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Abstract

The optimal mechanical and geometric characteristics for layered composite structures subject to vibroacoustic exci-

tations are derived. A Finite Element description coupled to Periodic Structure Theory is employed for the considered

layered panel. Structures of arbitrary anisotropy as well as geometric complexity can thus be modelled by the pre-

sented approach. Damping can also be incorporated in the calculations. Initially, a numerical continuum-discrete

approach for computing the sensitivity of the acoustic wavecharacteristics propagating within the modelled periodic

composite structure is exhibited. The first and second ordersensitivities of the acoustic transmission coefficient ex-

pressed within a Statistical Energy Analysis context are subsequently derived as a function of the computed acoustic

wave characteristics. Having formulated the gradient vector as well as the Hessian matrix, the optimal mechanical and

geometric characteristics satisfying the considered mass, stiffness and vibroacoustic performance criteria are sought

by employing Newton’s optimization method.

Keywords: Structural design optimization, Vibroacoustic response,Composite structures, Wave propagation

[Table 1 about here.]

1. Introduction

Layered and complex structures are nowadays widely used within the aerospace, automotive, construction and

energy sectors with a general increase tendency, mainly because of their high stiffness-to-mass ratio and the fact

that their mechanical characteristics can be designed to suit the particular purposes. Unluckily however, this high

stiffness-to-mass ratio being responsible for the increased mechanical efficiency, at the same time induces high acous-

tic transmission through the structure. The need for simultaneously optimising an industrial structure of minimum

mass and maximum static stiffness, while attaining satisfactory dynamic response performance levels is a challenging

task for the modern engineer; especially when considering acoustic transmission through a layered structure which

depends on the mechanical and geometric characteristics ofeach individual layer, resulting in a great number of design

parameters to be optimised.

The numerical analysis of wave propagation within periodicstructures was firstly considered in [1], while the work

was extended to two dimensional media in [2]. The so called Wave Finite Element (WFE) method was introduced in
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[3, 4] in order to facilitate the post-processing of the eigenproblem solutions and further improve the computational

efficiency of the method. The interest in predicting the vibroacoustic response of a structure in a wave context is far

from being new with the pioneering works of the authors in [5,6, 7, 8] being probably the earliest ones. A layer-

wise model for the prediction of acoustic wave propagation within continuous layered structures was presented in [9].

More recently, the prediction of the acoustic wave characteristics based on FE formulations allowed for more complex

structures to be included in the acoustic transmission computations [10, 11, 12].

Structural sensitivity analysis is of great importance forunderstanding the overall impact of a design parameter

variation to the performance characteristics which are to be optimised. Accurate sensitivity models are an impor-

tant tool for design optimization, system identification aswell as for statistical mechanics analysis. Several authors

[13, 14, 15, 16] have been focusing on the eigenvalue derivative analysis of a structural system. With regard to the

variability analysis of the waves travelling within a structural medium, the available published work is mainly focused

on deriving expressions [17, 18] of the stochastic wave parameters from analytical models. In [19] the authors conduct

a design sensitivity analysis by a wave based approach. Considering numerical approaches, the authors in [20] used

Bloch’s theorem in conjunction with the FE method in order tocalculate the sensitivity of the acoustic waves within

an auxetic honeycomb, while with regard to the computation of the variability of the propagating waves, the authors

in [21, 22] have presented a stochastic WFE approach for computing the variability of wave propagation properties in

one dimensional media. With regard to optimising the designcharacteristics of a layered structure the developed ap-

proaches have generally focused on genetic algorithms or particle swarm type techniques [23, 24, 25]. When it comes

to optimising the structural design vis-a-vis the dynamic response performance of a structure, wave based optimization

techniques have been developed [26, 27, 28, 29] by adopting Periodic Structure Theory (PST) assumptions.

In this work an established wave based SEA approach is employed in order to predict the vibroacoustic per-

formance of a composite layered panel. The novelty of the work focuses on the derivation of the first and second

order sensitivity of the acoustic transmission coefficient expressed through SEA with respect to the structural design

characteristics of the modelled structure. The considereddesign parameters include the entirety of the mechanical

characteristics, the density as well as the thickness of each individual structural layer. Non conservative structural

systems are also modelled by the exhibited approach. Employing a three dimensional FE description of the modelled

structure allows for capturing the entirety of the sound transmitting propagating structural waves, while employing a

PST formulation allows for drastically reducing the computational cost related to calculating the SEA parameters and

the Hessian matrix for each configuration. Although not discussed in this work, the method is straightforward to apply

to curved structures by expressing the FE structural matrices and wave propagation properties in polar coordinates.

The paper is organized as follows: In Sec.2 the formulation of the sensitivity of the waves propagating within the

periodic structure is elaborated. The PST to be employed is exhibited and the parametric sensitivity of the propagating

waves with regard to the design of the modelled composite panel is deduced. Both conservative and non-conservative

structural systems are considered. In Sec.3 the SEA model for computing the vibroacoustic performance of the layered

panel is presented and its parametric sensitivity with respect to each design parameter of the panel is also derived.
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The principal SEA quantities, namely the modal density, theradiation efficiency and the intrinsic damping loss factor

are all considered. Once the parametric sensitivity of the vibroacoustic performance of the structure is computed, the

formulation of the optimization problem, including the objective function as well as the corresponding Hessian matrix

are formulated in Sec.4. In Sec.5 the presented approach is applied to a layered sandwich asymmetric structure and

the corresponding numerical results are discussed. Conclusions on the presented work are eventually given in Sec.6.

2. Acoustic wave sensitivity

2.1. Formulation of the PST for an arbitrary structural segment

A periodic segment of a panel having arbitrary layering is hereby considered (see Fig.1) withLx, Ly its dimensions

in thex andy directions respectively. The segment is modelled using a conventional FE software. The mass, damping

and stiffness matrices of the segmentM,C andK are extracted and the DoF setq is reordered according to a predefined

sequence such as:

q = {qI qB qT qL qR qLB qRB qLT qRT}
⊤ (1)

corresponding to the internal, the interface edge and the interface corner DoF (see Fig.1). The free harmonic vibration

equation of motion for the modelled segment is written as:

[K + iωC − ω2
M]q = 0 (2)

[Figure 1 about here.]

The analysis then follows as in [10] with the following relations being assumed for the displacement DoF under

the passage of a time-harmonic wave:

qR =e−iεx qL, qT =e−iεy qB

qRB =e−iεxqLB, qLT =e−iεyqLB, qRT =e−iεx−iεy qLB

(3)

with εx andεy the propagation constants in thex andy directions related to the phase difference between the sets of

DoF. The wavenumberskx, ky are directly related to the propagation constants through the relation:

εx = kxLx, εy = kyLy (4)

Considering Eq.3 in tensorial form gives:
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x = Rx (5)

with x the reduced set of DoF:x = {qI qB qL qLB}
⊤. The equation of free harmonic vibration of the modelled

segment can now be written as:

[R∗KR + iωR∗CR − ω2R∗MR]x = 0 (6)

with ∗ denoting the Hermitian transpose. The most practical procedure for extracting the wave propagation character-

istics of the segment from Eq.6 is injecting a set of assumed propagation constantsεx, εy. The set of these constants

can be chosen in relation to the direction of propagation towards which the wavenumbers are to be sought and accord-

ing to the desired resolution of the wavenumber curves. Eq.6is then transformed into a standard eigenvalue problem

and can be solved for the eigenvectorx which describe the deformation of the segment under the passage of each

wave type at an angular frequency equal to the square root of the corresponding eigenvalueλ = ω2. It is noted that the

computed angular frequency quantitiesω = ωr+ iωi will have | ωi |> 0 implying complex values for the wavenumbers

of the propagating wave types, otherwise interpreted as spatially decaying motion and from which the loss factor of

each computed wave typew can directly be determined.

A complete description of each passing wave including itsx andy directional wavenumbers and its wave shape

for a certain frequency is therefore acquired. It is noted that the periodicity condition is defined modulo 2π, therefore

solving Eq.6 with a set ofεx, εy varying from 0 to 2π will suffice for capturing the entirety of the structural waves.

Further considerations on reducing the computational expense of the problem are discussed in [10]. It should be noted

that only propagating waves will be considered in the subsequent analysis.

2.2. Parametric sensitivity

2.2.1. Non conservative structural system

It is initially noted that matricesK = R∗KR, C = R∗CR and M = R∗MR in Eq.6 are Hermitian therefore

their resulting eigenvectors will be orthogonal. Eigenvalue sensitivity for both undamped and damped systems is an

established result in modern literature [13, 15] that will be employed in the present work. When the partial derivatives
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of K, C, M with regard to design parametersβi, β j are known then the sensitivity of an eigenvalueλw to this design

parameter for a damped system will be equal to

∂λw

∂βi
= −

x⊤w

(

λ2
w
∂M
∂βi
+ λw

∂C
∂βi
+
∂K
∂βi

)

xw

x⊤w (2λwM + C) xw

∂2λw

∂β j∂βi
= −

1
x⊤w (2λwM + C) xw

×

×

[

x⊤w

(

λ2
w
∂2M
∂β j∂βi

+ λw
∂2C
∂β j∂βi

+
∂2K
∂β j∂βi

+
∂λw

∂βi

(

2λw
∂M
∂β j
+
∂C
∂β j

)

+
∂λw

∂β j

(

2λw
∂M
∂βi
+
∂C
∂βi

))

xw

+ x⊤w

(

λ2
w
∂M
∂βi
+ λw

∂C
∂βi
+
∂K
∂βi
+
∂λw

∂βi
(2λwM + C)

)

∂xw

∂β j

+ x⊤w

(

λ2
w
∂M
∂β j
+ λw

∂C
∂β j
+
∂K
∂β j
+
∂λw

∂β j
(2λwM + C)

)

∂xw

∂βi
+ 2
∂λw

∂βi

∂λw

∂β j
x⊤wMxw

]

(7a)

(7b)

with the first order sensitivity of the resulting eigenvectors being computed as

∂xw

∂βi
= −

1
4λw

(

x⊤w

(

2λw
∂M
∂β j
+
∂C
∂β j

)

xw

)

xw

−
1

2λ∗w

(

x∗w −
(

1
2λw

x∗⊤w
(

(λw + λ
∗
w)M + C

)

xw

)

xw

)⊤ (

λ2
w
∂M
∂βi
+ λw

∂C
∂βi
+
∂K
∂βi

)

xw

2I (λw)
x∗w

−

mmax
∑

m=1
m,w

[

1
2λm

x⊤0m

(

λ2
w
∂M
∂βi
+ λw

∂C
∂βi
+
∂K
∂βi

)

xw

λw − λm
xm +

1
2λ∗m

x∗⊤m

(

λ2
w
∂M
∂βi
+ λw

∂C
∂βi
+
∂K
∂βi

)

xw

λw − λ∗m
x∗m

]

(8a)

with I (·) denoting the imaginary part,λw a known eigenvalue of the system having the corresponding complex

eigenvectorxw.

2.2.2. Conservative structural system

For an undamped structural segment havingC = 0 the above expressions, this time concerning the sensitivity of

the real eigenvaluesλw become

∂λw

∂βi
=x⊤w

(

∂K
∂βi
− λw

∂M
∂βi

)

xw

∂2λw

∂β j∂βi
=x⊤w

(

∂2K
∂β j∂βi

− λw
∂2M
∂β j∂βi

−
∂λw

∂β j

∂M
∂βi
−
∂λw

∂βi

∂M
∂β j

)

xw

+ x⊤w

(

∂

∂β j

[

K − λwM
])

∂xw

∂βi
+ x⊤w

(

∂

∂βi

[

K − λwM
])

∂xw

∂β j

(9a)

(9b)

with the sensitivity of the real mode shapes
∂xw

∂β j
to be calculated by the approach exhibited in [13]. The global mass

and stiffness matricesM,K of the structural segment are formed by adding the local massand stiffness matrices of
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individual FEs. It is therefore evident that when the expression of the partial derivatives for every local mass, damping

and stiffness matrix
∂m
∂βi

,
∂c
∂βi

,
∂k
∂βi

and
∂2m
∂β j∂βi

,
∂2c
∂β j∂βi

,
∂2k
∂β j∂βi

are known then the expressions for the global matrices

∂M

∂βi
,
∂C

∂βi
,
∂K

∂βi
and

∂2M

∂β j∂βi
,
∂2C

∂β j∂βi
,
∂2K

∂β j∂βi
can be derived simply by adding the expressions of the local matrices

together. Eq.9 can therefore be written as

∂λw

∂βi
=x⊤w

(

R∗
∂K

∂βi
R − λwR∗

∂M

∂βi
R
)

xw

∂2λw

∂β j∂βi
=x⊤w

(

R∗
∂2K

∂β j∂βi
R − λwR∗

∂2M

∂β j∂βi
R − R∗

∂λw

∂β j

∂M

∂βi
R − R∗

∂λw

∂βi

∂M

∂β j
R
)

xw+

x⊤w

(

∂

∂β j

[

R∗KR − λwR∗MR
])

∂xw

∂βi
+ x⊤w

(

∂

∂βi

[

R∗KR − λwR∗MR
])

∂xw

∂β j

(10a)

(10b)

For the conservative system it is known however that
∂λw

∂βi
=
∂(ω2

w)

∂βi
, therefore

∂λw

∂βi
=

∂(ω2
w)

∂ωw

∂βi

∂ωw

= 2ωw
∂ωw

∂βi
⇔
∂ωw

∂βi
=

1
2ωw

∂λw

∂βi

∂2λw

∂β j∂βi
= 2
∂ωw

∂β j

∂ωw

∂βi
+ 2ωw

∂2ωw

∂β j∂βi
⇔
∂2ωw

∂β j∂βi
=

1
2ωw

(

∂2λw

∂β j∂βi
− 2
∂ωw

∂β j

∂ωw

∂βi

)

(11a)

(11b)

with ωw the angular frequency at which the set ofεx, εy is true for thew wave type described by thexw deformation.

For the wavenumber sensitivity
∂kw

∂βi
the following is true

∂kw

∂βi
= −
∂kw

∂ωw

∂ωw

∂βi
= −

1
cg,w

∂ωw

∂βi

∂2kw

∂β j∂βi
=

1

c3
g,w

∂cg,w

∂kw

∂ωw

∂β j

∂ωw

∂βi
−

1
cg,w

∂2ωw

∂β j∂βi

(12a)

(12b)

with cg,w =
∂ωw

∂kw
the group velocity associated with the wave typew at frequencyωw and the quantitiescg,w,

∂cg,w

∂ωw
to

be numerically evaluated by the solution of the baseline structural design. The generic symbolic expressions of the

m, c, k matrices for an orthotropic structural segment modelled with a linear solid FE is given in Appendix A.

3. SEA sensitivity analysis

3.1. The employed SEA model

The impact of the parametric alterations on the vibroacoustic performance of the structure under investigation is

exhibited in this section by deriving expressions for the sensitivity of the SEA results with respect to the propagating

acoustic waves.
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The total acoustic transmission coefficientτ is one of the most important indices of the vibroacoustic performance

of a structure. The system to be modelled comprises one acoustically excited chamber (subsystem 1) and one acous-

tically receiving chamber (subsystem 3) separated by the modelled composite panel (subsystem 2). It is considered

that each wave type is excited and transmits acoustic energyindependently from the rest, therefore each considered

wave typew = w1,w2...wn propagating within the composite panel is considered as a separate SEA subsystem. No

flanking transmission is considered in the SEA model. The energy balance between the subsystems as it is considered

within an SEA approach (see [7]) is illustrated in Fig.2, in which E1, E3 stand for the acoustic energy of the source

room and the receiving room respectively andE2 for the vibrational energy of the composite panel. MoreoverPin is

the injected power in the source room,P1d, P2d andP3d stand for the power dissipated by each subsystem andP13 is

the non-resonant transmitted power between the rooms.

[Figure 2 about here.]

The derivation of an expression for the total acoustic transmission coefficient τ of the composite structure by

merely accounting for its structural dynamic behaviour is summarized in Appendix B (as exhibited in [11]) and reads

τ =

wn
∑

w=w1

τw +
P13

Pinc
(13)

with τw being the transmission coefficient of the wave typew given as

τw =
8ρ2c4πσ2

rad,wnw

ρsω2A(ρsωηw + 2ρcσrad,w)
(14)

The non resonant transmission coefficientτnr = P13/Pinc for a diffused acoustic field can be written as in [9]:

τnr(ω) =
1

π(cos2 θmin − cos2 θmax)

∫ 2π

0

∫ θmax

0

4Z2
0

| iωρs + 2Z0 |2
σ(θ, φ, ω) cos2 θ sinθdθdφ (15)

in which θ andφ are the incidence angle and the direction angle of the acoustic wave respectively andZ0 = ρc/ cosθ

is the acoustic impedance of the medium. The termθmax stands for the maximum incidence angle, accounting for the

diffuseness of the incident field. It is hereby considered thatθmax = π/2 for all the results presented in the current work.

The termσ(θ, φ, ω) is the corrected radiation efficiency term. It is used in order to account for the finite dimensions

of the panel and it is calculated using a spatial windowing correction technique presented in [30].

Eventually the STL of the panel can be expressed as

STL = 10 log10

(

1
τ

)

(16)

by definition.
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3.2. Parametric sensitivity of the total acoustic transmission

In order to formulate the expression of the Hessian matrix describing the variation of the vibroacoustic perfor-

mance of the structure with respect to its design parameters, the second order derivative ofτ with respect to the

considered set of parameters should be derived and expressed as

∂τ

∂βi
=

wn
∑

w=w1

∂τw

∂βi
+
∂τnr

∂βi

∂2τ

∂β j∂βi
=

wn
∑

w=w1

∂2τw

∂β j∂βi
+
∂2τnr

∂β j∂βi

(17a)

(17b)

while the sensitivity of the STL index can directly be expressed with regard toτ as

∂(S T L)
∂βi

=
d(S T L)

dτ
∂τ

∂βi
= −

10
ln(10)τ

∂τ

∂βi

∂2(S T L)
∂β j∂βi

=
∂2(S T L)
∂τ2

∂τ

∂β j

∂τ

∂βi
+
∂(S T L)
∂τ

∂2τ

∂β j∂βi

=
10

ln(10)τ2
∂τ

∂β j

∂τ

∂βi
−

10
ln(10)τ

∂2τ

∂β j∂βi

(18a)

(18b)

In the following sections the evaluation of Eq.17 is discussed.

3.3. Modal density sensitivity

Using Courant’s formula [31], the modal density of each wavetypew can be written at a propagation angleφ as a

function of the propagating wavenumber and its corresponding group velocitycg:

nw (ω, φ) =
Akw (ω, φ)

2π2|cg,w (ω, φ) |
(19)

The angularly averaged modal density of the structure is therefore given as

nw (ω) =
∫ π

0
nw (ω, φ) dφ (20)

Thanks to the chain differentiation rule the first and second order derivatives of the modal density for each wave type

with respect to design variablesβi, β j can be expressed as
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∂nw (ω, φ)
∂βi

=
∂nw (ω, φ)
∂kw (ω, φ)

∂kw (ω, φ)
∂βi

+
∂nw (ω, φ)
∂cg,w (ω, φ)

∂cg,w (ω, φ)

∂βi

=
A

2π2|cg,w (ω, φ) |
∂kw (ω, φ)
∂βi

−
Akw (ω, φ) sgn(cg,w (ω, φ))

2π2|cg,w (ω, φ) |2
∂cg,w (ω, φ)

∂kw (ω, φ)
∂kw (ω, φ)
∂βi

∂2nw (ω, φ)
∂β j∂βi

=
∂2nw (ω, φ)

∂kw (ω, φ)2

∂kw (ω, φ)
∂β j

∂kw (ω, φ)
∂βi

+
∂nw (ω, φ)
∂kw (ω, φ)

∂2kw (ω, φ)
∂β j∂βi

+
∂2nw (ω, φ)

∂cg,w (ω, φ)2

∂cg,w (ω, φ)

∂β j

∂cg,w (ω, φ)

∂βi
+
∂nw (ω, φ)
∂cg,w (ω, φ)

∂2cg,w (ω, φ)

∂β j∂βi

=
A

2π2|cg,w (ω, φ) |
∂2kw (ω, φ)
∂β j∂βi

+
Akw (ω, φ) sgn(cg,w (ω, φ))

π2|cg,w (ω, φ) |3

(

∂cg,w (ω, φ)

∂kw (ω, φ)

)2
∂kw (ω, φ)
∂β j

∂kw (ω, φ)
∂βi

−
Akw (ω, φ) sgn(cg,w (ω, φ))

2π2|cg,w (ω, φ) |2

(

∂2cg,w (ω, φ)

∂kw (ω, φ)2

∂kw (ω, φ)
∂β j

∂kw (ω, φ)
∂βi

+
∂cg,w (ω, φ)

∂kw (ω, φ)
∂2kw (ω, φ)
∂β j∂βi

)

(21a)

(21b)

while for the spatially averaged modal density

∂nw (ω)
∂βi

=

∫ π

0

∂nw (ω, φ)
∂βi

dφ

∂2nw (ω)
∂β j∂βi

=

∫ π

0

∂2nw (ω, φ)
∂β j∂βi

dφ

(22a)

(22b)

suggesting that the modal density sensitivity can be expressed merely by

• The sensitivity of the characteristics of the waves travelling within the considered structure with respect to the

structural design (already determined in Sec.2).

• The sensitivity of the modal density with respect to the characteristics of the waves travelling in it.

A similar approach will be followed for computing all the remaining necessary quantities throughout this work. It

should be noted that Eq.21 is derived under the assumption thatcg,w (ω, φ) , 0

3.4. Radiation efficiency sensitivity

In order to avoid the computationally inefficient frequency and directional averaging of the modal dependent

radiation efficiency sensitivity
∂σrad,w (ω, φ)

∂βi
, it is practical to employ expressions introducing a directwavenumber

dependence ofσrad,w such as the ones exhibited in [5, 8, 10]. For a generic periodic structure including discontinuities

the assumption of sinusoidal mode shapes is no longer valid,therefore the radiation efficiency should be calculated

directly from the PST derived wave mode shapes. The radiation efficiency expression as derived in [10] can therefore

be employed. For continuous structures, mode shapes of sinusoidal form can be assumed in order to avoid any FE

discretization errors in the solution. The set of asymptotic formulas given in [8] can be used for computing the

averaged wavenumber dependent radiation efficiency of the panel as
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σrad,w (k (ω)) =































1
√

1− µ2
µ < 1

Lx + Ly

πµκLxLy

√

µ2 − 1

(

ln

(

µ + 1
µ − 1

)

+
2µ
µ2 − 1

)

µ > 1

with µ =















k2
x + k2

y

κ2















1/2

, whereκ = ω/c is the acoustic wavenumber. It is noted that the above expressions are largely

overestimating the radiation efficiency of the structure close to the coincidence frequency.An efficient approximation

of σrad,w whenk = κ is given in [8] as

σrad,w (k (ω)) =
(

0.5− 0.15 min (Lx, Ly)/max (Lx, Ly)
)

√

k min (Lx, Ly)

Three domains will therefore be distinguished for the radiation efficiency of the panel. It has been empirically

observed that the above cited relations overestimate the radiation efficiency of the panel within a region 0.90 < µ <

1.05. The following relations forσrad,w (k (ω)) are therefore hereby suggested

σrad,w =
1

√

1− µ2
µ < 0.90

σrad,w =
Lx + Ly

πµκLxLy

√

µ2 − 1

(

ln

(

µ + 1
µ − 1

)

+
2µ
µ2 − 1

)

µ > 1.05

σrad,w =
(

0.5− 0.15 min (Lx, Ly)/max (Lx, Ly)
)

√

k min (Lx, Ly) µ = 1

(23a)

(23b)

(23c)

In the region 0.90< µ < 1.05 a shape preserving Hermite interpolation function is employed assuring the continuity

and double differentiability for the entire spectrum of theσrad,w expression. The sensitivity expressions can therefore

be directly derived by Eq.23 in theµ < 0.90 andµ > 1.05 regions as
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∂σrad,w

∂βi
=
∂σrad,w

∂kw

∂kw

∂βi
=

kw

κ2(1− k2
w/κ

2)3/2

∂kw

∂βi
µ < 0.90

∂2σrad,w

∂β j∂βi
=
∂2σrad,w

∂k2
w

∂kw

∂β j

∂kw

∂βi
+
∂σrad,w

∂kw

∂2kw

∂β j∂βi

=

(

1
κ2(1− k2

w/κ
2)3/2

+
3k2

w

κ4(1− k2
w/κ

2)5/2

)

∂kw

∂β j

∂kw

∂βi
+

kw

κ2(1− k2
w/κ

2)3/2

∂2kw

∂β j∂βi
µ < 0.90

∂σrad,w

∂βi
= −

4kw(Lx + Ly)

πLxLyκ3((k2
w − κ

2)/κ2)5/2

∂kw

∂βi

−

kw(Lx + Ly)

(

ln
µ + 1
µ − 1

+ (2κ2µ)/(k2
w − κ

2)

)

πLxLyκ3((k2
w − κ

2)/κ2)1/2(k2
w/κ

2)3/2

∂kw

∂βi

−

kw(Lx + Ly)

(

ln
µ + 1
µ − 1

+ (2κ2µ)/(k2
w − κ

2)

)

πLxLyκ3((k2
w − κ

2)/κ2)3/2µ

∂kw

∂βi
µ > 1.05

∂2σrad,w

∂β j∂βi
=

k2
w(Lx + Ly)(4κ6µ + 6k6

w ln
µ + 1
µ − 1

− 2κ6 ln
µ + 1
µ − 1

− 10k2
wκ

4µ)

πLxLyκ11((k2
w − κ

2)/κ2)7/2(k2
w/κ

2)5/2

∂kw

∂β j

∂kw

∂βi

+

k2
w(Lx + Ly)(36k4

wκ
2µ + 7k2

wκ
4 ln
µ + 1
µ − 1

− 11k4
wκ

2 ln
µ + 1
µ − 1

)

πLxLyκ11((k2
w − κ

2)/κ2)7/2(k2
w/κ

2)5/2

∂kw

∂β j

∂kw

∂βi

−
4kw(Lx + Ly)

πLxLyκ3((k2
w − κ

2)/κ2)5/2

∂2kw

∂β j∂βi

−

kw(Lx + Ly)

(

ln
µ + 1
µ − 1

+ (2κ2µ)/(k2
w − κ

2)

)

πLxLyκ3((k2
w − κ

2)/κ2)1/2(k2
w/κ

2)3/2

∂2kw

∂β j∂βi

−

kw(Lx + Ly)

(

ln
µ + 1
µ − 1

+ (2κ2µ)/(k2
w − κ

2)

)

πLxLyκ3((k2
w − κ

2)/κ2)3/2µ

∂2kw

∂β j∂βi
µ > 1.05

(24a)

(24b)

(24c)

(24d)

while the interpolation function is used for expressing thesensitivity ofσrad,w for the remaining spectrum.

3.5. Damping loss factor sensitivity

Reducing the acoustic transparency of a structural panel byincreasing its intrinsic damping properties is a popular

noise reduction strategy within the modern industry and oftentimes an effective option, particularly in the high fre-

quency range. It is therefore particularly useful to develop dedicated models for evaluating the effect of the increase

of the damping coefficientγ of the material comprised in a single layer of the composite structure on its total loss

factor. Having a look at the form of the eigenvalue problem inEq.6 it can be deduced that expressing the total loss

factor of the structural panel as a function of the real and imaginary parts of the resulting eigenvalues (as in [32, 33])

can be particularly practical.

The loss factor of each computed wave typew can directly be determined as
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ηw(ω, φ) = 2
ωiωr

ω2
r − ω

2
i

(25)

with ηn(ω, φ) the loss factor for the wave typew at a certain angular frequencyω and propagating towards a certain

directionφ. The total frequency dependent loss factor of a certain wavetype can be computed as

ηw(ω) =

∫ π

0
ηn(ω, φ)dφ

π
(26)

which can be evaluated at the entire spectrum of interest. The sensitivity of the directional loss factorηw(ω, φ) can

therefore be expressed as

∂ηw (ω, φ)
∂βi

=
∂ηw (ω, φ)
∂ωr (ω, φ)

∂ωr (ω, φ)
∂βi

+
∂ηw (ω, φ)
∂ωi (ω, φ)

∂ωi (ω, φ)
∂βi

= −













2ωi

ω2
i − ω

2
r

+
4ωiω

2
r

(ω2
i − ω

2
r )2













∂ωr (ω, φ)
∂βi

+













4ω2
iωr

(ω2
i − ω

2
r )2
−

2ωr

ω2
i − ω

2
r













∂ωi (ω, φ)
∂βi

∂2ηw (ω, φ)
∂β j∂βi

=
∂2ηw (ω, φ)

∂ωr (ω, φ)2

∂ωr (ω, φ)
∂β j

∂ωr (ω, φ)
∂βi

+
∂ηw (ω, φ)
∂ωr (ω, φ)

∂2ωr (ω, φ)
∂β j∂βi

+
∂2ηw (ω, φ)

∂ωi (ω, φ)2

∂ωi (ω, φ)
∂β j

∂ωi (ω, φ)
∂βi

+
∂ηw (ω, φ)
∂ωi (ω, φ)

∂2ωi (ω, φ)
∂β j∂βi

= −













16ωiω
3
r

(ω2
i − ω

2
r )3
+

12ωiωr

(ω2
i − ω

2
r )2













∂ωr (ω, φ)
∂β j

∂ωr (ω, φ)
∂βi

−













2ωi

ω2
i − ω

2
r

+
4ωiω

2
r

(ω2
i − ω

2
r )2













∂2ωr (ω, φ)
∂β j∂βi

+













12ωiωr

(ω2
i − ω

2
r )2
−

16ω3
iωr

(ω2
i − ω

2
r )3













∂ωi (ω, φ)
∂β j

∂ωi (ω, φ)
∂βi

+













4ω2
iωr

(ω2
i − ω

2
r )2
−

2ωr

ω2
i − ω

2
r













∂2ωi (ω, φ)
∂β j∂βi

(27a)

(27b)

while for the total loss factor of the panel

∂ηw (ω)
∂βi

=

∫ π

0

1
π

∂ηw (ω, φ)
∂βi

dφ

∂2ηw (ω)
∂β j∂βi

=

∫ π

0

1
π

∂2ηw (ω, φ)
∂β j∂βi

dφ

(28a)

(28b)

to be evaluated in the frequency bands of interest.

3.6. Sensitivity of the resonant acoustic transmission

Taking a look at Eq.14 it can be observed that the sensitivityof the resonant acoustic transmission coefficient with

respect to the design parameters of the composite structurecan be expressed as
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∂τw

∂βi
=
∂τw

∂σrad,w

∂σrad,w

∂βi
+
∂τw

∂nw

∂nw

∂βi
+
∂τw

∂ηw

∂ηw

∂βi
+
∂τw

∂ρs

∂ρs

∂βi

∂2τw

∂β j∂βi
=
∂2τw

∂σ2
rad,w

∂σrad,w

∂β j

∂σrad,w

∂βi
+
∂τw

∂σrad,w

∂2σrad,w

∂β j∂βi

+
∂2τw

∂n2
w

∂nw

∂β j

∂nw

∂βi
+
∂τw

∂nw

∂2nw

∂β j∂βi

+
∂2τw

∂η2
w

∂ηw

∂β j

∂ηw

∂βi
+
∂τw

∂ηw

∂2ηw

∂β j∂βi

+
∂2τw

∂ρ2
s

∂ρs

∂β j

∂ρs

∂βi
+
∂τw

∂ρs

∂2ρs

∂β j∂βi

(29a)

(29b)

with the transmission coefficient related sensitivity terms being expressed as

∂τw

∂σrad,w
=

16πc4nwρ
2σrad,w

Aω2ρs(ηwωρs + 2cρσrad,w)
−

16πc5nwρ
3σ2

rad,w

Aω2ρs(ηwωρs + 2cρσrad,w)2

∂2τw

∂σ2
rad,w

=
16πc4nwρ

2

Aω2ρs(ηwωρs + 2cρσrad,w)
−

64πc5nwρ
3σrad,w

Aω2ρs(ηwωρs + 2cρσrad,w)2
+

64πc6nwρ
4σ2

rad,w

Aω2ρs(ηwωρs + 2cρσrad,w)3

∂τw

∂nw
=

8πc4ρ2σ2
rad,w

Aω2ρs(ηwωρs + 2cρσrad,w)

∂2τw

∂n2
w
= 0

∂τw

∂ηw
= −

8πc4nwρ
2σ2

rad,w

Aω(ηwωρs + 2cρσrad,w)2

∂2τw

∂η2
w
=

16πc4nwρ
2ρsσ

2
rad,w

(Aηwωρs + 2cρσrad,w)3

∂τw

∂ρs
= −

8πc4nwρ
2σ2

rad,w

Aω2ρ2
s(ηwωρs + 2cρσrad,w)

−
8πc4ηwnwρ

2σ2
rad,w

Aωρs(ηwωρs + 2cρσrad,w)2

∂2τw

∂ρ2
s
=

16πc4η2
wnwρ

2σ2
rad,w

Aρs(ηwωρs + 2cρσrad,w)3
+

16πc4nwρ
2σ2

rad,w

Aω2ρ3
s(ηwωρs + 2cρσrad,w)

+
16πc4ηwnwρ

2σ2
rad,w

Aωρ2
s (ηwωρs + 2cρσrad,w)2

(30a)

(30b)

(30c)

(30d)

(30e)

(30f)

(30g)

(30h)

All the necessary quantities have by now been computed from the considerations introduced above and the reso-

nant acoustic transmission sensitivity can thus be evaluated in Eq.29.

3.7. Sensitivity of the nonresonant acoustic transmission

Nonresonant acoustic transmission is induced by the structural/acoustic coupling of mass controlled (low fre-

quency) and stiffness controlled (high frequency) modes having a resonance frequency outside the considered band.

Mass controlled modes can actually induce a significant amount of acoustic transmission and are considered within

the analysis through Eq.15. It is evident thatτnr(ω) as expressed in Eq.15 is insensitive to all structural design pa-

rameters except the surface mass of the structureρs. The only design parameters that have therefore the potential to
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affect the nonresonant term are the layer thicknesses and densities of the composite structure. The parametric design

sensitivities can therefore be written as

∂τnr(ω)
∂βi

=
1

π(cos2 θmin − cos2 θmax)

∫ 2π

0

∫ θmax

0

∂τnr(θ, φ, ω)
∂βi

dθdφ (31)

with the sensitivity of the directional transmission coefficient expressed as

∂τnr(θ, φ, ω)
∂βi

=
∂τnr(θ, φ, ω)
∂ρs

∂ρs

∂βi
=
−8Z2

0ωσ(θ, φ, ω) cos2 θ sinθi

| 2Z0 + ρsωi |3
∂ρs

∂βi
(32)

While for the second order sensitivity we have

∂2τnr(ω)
∂β j∂βi

=
1

π(cos2 θmin − cos2 θmax)

∫ 2π

0

∫ θmax

0

∂2τnr(θ, φ, ω)
∂ρ2

s

∂ρs

∂β j

∂ρs

∂βi
+
∂τnr(θ, φ, ω)
∂ρs

∂2ρs

∂β j∂βi
dθdφ (33)

with

∂2τnr(θ, φ, ω)
∂ρ2

s
=
−24Z2

0ω
2σ(θ, φ, ω) cos2 θ sinθ

| 2Z0 + ρsωi |4
(34)

The computational cost of Eqs.31,33 is significantly reduced by the fact that the geometric radiation efficiency

termσ(θ, φ, ω) is solely dependent on the areaA of the considered structure which is not under investigation and is

therefore computed only once in the optimization process. The quantity| 2Z0 + ρsωi | is therefore the only one that

needs being recomputed for every design alteration. Given thatρs =

lmax
∑

l=l1

ρm,lhl with ρm,l the mass density of layerl

andhl its thickness, it is straightforward to derive the quantities
∂ρs

∂βi

∂ρs

∂β j
and

∂2ρs

∂βi∂β j
for the composite panel.

4. Formulation of the optimization problem

The Newton’s method will be hereby employed (ensuring quadratic convergence towards the solution) in order to

optimise the considered set of parameters, which in the general orthotropic multilayer case can be expressed as

p =
{

Ex,1Ey,1Ez,1vxy,1vxz,1vyz,1Gxy,1Gxz,1Gyz,1h1ρm,1 · · · ρm,lmax

}⊤

(35)

with lmax the maximum number of layers. It is interesting to note that includingη in an optimization procedure will

not provide any helpful information, asδη will not directly affect neither the mass, nor the stiffness of the panel. On

the other hand it will always be beneficial for the reduction of τw, which suggests that a maximumη will always be

the result of the computation. An effective way of including damping in the optimization processwould be explicitly

relating the increase of damping coefficientγl for layer l with the mass of the layer (e.g. accounting for the mass and

damping increase implied by viscoleastic material inclusions).

The parameters may be considered to be constrained (e.g.βi ∈ [βi,min, βi,max]). The objective functionF (p) to be

minimised is eventually to be decided. It is evident that thecost of added mass, as well as the one of static stiffness
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loss should be included inF (p) (if not maximising the mass of the panel would be the evidentsolution for minimising

the acoustic transmission). There is a number of cost criteria that can be applied to the stress-strain matrix coefficients

[34] of a laminate in order to account for its axial, shear andflexural stiffness. A number of manufacturing related

constraints (accounting for the realizability of the computed optimal design) can also be added to the optimization

problem.

The cost function can eventually be expressed as

F (p) = ξ3τ3(p) + ξ2τ2(p) + ξ1τ(p) + ξ0 + δ3ρ3
s (p) + δ2ρ2

s(p) + δ1ρs(p) + δ0 + ζ3d3
s (p) + ζ2d2

s (p) + ζ1ds(p) + ζ0 (36)

with τ, ρs andds being the acoustic, mass and stiffness performance indices respectively andξi, δi, ζi coefficients that

allow the designer to apply a polynomial curve fitting to the available cost data; thus facilitating the differentiability of

F (p). Higher order polynomial or exponential fitting functionsmay be applied without loss of accuracy. The gradient

vector ofF (p) can therefore be computed as

∇F (p) =

{

∂F (p)
∂Ex,1

∂F (p)
∂Ey,1

∂F (p)
∂Ez,1

∂F (p)
∂vxy,1

∂F (p)
∂vxz,1

∂F (p)
∂vyz,1

∂F (p)
∂Gxy,1

∂F (p)
∂Gxz,1

∂F (p)
∂Gyz,1

∂F (p)
∂h1

∂F (p)
∂ρm,1

· · ·
∂F (p)
∂ρm,lmax

}⊤

(37)

The derivatives ofF (p) can be calculated using the chain rule (e.g.
∂(ξ3τ3)
∂βi

= 3ξ3τ2
∂τ

∂βi
and
∂2(ξ3τ3)
∂β j∂βi

= 6ξ3τ
∂τ

∂β j

∂τ

∂βi
+

3ξ3τ2
∂2τ

∂β j∂βi
). The Hessian matrix is subsequently formed using the computed second order sensitivity values

H = ∇2F (p) =

































































































































































































































































































∂2F (p)

∂E2
x,1

∂2F (p)
∂Ex,1∂Ey,1

∂2F (p)
∂Ex,1∂Ez,1

∂2F (p)
∂Ex,1∂vxy,1

∂2F (p)
∂Ex,1∂vxz,1

∂2F (p)
∂Ex,1∂vyz,1

∂2F (p)
∂Ex,1∂Gxy,1

∂2F (p)
∂Ex,1∂Gxz,1

∂2F (p)
∂Ex,1∂Gyz,1

∂2F (p)
∂Ex,1∂h1

∂2F (p)
∂Ex,1∂ρm,1

· · ·
∂2F (p)
∂Ex,1∂ρm,lmax

∂2F (p)
∂Ey,1∂Ex,1

∂2F (p)

∂E2
y,1

∂2F (p)
∂Ey,1∂Ez,1

∂2F (p)
∂Ey,1∂vxy,1

∂2F (p)
∂Ey,1∂vxz,1

∂2F (p)
∂Ey,1∂vyz,1

∂2F (p)
∂Ey,1∂Gxy,1

∂2F (p)
∂Ey,1∂Gxz,1

∂2F (p)
∂Ey,1∂Gyz,1

∂2F (p)
∂Ey,1∂h1

∂2F (p)
∂Ey,1∂ρm,1

· · ·
∂2F (p)
∂Ey,1∂ρm,lmax

∂2F (p)
∂Ez,1∂Ex,1

∂2F (p)
∂Ez,1∂Ey,1

∂2F (p)

∂E2
z,1

∂2F (p)
∂Ez,1∂vxy,1

∂2F (p)
∂Ez,1∂vxz,1

∂2F (p)
∂Ez,1∂vyz,1

∂2F (p)
∂Ez,1∂Gxy,1

∂2F (p)
∂Ez,1∂Gxz,1

∂2F (p)
∂Ez,1∂Gyz,1

∂2F (p)
∂Ez,1∂h1

∂2F (p)
∂Ez,1∂ρm,1

· · ·
∂2F (p)
∂Ez,1∂ρm,lmax

∂2F (p)
∂vxy,1∂Ex,1

∂2F (p)
∂vxy,1∂Ey,1

∂2F (p)
∂vxy,1∂Ez,1

∂2F (p)

∂v2
xy,1

∂2F (p)
∂vxy,1∂vxz,1

∂2F (p)
∂vxy,1∂vyz,1

∂2F (p)
∂vxy,1∂Gxy,1

∂2F (p)
∂vxy,1∂Gxz,1

∂2F (p)
∂vxy,1∂Gyz,1

∂2F (p)
∂vxy,1∂h1

∂2F (p)
∂vxy,1∂ρm,1

· · ·
∂2F (p)

∂vxy,1∂ρm,lmax

∂2F (p)
∂vxz,1∂Ex,1

∂2F (p)
∂vxz,1∂Ey,1

∂2F (p)
∂vxz,1∂Ez,1

∂2F (p)
∂vxz,1∂vxy,1

∂2F (p)

∂v2
xz,1

∂2F (p)
∂vxz,1∂vyz,1

∂2F (p)
∂vxz,1∂Gxy,1

∂2F (p)
∂vxz,1∂Gxz,1

∂2F (p)
∂vxz,1∂Gyz,1

∂2F (p)
∂vxz,1∂h1

∂2F (p)
∂vxz,1∂ρm,1

· · ·
∂2F (p)

∂vxz,1∂ρm,lmax

∂2F (p)
∂vyz,1∂Ex,1

∂2F (p)
∂vyz,1∂Ey,1

∂2F (p)
∂vyz,1∂Ez,1

∂2F (p)
∂vyz,1∂vxy,1

∂2F (p)
∂vyz,1∂vxz,1

∂2F (p)

∂v2
yz,1

∂2F (p)
∂vyz,1∂Gxy,1

∂2F (p)
∂vyz,1∂Gxz,1

∂2F (p)
∂vyz,1∂Gyz,1

∂2F (p)
∂vyz,1∂h1

∂2F (p)
∂vyz,1∂ρm,1

· · ·
∂2F (p)
∂vyz,1∂ρm,lmax

∂2F (p)
∂Gxy,1∂Ex,1

∂2F (p)
∂Gxy,1∂Ey,1

∂2F (p)
∂Gxy,1∂Ez,1

∂2F (p)
∂Gxy,1∂vxy,1

∂2F (p)
∂Gxy,1∂vxz,1

∂2F (p)
∂Gxy,1∂vyz,1

∂2F (p)

∂G2
xy,1

∂2F (p)
∂Gxy,1∂Gxz,1

∂2F (p)
∂Gxy,1∂Gyz,1

∂2F (p)
∂Gxy,1∂h1

∂2F (p)
∂Gxy,1∂ρm,1

· · ·
∂2F (p)

∂Gxy,1∂ρm,lmax

∂2F (p)
∂Gxz,1∂Ex,1

∂2F (p)
∂Gxz,1∂Ey,1

∂2F (p)
∂Gxz,1∂Ez,1

∂2F (p)
∂Gxz,1∂vxy,1

∂2F (p)
∂Gxz,1∂vxz,1

∂2F (p)
∂Gxz,1∂vyz,1

∂2F (p)
∂Gxz,1∂Gxy,1

∂2F (p)

∂G2
xz,1

∂2F (p)
∂Gxz,1∂Gyz,1

∂2F (p)
∂Gxz,1∂h1

∂2F (p)
∂Gxz,1∂ρm,1

· · ·
∂2F (p)

∂Gxz,1∂ρm,lmax

∂2F (p)
∂Gyz,1∂Ex,1

∂2F (p)
∂Gyz,1∂Ey,1

∂2F (p)
∂Gyz,1∂Ez,1

∂2F (p)
∂Gyz,1∂vxy,1

∂2F (p)
∂Gyz,1∂vxz,1

∂2F (p)
∂Gyz,1∂vyz,1

∂2F (p)
∂Gyz,1∂Gxy,1

∂2F (p)
∂Gyz,1∂Gxz,1

∂2F (p)

∂G2
yz,1

∂2F (p)
∂Gyz,1∂h1

∂2F (p)
∂Gyz,1∂ρm,1

· · ·
∂2F (p)

∂Gyz,1∂ρm,lmax

∂2F (p)
∂h1∂Ex,1

∂2F (p)
∂h1∂Ey,1

∂2F (p)
∂h1∂Ez,1
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(38)

A commercially embedded constrained nonlinear optimization algorithm [35] is eventually employed in order to

compute the optimal parameter vectorp that minimisesF (p) at a certain frequency.
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5. Numerical case studies

In order to validate the exhibited optimization approach, an asymmetric sandwich panel comprising two facesheets

and a core is modelled in this section. The lower facesheet has a thicknessh1=1mm and is made of a material having

ρm,1=3000e−9kg/mm3, E1 = 70GPa and a Poisson’s rationv1=0.1. The upper facesheet has a thickness equal to

h3=2mm and is made of the same material as the lower facesheet. The core has a thicknessh2=10mm and is made of

a material withρm,2=50e−9kg/mm3, E2 = 0.07GPa andv2=0.4. Three FEs are used in the sense of thickness in order

to model the structure. All computations were conducted using the R2013a version of MATLABr.

5.1. Results on the wave sensitivity analysis of a layered structure

In this section the sensitivity of the wave characteristicswith respect to the mechanical and geometric characteris-

tics of the sandwich panel are sought as discussed in Sec.2. The results are compared to a FD approach throughout this

section. In order to implement the FD approach a perturbation of 0.1% was considered for each structural parameter.

The resulting FD sensitivity can be computed by

∂k
∂β
=

kp − k0

βp − β0
(39)

with kp the perturbed wavenumber value forβp andk0 the corresponding wavenumber for the unperturbed parameter

β0.

The sensitivity of the flexural wavenumberk with respect to the thickness of each facesheet layer is presented

in Fig.3. It is particularly interesting to note that in the very low frequency range increasing the thickness of both

facesheets will imply a softening effect to the structural behaviour, shifting the flexural wavenumbers upwards. This

mainly suggests that the effect of the added mass overcomes the effect of added stiffness for bothδh1 andδh3. However

at higher frequencies the results change radically for the thicker upper facesheet, withδh3 now shifting the wavenum-

bers to lower values, suggesting a stiffening phenomenon in the structural dynamic behaviour. An excellent agreement

is observed between the presented approach and the FD method.

[Figure 3 about here.]

The sensitivity ofk with respect to the thickness of the sandwich core layer is presented in Fig.4. A very in-

teresting effect is that the influence ofδh2 on the flexural wavenumber becomes maximum for a certain frequency

(approximately 2000 Hz), where the stiffening effect ofδh2 becomes maximum. An intense nonlinearity is observed

in the relation ofδω to δk. A constant decrease of this influence is observed beyond that point. The stiffening effect

is probably due to the greater separation of the two facesheets with δh2. It is very probable however that for higher

wavenumber valuesδhc will have a softening effect on the flexural wavenumber with the depicted curve passing to

positive values okδk. This is the frequency range within which the two facesheetsof the structure start vibrating

independently of each other (see [36]) thus the core thickness has an insignificant impact on the flexural wave speed.

16



[Figure 4 about here.]

In Fig.5, the sensitivity ofk with respect to the mass density of the sandwich facesheet layers is presented. As

expected, bothδρm,1 andδρm,3 will shift the wavenumber curve to higher values, suggesting a softening phenomenon.

This effect will be greater for the thicker upper facesheet at lowk values. A highly nonlinear behaviour is again

observed and it is interesting to see that there is a criticalfrequency value at which the effect ofδρm,1 andδρm,3 will

be the same. Beyond this critical wavenumber the softening effect will paradoxically be more intense forδρm,1.

[Figure 5 about here.]

The perturbation ofk with respect tov2 for the sandwich core is presented in Fig.6. The effect ofδv2 is softening

up to a certain wavenumber value, beyond which an intense decrease of the sensitivity is observed which stiffens the

flexural structural behaviour.

[Figure 6 about here.]

5.2. Results on the SEA sensitivity analysis of a layered structure

In this section the sensitivity of the SEA quantities, namely the modal density, the radiation efficiency and the

damping loss factor are computed as discussed in Sec.3 and evaluated.

The first order sensitivity of the modal density of the composite panel with regard to the layer thicknesses and

Young’s moduli are exhibited in Figs.7,8 respectively. In Fig.8 all sensitivity values are negative, it was thus preferred

to present the absolute result values in order to employ a clearer logarithmic scale. It can be observed that the

stiffening effect induced byδh3 in the high frequency range, also induces a high reduction ofthe modal density, while

a maximum softening effect is observed for bothδh1, δh3 in the low frequency range (approximately 1000 Hz). With

regard to the effect of the Young’s modulus it is observed that its increase can imply more drastic hardening effects

for the core layer compared to the one of the facesheets.

[Figure 7 about here.]

[Figure 8 about here.]

The sensitivity of the acoustic radiation efficiency for the composite panel with regard to the layer thicknesses is

presented in Fig.9. In order to use a clearer logarithmic scale the quantityδ10log(σ)/δh is plotted. It is generally

observed that altering the thickness of the thicker facesheeth3 will have a maximum effect on the radiation efficiency,

while the opposite is true for altering the thickness of the core layer. The maximum impact onσ is as expected

observed around the acoustic coincidence frequency (approximately 5800 Hz in this case study). It is interesting to

note that the effect ofδh1 will have an opposite effect onσ compared toδh3.

The same quantity is presented in Fig.10, this time as a function of the mass densities of the three layers. This

time the effect ofδρm,2 will have a maximum impact on the acoustic radiation efficiency (probably due to the higher

volume of the core layer), again around the acoustic coincidence frequency.
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[Figure 9 about here.]

[Figure 10 about here.]

The sensitivity of the loss factorη for the flexural wave is subsequently discussed. Its first order sensitivity with

regard to the layer thicknesses is exhibited in Fig.11. It isevident that the maximum impact ofδhi on the total loss

factor of the panel takes place in the low frequency range. For higher frequencies it can be observed thatδη/δh1

converges to a constant value, while the increase of the corethickness has a continuously diminishing impact onη.

In Fig.12 the same quantity is presented, this time as a function of the individual damping coefficient of each layer

γi. Throughout the entire frequency range it is observed that increasing the damping coefficient of the core layerδγ2

will have a maximum effect on the total loss factor of the panel. It is observed that the effect ofδγi on the total loss

factor is diminishing with frequency.

[Figure 11 about here.]

[Figure 12 about here.]

The impact of the structural parameters on the acoustic transmission coefficient and the STL of the composite

structure is eventually computed. In Fig.13 the sensitivity of the structure’s TL with regard to the layer thicknesses

is presented. It is evident that altering the thickness of the upper thicker layer will induce the maximum effect on

TL, especially close to the acoustic coincidence region. Onthe other hand, altering the core thickness will have an

insignificant effect on the TL index.

[Figure 13 about here.]

In Fig.14 the sensitivity of the TL with regard to the layer mass densities is presented. It is evident that the results

follow the trend of the ones shown for the radiation efficiency of the panel in Fig.10 with the mass density of the core

layer being the one that influences the TL the most.

[Figure 14 about here.]

The same result is exhibited in Fig.15, this time regarding the sensitivity with respect to the Young’s moduli of the

layers. Once again it is observed that altering the Young’s modulus of the core can have the most significant impact,

while the influence ofδE1 andδE3 are generally insignificant.

[Figure 15 about here.]
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5.3. Structural design optimization of the layered structure

As discussed in Sec.4, the criteria to be considered within the optimization process of the mechanical and geomet-

ric characteristics of the panel are its mass, stiffness and vibroacoustic performance. The surface mass of thepanelρs

is chosen as a representative mass index, the total acoustictransmission coefficientτ is selected as the vibroacoustic

performance index, while with regard to the structural stiffness and for the sake of simplicity we will hereby assume

that we are solely interested in the sum of the static flexuralstiffnesses of the panelDxx, Dyy expressed as

ds = Dxx + Dyy =
1
3

lmax
∑

l=l1

(

(Qxx,l + Qyy,l)(z
3
l − z3

l−1)
)

Qxx,l = Ex,l

1− v2
yz,l

∆l

Qyy,l = Ey,l

1− v2
xz,l

∆l

∆l = 1− v2
xy,l − v2

yz,l − v2
zx,l − 2vxy,lvyz,lvzx,l

(40a)

(40b)

(40c)

(40d)

which in the case of an isotropic composite panel gives

ds =
2
3

lmax
∑

l=l1

(

Ql(z3
l − z3

l−1)
)

(41)

with zl the coordinate of the upper surface of layerl in the thickness direction. The design cost functions, employed

in order to decide the relation betweenρs, τ andds and the corresponding induced design cost are exhibited in Fig.16

and eventually result in the objective function

F (p) =4.000e8τ3(p) + 2.920e6τ2(p) − 6.245τ(p) + 3.005+ 1.332e15ρ3
s(p) + 6.940e10ρ2

s (p)−

7.512e5ρs(p) + 1.873− 9.369e−31d3
s (p) + 1.405e−19d2

s (p) − 3.816e−9ds(p) + 29.936

(42a)

to be minimised. It is noted that other polynomial as well as exponential fitting functions can be employed without

loss of accuracy. The following constraints are consideredfor the optimization procedure

[Figure 16 about here.]

E1 ∈ [40GPa,110GPa], v1 ∈ [0.05,0.30], h1 ∈ [0.2mm,3mm], ρm,1 ∈ [1500kg/m3,4500kg/m3]

E2 ∈ [40MPa,110MPa], v2 ∈ [0.05,0.49], h2 ∈ [5mm,20mm], ρm,2 ∈ [10kg/m3,150kg/m3]

E3 ∈ [40GPa,110GPa], v3 ∈ [0.05,0.30], h3 ∈ [0.2mm,4mm], ρm,3 ∈ [1500kg/m3,4500kg/m3]

Additional constraints (e.g. minimum axial and/or flexural stiffness, maximum surface mass e.t.c) can be con-

sidered. The constrained optimization problem is implemented within MATLAB and the nonlinear optimization

algorithmfmincon (see [35]) is employed in order to compute the optimal parameter vectorp that minimisesF (p).
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5.4. Optimal parameters and discussion on the computational efficiency

The optimization problem is solved fork = 0.13rad/mm, and the optimal material and geometric parameters that

minimise the cost function presented in Eq.42 are computed as follows

E1 = 80.9GPa, v1 = 0.12, h1 = 1.19mm, ρm,1 = 1647kg/m3

E2 = 110MPa, v2 = 0.37, h2 = 10.53mm, ρm,2 = 14.6kg/m3

E3 = 58.3GPa, v3 = 0.19, h3 = 1.74mm, ρm,3 = 1500kg/m3

It is noted that the only quantities laying on the limits of the predefined constraints which could potentially further

improve the overall structural performance are the Young’smodulus of the core layerE2 as well as the mass density

of the upper layerρm,3. Optimising the structure in a broadband frequency range can be done by averaging the

optimal parameters over the frequency range of interest or by introducing a weighting average for the frequency bands

that are considered more important (e.g. frequency range corresponding to the external acoustic excitation). The

optimization process was completed in 8 iterations each of which lasted approximately 78 seconds, resulting in a total

computation time of 630s. This suggests that a broadband structural optimization is feasible within a few hours, even

on a conventional computing equipment.

6. Conclusions

In this work, the optimal mechanical and geometric characteristics for layered composite structures subject to

vibroacoustic excitations were derived in a wave SEA context. The main conclusions of the paper are summarised as:

(i) The formulation of the symbolic expression of the stiffness and mass matrices for a linear solid FE were

presented. These formulations can be used in order to derivethe symbolic global matrices of the modelled segment,

as well as the sensitivity of the global matrices with regardto any structural parameter. Non conservative structural

systems are also modelled by the exhibited approach.

(ii) An intense frequency dependent variation of the sensitivity of the propagating wave characteristics has been

observed as a function of the design of the composite structure. This also implies frequency dependence of the optimal

design parameters.

(iii) Expressions for the first and second order sensitivities of the SEA quantities, namely the modal density, the

radiation efficiency and the damping loss factor of the composite panel were derived. The design parametric sensitivity

for each of the SEA quantities, as well as of the acoustic transmission coefficient were found to be highly frequency

dependent. The impact of the design alteration on the vibroacoustic response was found to be maximum in the vicinity

of the acoustic coincidence range for most parameters.

(iv) The suggested optimization process is computationally efficient, allowing for a broadband structural design

optimization of a layered structure in a rational period of time, even with the use of conventional computing equipment.
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Appendix A. Sensitivity analysis of a solid FE

A linear solid FE is hereby considered as shown in Fig.17.

[Figure 17 about here.]

Following the isoparametric notation introduced in [37] the geometry of the element is described as
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(A.1)

The displacement interpolations are expressed as
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(A.2)

Linear shape functions are assumed for the element

N1 =
1
8(1− ξ)(1− η)(1+ µ)

N2 =
1
8(1− ξ)(1− η)(1− µ)

N3 =
1
8(1− ξ)(1+ η)(1− µ)

N4 =
1
8(1− ξ)(1+ η)(1+ µ)

N5 =
1
8(1+ ξ)(1− η)(1+ µ)

N6 =
1
8(1+ ξ)(1− η)(1− µ)

N7 =
1
8(1+ ξ)(1+ η)(1− µ)

N8 =
1
8(1+ ξ)(1+ η)(1+ µ)

(A.3)

The element stiffness matrixk is formally given by the volume integral

k =
∫ 1

−1

∫ 1

−1

∫ 1

−1
B⊤DB|J| dηdξdµ (A.4)

while the element mass and damping matricesm, c can be determined as

m =
∫ 1

−1

∫ 1

−1

∫ 1

−1
N⊤ρmN|J| dηdξdµ (A.5)

c =
∫ 1

−1

∫ 1

−1

∫ 1

−1
N⊤γ N|J| dηdξdµ (A.6)

with

N =



































N1 0 0 · · · N8 0 0

0 N1 0 · · · 0 N8 0

0 0 N1 · · · 0 0 N8



































(A.7)

while ρm is the mass density of the material andγ the material damping coefficient. It is also noted that
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(A.8)

The Jacobian matrix of the element is

J =
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(A.9)

while the the flexibility matrix of the element for an orthotropic materialD−1 can generally be written as

D−1 =
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(A.10)

The assumption of the undeformed FE being a rectangular parallelepiped is hereby adopted. The coordinates

x1, x2, x3, x4, x5, x6, x7, x8, y1, y2, y3, y4, y5, y6, y7, y8, andz1, z2, z3, z4, z5, z6, z7, z8, can then be replaced byLx, Ly, Lz in

the expression ofB. The generic expression form is thus given as

24



m = (ρLxLyLz)













































































































































































































































































































































































1/27 0 0 1/54 0 0 1/108 0 0 1/54 0 0 1/54 0 0 1/108 0 0 1/216 0 0 1/108 0 0

0 1/27 0 0 1/54 0 0 1/108 0 0 1/54 0 0 1/54 0 0 1/108 0 0 1/216 0 0 1/108 0

0 0 1/27 0 0 1/54 0 0 1/108 0 0 1/54 0 0 1/54 0 0 1/108 0 0 1/216 0 0 1/108
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1/108 0 0 1/216 0 0 1/108 0 0 1/54 0 0 1/54 0 0 1/108 0 0 1/54 0 0 1/27 0 0

0 1/108 0 0 1/216 0 0 1/108 0 0 1/54 0 0 1/54 0 0 1/108 0 0 1/54 0 0 1/27 0

0 0 1/108 0 0 1/216 0 0 1/108 0 0 1/54 0 0 1/54 0 0 1/108 0 0 1/54 0 0 1/27













































































































































































































































































































































































(A.11)

a very similar expression is true forc, while the symbolic generic expression ofk can be derived exactly in the same

way but is hereby intentionally omitted for the sake of brevity.

The generic sensitivity expressions
∂k
∂βi

,
∂c
∂βi

,
∂m
∂βi

as well as
∂2k
∂β j∂βi

,
∂2c
∂β j∂βi

,
∂2m
∂β j∂βi

with βi, β j being design

parameters can therefore be calculated as a function ofEx, Ey, Ez, vxy, vxz, vyz, Gxy,Gxz,Gyz, Lx, Ly, Lz by differentiating

over the generic expressions fork, c, m.

Appendix B. Calculation of the Sound Transmission Loss (STL) of a panel by an SEA approach

In this Appendix, the analysis presented in [11] on the derivation of an expression for the total acoustic transmis-

sion coefficientτ of a panel in a wave context is summarized. Considering each wave typew = w1,w2...wn propagating

within the composite panel as a separate SEA subsystem we have

P12 =

wn
∑

w=w1

P12,w

P23 =

wn
∑

w=w1

P23,w

(B.1)

whereP12 andP23 stand for the power flow between the two rooms and the panel.

The STL is defined as:

STL = 10 log10

(

1
τ

)

(B.2)
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whereτ is the transmission coefficient defined as the ratio between the transmitted and the incident sound powers. It

can be written as the sum of the resonant and the non-resonanttransmission coefficient:

τ =
P23+ P13

Pinc
=

wn
∑

w=w1

P23,w

Pinc
+

P13

Pinc
(B.3)

wherePinc stands for the acoustic power incident on the layered panel,which for a reverberant sound field can be

written as:

Pinc =

〈

p2
1

〉

A

4ρc
(B.4)

where
〈

p2
1

〉

the mean-square sound pressure. An attempt to calculate theresonant coefficient for each wave typew is

hereby made. Assuming a linear system with no energy exchanges between different wave types within the structure,

the energy balance of a structural wave subsystem can be written as

P12,w = P2d,w + P23,w (B.5)

The power dissipated can be written as

P2d,w = E2,wωη2,w (B.6)

with E2,w andη2,w the vibrational energy and the structural loss factor of wave typew respectively. The vibrational

energy of the panel due to wave typew can be written as:

E2,w = ρsA
〈

υ2
w

〉

(B.7)

whereρs is the mass per unit area,A is the total area of the panel and
〈

υ2
w

〉

is the mean-square velocity in the panel

due to wave typew.

The power flowP12,w can be written using the SEA reciprocity rule, as

P12,w = ωη12,wn1

(

E1

n1
−

E2,w

n2,w

)

= ωη21,wn2,w

(

E1

n1
−

E2,w

n2,w

)

(B.8)

wheren1,n2,w are the modal density of the source room and of the wave typew respectively andη21,w the coupling

loss factor between the receiving room and the wave typew which can be written as:

η21,w = η23,w =
ρcσrad,w

ρsω
(B.9)

with ρ the acoustic medium density of the room. The total acoustic energy of the source room can be written as

E1 =

〈

p2
1

〉

V

ρc2
(B.10)
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An accurate approximation for the modal density of the source room is expressed as

n1 =
V1ω

2

2π2c3
(B.11)

then the modal energy of the source room is

E1

n1
=

2π2c
〈

p2
1

〉

ρω2
(B.12)

Using the SEA reciprocity rule again, the power flow from the composite panel to the receiving room can be written

as:

P23,w = ωη23,wn2,w

(

E2,w

n2,w
−

E3

n3

)

= ωη23,w

(

E2,w −
E3n2,w

n3

)

(B.13)

It is hereby assumed thatn3 >> n2,w (reasonable for typically sized cavities and especially for medium and high

frequencies) and it is also logical thatE2,w > E3, therefore presuming thatE2,w >>
E3n2,w

n3
, Eq.B.13 can be written as

P23,w = E2,wωη23,w (B.14)

Eventually, after manipulating Eq.B.4 and Eq.B.6-B.14 andsubstituting them into Eq.B.5 we get:

〈

υ2
w

〉

〈

p2
1

〉 =
2πc2σrad,wn2,w

ρsω2A(ρsωη2,w + 2ρcσrad,w)
(B.15)

Using Eq.B.4,B.7,B.9,B.14,B.15 and substituting them into Eq.B.3 we get

τw =
8ρ2c4πσ2

rad,wn2,w

ρsω2A(ρsωη2,w + 2ρcσrad,w)
(B.16)

which is the expression of the resonant transmission coefficient for wave typew.
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Figure 1: Caption of a FE modelled composite layered panel
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Figure 2: A schematic representation of the SEA power exchanges and energies for the modelled system.
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Figure 3: Sensitivity of the propagating wavenumberk under a perturbation of the thickness of the sandwich facesheets for the first flexural wave
type of the layered structure: Presented approach forh1 (−), FD computation forh1 (�), Presented approach forh3 (−−), FD computation forh3
(◦)
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Figure 4: Sensitivity of the propagating wavenumberk under a perturbation ofh2 for the first flexural wave type of the layered structure: Presented
approach (−), FD computation (�)
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Figure 5: Sensitivity of the propagating wavenumberk under a perturbation of the mass density of the sandwich facesheets for the first flexural
wave type: Presented approach forρm,1 (−), FD computation forρm,1 (�), Presented approach forρm,3 (−−), FD computation forρm,3 (◦)
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Figure 6: Sensitivity of the propagating wavenumberk under a perturbation ofv2 for the first flexural wave type of the layered structure: Presented
approach (−), FD computation (�)
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Figure 7: Sensitivity of the modal densityn of the first flexural propagating wave with respect to the layer thicknesses: with respect to the thickness
of the lower facesheeth1 (−), with respect to the thickness of the upper facesheeth3 (−−), with respect to the thickness of the coreh2 (− · −)

35



0 2000 4000 6000 8000 10000
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

Frequency [Hz]

d
n/

dE
 

[m
m

2 /r
ad

.N
]

Figure 8: Absolute values for the sensitivity of the modal density n of the first flexural propagating wave with respect to the layer Young’s modulus:
with respect to the one of the lower facesheetE1 (−), with respect to the one of the upper facesheetE3 (−−), with respect to the one of the coreE2
(− · −)
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Figure 9: Sensitivity of the logarithmic acoustic radiation efficiency (10log(σ)) of the first flexural propagating wave with respect to the layer
thicknesses: with respect to the thickness of the lower facesheeth1 (−), with respect to the thickness of the upper facesheeth3 (−−), with respect
to the thickness of the coreh2 (− · −)
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Figure 10: Sensitivity of the logarithmic acoustic radiation efficiency (10log(σ)) of the first flexural propagating wave with respect to the mass
density of the lower facesheetρm,1 (−), with respect to the density of the upper facesheetρm,3 (−−), with respect to the density of the coreρm,2
(− · −)
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Figure 11: Sensitivity of the total loss factorη of the panel for the first propagating flexural wave with respect to the layer thicknesses: with respect
to the thickness of the lower facesheeth1 (−), with respect to the thickness of the upper facesheeth3 (−−), with respect to the thickness of the core
h2 (− · −)
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Figure 12: Sensitivity of the total loss factorη of the panel for the first propagating flexural wave with respect to the layer damping coefficientγ:
with respect toγ1 (−), with respect toγ3 (−−), with respect toγ2 (− · −)
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Figure 13: Sensitivity of the sound TL with respect to the layer thicknesses: with respect to the thickness of the lower facesheeth1 (−), with respect
to the thickness of the upper facesheeth3 (−−), with respect to the thickness of the coreh2 (− · −)
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Figure 14: Sensitivity of the sound TL with respect to the layer mass densities: with respect to the density of the lower facesheetρm,1 (−), with
respect to the density of the upper facesheetρm,3 (−−), with respect to the density of the coreρm,2 (− · −)
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Figure 15: Sensitivity of the sound TL with respect to the layer Young’s modulus: with respect to the one of the lower facesheet E1 (−), with
respect to the one of the upper facesheetE3 (−−), with respect to the one of the coreE2 (− · −)
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Figure 16: Representation of the cost functions employed within the current optimization process. Cost function corresponding to: The acoustic
transmission coefficientτ (−), The surface mass densityρs (−−), The flexural stiffnessds of the panel (− · −)
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Figure 17: The considered solid FE
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List of symbols

M, C andK Mass, damping and stiffness matrices of the periodic structural segment
R Transformation matrix
p Design parameter vector
q Physical displacement vector
xw Right eigenvector corresponding to wave modew
F (p) Objective cost function
c Wave velocity in acoustic medium
Lx, Ly Dimensions of the composite panel in thex andy directions
kx, ky Wavenumbers in thex andy directions
kw Wavenumber corresponding to wave modew
cg,w Group velocity of wave modew
nw Modal density of wave modew
ds Static flexural stiffness of the structural panel
A Surface of the structural panel
Ex,l, Ey,l Ez,l Young’s moduli of layerl
vxy,l vxz,l vyz,l Poisson’s ratios of layerl
Gxy,l Gxz,l Gyz,l Shear moduli of layerl
hl Thickness of layerl

βi, β j Design parameters
γl Damping coefficient of layerl
εx, εy Propagation constants in thex andy directions
ηw Global damping loss factor of the panel under the passage of wave modew
κ Acoustic wavenumber
λw Eigenvalue corresponding to wave modew
ξi, δi, ζi Design cost coefficients
ρ Acoustic medium density
ρm,l Mass density of layerl
ρs Mass per unit area of the structural panel
σrad,w Radiation efficiency of wave modew
τw Resonant acoustic transmission coefficient of wave modew
τnr Non resonant acoustic transmission coefficient
φ Considered direction of propagation
ω Angular frequency
ωw Angular frequency at which a certain wave modew occurs with predefinedεx, εy
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