for the wavenumbers
of the propagating wave types, otherwise interpreted asafipalecaying motion and from which the loss factor of
each computed wave typecan directly be determined.

A complete description of each passing wave includingigdy directional wavenumbers and its wave shape
for a certain frequency is therefore acquired. It is noted the periodicity condition is defined moduls,2herefore
solving Eq.6 with a set ofy, s, varying from 0 to 2 will suffice for capturing the entirety of the structural waves.
Further considerations on reducing the computationalmesg@ef the problem are discussed in [10]. It should be noted

that only propagating waves will be considered in the subseganalysis.

2.2. Parametric sensitivity

2.2.1. Non conservative structural system
It is initially noted that matriceX = R*KR, C = R*CR andM = R*MR in Eq.6 are Hermitian therefore
their resulting eigenvectors will be orthogonal. Eigemeasensitivity for both undamped and damped systems is an

established resultin modern literature [13, 15] that walldmployed in the present work. When the partial derivatives



of K, C, M with regard to design parametegdis 8; are known then the sensitivity of an eigenvalyeto this design

parameter for a damped system will be equal to

oM dC oK
XL (42— + A
% _ W( Waﬂi Wa i 6:8I) (7a)
B X, (24wM + C) Xy
3w 1
- 7b
BB X, 2AwM + C) X (7b)
(/12 62 /l 62C + 62K +%( @_‘_%)4_%( %-F%))X
“opiop  "0Bi0B - ook 9B\~ "ap;  ap;y) 9\ T " ap - ap
oM dC oK 94 X
B+ Ay + —— + — (244M + c) =
( g, g T op T om MO g
oM oC oK 3/1W )6xw 0w 0y }
B+ Ay + — 24,M +C 22 X rMX
( a6, " ap, T ap, " ap, M+ O) 95 T 2 ap, ap,
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with .Z(-) denoting the imaginary parf,, a known eigenvalue of the system having the correspondingplax

eigenvectok,,.

2.2.2. Conservative structural system

For an undamped structural segment having 0 the above expressions, this time concerning the sengitidit

the real eigenvaluet, become
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% g ) o
Pl (g T Dl Gl ), (ob)
oo~ \opiog  “opiop oy 9B 0B 9y )"
Xy 0 OXw
X (6ﬁ,[K AWM)aﬂ. (6[3.[K ”WMD %,

with the sensitivity of the real mode shapgsr to be calculated by the approach exhibited in [13]. The dloksss

and stitness matrice®, K of the structural segment are formed by adding the local randsstifness matrices of

5



individual FEs. It is therefore evident that when the expi@sof the partial derivatives for every local mass, damgpin

am odc ok P#m  9c 9k . .
and stifness matrix—, and are known then the expressions for the global matrices
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together. Eq.9 can therefore be written as

can be derived simply by adding the expressions of the loedtices
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For the conservative system it is known however t%gﬁl = —, therefore
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with wy the angular frequency at which the setgf ¢y is true for thew wave type described by thg, deformation.

.0 N
For the wavenumber sensmvnz"—léw the following is true
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with cgw = T the group velocity associated with the wave typat frequencyw,, and the quantitiesgw, to

Ky " O

be numerically evaluated by the solution of the baselingcstiral design. The generic symbolic expressions of the

m, ¢, k matrices for an orthotropic structural segment modellatl wilinear solid FE is given in Appendix A.

3. SEA sensitivity analysis

3.1. The employed SEA model
The impact of the parametric alterations on the vibroadops&trformance of the structure under investigation is
exhibited in this section by deriving expressions for thesgi#vity of the SEA results with respect to the propagating

acoustic waves.



The total acoustic transmission ¢heientr is one of the most important indices of the vibroacoustiégrerance
of a structure. The system to be modelled comprises one ticallysexcited chamber (subsystem 1) and one acous-
tically receiving chamber (subsystem 3) separated by thaetterd composite panel (subsystem 2). It is considered
that each wave type is excited and transmits acoustic enedgypendently from the rest, therefore each considered
wave typew = wy, Wp...W,, propagating within the composite panel is considered aparate SEA subsystem. No
flanking transmission is considered in the SEA model. Thegngalance between the subsystems as it is considered
within an SEA approach (see [7]) is illustrated in Fig.2, ihigh E;, E; stand for the acoustic energy of the source
room and the receiving room respectively dhgdfor the vibrational energy of the composite panel. Mored¥glis
the injected power in the source rooRyy, Poqg and P34 stand for the power dissipated by each subsystenPant

the non-resonant transmitted power between the rooms.
[Figure 2 about here.]

The derivation of an expression for the total acoustic massion coéficientr of the composite structure by

merely accounting for its structural dynamic behavioutisimarized in Appendix B (as exhibited in [11]) and reads

R (13)

with 7, being the transmission cfiient of the wave typ& given as

2
rad,w

- Psw?A(pswiy + 20Co 1 ad,w)
The non resonant transmission @o@entr,, = P13/Pin for a diffused acoustic field can be written as in [9]:

8,02 c*ro Nw

(14)
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in which 6 and¢ are the incidence angle and the direction angle of the aicomave respectively andy = pc/ cosd

is the acoustic impedance of the medium. The tégn stands for the maximum incidence angle, accounting for the
diffuseness of the incident field. It is hereby consideredhat= 7/2 for all the results presented in the current work.
The termo(6, ¢, w) is the corrected radiatiorffeciency term. It is used in order to account for the finite disiens

of the panel and it is calculated using a spatial windowingestgion technique presented in [30].

Eventually the STL of the panel can be expressed as

STL=10 Ioglo(l) (16)

T

by definition.



3.2. Parametric sensitivity of the total acoustic transmission

In order to formulate the expression of the Hessian matrscdking the variation of the vibroacoustic perfor-
mance of the structure with respect to its design parameteessecond order derivative afwith respect to the

considered set of parameters should be derived and exgrasse
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while the sensitivity of the STL index can directly be exged with regard te as
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In the following sections the evaluation of Eq.17 is diseaks

3.3. Modal density sensitivity

Using Courant’s formula [31], the modal density of each wigyeew can be written at a propagation anglas a

function of the propagating wavenumber and its correspangioup velocitycy:

Akw (w, 9)
N y = —— 19
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The angularly averaged modal density of the structure iefbee given as
n@ = [ .o (20)
0

Thanks to the chain fierentiation rule the first and second order derivatives @htiodal density for each wave type

with respect to design variablgs 8; can be expressed as
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while for the spatially averaged modal density

(21a)

(21b)
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0
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suggesting that the modal density sensitivity can be espremerely by

d (22b)

e The sensitivity of the characteristics of the waves tranglivithin the considered structure with respect to the

structural design (already determined in Sec.2).

e The sensitivity of the modal density with respect to the abtaristics of the waves travelling in it.

A similar approach will be followed for computing all the raming necessary quantities throughout this work. It

should be noted that Eq.21 is derived under the assumptitogh (w, ¢) # 0

3.4. Radiation efficiency sensitivity
In order to avoid the computationally iffiecient frequency and directional averaging of the modal ddpat
radiation dficiency sensﬂwﬂy%w
i

dependence af4qw SUch as the ones exhibited in [5, 8, 10]. For a generic parstdicture including discontinuities

, it is practical to employ expressions introducing a dirgaenumber

the assumption of sinusoidal mode shapes is no longer thidefore the radiationfigciency should be calculated

directly from the PST derived wave mode shapes. The radiafitciency expression as derived in [10] can therefore
be employed. For continuous structures, mode shapes afadal form can be assumed in order to avoid any FE
discretization errors in the solution. The set of asymptédrmulas given in [8] can be used for computing the

averaged wavenumber dependent radiati@iciency of the panel as



1
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with u = ( X 5 , Wherek = w/cis the acoustic wavenumber. It is noted that the above egjoresare largely
K

overestimating the radiatiorifeciency of the structure close to the coincidence frequefyefficient approximation

of oragw Whenk = « is given in [8] as

Tradw (K (@)) = (0.5 - 0.15min Ly, Ly)/ max (L Ly)) + [kmin (L, Ly)

Three domains will therefore be distinguished for the rtoliaefficiency of the panel. It has been empirically
observed that the above cited relations overestimate thatien eficiency of the panel within a regiondD < u <

1.05. The following relations fooaq.w (k (w)) are therefore hereby suggested

1
Oradw = u < 0.90 (23a)
rad,w 1.2 —
Ly + L 1
Tradw = -~ (m (“ i )+ 22” ) > 1.05 (23b)
aukLyLy /u? -1 =1 p-1

Oradw = (0.5 —0.15min (Lx, Ly)/ max (Lx, Ly)) Jkmin (Ly, L) u=1 (23c¢)
In the region B0 < u < 1.05 a shape preserving Hermite interpolation function islegga assuring the continuity

and double dterentiability for the entire spectrum of the,y,, expression. The sensitivity expressions can therefore
be directly derived by Eq.23 in the< 0.90 andu > 1.05 regions as
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while the interpolation function is used for expressingsbasitivity ofoaqw for the remaining spectrum.

3.5. Damping loss factor sensitivity

Reducing the acoustic transparency of a structural panieldogasing its intrinsic damping properties is a popular
noise reduction strategy within the modern industry andrdfines an gective option, particularly in the high fre-
guency range. It is therefore particularly useful to depaledicated models for evaluating thi#eet of the increase
of the damping cofcienty of the material comprised in a single layer of the compogiecture on its total loss
factor. Having a look at the form of the eigenvalue problenE@6 it can be deduced that expressing the total loss
factor of the structural panel as a function of the real analgimary parts of the resulting eigenvalues (as in [32, 33])
can be particularly practical.

The loss factor of each computed wave typean directly be determined as
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W@@:ﬂfwz (25)

r W,

with nn(w, ¢) the loss factor for the wave type at a certain angular frequenayand propagating towards a certain

directiong. The total frequency dependent loss factor of a certain typescan be computed as

Jo mlw, $)dp

T

nw(w) = (26)

which can be evaluated at the entire spectrum of interest. sEnsitivity of the directional loss factgg(w, ¢) can

therefore be expressed as
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while for the total loss factor of the panel

Onw (w) ™1 0w (w, 9)
B j(; n B de (283)
5277w (w) _ fﬂ }3277W (w, )
Biop Jo m 0Biop
to be evaluated in the frequency bands of interest.
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3.6. Senditivity of the resonant acoustic transmission

Taking a look at Eq.14 it can be observed that the sensitfithe resonant acoustic transmissionficeent with

respect to the design parameters of the composite struzdarbe expressed as
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with the transmission cdicient related sensitivity terms being expressed as
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6[7% ApS(T]W(UpS + 2Cp0'rad,w)3 A(A)Zpg(nw(l)ps + 2Cp0'rad,w) AO)P%(UWWPS + 2Cpo—l'ad,W)2
All the necessary quantities have by now been computed fnencdnsiderations introduced above and the reso-

nant acoustic transmission sensitivity can thus be ewvaedLiatEq.29.

3.7. Senditivity of the nonresonant acoustic transmission

Nonresonant acoustic transmission is induced by the stral@coustic coupling of mass controlled (low fre-
guency) and sfiness controlled (high frequency) modes having a resonaageadncy outside the considered band.
Mass controlled modes can actually induce a significant arnofuacoustic transmission and are considered within
the analysis through Eq.15. It is evident thati(w) as expressed in Eq.15 is insensitive to all structuralgtepa-
rameters except the surface mass of the strugiur&he only design parameters that have therefore the pateati
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affect the nonresonant term are the layer thicknesses andidemdithe composite structure. The parametric design

sensitivities can therefore be written as

aan((U) _ 1 21 j‘emx aan(g’ ¢’ (1))
B n(COF bnin — COL Omay) fo 0 B dode (31)

with the sensitivity of the directional transmission ffia@ent expressed as

aan (0, ¢, (1)) _ aan (9, ¢, (1)) % _ _8230)0—(0, ¢, (l)) CO§ 0 Slng' %

= = - 32
9, s B 2o+ p B O (32)
While for the second order sensitivity we have
3Zan ((U) _ f fgmax 327'nr 0, ¢, w) 5;05 6;05 + Ot (6, ¢, w) 62)03 dgde (33)
apjopi  n(cog 0m.n COS Ormax) a3 OB IBi dps  IB;OBi
with
P (0, ¢, w)  —24Z5w*a (6, ¢, w) cOS Gsing (34)

w: | 2Z5 + pswi 4
The computational cost of Eqs.31,33 is significantly reduog the fact that the geometric radiatiofi@ency
terma (6, ¢, w) is solely dependent on the ar@aof the considered structure which is not under investigadiod is

therefore computed only once in the optimization procese quantityl 27y + pswi | is therefore the only one that

needs being recomputed for every design alteration. Givatpt = me|h| with pm the mass density of layér
=

6 Ps

3[7’15 j

andh, its thickness, it is straightforward to derive the quaes% 5,3 for the composite panel.
j

4. Formulation of the optimization problem

The Newton'’s method will be hereby employed (ensuring gaticiconvergence towards the solution) in order to

optimise the considered set of parameters, which in thergeoghotropic multilayer case can be expressed as

.
p ={ Ex1Ey,1E21Viy,1Vx2 121Gy, 1Gx21Gyz 1M1Pm1 - * * Ol } (35)

with |k the maximum number of layers. It is interesting to note thatuidingz in an optimization procedure will
not provide any helpful information, ag will not directly affect neither the mass, nor thefBiess of the panel. On
the other hand it will always be beneficial for the reductiérrg which suggests that a maximuyprwill always be
the result of the computation. Arffective way of including damping in the optimization processild be explicitly
relating the increase of damping ¢bheienty, for layer| with the mass of the layer (e.g. accounting for the mass and
damping increase implied by viscoleastic material indas).

The parameters may be considered to be constrainede=d i min. Bi.max]).- The objective function (p) to be
minimised is eventually to be decided. It is evident thatdbst of added mass, as well as the one of statfinets
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loss should be included if(p) (if not maximising the mass of the panel would be the evidehition for minimising

the acoustic transmission). There is a number of cost ixitieat can be applied to the stress-strain matrixfoments

[34] of a laminate in order to account for its axial, shear fegural stifness. A number of manufacturing related

constraints (accounting for the realizability of the congulioptimal design) can also be added to the optimization

problem.

The cost function can eventually be expressed as

F(P) = &73(p) + £7(P) + E17(P) + £o + 53p3(P) + 5203(P) + S105(P) + S0 + L303(P) + L202(p) + £1ds(p) + Lo (36)

with 7, ps andds being the acoustic, mass andfstéss performance indices respectively &nd;, & codficients that

allow the designer to apply a polynomial curve fitting to thiaitable cost data; thus facilitating theffdirentiability of

¥ (p). Higher order polynomial or exponential fitting functiomay be applied without loss of accuracy. The gradient

vector ofF (p) can therefore be computed as

VF(p) = {

OF (p) 0F (p) 0F (p) 9F (p) F (p) OF () OF (p) 9F (p) OF () 0F (P) 0F (p) ~ IF (p) }T (37)
(9Ex,1 (9Ey,1 6EL1 avxy,l avle avyu 6ny,1 6GXL1 6GYL1 ahl apml (9pm|max
ot (92(537'3) (97' 61’
The derivatives of (p) can be calculated using the chain rule 2 and—=_~. =
(P) 9 ¢ TR Rl Tkl e

0t . . . I
3¢a7? ). The Hessian matrix is subsequently formed using the céeggecond order sensitivity values
(9ﬂ ]aﬂl

PF(p) F (p) F (p) 5F (p) F (p) PF(p) *F (p) 97 (p) 5*F (p) PF(p) 57 (p) F (p)
0E2 OEx10Ey1 0Ex10Ez1 OEx10Vxy1 OEx10Vxz1 OEx10Vyz1 0Ex10Gyy1 0Ex10Gz1 0Ex10Gyz1 9Ex10hy 0Ex10pm1 OEx10Pm| ey

#7p) #F(p) 7 (p) 7 (p) 7 (p) 5T (p) 7 (p) 57 (p) 7 (p) PF(p) PF(p) 7 (p)
9E10Eq OB,  OEy10Ea  0Eifg1  OEyifei  OEadhe  9E10Gy1  0Ej10Ggi  0E10Gp1 0B OEyidpmt 9By 10Pminm,

PF(p) PF (p) &7 (p) 57 (p) PF (p) PF(p) F (p) 97 (p) *F (p) PF(p) 57 (p) F (p)
OE0Ex  OE0E  OBZ,  OEadVen  OEndVas  9EnadVmi  0E.1dGwy:  0E;10Gg:  0En10Gm:  0Enohy  9Enidpm O, 100mim:

PF(p) *F (p) #70) PF (p) F (p) PF(p) *F (p) PF (p) 7 (p) PF(p) PF (p) F (p)
OVyy10Ex1 Oy 10Ey 1 Oy 10E71 6v2xy 1 OVyy10Vxz 1 OVyy10Vyz1 OVyy 10Gxy1 Oy 10Gsz1 OVyy10Gyz1 OVyy10hy OVxy10pm1 Ny 10Pm e

PF(p) P (p) 7 (p) 57 (p) PF (p) PF(p) F (p) PF (p) 7 (p) PF(p) PF(p) 57 (p)
Ne10E  MNg10By: V0B DNeidVas oz, N1z Ne10Gms  MNa100xm1  MNg10Gyp1  Mg1d  Degidpmi Na1OPminm,

PF(p) *F (p) *F (p) *F (p) F (p) PF(p) *F (p) PF (p) 7 (p) PF(p) PF(p) F (p)
OVyz10Ex1 OVyz10Ey 1 OVyz10E;1 OVyz10Vxy.1 OVyz10Vz1 {)\/)211 OVyz10Gxy 1 OVyz210Gxz1 OVyz10Gyz1 Avyz10hy OVyz10Pm1 ONyz10PMm e

H=vF(p)=| _&7P 7 (p) 7 (p) P (p) 7 (p) 7 (p) PF(p) 7 (p) *F (p) PF(p) PF(p) PF(p)
9Gy10Bx1  0Ggi0By1  0Ggi0E.  GgidVe: GnidVei IGyadNgi  0GL,,  0GgidGgi  Gn10Gp1  Gmud  IGmadpmi 3Gy 10Pmimes

&7 (p) 7 (p) 97 (p) 97 (p) 7 (p) &F (p) 62¢(D) &7 (p) 7 (p) PF(p) 97 (p) 97 (p)
0Gg10Exs  0Gg10E,;  9Ggi0E;1  0GgidVe:  0GgiNes  9GmidVg:  9Gx10Gy1 G2, 0G10Gyz1  0Ggidhy  3Gg10pmi 3G e 10pminm:

PF(p) *F (p) PF (p) PF(p) *F (p) PF(p) *F (p) PF(p) PF(p) &7 (p) PF(p) F (p)
36p10Ex1  0010Ey1  90p10E;1  0p1fg1  00p1Mei  00mdei  9Gp10Gy1  00p10Ger  0GL,  0Gmd  3Gu10pm 3Gy 10pmines

&7 (p) *F (p) 7 (p) 7 (p) *F (p) &7 (p) *F (p) 57 (p) 7 (p) &7 (p) 7 (p) *F (p)
OOy 1 ETr= 9hy0E, EY Ny Eryn 313G y1 90G 1 310Gy, anz dpm1 Pt

PF(p) F (p) 5 (p) 57 (p) F (p) PF(p) 5 (p) 97 (p) 7 (p) PF(p) 57 (p) F (p)
9pm10Ex1 Opm10Ey1 Opm10Ez1 Opm10Vy.1 0pm10Vsz1 Opm10Vyz1 9pm10Gyy1 9pm10Gxz1 0pm10Gyz1 pma10hy 2, OPm10Pm Iy

PF(p) F (p) 5 (p) 57 (p) 5*F (p) PF(p) 5 (p) 97 (p) 7 (p) PF(p) 57 (p) 5 (p)

OPpmipPEx1  0PmimOEy1  0pmim OBz 0PmimViyl  00mim@Vizl  0Pmim@Vyz1  0pmimOGxy1  9pmipm0Giz1  9PmimOGyz1  0pmim @M Opmipdpmi i)pﬁﬂm

(38)

A commercially embedded constrained nonlinear optimiraslgorithm [35] is eventually employed in order to

compute the optimal parameter vegpothat minimisesF (p) at a certain frequency.

15




5. Numerical case studies

In order to validate the exhibited optimization approachagymmetric sandwich panel comprising two facesheets
and a core is modelled in this section. The lower faceshesaltilicknest;=1mm and is made of a material having
Pm1=3000e°kg/mm?®, E; = 70GPa and a Poisson’s ratiep=0.1. The upper facesheet has a thickness equal to
hs=2mm and is made of the same material as the lower faceshez=toré has a thicknegs=10mm and is made of
a material withoy, ,=50€ °kg/mn?®, E, = 0.07GPa and,=0.4. Three FEs are used in the sense of thickness in order

to model the structure. All computations were conductedgiie R2013a version of MATLAB.

5.1. Results on the wave sensitivity analysis of a layered structure

In this section the sensitivity of the wave characteristiith respect to the mechanical and geometric characteris-
tics of the sandwich panel are sought as discussed in Sewe2e$ults are compared to a FD approach throughout this
section. In order to implement the FD approach a perturbati®.1% was considered for each structural parameter.

The resulting FD sensitivity can be computed by

*_ Kk

B Bp—Bo
with k,, the perturbed wavenumber value By andko the corresponding wavenumber for the unperturbed paramete
Bo-

The sensitivity of the flexural wavenumblemith respect to the thickness of each facesheet layer iepted

(39)

in Fig.3. It is particularly interesting to note that in thery low frequency range increasing the thickness of both
facesheets will imply a softeningtect to the structural behaviour, shifting the flexural wavabers upwards. This
mainly suggests that théfect of the added mass overcomes tiect of added sfiness for botl#h; andshs. However

at higher frequencies the results change radically fortitu&ér upper facesheet, witthhs now shifting the wavenum-
bers to lower values, suggesting dfstiing phenomenon in the structural dynamic behaviour. Aekant agreement

is observed between the presented approach and the FD method
[Figure 3 about here.]

The sensitivity ofk with respect to the thickness of the sandwich core layer ésqnted in Fig.4. A very in-
teresting €ect is that the influence @, on the flexural wavenumber becomes maximum for a certairuéecy
(approximately 2000 Hz), where thefBining dfect ofsh, becomes maximum. An intense nonlinearity is observed
in the relation ofw to dk. A constant decrease of this influence is observed beyongdtiat. The stifening dfect
is probably due to the greater separation of the two facésheth sh,. It is very probable however that for higher
wavenumber valuesh; will have a softening ect on the flexural wavenumber with the depicted curve pggsin
positive values olék. This is the frequency range within which the two facesheéthe structure start vibrating

independently of each other (see [36]) thus the core thigkhas an insignificant impact on the flexural wave speed.
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[Figure 4 about here.]

In Fig.5, the sensitivity ok with respect to the mass density of the sandwich faceshgetsas presented. As
expected, botlipm1 anddpms will shift the wavenumber curve to higher values, suggestisoftening phenomenon.
This dfect will be greater for the thicker upper facesheet at kowalues. A highly nonlinear behaviour is again
observed and it is interesting to see that there is a criieguency value at which thefect of 5om1 andépms will

be the same. Beyond this critical wavenumber the softerfiiegtewill paradoxically be more intense fom ;.
[Figure 5 about here.]

The perturbation ok with respect tos, for the sandwich core is presented in Fig.6. THea of v, is softening
up to a certain wavenumber value, beyond which an intensedse of the sensitivity is observed whichtetis the

flexural structural behaviour.

[Figure 6 about here.]

5.2. Results on the SEA sensitivity analysis of a layered structure

In this section the sensitivity of the SEA quantities, nateke modal density, the radiatiofffieiency and the
damping loss factor are computed as discussed in Sec.3 ahdhtad.

The first order sensitivity of the modal density of the conifgopanel with regard to the layer thicknesses and
Young’s moduli are exhibited in Figs.7,8 respectively. |g.B all sensitivity values are negative, it was thus prefer
to present the absolute result values in order to employ aeidogarithmic scale. It can be observed that the
stiffening dfect induced byh; in the high frequency range, also induces a high reductidheofnodal density, while
a maximum softeningfeect is observed for botbh;, shs in the low frequency range (approximately 1000 Hz). With
regard to the #ect of the Young’s modulus it is observed that its increaseiggly more drastic hardeningfects

for the core layer compared to the one of the facesheets.
[Figure 7 about here.]
[Figure 8 about here.]

The sensitivity of the acoustic radiatioffieiency for the composite panel with regard to the layer thédses is
presented in Fig.9. In order to use a clearer logarithmitesitee quantity510log()/sh is plotted. It is generally
observed that altering the thickness of the thicker facetdhewill have a maximum ffect on the radiationf@ciency,
while the opposite is true for altering the thickness of tbeedayer. The maximum impact an is as expected
observed around the acoustic coincidence frequency (appately 5800 Hz in this case study). It is interesting to
note that the ect of sh; will have an oppositeféect ono- compared t@hs.

The same quantity is presented in Fig.10, this time as aifumcdf the mass densities of the three layers. This
time the dfect of 5pm2 Will have a maximum impact on the acoustic radiatidiicéency (probably due to the higher
volume of the core layer), again around the acoustic coaraid frequency.
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[Figure 9 about here.]
[Figure 10 about here.]

The sensitivity of the loss factarfor the flexural wave is subsequently discussed. Its firstiosensitivity with
regard to the layer thicknesses is exhibited in Fig.11. &vislent that the maximum impact 6f; on the total loss
factor of the panel takes place in the low frequency range. higgher frequencies it can be observed thath;
converges to a constant value, while the increase of thetbimieness has a continuously diminishing impacton

In Fig.12 the same quantity is presented, this time as aifumof the individual damping cdkcient of each layer
vi. Throughout the entire frequency range it is observed ti@measing the damping ciiieient of the core layefy,
will have a maximum ffect on the total loss factor of the panel. It is observed thatffect of 6y; on the total loss

factor is diminishing with frequency.
[Figure 11 about here.]
[Figure 12 about here.]

The impact of the structural parameters on the acoustistnasion cofficient and the STL of the composite
structure is eventually computed. In Fig.13 the sensjtigitthe structure’s TL with regard to the layer thicknesses
is presented. It is evident that altering the thickness efutthper thicker layer will induce the maximurffect on
TL, especially close to the acoustic coincidence region.ti@nother hand, altering the core thickness will have an

insignificant éfect on the TL index.
[Figure 13 about here.]

In Fig.14 the sensitivity of the TL with regard to the layersaalensities is presented. It is evident that the results
follow the trend of the ones shown for the radiatidficgency of the panel in Fig.10 with the mass density of the core

layer being the one that influences the TL the most.
[Figure 14 about here.]

The same result is exhibited in Fig.15, this time regardigggensitivity with respect to the Young’s moduli of the
layers. Once again it is observed that altering the Youngdulus of the core can have the most significant impact,

while the influence o6E; anddEs are generally insignificant.

[Figure 15 about here.]
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5.3. Structural design optimization of the layered structure

As discussed in Sec.4, the criteria to be considered witl@moptimization process of the mechanical and geomet-
ric characteristics of the panel are its massirstiss and vibroacoustic performance. The surface mass pétiedo
is chosen as a representative mass index, the total actnastitnission cdéicientr is selected as the vibroacoustic
performance index, while with regard to the structurdfistiss and for the sake of simplicity we will hereby assume

that we are solely interested in the sum of the static flexsiifihesses of the panBl,x, Dyy expressed as

I max

1
ds = Dxx + Dyy = § Z ((Qxx,l + nyl)(z|3 - Z|3—1)) (403-)
=
1-\2
Quui = Exy—. v (40b)
1-\2
Q. = Ey,lTIXLI (40c)
A=1- szy,l - V2yz,| - V%x,l — V1 Vyz Vx| (40d)

which in the case of an isotropic composite panel gives

ds = § Ii (QE-7) (41)

I=ly
with z the coordinate of the upper surface of layér the thickness direction. The design cost functions, eygd
in order to decide the relation betwees r andds and the corresponding induced design cost are exhibiteid)it6-

and eventually result in the objective function

F (p) =4.000€73(p) + 2.920€72(p) — 6.245r(p) + 3.005+ 1.3326°p3(p) + 6.9406°p(p)— (42a)
7.512€p4(p) + 1.873— 9.369¢ 31d3(p) + 1.405€%2(p) — 3.816€ °ds(p) + 29.936

to be minimised. It is noted that other polynomial as well ggomential fitting functions can be employed without

loss of accuracy. The following constraints are considévethe optimization procedure

[Figure 16 about here.]

E; € [40GPa,110GPa)v; € [0.05,0.30] h; € [0.2mm,3mm] pm1 € [1500kgm®,4500kgm?]
E, € [40MPa,110MPa]v; € [0.05,0.49] h, € [5mm,20mm] pm2 € [10kg/m?,150kgm?]

Ez € [40GPa,110GPalvs € [0.05,0.30] hs € [0.2mm,4mm)] pm3 € [1500kgm?,4500kgm?]
Additional constraints (e.g. minimum axial god flexural stithess, maximum surface mass e.t.c) can be con-
sidered. The constrained optimization problem is implet@eéwithin MATLAB and the nonlinear optimization

algorithmfmincon (see [35]) is employed in order to compute the optimal patamectorp that minimisesF (p).
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5.4. Optimal parameters and discussion on the computational efficiency

The optimization problem is solved f&r= 0.13ragmm, and the optimal material and geometric parameters that

minimise the cost function presented in Eq.42 are compugddlmws

E; = 80.9GPav; = 0.12 h; = 1.19mm pp1 = 1647kgm®

Ez = 110MPa v, = 0.37, hy = 10.53mm pp2 = 14.6kgm®

Es = 58.3GPavs = 0.19 hz = 1.74mm pp3 = 1500kgm?®

Itis noted that the only quantities laying on the limits of firedefined constraints which could potentially further

improve the overall structural performance are the Youngislulus of the core laydf, as well as the mass density
of the upper layepms. Optimising the structure in a broadband frequency rangebeadone by averaging the
optimal parameters over the frequency range of interest orttbducing a weighting average for the frequency bands
that are considered more important (e.g. frequency rangesonding to the external acoustic excitation). The
optimization process was completed in 8 iterations eachhidiasted approximately 78 seconds, resulting in a total
computation time of 630s. This suggests that a broadbanctstal optimization is feasible within a few hours, even

on a conventional computing equipment.

6. Conclusions

In this work, the optimal mechanical and geometric charésttes for layered composite structures subject to
vibroacoustic excitations were derived in a wave SEA canfElte main conclusions of the paper are summarised as:

(i) The formulation of the symbolic expression of theffstess and mass matrices for a linear solid FE were
presented. These formulations can be used in order to dégvg/mbolic global matrices of the modelled segment,
as well as the sensitivity of the global matrices with regardny structural parameter. Non conservative structural
systems are also modelled by the exhibited approach.

(ii) An intense frequency dependent variation of the seritsitof the propagating wave characteristics has been
observed as a function of the design of the composite streiclihis also implies frequency dependence of the optimal
design parameters.

(iii) Expressions for the first and second order sensiégitbf the SEA quantities, namely the modal density, the
radiation dficiency and the damping loss factor of the composite panea dexived. The design parametric sensitivity
for each of the SEA quantities, as well as of the acousticstrassion cofficient were found to be highly frequency
dependent. The impact of the design alteration on the vdmastic response was found to be maximum in the vicinity
of the acoustic coincidence range for most parameters.

(iv) The suggested optimization process is computatigreticient, allowing for a broadband structural design

optimization of a layered structure in a rational periodmi, even with the use of conventional computing equipment.
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Appendix A. Sensitivity analysis of a solid FE

A linear solid FE is hereby considered as shown in Fig.17.

[Figure 17 about here.]

Following the isoparametric notation introduced in [378 tieometry of the element is described as

N1
N
N3

Ng
Y (=YL Y2 Y3 Ya Y5 Ye Y7 Y8 (A.1)
z

Ns
L L 3 44 B Lz 7 Zg
Ns

N7
Ns

X X1 X2 X3 X4 X5 Xe X7 Xg

The displacement interpolations are expressed as
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Uyx Ux Ux2 U Uxa Uxs Uxg Uxz Uxs
Uy =] Ua U2 Wz Us Us Up U7 Ug
Uz Ua Uz Us Uxy Us Up Uz Us

Linear shape functions are assumed for the element

Ny = 3(1-&)(1-n)(1+p)
Nz = 3(1-&)(1-n)(1-p)
N3 = $(1- &)@ +n)(1-p)
Na=3(1- &)1 +n)(1+p)
Ns = §(1+&)(1—n)(1+p)
Ne = 5(1+&)(1-n)(1-p)
N7 = 3(1+ &)1+ n)(1-p)
Ng = 3(1+&)(1+n)(1+p)

The element sfiness matriX is formally given by the volume integral

1 1 1
k = f f f BTDBJJ| dndédy
-1J-1J-1

while the element mass and damping matrites can be determined as

1 pl ol

m= [ [ [ o dyced
-1J1da
1 1 1

sz f f N7y N|J| drdédu
-1J-1J4

with
Nty 0 O --- Ng O O
N = 0 Nl 0 cee 0 Ng 0
0O O N - 0 0 Ng

while pr, is the mass density of the material anthe material damping cdgcient. It is also noted that
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0 0
Ny
ay 0
Ny
0 0z
Ny
IX 0
Ny N
0z ay
0 Ny

ax

The Jacobian matrix of the element is

while the the flexibility matrix of the element for an orthopic materiaD™! can generally be written as

D=

1
E,
j— VyX
Ey
—Vzx
E;

0

0

0

9z

ax
9
&
F
%
op

Elx

E,
—Vyy
E
0

9y
9
oy
F
oy
op

— Vyz
Ey
1

E,
0

N
X

Ny
ay

Ng
0z

6_2
0
%

on
0z

au

0

9Ng
ay

MNg
IX
MNg
0z

0

Ng
0z

INg
ay
MNg

ox

Gy |

0
1

Ux1
Uy]_
Uz

Ux2

Uxs
Uys

Uz

(A.8)

(A.9)

(A.10)

The assumption of the undeformed FE being a rectangulatigapaped is hereby adopted. The coordinates

X1, X2, X3, X4, X5, X6, X7, X8, Y1. Y2, Y3, Y4, Y5, V6. Y7, Y8, andzi, z», 73, 74, Zs, Zs, 77, Zg, can then be replaced liy, Ly, L, in

the expression dB. The generic expression far is thus given as
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(A.11)

a very similar expression is true foy while the symbolic generic expressionlotan be derived exactly in the same

way but is hereby intentionally omitted for the sake of bgvi
dc om as well as ok oc_ _o°m with 8, Bj being design
B’ B, “0B;0B:" 9B;9p: OB "

parameters can therefore be calculated as a functip &y, E, Vyy, Viz, Wz, Gxy, Gxz, Gyz, L, Ly, L, by differentiating

ok
The generic sensitivity expressiops-,
B
over the generic expressions farc, m.

Appendix B. Calculation of the Sound Transmission Loss (STL) of a panel by an SEA approach

In this Appendix, the analysis presented in [11] on the @gidn of an expression for the total acoustic transmis-
sion codficientr of a panelin a wave contextis summarized. Considering eagk typew = Wi, W,...W, propagating

within the composite panel as a separate SEA subsystem wee hav

W
P2 = Z Piow
W (B.1)

Wn
P23 = Z P23w

W=wW;
whereP;; andP,3 stand for the power flow between the two rooms and the panel.
The STL is defined as:

STL=10 Ioglo(l) (B.2)

T
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wherer is the transmission cdigcient defined as the ratio between the transmitted and thdeinicsound powers. It

can be written as the sum of the resonant and the non-resimaasinission cd@&cient:

W,
" p
e P23 + P13 _ Z 23w P13 (B.3)
W=W-

+
Pinc —Wp Pinc Pinc
wherePjc stands for the acoustic power incident on the layered pavtath for a reverberant sound field can be

written as:

()

Pinc =
Inc 4pC

(B.4)

Where< pi) the mean-square sound pressure. An attempt to calculategbeant cocient for each wave type is
hereby made. Assuming a linear system with no energy exasamgween dierent wave types within the structure,

the energy balance of a structural wave subsystem can emais

Piow = Pagw + P23w (B.5)

The power dissipated can be written as

P2d,w = E2,w(1)772,w (B . 6)

with Ez andn,, the vibrational energy and the structural loss factor ofevigypew respectively. The vibrational

energy of the panel due to wave tyywecan be written as:

Eg’w = psA<U€\,> (B7)

whereps is the mass per unit are,is the total area of the panel a(nc&,) is the mean-square velocity in the panel
due to wave typev.
The power flowP1,, can be written using the SEA reciprocity rule, as
El EZ,W El EZ,W

12w = wni2wll1 ( N nz,w) wrawl2w ( n Now ) ( )

whereny,n,,, are the modal density of the source room and of the wave wypespectively and,, the coupling

loss factor between the receiving room and the wave typdich can be written as:

COrad,
21w = M23w = P radw (B.9)
Psw
with p the acoustic medium density of the room. The total acousgegy of the source room can be written as
)V
E; = { 1>2 (B.10)
oC
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An accurate approximation for the modal density of the seuwoom is expressed as

V]_(l)z
=— B.11
ny 723 ( )

then the modal energy of the source room is

B, 2rc(p}
o # (B.12)
Ny pw
Using the SEA reciprocity rule again, the power flow from tlenposite panel to the receiving room can be written

as:

EZ,W E3

Posw = wnzawnz,w(— - —) = wWij23w (Ez,w -
n2,w N3

E3 nZ,W )

~ (B.13)

It is hereby assumed thaeg >> n,,, (reasonable for typically sized cavities and especialtyriedium and high

frequencies) and it is also logical tha,, > Ejz, therefore presuming th&,, >> E%ZW Eq.B.13 can be written as

Poaw = Exwwnoaw (B.14)

Eventually, after manipulating Eq.B.4 and Eq.B.6-B.14 anlstituting them into Eq.B.5 we get:

<U‘%’> _ 277'020'ra(:1,wnz,w (B 15)
(R2)  Psw?Aloswirzw + 20C0radw) '
Using Eq.B.4,B.7,B.9,B.14,B.15 and substituting thero i&Y.B.3 we get
8pc*no | n
Tw P = " radw 2w (B.16)

- Psw?A(pswiiow + 20C07radw)
which is the expression of the resonant transmissioffictent for wave typev.
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