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• Background and Aims Tiller production and survival determine final spike number, and 

play key roles in grain yield formation in wheat (Triticum aestivum). This study aimed to 

understand the genetic and physiological basis of the tillering process, and its trade-offs with 

other yield components, by introducing genetic variation in tillering patterns via a mapping 

population of wheat × spelt (Triticum spelta).  

• Methods The dynamics of tillering and red:far red ratio (R:FR) at the base of a canopy 

arising from neighbouring plants in a bread wheat (Triticum aestivum ‘Forno’) × spelt 

(Triticum spelta ‘Oberkulmer’) mapping population were measured in the field in two 

growing seasons. Additional thinning and shading experiments were conducted in the field 

and glasshouse, respectively. Yield components were analysed for all experiments, followed 

by identification of quantitative trait loci (QTL) associated with each trait.  

• Key Results Large genetic variation in tillering was observed, and more fertile shoots per 

plant were associated with more total shoots initiated, faster tillering rate, delayed tillering 



onset and cessation, and higher shoot survival. A total of 34 QTL for tillering traits were 

identified, and analysis of allelic effects confirmed the above associations. Low R:FR was 

associated with early tillering cessation, few total shoots, high infertile shoot number and 

shoot abortion, and these results concurred with the thinning and shading experiments. These 

effects probably resulted from an assimilate shortage for tiller buds or developing tillers, due 

to early stem elongation and enhanced stem growth induced by low R:FR. More fertile tillers 

normally contributed to plant yield and grain number without reducing yield and grain set of 

individual shoots. However, there was a decrease in grain weight, partly because of smaller 

carpels and fewer stem water soluble carbohydrates at anthesis caused by pleiotropy or tight 

gene linkages.  

• Conclusions Tillering is under the control of both genetic factors and R:FR. Genetic 

variation in tillering and tolerance to low R:FR can be used to optimize tillering patterns for 

yield improvement in wheat. 

Key words: Carpel, grain number, grain weight, quantitative trait locus, QTL, red:far red 

ratio, spelt, stem water soluble carbohydrates,  tillering, Triticum aestivum, Triticum spelta, 

wheat, yield. 

INTRODUCTION 

Tillering in wheat (Triticum aestivum) determines plant canopy size, photosynthetic area, and, 

more importantly, the number of spikes bearing grains at maturity (fertile shoots), which is a 

key component of yield. Wheat plants undergo several events to form final fertile shoots: 

axillary bud initiation, first bud outgrowth, tillering cessation, tiller abortion, and the 

development of surviving tillers. Tiller buds are initiated from the axillary meristems in the 

axils of developing leaves on the main shoots, and bud number is associated with total 



number of leaves (Baker and Gallagher, 1983; Longnecker et al., 1993). Early tillers can also 

be parent shoots producing secondary buds and tillers (Evers and Vos, 2013).  

Outgrowth of the first tiller buds represents the onset of apparent tillering. In the field, this 

can occur from autumn to spring, depending on sowing date and temperature thereafter 

(Sylvester-Bradley et al., 2008). Tillering normally ceases just before stem elongation (Baker 

and Gallagher, 1983; Gomez-Macpherson et al., 1998; Sylvester-Bradley et al., 2008), and 

the remaining axillary buds become dormant. However, the dormancy is not definitive, and 

can be released in some cases like early lodging and damage to the apices of parent shoots 

(Rameau et al., 2015). The timing of tillering cessation and number of total tillers initiated are 

regulated by many genetic, physiological and environmental factors. A tiller inhibition gene 

(tin1), which has been mapped on chromosome 1AS (Richards, 1988; Spielmeyer and 

Richards, 2004), has been found to reduce tillering through the early cessation of axillary bud 

outgrowth (Duggan et al., 2002; Kebrom et al., 2012). This inhibition may result from the 

sugar deficit for lateral tiller buds due to precocious internode elongation (Kebrom et al., 

2012), concurring with the report of Langer et al. (1973). Environmental factors such as plant 

density and shade, also affect tillering cessation. Higher plant population has been shown to 

be associated with earlier tillering cessation and fewer maximum tillers per plant (Evers et al., 

2006; Sparkes et al., 2006). In dense communities, the red and blue wavelengths are absorbed 

by surrounding plants, and most of far red is reflected and transmitted, resulting in reduction 

in light intensity and quality (red:far red ratio, R:FR), or shade. There is evidence that tiller 

bud outgrowth responds to light quality, and to a lesser extent, light intensity (Sparkes et al., 

2006). Cessation of axillary bud outgrowth coincides with a relatively conservative R:FR of 

0.20−0.40 (Evers et al., 2006; Sparkes et al., 2006; Dreccer et al., 2013). High R:FR delays 

tillering cessation, and increases total tiller number (Toyota et al., 2014). Treatment with far 

red light has the opposite effects, which can be reversed by adding red light, suggesting 



phytochrome perception (Kasperbauer and Karlen, 1986; Casal, 1988; Ugarte et al., 2010). 

Tillering (branching) response to low R:FR or shade has also been observed in ryegrass 

(Lolium multiflorum) (Casal et al., 1990), barley (Hordeum vulgare) (Davis and Simmons, 

1994), sorghum (Sorghum bicolor) (Kebrom et al., 2006), soybean (Glycine max) 

(Kasperbauer, 1987), and Arabidopsis (Arabidopsis thaliana) (Reddy et al., 2013). Shade acts 

as a warning signal of impending competition from neighbouring plants, and the consequent 

reduction of shoot branching is able to enhance apical growth for more incident light, known 

as a part of the shade avoidance syndrome  (Gommers et al., 2013; Rameau et al., 2015).  

Tiller abortion ensues immediately after the arrest of tiller bud outgrowth. Of the total tillers 

initiated, 10−80% are destined to die, as affected by genotype, season, growing location, 

seeding rate and nutrient supply (Ishag and Taha, 1974; Hucl and Baker, 1989; Sharma, 1995; 

Berry et al., 2003). Tiller abortion usually takes place between the onset of stem elongation 

and anthesis, and those appearing last die first (Sylvester-Bradley et al., 2008). As there is a 

net loss of dry matter from non-surviving tillers, they have been thought to be detrimental for 

yield potential, especially when a further increase in harvest index is required (Sharma, 1995; 

Berry et al., 2003; Foulkes et al., 2011). Therefore, tiller survival needs to be improved in 

future breeding, and a first step would be to clarify its genetic and physiological basis that still 

remains unknown to date. In contrast, fertile shoot or spike number at maturity has been 

widely investigated. Three genes, tin1 on chromosome 1AS (Richards, 1988; Duggan et al., 

2005), tin2 on 2A (Peng et al., 1998), and tin3 on 3AmL (Kuraparthy et al., 2007), have been 

identified to reduce final tiller number. This trait is often expressed quantitatively, and many 

quantitative trait loci (QTL) have been detected on at least 12 chromosomes (Kato et al., 2000; 

Deng et al., 2011; Naruoka et al., 2011; Jia et al., 2013; Zhang et al., 2013). 

Despite the importance of tillering dynamics in terms of yield formation in wheat, knowledge 

of the genetic and environmental factors regulating this process is still scarce. The questions 



that need to be addressed include: (1) what are the genes or QTL controlling the timing and 

rate of tillering, tillering capacity, and the degree of tiller abortion and survival; (2) whether or 

not, and how the shade from neighbouring plants affects tillering dynamics, particularly tiller 

abortion; if so, what is the genetic basis of the shade kinetics arising from a genotype grown 

in the field; (3) whether or not more fertile tillers contribute to plant productivity, considering 

the possible negative effects on other yield components. In this study, we aimed to address 

these questions in a recombinant inbred line mapping population of bread wheat (Triticum 

aestivum) × spelt (T. spelta). Dynamics of the tillering and R:FR were measured 

consecutively in the field in two seasons, and this was also done in the thinning study. In the 

third season, a shading experiment was carried out in the glasshouse to determine its effect on 

fertile tiller number. Yield components of each genotype in all seasons were then analysed. 

Subsequently, the QTL underlying these traits were identified. 

MATERIALS AND METHODS 

Plant materials 

A mapping population of Swiss winter bread wheat (Triticum aestivum) ‘Forno’ and Swiss 

winter spelt (T. spelta) ‘Oberkulmer’ was used to introduce genetic variation in tillering 

patterns. This population consists of 226 F5 recombinant inbred lines (RILs) (Messmer et al., 

1999), and showed large variation in tiller number at different developmental stages in the 

preliminary field trials. Based on these observations, a subset including 72 RILs was selected 

in 2011−2012 season (referred hereafter as 2012), with considerable difference in tillering but 

similar flowering time (± 4 d in 2009−2010 and ± 1 d in 2010−2011) to minimise the 

confounding effect of different phasic development. This subset was enlarged to 110 RILs in 

2012−2013 and 2013−2014 seasons (referred hereafter as 2013 and 2014, respectively). 

Growth conditions for field experiments 



Field experiments were carried out at University of Nottingham Farm, Leicestershire, UK 

(52o 50' N, 1o 15' W, 50 m above sea level) in 2012 and 2013. The soil was a sandy loam (soil 

indices: N = 0, P = 4, K = 4, Mg = 4, pH = 7.6 in 2012; N = 0, P = 5, K = 4, Mg = 4, pH = 7.3 

in 2013). An additional 140 and 160 kg N ha-1 were applied in three splits between March and 

May in 2012 and 2013, respectively. The whole population, including Forno and Oberkulmer, 

was arranged in a randomised complete block design with three replicates. The seeds of each 

RIL were sown in 6 × 1.6 m plots on 19 Oct. 2011 and in 12 × 1.6 m plots on 31 Oct. 2012, 

with 250 seeds m-2. Herbicides, fungicides and insecticides were applied when necessary to 

maintain undisturbed plant growth.  

Tillering, R:FR and yield components in the field experiments 

Ten central plants per plot were selected and labelled after emergence in 2012 and 2013. To 

create relatively uniform populations among plots, plant density was adjusted by removing 

extra surrounding plants. When the tiller buds grew out at the leaf-stem junctions and became 

new tillers, the shoot number of each plant was counted every c. 100 degree days (oCd, base 

temperature 0oC) until tillering cessation. Dying tillers, whose newest leaves started 

yellowing, were tagged using wires so that all shoots produced during tillering were taken 

into account. At the late stage of grain filling, the fertile shoots bearing spikes were counted. 

Immediately after each shoot count, R:FR at the base of each plant was measured using a two-

channel radiometer (SKR 116, Skye Instruments, Llandrindod Wells, UK), following the 

method of Sparkes et al. (2006). Measurements were made under sunny days, with the sensor 

facing north against the stem bases, which allowed the light reflected and transmitted from the 

neighbouring plants to reach the sensor. 

Data of shoots per plant and R:FR from each plot were then fitted over the accumulated 

thermal time from sowing using a logistic function (Fig. 1) (Sparkes et al., 2006). 

<<TYPESETTERS: INSERT EQN 1 HERE >> 



Where S is the shoots per plant, R is the R:FR, A is the lower asymptote, (A + C) is the upper 

asymptote, B is the doubled relative rate of tillering or R:FR reduction at the time M, M is the 

accumulated thermal time when tillering rate or R:FR decline rate is at maximum and when 

shoot number or R:FR reaches (A + 0.5C), and t is the accumulated thermal time after sowing. 

The parameters used to describe the kinetics of tillering and R:FR are: total shoots per plant 

(A + C), fertile shoots per plant (counted at late grain filling), shoot survival (fertile shoots 

divided by total shoots, %), infertile shoots per plant (the difference between total and fertile 

shoots), shoot abortion (infertile shoots divided by total shoots, %), tillering onset (tto, when A 

+ 0.1C is reached, tto = M – 2.1972/B), tillering cessation (ttc, when A + 0.9C is reached, ttc = 

M + 2.1972/B), tillering duration (ttd, ttd = ttc − tto), tillering rate (0.8C/ttd), the onset of R:FR 

reduction (tR:FRor, when A + 0.9C is reached tR:FRor = M + 2.1972/B), the end of R:FR 

reduction (tR:FRer, when A + 0.1C is reached tR:FRer = M − 2.1972/B), and stabilised R:FR (the 

lower asymptote A). In addition, R:FR at tillering onset and cessation were calculated. 

Another key event during tillering is the onset of stem elongation (Growth Stage 31, GS31) 

(Zadoks et al., 1974). Five plants in central rows from each plot were split to observe the first 

internodes every four days. A line was judged to enter this stage when three or more main 

shoots had the first internodes longer than 1 cm. R:FR at GS31 was then calculated. In 2013, 

15 RILs were selected randomly; five plants from each plot were measured for R:FR, counted 

for shoot number, and split for initial stem length (removing leaf sheaths and spikes) on 9 

May (around GS31). 

Thinning was carried out in five RILs selected randomly in 2013. Plant density in these lines 

was reduced to 50% by removing every other plant after emergence. Ten central plants in the 

thinned area in each plot were selected, and another ten plants without thinning taken as 

control. Dynamics of the shoot number and R:FR of these plants were recorded for curve 

fitting, as described above. 



Plant height, carpel size and stem water soluble carbohydrate (WSC) content at anthesis were 

analysed in both seasons. For each plot of the subsets, five (in 2012) and ten (in 2013) shoots 

with the first anthers on spikes just visible, were collected. Plant height was measured from 

the shoot bases to spike tips, excluding awns. Five spikes of each sample were used for carpel 

analysis. Two middle spikelets of each spike in 2012, and three spikelets (the third spikelets 

counted from the bases and tips, and the middle one between them on one side of a spike) in 

2013, were dissected carefully. The carpels in the first three florets of a spikelet counting 

from the rachis were removed, oven-dried at 85oC for 48 h, and weighed using an electronic 

balance (0.0001 g) (125A, Precisa, Dietikon, Switzerland). Average dry weight of individual 

carpels was then calculated. After removing leaves, all the stems (plus leaf sheaths) from the 

same shoots were collected, oven-dried immediately, weighed, and finely ground. Stem 

carbohydrates were extracted (80% ethanol and water), and WSC were measured using the 

anthrone method, following the protocols of van Herwaarden et al. (1998), and Yemm and 

Willis (1954). Average dry weight of stem WSC per shoot was then calculated. 

At maturity, 5 and 20 spikes from each plot in 2012 and 2013, respectively, were collected 

and threshed by a thresher and then by hand. The grains were oven-dried at 85oC for 48 h and 

weighed, and yield per shoot was calculated. Then, c. 200 grains were counted to calculate 

thousand grain weight (TGW) and grains per shoot. Yield and grains per plant were obtained 

by multiplying yield and grains per shoot by fertile shoot number, respectively. 

Shading experiment in the glasshouse 

A glasshouse experiment was conducted to test the effects of shade on tiller number and yield 

components in 2014. Green shade was achieved by using a green plastic filter (122 Fern 

Green; LEE Filters, Hampshire, UK) (Kegge et al., 2013). This green filter reduced 

photosynthetically active radiation (PAR, measured with a ceptometer: AccuPAR, Decagon 

Devices, Pullman, USA) to 220 µmol m-2 s-1 and R:FR (SKR 116, Skye Instruments, 



Llandrindod Wells, UK) to 0.2, compared with the control using clear filters (PAR = 680 

µmol m-2 s-1 and R:FR = 1.0). The filters were fixed on four sides and top of a woody frame, 

but left a 15 cm gap at the top of each side for ventilation. Daily temperature inside the frames 

during treatment was recorded using a data logger (Tinytag Ultra 2, Gemini Data Loggers, 

West Sussex, UK), and the average temperature between shading and control was the same 

(15.3 oC). The seeds of the subset (110 RILs) were sown on 17 Dec. 2013. The seedlings were 

vernalised at 6 oC for nine weeks, and then transplanted into 1 L pots (one plant per pot) filled 

with the loam-based compost (No. 3, John Innes, Norwich, UK). The RILs were arranged in a 

randomised complete block design with three replicates for both the shading and control. 

Frames were put on the plants from 27 Mar. (onset of tillering) to 2 May 2014. The plants 

were watered frequently, and individually fed with 40 kg N ha-1 at the beginning of stem 

elongation. At maturity, fertile shoots of each plant were counted, and all spikes were 

threshed. Total grains were oven-dried at 85oC for 48 h, weighed and counted. Yield per plant, 

yield per shoot, grains per plant, grains per shoot, and TGW were then calculated. 

Statistical analysis of phenotypic data 

Analysis of variance (ANOVA) was used to test the differences between RILs and between 

treated (thinned and shaded) and control plants. Pearson correlations and regression analysis 

were carried out to determine the phenotypic relationships between different traits. Data were 

transformed to improve their normality, if necessary. Statistical analyses, including curve 

fitting, were performed with the Genstat v17 and GraphPad Prism v6.05.  

Quantitative trait locus analysis 

Genetic map of Forno × Oberkulmer is available in the GrainGenes database 

(http://wheat.pw.usda.gov/GG2/index.shtml). Linkage analysis was repeated with 182 

polymorphic markers (RFLP and SSR) using the JoinMap v4 (Van Ooijen, 2006), resulting in 

the same genetic map, with slightly different total coverage. This map included 230 



segregating loci and 23 linkage groups, covering 2,469 cM (c. 2/3 of the whole genome of 

bread wheat and spelt) with an average marker density of 13.6 cM (Messmer et al., 1999). 

QTL analysis was performed with the MapQTL v6 (Van Ooijen, 2009), using the mean 

values of quantitative traits over replicates in each year. Interval mapping was used to 

estimate the QTL locations, logarithm of the odds (LOD) scores, additive effects, and 

phenotypic variation explained by individual QTL (R2). A genome-wide significance 

threshold (P < 0.05) was computed by the permutation test with 1,000 iterations. Co-factors, 

which were the markers nearest to QTL peaks, were selected, tested for significance (P < 

0.02), and used for the multiple-QTL model (MQM) mapping. QTL symbols were designed 

according to the Catalogue of Gene Symbols for Wheat 

(http://wheat.pw.usda.gov/GG2/Triticum/wgc/2008/). Locations of the significant QTL were 

presented using the 1-LOD support intervals (fall-off from the QTL maximum LOD peaks), 

and drawn using the MapChart v2.2 (Voorrips, 2002). For each QTL, the allele increasing the 

quantitative trait value was defined as increasing allele, and the other one as decreasing allele. 

The parents conferring increasing or decreasing alleles were analysed. 

RESULTS 

Phenotypic variation in tillering dynamics in the Forno × Oberkulmer mapping population 

Tillering traits, including total shoots per plant, fertile and infertile shoots per plant, shoot 

survival and abortion, and tillering rate, were similar between the bread wheat Forno and spelt 

Oberkulmer in the field in 2012 (Fig. 2). However, Oberkulmer had many more total, fertile 

and infertile shoots per plant, higher shoot survival and tillering rate but lower shoot abortion 

than Forno in 2013. In the glasshouse experiment, fertile shoots per plant of Oberkulmer (5.3 

shoots) was similar to that of Forno (5.0 shoots) under control condition, but Oberkulmer had 

4.7 fertile shoots per plant under shading treatment, compared to Forno’s 3.3. These indicate 

that the spelt can produce equal or more shoots than the bread wheat, depending on growth 



environments. Large genetic variation in all tillering traits was found in the RILs in each year 

(Fig. 2). In addition to genotypes, years also affected tillering patterns: total shoots per plant 

(+38%), fertile shoots per plant (+60%), shoot survival (+9%), infertile shoots per plant 

(+16%) and tillering rate (+316%), were higher in 2013 than those in 2012 (P < 0.01). The 

differences in tillering traits for the parents and RILs between years could result from the 

colder weather from sowing to March in 2013 (−2.6oC for the mean daily temperature) than 

that in 2012, leading to delayed tillering and other consequent effects on the remaining traits, 

as demonstrated below. Oberkulmer was more responsive to the growing years than Forno in 

terms of tillering. Averaged across years, shoot survival was only 55% over all the genotypes 

in the field. 

Phenotypic correlations between tillering traits 

Total shoots per plant were largely dependent on the tillering rate rather than its duration 

(Table 1). There was no (in 2012) or weak (in 2013) negative relationship between fertile and 

infertile shoot number, indicating large independence. Both traits were positively associated 

with tillering rate. In addition, delayed onset and cessation of tillering appeared to be 

associated with more fertile shoots and higher shoot survival, and with fewer infertile shoots 

and lower shoot abortion. Tillering onset showed a positive relationship with tillering rate, but 

a negative one with tillering duration, suggesting that the later tillering onset, the faster 

tillering rate, and the shorter tillering duration. 

Identification of the QTL associated with tillering traits 

A total of 34 QTL were identified for the tillering traits in the Forno × Oberkulmer mapping 

population, including one QTL for total shoots per plant, six for fertile shoots per plant, two 

for infertile shoots per plant, five for each of shoot survival and abortion, one for tillering rate, 

ten for tillering onset (containing nine for initial shoots per plant, which were recorded from 

the second tiller count at the beginning of tillering and used to measure tillering progress), and 



four for tillering cessation (Fig. 3 and Table 2). These QTL were scattered on ten 

chromosomes (1A, 2D, 3A, 3B, 4A, 4B, 5A, 5B, 7AL, and 7B), and most of them (76%) were 

located in the A genome. Phenotypic variation explained by individual QTL varied, ranging 

from 6.3−22.6%. 

The QTL coincidences between tillering traits were mainly found on chromosomes 3A, 4A, 

and 5A (Fig. 3). For the QTL cluster on 3A, the alleles from the bread wheat Forno delayed 

tillering onset and cessation, and increased shoot survival. There were two regions of QTL 

coincidences on 4A: one was located on 4AS, where Forno conferred the alleles increasing 

fertile shoot number and shoot survival; the other was located on the distal region of 4AL, 

where Oberkulmer conferred the alleles increasing initial and fertile shoot number. Likewise, 

there were also two regions of QTL coincidences on 5A: one was located on 5AS, where the 

alleles from Forno delayed tillering onset and cessation, increased shoot survival, and 

decreased infertile shoots; the other was located on 5AL, where the alleles from Oberkulmer 

delayed tillering onset and cessation, accelerated tillering rate, and increased total, fertile and 

infertile shoot number. However, one increasing and one decreasing alleles for shoot survival 

were also identified from Oberkulmer in this region; in other words, there were two closely 

linked alleles with the opposite effects on shoot survival, and their expressions depended on 

years. 

Tillering dynamics as related to low R:FR 

R:FR at the base of canopy in the field showed relationships with the tillering dynamics 

(Table 3). R:FR at tillering onset was positively associated with total and fertile shoot number, 

and shoot survival in 2013. Higher R:FR at that time was also associated with delayed 

tillering cessation across years. R:FR at tillering cessation and GS31, and stabilised R:FR, 

showed negative relationships with infertile shoots per plant and shoot abortion, indicating 

that low R:FR established after tiller initiation promotes tiller death. R:FR at tillering 



cessation differed between the RILs, indicating the different responses of genotypes to low 

R:FR (Fig. 2). R:FR at tillering cessation was slightly higher in 2013 (0.21) than in 2012 (0.19) 

(P < 0.05). 

As expected, thinning across the five RILs selected randomly raised R:FR at tillering onset 

(+17%), leading to more total (+31%) and fertile (+47%) shoots per plant, higher shoot 

survival (+12%), and lower shoot abortion (−8%) (Fig. 4 and Table 4). A detailed analysis 

showed that thinning did not change the onset and rate of tillering, but delayed tillering 

cessation. These results are consistent with the above observations. There was no difference 

between thinned and control lines in R:FR at either tillering cessation or GS31, as well as 

stabilised R:FR. 

R:FR around GS31 was measured in the 15 RILs on a given day in 2013, and showed a 

positive relationship with fertile shoots per plant (Fig. 5). In addition, shading in the 

glasshouse also reduced fertile shoots per plant by 12% (Table 5). 

Genetic analysis revealed a total of seven QTL for R:FR, including one QTL for each of R:FR 

at tillering onset and GS31 on chromosome 5A, two for stabilised R:FR on 4A and 5A, and 

three for the timing of R:FR reduction on 2A and 5A (Fig. 3 and Table 2). A QTL for 

stabilised R:FR was coincident with those for tillering traits on 4A; the increasing alleles from 

Forno raised stabilised R:FR, fertile shoot number and shoot survival. In addition, the QTL 

coincidences between R:FR and tillering occurred on chromosome 5A. Forno provided the 

alleles on 5AS increasing the R:FR at GS31, delaying tillering onset and cessation, increasing 

shoot survival, and decreasing infertile shoot number and shoot abortion. In contrast, 

Oberkulmer provided the alleles on 5AL increasing the R:FR at tillering onset, delaying 

tillering onset and cessation, and increasing total and fertile shoots per plant, as well as shoot 

survival. A QTL for stabilised R:FR was also coincident with the other QTL for shoot 



survival in this region, with the increasing alleles from Forno. These results support the above 

phenotypic relationships between R:FR and tillering. 

Responses of the onset of stem elongation and plant height to low R:FR 

There were positive relationships between the R:FR just before GS31 and the accumulated 

thermal time for GS31 (r = 0.40, P < 0.01 in 2012; r = 0.33, P < 0.01 in 2013), indicating that 

the lower R:FR, the earlier onset of stem elongation. Consistent with this, R:FR around GS31 

was negatively associated with the initial stem length at the same time (Fig. 5). In addition, 

the R:FR was increased by thinning, resulting in a delay of the onset of stem elongation 

(Table 4). 

Plant height at anthesis was negatively associated with R:FR at tillering cessation (r = −0.28, 

P < 0.05 in 2012; r = −0.20, P < 0.05 in 2013), and with stabilised R:FR in 2012 (r = −0.31, P 

< 0.01). 

Synchrony among tillering cessation, R:FR stabilisation and the onset of stem elongation 

Tillering ceased at 1196 and 844 oCd after sowing over all RILs in 2012 and 2013, 

respectively, coincident with R:FR stabilisation (1273 oCd in 2012 and 862 oCd in 2013) and 

GS31 (1214 oCd in 2012 and 905 oCd in 2013). This was also found in the thinning 

experiment, including both control and treatment (Table 4). The onset of stem elongation was 

slightly later than tillering cessation and R:FR stabilisation. However, taking account of the 

measurement of GS31 (the first internodes > 1 cm), the exact beginning of stem elongation 

might coincide with the other two events. 

Relationships between tillering and yield components 

Total shoots per plant contributed to yield and grain number per plant, and did not affect yield 

and grain number per shoot, and TGW (Table 6). Similarly, fertile shoots per plant and shoot 

survival in the field in 2012 and 2013, and fertile shoots per plant in the glasshouse in 2014 



(both control and shading), were closely and positively associated with yield and grains per 

plant. More fertile shoots and higher shoot survival did not reduce yield per shoot, and even 

showed associations with slightly increased grains per shoot, despite an accompanying slight 

decline in TGW. One exception was the fertile shoots per plant in shading treatment, where 

more fertile shoots were associated with lower yield per shoot, which resulted mainly from 

reduced grains per shoot (Tables 5 and 6). 

To understand how more fertile shoots reduced TGW, the carpel size and stem WSC content 

at anthesis were analysed (Table 7). Both carpel size and stem WSC content were positively 

associated with TGW, confirming their roles in determining grain weight. Furthermore, they 

showed negative relationships with fertile shoots per plant, so more fertile shoots tended to 

produce smaller carpels and less stem WSC per shoot, and in turn smaller grains. 

A total of 44 QTL for yield components were identified in the field and glasshouse 

experiments, including three QTL for yield per plant, four for yield per shoot, five for grains 

per plant, 12 for grains per shoot, and 20 for TGW (Fig. 3 and Table 2). These QTL were 

scattered on 11 chromosomes (1A, 2A, 2D, 3A, 3B, 4A, 4DL, 5A, 5B, 5DL, and 7B), 

individually explaining 11.5−37.6% of the phenotypic variation. The QTL for grains per 

shoot on 2D, 4A and 7B were stable across 2−3 environments, while those for TGW on 2A, 

3B, 4A, 5DL and 7B were stable across 3−4 environments. In the glasshouse experiment, one 

QTL for yield per shoot, two for grains per plant, four for grains per shoot, and one for TGW, 

were identified only under shading treatment, indicating that they may be involved in shade 

responses. In terms of carpel size and stem WSC content at anthesis, four and three QTL were 

detected, respectively, individually explaining 16.4−27.5% of the phenotypic variation (Fig. 3 

and Table 2). 

The QTL coincidences between tillering traits and yield components were found on seven 

chromosomes (1A, 2D, 3A, 4A, 5A, 5B, and 7B) (Fig. 3). One QTL for total shoots per plant 



was coincident with one for each of yield and grains per plant as well as grains per shoot on 

5A, with their increasing alleles conferred by Oberkulmer. Likewise, eight QTL for fertile 

shoots per plant and shoot survival were coincident with those for yield and grains per plant, 

and grains per shoot on 3A, 4A, 5A, 5B and 7B; their increasing alleles were provided by the 

same parents. In contrast, four QTL for fertile shoots per plant and shoot survival were also 

coincident with eight QTL for TGW on 1A, 4A and 7B, but their increasing alleles were 

provided by the opposite parents, confirming the negative relationships between them. A 

further analysis showed that three QTL for carpel size and two for stem WSC content at 

anthesis were coincident with 11 QTL for TGW on 3B, 4A, 5DL and 7B, with the increasing 

alleles provided by the same parents; additionally, one QTL for carpel size and two for stem 

WSC content were coincident with two QTL for fertile shoots per plant on 4A and 7B, with 

the increasing alleles conferred by the opposite parents. There was no QTL coincidence 

between total and fertile shoot number, and yield per shoot; only one QTL for shoot survival 

was coincident with one for yield per shoot on 5AS, with the increasing alleles conferred by 

Forno. These results agree with the above physiological relationships between tillering and 

yield components: more total and fertile shoots, and higher shoot survival, were associated 

with higher yield and grain number per plant without reducing those of individual shoots; 

however, more fertile shoots and higher shoot survival were associated with reduced TGW 

because of smaller carpels and less stem WSC per shoot. 

DISCUSSION 

Large variation in tillering dynamics and its genetic control 

Significant variation in tillering traits between genotypes has been observed in the present and 

previous studies (Ishag and Taha, 1974; Hucl and Baker, 1989; Sharma, 1995; Berry et al., 

2003; Dreccer et al., 2013). Thus, it is possible to optimise wheat tillering patterns by genetic 

selection. A major target of tillering optimisation is to increase fertile shoot number per plant, 



an important component of grain number to enlarge sink size. Fertile shoots per plant were 

positively associated with total shoots per plant, tillering rate, and the time for tillering onset 

and cessation, indicating that genetic selection for delayed but fast tillering, and high tillering 

capacity, can result in more fertile shoots. An additional strategy to increase fertile shoot 

number is to improve tiller survival. The present study showed that only 55% of the total 

shoots initiated produced spikes, and there was large variation in shoot survival among the 

RILs (31−87%). This variation has been demonstrated in several studies, for example, 

37−68% in Berry et al. (2003) and 70−93% in Sharma (1995), suggesting an opportunity to 

select genotypes with high shoot survival for more spikes. Likewise, only c. half of the florets 

initiated within spikelets set grains, and the remaining ones (mainly those at distal positions) 

are aborted just before anthesis (Kirby, 1988; González-Navarro et al., 2015). Floret fertility 

has been known to largely determine grains per shoot at maturity, the other key component of 

grain number per unit land area (González et al., 2011). It has been found that shoot and floret 

fertility respond to the availability of environmental resources such as nutrients and radiation 

(Ishag and Taha, 1974; Fischer and Stockman, 1980; Thorne and Wood, 1987; Alzueta et al., 

2012), indicating plasticity. This attribute of wheat plants may play a crucial role in 

accommodating various environments and forming yield (Sadras and Rebetzke, 2013). 

The QTL for tillering dynamics were reported here for the first time, except the trait of fertile 

shoots per plant, which has been widely studied (Kato et al., 2000; Deng et al., 2011; 

Naruoka et al., 2011; Jia et al., 2013; Zhang et al., 2013). Most QTL for tillering dynamics 

were located on chromosomes 3A, 4A, and 5A. The most important QTL cluster was detected 

on 5AL, where the alleles from the spelt Oberkulmer were associated with increased total, 

fertile and infertile shoot number, accelerated tillering rate, and delayed tillering onset and 

cessation. In a single-chromosome (spelt 5A) recombinant line mapping population, Kato et 

al. (2000) also mapped a QTL for fertile tiller number per plant at this location. Another QTL 



coincidence for fertile shoots per plant and shoot survival was found in the distal region of 

4AS, where the QTL for tillers per plant was identified in a previous study (Jia et al., 2013). 

In addition, the present study revealed a QTL for initial shoots per plant on 2D, corresponding 

to the Ppd-D1 gene, indicating that photoperiod response gene likely regulates the progress of 

tillering (Borras-Gelonch et al., 2012). Two QTL for fertile shoots per plant were coincident 

with those for total shoots per plant, shoot survival, tillering rate, tillering onset and cessation, 

and their increasing alleles were conferred by the same parents. This is in line with the above 

conclusion that more fertile shoots per plant can be achieved by increasing tillering capacity 

and survival, accelerating tillering rate, and delaying tillering onset and cessation. Although 

many QTL for tillering were identified here, none of them was stable over years, indicating 

the genetic complexity of tillering process and the important roles of environmental factors 

such as shade, as discussed below. Future work is needed to dissect genetic elements for 

tillering per se and those responding to environmental cues. The QTL presented in this study 

provide an initial step for this purpose. 

Low R:FR inhibits tiller production, and increases tiller abortion 

It seems that wheat plants can sense R:FR at early stage of tillering. Low R:FR at the 

beginning of tillering was associated with fewer total shoots per plant, as confirmed in the 

thinning experiment, indicating an inhibition of tiller production. Detailed analysis showed 

that low R:FR did not reduce tillering rate, but led to early tiller cessation. The same results 

have been observed with the treatments of low R:FR, far red light, shade or high plant density 

(Evers et al., 2006; Sparkes et al., 2006; Ugarte et al., 2010; Toyota et al., 2014). Threshold 

of the R:FR for tillering cessation in the field was on average 0.20, similar to that of the 

previous reports (0.20−0.40) (Evers et al., 2006; Sparkes et al., 2006; Dreccer et al., 2013). 

However, significant variation in this trait among the RILs (0.07−0.37) was also determined, 

suggesting genetic difference in the tolerance of tiller bud outgrowth to low R:FR. This 



difference has previously been reported between the tiller inhibition (tin1) lines and free-

tillering lines. The tin1 lines become more sensitive to light quality (0.18−0.22), compared 

with the free-tillering lines (0.09−0.11) (Moeller et al., 2014). The tin1 gene appears to be 

involved in the perception of R:FR. This gene inhibits tiller bud outgrowth by limiting sugar 

supply due to precocious internode development (Kebrom et al., 2012). Early stem elongation 

can be induced by low R:FR, as shown in the present study. Therefore, it can be hypothesised 

that a low R:FR promotes the onset of stem elongation, leading to assimilate deprivation from 

growing tiller buds and, in turn, bud dormancy. The tin1 mutants respond to low R:FR earlier, 

and start stem elongation earlier, resulting in earlier cessation of axillary tiller bud outgrowth, 

fewer buds growing out, and hence fewer total tillers. Thus, R:FR may function as a direct 

signal inhibiting tillering by inducing stem elongation in the tin1 lines. This model can also be 

used to explain the coincidence between tillering cessation and the onset of stem elongation in 

the present and previous studies (Baker and Gallagher, 1983; Gomez-Macpherson et al., 1998; 

Sylvester-Bradley et al., 2008). 

The results showed that low R:FR not only inhibits tiller bud outgrowth, but also promotes the 

abortion of young tillers initiated, which extends our understanding of the effect of low R:FR. 

The underlying mechanism is not clear to date. Tiller death normally starts from the onset of 

stem elongation, and ends around flowering (Sylvester-Bradley et al., 2008). During this 

period, stems and spikes are growing rapidly, suggesting source limitation (Gomez-

Macpherson et al., 1998; González et al., 2011). More carbohydrates have to be diverted to 

these expanding sinks, leading to a shortage for developing young tillers and, in turn, tiller 

death (Gomez-Macpherson et al., 1998). On the other hand, a release in intra-plant 

competition by increasing resource availability like radiation improves tiller survival (Thorne 

and Wood, 1987). In this study, it was found that low R:FR was associated with early stem 

elongation and taller plants at anthesis. These responses have been well known as part of 



shade avoidance syndrome in many other species, involving in phytochrome perception 

(mainly PHYB) and hormonal regulation (Gommers et al., 2013; Rameau et al., 2015). 

Therefore, low R:FR may increase stem sink, and intensify intra-plant competition indirectly; 

as a result, tiller abortion is enhanced. 

To improve tiller survival, the genotypes with either high tolerance to shade or well-

established light environment can be selected. Genetic variation in shade tolerance has been 

determined in this study. For the latter, light quality under a canopy is a complex trait, 

depending on plant architecture, for example, leaf characteristics (number, size, thickness, 

insertion angle, shape, stiffness and colour) and plant height. Redesigning these traits using a 

3D imaging and modelling method may improve the light environment at the bottom of 

canopy. 

Increasing fertile shoot number while maintaining the other yield components 

Fertile shoot number per plant largely contributed to plant productivity, confirming its role as 

a key yield determinant (Sharma, 1995; Kato et al., 2000). This resulted from an increase in 

grain number per plant, rather than individual grain weight. A close look revealed that more 

fertile shoots did not significantly reduce yield and grains per shoot, as seen in the previous 

studies (Kato et al., 2000; Jia et al., 2013); there was even a positive relationship between 

fertile shoots per plant and grains per shoot. In full sunlight, fertile shoots per plant were only 

negatively associated with individual grain weight, as supported by analyses of the QTL 

coincidences and allelic effects. Grains develop from the carpels growing mainly between 

booting and anthesis, and carpel size at anthesis has been considered as an upper limit to grain 

weight (Calderini et al., 1999). Another preanthesis trait affecting grain weight is the stem 

WSC remobilised into grains during grain filling (van Herwaarden et al., 1998). Each of these 

two traits was positively associated with grain weight in this study, consistent with the results 

of QTL analysis, confirming their roles as grain weight determinants. Carpel growth and stem 



WSC accumulation concur with tiller death and final tiller formation before anthesis. More 

fertile shoots produced were associated with smaller carpels and less stem WSC. Genetic 

analysis showed the QTL coincidences between fertile shoots per plant, carpel size and stem 

WSC content on chromosomes 4A and 7B, indicating that the negative relationships between 

them at least partly result from the pleiotropic effects or tight gene linkages. To break the 

negative relationships, these genes may be excluded, and/or more independent ones have to 

be added; at the same time, leaf photosynthesis and soil nutrient supply during the preanthesis 

period should be improved to increase source availability. 

Conclusions 

This study describes the tillering dynamics in detail, and its genetic and environmental control 

in wheat. Large genetic variation in tillering traits was determined, and it is proposed that the 

genotypes with higher tillering capacity, faster tillering rate, delayed tillering onset and 

cessation, and higher tiller survival, can be selected to increase fertile shoot number. Based on 

this variation, the QTL for tillering traits were identified, and QTL coincidence analysis 

agrees with the above proposition for fertile shoot improvement. R:FR has significant effects 

on tillering: low R:FR generated from neighbouring plants inhibits tiller production by 

accelerated tillering cessation, and promotes infertile tillers and tiller abortion, probably 

resulting from an assimilate shortage due to early stem elongation and enhanced stem growth 

induced by low R:FR. A few QTL for R:FR kinetics in the field were also detected. After 

these processes, final shoot number is defined. More fertile shoots at maturity contribute to 

plant yield and grain number, without reducing single-shoot productivity and grain set. 

However, this is accompanied with a slight decrease in individual grain weight, partly as an 

outcome of reduced carpel size and stem WSC content at anthesis. Therefore, this study 

improves our knowledge of the genetic and environmental determination of tillering process, 

and, in turn, grain yield formation in wheat. 
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FIG. 1. Dynamics of tillering and red:far red ratio (R:FR) at the base of canopy in the 

mapping population of Forno and Oberkulmer. Data of shoot number per plant and R:FR 

from each plot were fitted over the accumulated thermal time from sowing using a logistic 

function. Definitions of the parameters: tto, the time at tillering onset; ttc, the time at tillering 

cessation; R:FRto, R:FR at tillering onset; R:FRtc, R:FR at tillering cessation; R:FRs, stabilised 

R:FR. 



FIG. 2. Distributions of the recombinant inbred line (RIL) values for tillering and red:far red 

ratio (R:FR) at tillering cessation. Parental values are indicated with the arrows: F, Forno; O, 

Oberkulmer. Significant difference in each trait among the RILs was found (P < 0.01). 

FIG. 3. Quantitative trait loci (QTL) for tillering, red:far red ratio (R:FR), and yield 

components in the mapping population of Forno and Oberkulmer. The 1-LOD support 

intervals of significant QTL are indicated by blue (tillering), red (R:FR) and green (yield 

components) vertical bars. For QTL symbols, the ‘Q’ is followed by the abbreviated names of 

quantitative traits and laboratory (uon). Abbreviations for the traits: Tspp, total shoots per 

plant; Fspp, fertile shoots per plant; Ss, shoot survival (%); Ispp, infertile shoots per plant; Sa, 

shoot abortion (%); Tr, tillering rate; Ins, initial shoots per plant; To, the time at tillering onset; 

Tc, the time at tillering cessation; Rfrto, R:FR at tillering onset; Rfr31, R:FR at GS31 (onset 

of stem elongation); Rfrs, stabilised R:FR; Rfre, the time at the end of R:FR reduction; Ypp, 

yield per plant; Yps, yield per shoot; Gpp, grains per plant; Gps, grains per shoot; Tgw, 

thousand grain weight; Cdw, carpel dry weight at anthesis; and Swsc, stem water soluble 

carbohydrate dry weight at anthesis. The QTL found in 2012 (field), 2013 (field), 2014 

(glasshouse, control) and 2014 (glasshouse, shading treatment) are indicated by the suffixes 

12, 13, 14C and 14T, respectively. In the parentheses, the parental lines providing the alleles 

increasing trait values are given: F, Forno; O, Oberkulmer. <<QUERY: in the figure, should 

the markers be in italics? They are in italics in Table 2 – please be consistent throughout the 

paper.>> 

FIG. 4. Dynamics of tillering and red:far red ratio (R:FR) in the control (circles) and thinned 

(squares) lines. Values of shoot number per plant and R:FR at each time point are shown as 

mean ± standard error of the mean (bars). The last count, representing the fertile shoot number 

per plant, was taken at late grain filling. 



FIG. 5. Relationships between red:far red ratio (R:FR), shoots per plant and initial stem length 

around the onset of stem elongation. 

TABLE 1. Correlations between tillering traits in the mapping population of Forno and 

Oberkulmer 

 Tillering traita Total shoots 
per plant 

Fertile shoots 
per plant 

Shoot 
survival 

Infertile shoots 
per plant 

Shoot 
abortion 

Tillering 
rate 

Tillering 
onset 

Tillering 
cessation 

Tillering 
duration 

Total shoots per plant 1 0.46** -0.76** 0.94** 0.76** 0.90** 0.23* -0.02 -0.21 

Fertile shoots per plant 0.80** 1 0.19 0.14 -0.19 0.33** 0.36** 0.24* -0.12 

Shoot survival 0.31** 0.80** 1 -0.92** -1.00** -0.76** 0.00 0.21 0.16 

Infertile shoots per plant 0.35** -0.28** -0.77** 1 0.92** 0.88** 0.12 -0.12 -0.19 

Shoot abortion -0.31** -0.80** -1.00** 0.77** 1 0.76** 0.00 -0.21 -0.16 

Tillering rate 0.64** 0.50** 0.15 0.25** -0.15 1 0.29* -0.23* -0.43** 

Tillering onset 0.22* 0.40** 0.43** -0.27** -0.43** 0.43** 1 0.26* -0.64** 

Tillering cessation 0.48** 0.66** 0.61** -0.26** -0.61** 0.01 0.25** 1 0.57** 

Tillering duration 0.26** 0.28** 0.21* -0.02 -0.21* -0.31** -0.54** 0.69** 1 

a Top right matrix: 2012 season; down left matrix: 2013 season.  

* Significant at P < 0.05, ** significant at P < 0.01. 

 

 

TABLE 2. Quantitative trait loci (QTL) for tillering, red:far red ratio (R:FR) and yield 

components in the Forno × Oberkulmer mapping population 

Trait/Chromosome Yeara Position (cM) LOD R2b Additive effectc Closest marker 

Tillering       

Total shoots per plant       

5A 2012 229.5 3.68 21.5 -0.7 Xpsr1201a-5A 

Fertile shoots per plant       

1A 2012 88.9 3.28 19.4 0.2 Xpsr1201b-1A 

4A 2012 30.2 3.13 18.6 0.2 Xpsr59a-4A 

 2012 219.2 3.56 20.9 -0.2 Xpsr115-4A 

5A 2013 209.9 5.85 21.7 -0.8 Xpsr918b-5A 

5B 2014C 0.1 3.42 13.3 -0.4 Xpsr945b-5B 

7B 2012 188.5 3.45 20.3 -0.2 Xmwg710a-7B 

Shoot survival (%)       

3A 2013 124.5 3.28 12.8 5.1 Xglk652a-3AL 

4A 2012 8.0 3.33 19.7 5.2 Xgwm397-4A 

5A 2012 230.8 2.99 17.9 4.6 Xpsr1201a-5A 

 2013 32.1 5.29 19.9 6.3 Xpsr644a-5A 

 2013 209.9 6.12 22.6 -6.4 Xpsr918b-5A 

Infertile shoots per plant       

5A 2012 231.8 3.62 21.2 -0.6 Xpsr1201a-5A 

 2013 37.1 5.49 20.5 -0.5 Xpsr945a-5A 

Shoot abortion (%)       

3A 2013 124.5 3.28 12.8 -5.1 Xglk652a-3AL 



4A 2012 8.0 3.33 19.7 -5.2 Xgwm397-4A 

5A 2012 230.8 2.99 17.9 -4.6 Xpsr1201a-5A 

 2013 32.1 5.29 19.9 -6.3 Xpsr644a-5A 

 2013 209.9 6.12 22.6 6.4 Xpsr918b-5A 

Tillering rate (tillers oCd-1)       

5A 2012 228.5 3.28 19.4 -0.0016 Xpsr1201a-5A 

Initial shoots per plant       

2D 2012 55.9 3.53 7.8 0.3 Xpsr335-2D 

3A 2012 119.5 4.78 10.4 -0.2 Xglk577-3AL 

3B 2012 38.9 3.51 7.8 0.1 Xglk538-3BS 

4A 2012 213.2 4.24 9.3 -0.2 Xpsr115-4A 

4B 2012 91.8 3.54 7.8 0.1 Xpsr584-4B 

5A 2012 35.1 5.88 12.7 -0.2 Xpsr945a-5A 

 2012 205.9 4.59 10.0 0.2 Xpsr1194-5A 

7AL 2012 27.9 3.18 7.1 -0.1 pwir232a-7AL 

7B 2012 91.7 2.84 6.3 0.1 Xpsr350-7B 

Time at tillering onset (oCd)       

7B 2013 75.6 3.24 12.7 -12 Xglk478-7BL 

Time at tillering cessation (oCd)       

3A 2013 89.4 3.29 12.9 14 Xglk645-3AL 

4B 2012 8.0 3.10 18.4 72 Xglk348a-4BS 

5A 2013 30.1 3.35 13.1 15 Xpsr644a-5A 

 2013 210.9 3.67 14.2 -15 Xpsr918b-5A 

R:FR       

R:FR at tillering onset       

5A 2013 211.9 3.37 13.2 -0.02 Xpsr918b-5A 

R:FR at GS31 (onset of stem elongation)      

5A 2013 31.1 3.59 13.9 0.02 Xpsr644a-5A 

Stabilised R:FR       

4A 2012 9.3 3.13 18.6 0.01 Xgwm397-4A 

5A 2012 225.5 4.46 25.5 0.02 Xpsr1201a-5A 

Time at the end of R:FR reduction (oCd)      

2A 2012 125.7 2.59 15.7 91 Xglk699b-2AL 

5A 2013 35.1 3.45 13.5 15 Xpsr945a-5A 

 2013 208.9 4.73 17.9 -16 Xpsr918b-5A 

Yield components       

Yield per plant (g)       

3A 2013 124.5 3.26 12.8 1.37 Xglk652a-3AL 

5A 2013 211.9 6.94 25.2 -1.76 Xpsr918b-5A 

5B 2014C 1.0 3.15 12.3 -0.80 Xpsr945b-5B 

Yield per shoot (g)       

2D 2014T 40.9 3.60 14.0 -0.22 Xpsr933b-2D 

4DL 2012 37.2 3.15 18.7 -0.15 Xgwm194-4DL 

5A 2013 63.3 3.38 13.2 0.10 Xglk424-5A 

5B 2012 136.4 3.30 19.5 -0.07 Xpsr370-5B 

Grains per plant       

3A 2013 125.5 3.08 12.1 32 Xglk652a-3AL 

4A 2014T 21.7 4.21 16.1 13 Xpsr59a-4A 

5A 2013 209.9 7.74 27.7 -46 Xpsr918b-5A 



5DL 2013 31.0 3.68 14.3 60 Xpsr906a-5DL 

7B 2014T 156.1 4.24 16.3 -12 Xpsr547-7B 

Grains per shoot       

2A 2014T 7.0 3.08 12.1 2 Xpsr566c-2A 

2D 2013 45.9 4.69 17.8 -6 Xpsr933b-2D 

 2014T 44.9 4.23 16.2 -5 Xpsr933b-2D 

3B 2013 8.1 3.72 14.4 -3 Lrk10c-3BS 

4A 2012 38.1 3.49 20.5 2 Xpsr914-4A 

 2013 152.3 3.61 14.0 6 Xglk354-4A 

 2014T 10.3 2.93 11.5 2 Xgwm397-4A 

5A 2013 64.4 4.53 17.3 3 Xglk424-5A 

 2013 213.5 5.10 19.2 -3 Xpsr918b-5A 

7B 2012 138.8 3.15 18.7 -3 Xpsr129c-7B 

 2013 128.8 3.09 12.1 -3 Xpsr593c-7B 

 2014T 165.4 3.85 14.9 -2 Xgwm111a-7B 

Thousand grain weight (g)       

1A 2012 80.1 3.57 20.9 -2.55 Xpsr1327b-1A 

2A 2012 94.9 3.47 20.4 -2.50 Xpsr919b-2A 

 2013 133.7 3.54 13.8 -2.00 Xglk699b-2AL 

 2014C 133.7 2.98 11.7 -2.01 Xglk699b-2AL 

 2014T 143.4 3.52 13.7 -1.60 PL_AP-2A 

3B 2012 80.5 4.73 26.8 2.97 Xpsr1054-3B 

 2013 2.9 3.44 13.4 1.60 C970a-3B 

 2013 80.5 5.11 19.3 1.91 Xpsr1054-3B 

 2014C 100.5 3.39 13.2 2.90 Xpsr1054-3B 

 2014T 78.3 3.02 11.9 1.62 Xpsr1054-3B 

4A 2012 20.7 7.17 37.6 -3.95 Xglk315-4AS 

 2013 31.2 4.76 18.1 -2.09 Xpsr59a-4A 

 2014C 32.2 4.10 15.8 -2.13 Xpsr59a-4A 

 2014T 34.2 7.93 28.2 -2.61 Xpsr914-4A 

5DL 2013 45.0 3.88 15.0 -3.17 Xpsr580a-5DL 

 2014C 58.0 5.54 20.7 -3.05 Xpsr580a-5DL 

 2014T 32.0 4.17 16.0 -3.62 Xpsr906a-5DL 

7B 2012 187.5 5.97 32.5 4.64 Xglk750-7BL 

 2013 187.5 3.24 12.7 2.24 Xglk750-7BL 

 2014T 189.5 3.15 12.4 2.27 Xmwg710a-7B 

Carpel dry weight at anthesis (mg)      

3B 2013 0.1 4.37 16.7 0.03 Xglk683-3BS 

4A 2012 27.2 3.46 20.4 -0.06 Xpsr59a-4A 

5A 2012 56.3 3.78 22.0 0.07 Xglk424-5A 

5DL 2013 67.8 4.29 16.4 -0.03 Xpsr580a-5DL 

Stem water soluble carbohydrate dry weight at anthesis (g)     

3DL 2012 23.0 3.49 20.5 0.069 Xpsr1203b-3DL 

4A 2012 27.2 4.88 27.5 -0.069 Xpsr59a-4A 

7B 2012 192.5 3.51 20.6 0.080 Xmwg710a-7B 

a 2012 and 2013: field experiments; 2014: glasshouse experiment (C, control; T, shading treatment). 
b The proportion of phenotypic variation explained by individual QTL.  
c Positive additive effects indicate that the alleles from Forno increase the values of the traits, whereas negative additive effects indicate that 

the alleles from Oberkulmer increase the values of the traits. 



TABLE 3. Correlations between tillering traits and red:far red ratio (R:FR) in the mapping 

population of Forno and Oberkulmer 

Tillering trait 
R:FRto

a R:FRtc R:FR31 R:FRs R:FRor R:FRer 

2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 

Total shoots per plant 0.12 0.33** -0.55** -0.34** -0.59** 0.11 -0.59** 0.08 -0.22 0.03 0.06 0.31** 

Fertile shoots per plant -0.04 0.43** -0.30** -0.22* -0.11 0.45** -0.24* 0.30** -0.12 -0.01 0.15 0.60** 

Shoot survival 0.08 0.38** 0.40** -0.05 0.59** 0.62** 0.50** 0.41** 0.16 -0.04 0.04 0.66** 

Infertile shoots per plant -0.10 -0.14 -0.50** -0.21* -0.62** -0.52** -0.56** -0.33** -0.19 0.06 0.01 -0.45** 

Shoot abortion -0.08 -0.38** -0.40** 0.05 -0.59** -0.62** -0.50** -0.41** -0.16 0.04 -0.04 -0.66** 

Tillering rate -0.13 -0.18 -0.47** 0.12 -0.57** 0.03 -0.51** 0.06 -0.17 -0.03 0.03 0.18 

Tillering onset 0.33** 0.10 -0.33** 0.02 0.18 0.25** 0.01 0.29** 0.09 0.04 0.21 0.37** 

Tillering cessation 0.34** 0.44** -0.30** -0.61** 0.32** 0.49** -0.04 0.30** 0.20 0.10 0.18 0.58** 

Tillering duration 0.15 0.31** -0.49** -0.55** 0.10 0.24* -0.04 0.04 0.08 0.06 -0.03 0.23* 

a Abbreviations of the traits: R:FRto, R:FR at tillering onset; R:FRtc, R:FR at tillering cessation; R:FR31, R:FR at GS31 (onset of stem 

elongation); R:FRs, stabilised R:FR; R:FRor, the time at the onset of R:FR reduction; R:FRer, the time at the end of R:FR reduction.  

* Significant at P < 0.05, ** significant at P < 0.01. 

 

TABLE 4. Thinning effects on tillering and red:far red ratio (R:FR) 

Trait 
Mean across five lines (n = 3) P-value (NS, not significant; *, P < 0.05; **, P < 0.01) 

Thinning effect (%) 
Control Thinning Treatment Line Treatment × line 

Total shoots per plant 7.2 9.4 ** NS NS + 31 

Fertile shoots per plant 3.0 4.4 ** NS NS + 47 

Shoot survival (%) 42.2 47.1 * * NS + 12 

Infertile shoots per plant 4.2 5.0 NS * NS NS 

Shoot abortion (%) 57.8 52.9 * * NS − 8 

Tillering rate (tillers oCd-1) 0.024 0.027 NS NS NS NS 

Tillering onset (oCd) 580 590 NS NS NS NS 

Tillering cessation (oCd) 789 838 ** NS NS + 6 

Tillering duration (oCd) 210 248 NS NS NS NS 

R:FR at tillering onset 0.71 0.83 ** * NS + 17 

R:FR at tillering cessation 0.25 0.20 NS NS NS NS 
Onset of stem elongation 
(oCd, GS31) 882 930 ** ** NS + 5 

R:FR at GS31 0.10 0.12 NS NS NS NS 

End of R:FR reduction 832 854 ** ** * + 3 

Stabilised R:FR 0.08 0.09 NS NS NS NS 

 

 

 

 

 

TABLE 5. Shading effects on fertile shoot number and other yield components 



Trait 
Mean across 112 lines (n = 3) P-value (NS, not significant; *, P < 0.05; **, P < 0.01) 

Shading effect (%) 
Control Shading Treatment Line Treatment × line 

Fertile shoots per plant 5.1 4.5 ** ** NS − 12 

Yield per plant (g) 7.60 5.23 ** ** NS − 31 

Yield per shoot (g) 1.47 1.21 ** ** NS − 18 

Grains per plant 162 111 ** ** NS − 31 

Grains per shoot 31 25 ** ** NS − 19 

Thousand grain weight (g) 47.4 47.8 NS ** NS NS 

 

TABLE 6. Correlations between tillering traits and yield components in the mapping 

population of Forno and Oberkulmer 

(A) Field 

Tillering trait Yield per plant Yield per shoot Grains per plant Grains per shoot Thousand grain weight 

Field 2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 

Total shoots per plant 0.31** 0.69** -0.07 -0.12 0.26* 0.67** -0.11 -0.01 0.01 -0.16 

Fertile shoots per plant 0.70** 0.94** -0.07 0.04 0.80** 0.93** 0.20 0.20* -0.28* -0.26** 

Shoot survival 0.15 0.81** 0.04 0.17 0.27* 0.82** 0.26* 0.33** -0.20 -0.27** 

Infertile shoots per plant 0.09 -0.36** -0.05 -0.25** -0.01 -0.39** -0.20 -0.33** 0.12 0.15 

Shoot abortion -0.15 -0.81** -0.04 -0.17 -0.27* -0.82** -0.26* -0.33** 0.20 0.27** 

Tillering rate 0.25* 0.44** -0.03 -0.06 0.20 0.41** -0.07 -0.02 0.01 -0.05 

Tillering onset 0.47** 0.37** 0.24* -0.04 0.41** 0.40** 0.23* 0.12 0.05 -0.24** 

Tillering cessation 0.31** 0.64** 0.19 0.08 0.21 0.64** 0.07 0.19* 0.16 -0.20* 

Tillering duration -0.15 0.28** -0.05 0.10 -0.19 0.25** -0.14 0.08 0.08 0.00 

(B) Glasshouse (2014) 

  Control Shading Control Shading Control Shading Control Shading Control Shading 

Fertile shoots per plant 0.71** 0.54** 0.11 -0.46** 0.76** 0.53** 0.22* -0.40** -0.16 -0.12 

* Significant at P < 0.05, ** significant at P < 0.01. 
 

TABLE 7. Correlations between carpel size and stem water soluble carbohydrates (WSC) at 

anthesis, thousand grain weight and fertile shoots per plant at maturity in the mapping 

population of Forno and Oberkulmer 

Trait 
Thousand grain weight Fertile shoots per plant 

2012 2013 2012 2013 

Carpel dry weight 0.46** 0.34** -0.31** -0.19* 

Stem WSC 0.55** 0.20* -0.52** -0.16 

* Significant at P < 0.05, ** significant at P < 0.01. 













15 487 Equation 

 

<eqn 1> 

S or R = A + 
C

1 + eିB(t ି M) 
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