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Atmospheric CO2 records indicate that the land surface has acted as a strong global carbon sink 

over recent decades1,2, with a substantial fraction of this sink likely located in the tropics3, 

particularly in the Amazon4. Nevertheless, it is unclear how the terrestrial carbon sink will evolve 

as climate and atmospheric composition continue to change. Here we analyse the historic evolution 

of the biomass dynamics of the Amazon rainforest over three decades using a distributed network 

of 321 plots. While this analysis confirms that the Amazon has acted as a long-term net biomass 

sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above 

ground biomass declined by a third during the last decade compared to the 1990s. This is a 

consequence of growth rate increases levelling off recently, while biomass mortality persistently 

increased throughout leading to a shortening of carbon residence times. Potential drivers for the 

mortality increase include a greater climate variability, and feedbacks of faster growth on 

mortality, resulting in shortened tree longevity5. The observed decline of the Amazon sink diverges 

markedly from the recent increase in terrestrial carbon uptake at the global scale1,2, and is 

contrary to expectations based on models6.  

 

The direction and magnitude of the response of the Earth’s land surface to increasing levels of 

atmospheric CO2 and a warming climate are important determinants of future atmospheric CO2 levels and 

thus greenhouse warming6,7. One of the largest vegetation carbon pools on Earth is the Amazon forest, 

storing ca. 150-200 Pg C in living biomass and soils8. Earlier studies based on forest inventories in the 

Amazon Basin showed the tropical forest here to be acting as a strong carbon sink with an estimated 

annual uptake of 0.42-0.65 Pg C yr-1 for 1990-2007, ca. 25% of the residual terrestrial carbon sink3,4. 

There is however substantial uncertainty as to how the Amazon forest will respond to future climatic and 

atmospheric composition changes. Some earlier modelling studies predicted a large-scale dieback of the 

Amazon rainforest9, while more recent studies predict a carbon sink well into the 21st century due to a 

CO2 fertilization effect6. The realism of such model predictions remains low due to uncertainty associated 

both with future climate and with vegetation responses6,7 in particular changes in forest dynamics5,10. 

Thus, ground-based observations of tropical forest responses are critical to examine what changes are 

actually occurring and what to expect in the future. Here, we analyse the longest and largest spatially 

distributed time-series of forest dynamics for tropical South America.  

 

Our analysis is based on 321 inventory plots lacking signs of recent anthropogenic impacts within the 

RAINFOR network4. The sites are distributed throughout the Amazon basin and cover all major forest 

types, soils and climates (Extended Data Fig. 1, Extended Data Table 1). For each plot (mean size 1.2 

hectare) all trees with stem diameter greater than 100 mm were identified, and allometric equations 

applied to convert tree diameter, height and wood density to woody biomass or carbon8. Net biomass 

change was estimated for each census interval as the difference between standing biomass at the end and 

the beginning of the interval divided by the census length. We also derived forest woody productivity 

(hereafter “productivity”) from the sum of biomass growth of surviving trees and trees that recruited (i.e., 

reached a diameter > 100 mm), and mortality from the biomass of trees that died between censuses, 

allowing for census-interval effects (see Methods Section online). Plots were measured on average 5 
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times and the mean measurement period was 3 years. We show trends since 1983, the first year with 

measurements for 25 plots, up to mid-2011.  

 

Our data show that forests continued to act as a biomass sink from 1983 to 2011.5, but also reveal a long-

term decline in the net rate of biomass increase throughout the census period (Fig. 1a). The decline in net 

biomass change is due to a strong long-term increase in mortality rates (Fig. 1c), and occurred despite a 

long-term increase in productivity (Fig. 1b). While mortality increased throughout the period, 

productivity increases have recently stalled showing no significant trend since 2000 (Extended Data Fig. 

3). These time trends are based on a varying set of plots over time (Extended Data Fig. 4), but this site-

switching does not alter the results (see Methods Section Online). The observed trends also emerge from 

a separate plot-by-plot analysis (Fig. 2), with increases in mortality exceeding productivity gains by 

approximately two to one. Trends are rarely significant at the individual plot level due to the stochastic 

nature of local forest dynamics, but the mean slopes of net change, productivity and mortality all differ 

significantly from zero. Changes in forest dynamics were not geographically limited to a particular area, 

but occurred throughout the lowland South American tropics (Fig. 2). Whilst rates of change vary 

depending on the precise plot set, time window and analytical approach used, the trends remain robust 

(cf. Figs. 1 and 2, Extended Data Fig. 3).   

 

Artefactual explanations have been offered to explain trends in biomass dynamics from plot 

measurements11,12. Principally, it has been suggested that previously reported net biomass increases4 

could be driven by recovery of forests from local disturbances11. However, contrary to observations from 

recovering neotropical forests13 and successional studies14, the plots have collectively experienced 

increased biomass growth (Fig. 1), accelerated stem recruitment and death (Extended Data Fig. 6), and 

show no net change in wood density or stem numbers (cf. Fig. 3b,c). It is thus unlikely that the overall 

patterns would be driven by simultaneous recovery from disturbances. Alternatively, increases in 

mortality have been proposed to arise due to biased selection of plots in mature forest patches, which 

over time accumulate disturbances12. This explanation is contrary to the observation that forests and trees 

have continued to get bigger (Extended Data Fig. 5a). In addition, if this were driving the network-wide 

pattern, then the observed trends should disappear if data are reanalysed using only the first interval of 

each plot, but instead they persist. In sum, the data suggest that trends are unlikely due to artefactual 

explanations of forests recovering from disturbances or selection of mature forest patches (see Methods 

Section online for a more complete exploration of these potential biases). 

 

What then could be driving the observed long-term changes?  The levelling off of productivity in the 

most recent decade (Fig. 1b, Extended Data Fig. 3f) could be due either to a relaxation of the growth 

stimulus itself, or to the onset of a counteracting factor depressing growth rates. The recent demonstration 

of Amazon-wide carbon sink suppression during a drought year15 indicates one possible driver. Tropical 

drought is also often associated with higher temperatures, which may further contribute to reducing 

productivity16 and carbon uptake17. The last decade in Amazonia has seen several droughts18 and 

warming19, which coincide closely with the stalling productivity across Amazon forests.  
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The increased rate of biomass mortality is driven by an increasing number of trees dying per year 

(Extended Data Fig. 6c), rather than an increase in the size of the dying trees (Extended Data Fig. 5c). 

Several mechanisms may explain this increase in loss of biomass due to tree mortality, with recent 

climate events being an obvious candidate. The plot data clearly show short-term peaks in the size of 

dying trees during the anomalously dry years 2005 and 2010 (Extended data figure 5c). These are 

consistent with results from rainfall exclusion experiments in Amazonia20,21 and observations4 showing 

that large tropical trees are vulnerable to drought stress20. However, our data lack the signature expected 

if drought were the dominant driver of the increasing loss of biomass due to mortality in Amazonia. That 

is, there has been no long-term change in the size of dead trees (Extended data figure 5c), living trees 

have continued to get bigger (Extended data Fig. 5a), and the increase in stem mortality predates the 

drought of 2005 (Extended Data Fig. 6c).  

Alternatively, the increased productivity may have accelerated tree life-cycles so that they now die 

younger. Large stature is associated with size-related hydraulic22 and mechanical failure23, reproductive 

costs24, and photosynthetic decline22. Faster growth exposes trees to these size-related risks earlier, as 

evidenced by tree ring data showing that faster growth shortens lifespans25,26, and by experimental data 

showing early onset of reproduction under elevated CO2
27.  The observed long-term acceleration in stem 

mortality rates and the plot-level association between productivity and the strength of the increase in 

biomass loss due to mortality (Extended Data Fig. 8b) are consistent with such a mechanism. While 

demographic feedbacks are not explicitly included in dynamic global vegetation models10, our results 

suggest that they could in fact influence the capacity of forests to gain biomass28,29, with transient rates of 

ecosystem net carbon accumulation highly sensitive to even small changes in carbon turnover times10.  

 

Finally, we put our results in a global perspective. According to global records the land carbon sink has 

increased since the mid-1990s1,2. While tropical land contributed significantly to this global sink during 

the 1980s and 1990s, our results show that the total net carbon sink into intact Amazon live biomass then 

decreased by 30% from 0.54 (CI; 0.45-0.63) Pg C yr-1 in the 1990s to 0.38 (CI; 0.22-0.50) Pg C yr-1 in the 

2000s (see Methods Section online). If our findings for the Amazon are representative for other tropical 

forests, and if below-ground pools have responded in the same way as above-ground biomass, then an 

apparent divergence emerges between a strengthening global terrestrial sink on one hand1,2 and a 

weakening tropical sink on the other. From an atmospheric perspective however, we also note that some 

of the effects of the Amazon changes are yet to be observed, as little of the carbon resulting from 

increased mortality is immediately released into the atmosphere30. Rather, dead trees decay slowly, with a 

fraction also moving into a long-term soil carbon pool. The Amazon forest sink has therefore become 

increasingly skewed towards gains in the necromass pools. Based on the observed long-term increase in 

mortality rates, we estimate that the atmosphere has yet to see ≈3.8 Pg of the Amazon necromass carbon 

produced since 1983 (see Methods Section online), representing a 30% increase in necromass stocks. The 

modelled increase in Amazon necromass is twice the magnitude of the cumulative decadal decline in the 

live biomass sink from the 1990s to the 2000s (i.e., from 5.5 to 3.9 Pg C).  
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In summary, we find that the Amazon biomass carbon sink has started to decline, due to recent levelling 

of productivity increases, combined with a sustained long-term increase in mortality. This behaviour is at 

odds with expectations from models of a continually strong tropical biomass sink6, and underlines how 

difficult it remains to predict the role of land-vegetation feedbacks in modulating global climate 

change7,10. Investment in consistent, coordinated long-term monitoring on the ground is fundamental to 

elucidate the trajectory of the planet’s most productive and diverse biome. 

 

Methods summary 

Rates of change in net above-ground biomass, productivity and mortality were analysed in two principal 

ways. The first method calculated the average rate of change across the full set of plots for each month 

since 1983. Estimates of the long-term trends were performed by regressing the mid-point of each census 

interval against the rate of change using General Additive Models and Linear Mixed Models. The second 

method examined averages of slopes of time trends for individual plots using linear regressions. We also 

calculated regional estimates of net biomass change during the 1990s and 2000s by scaling up net change 

to the total area of old-growth lowland South American moist forests and to carbon pools that were not 

directly measured (see Methods Section Online). 

 

Online content Additional methods and extended data display items and Source data are available in the 

online version of the paper at www.nature.com/nature. 
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Figure legends 

 

Figure 1. Trends in net above-ground biomass change, productivity and mortality across all sites. 

Black lines show the overall mean change 1983-2011 for 321 plots (or 274 units) weighted by plot size, 

and its bootstrapped confidence interval (shaded area). The red lines indicate the best model fit for the 

long-term trends using General Additive Mixed Models (GAMM) accounting explicitly for differences in 

dynamics between plots (red lines = overall mean, broken lines = standard error). Alternative analyses of 

unvarying subsets of plots that were continuously monitored over shorter time-intervals confirm that the 

observed trends are not driven by temporal changes in individual sample plot contributions (Extended 

Data Fig. 4). Estimated long-term (linear) mean slopes and significance levels are indicated, and are 

robust with regard to the statistical approach applied (i.e, parametric or non-parametric, see Methods 

Section online). Shading corresponds to the number of plots that are included in the calculation of the 

mean, varying from 25 plots in 1983 (light grey) to a maximum of 204 plots in 2003 (dark grey). The 

uncertainty and variation is greater in the early part of the record due to relatively low sample size (see 

Extended Data Fig. 5) 

 

Figure 2. Annual change in net above-ground biomass change, productivity and mortality for 

individual sites. The lines in the left panels show the long-term rate of change for 117 plots (or 87 units), 

estimated using linear regressions weighted by census-interval length and for display purposes centred 

around zero. This analysis includes only plots that were monitored for at least 10 years and contained 

three or more census intervals with at least one in the 1990s and one in 2000s. Red lines indicate long-

term trends that negatively impact biomass stocks (e.g., decreasing net change, increasing losses) and 

green lines indicate trends that positively affect biomass stocks (e.g., increasing productivity). Bold black 

lines indicate the mean slope across all plots and CI (2.5-97.5 percentiles). Insets on the left panels show 

the frequency distribution of the slopes, with the mean slope and p-value for t-test of difference from no 

slope. The maps show the location of the sites, and colour and arrow length indicate the sign and 

magnitude of the slope, with adjacent plots joined into a single site for display purposes.  

 

Figure 3. Relationships between annual net change in biomass of individual plots and their annual 

change in (a) basal area, (b) stem numbers per hectare, and (c) wood density. The mean values of the 

rates of changes are given in each panel along with the R-squared of the relationship with annual net 

biomass change. Number of plots included is 234 (i.e., those with data on change in basal area, stem 

numbers and wood density).  

 

Extended Data Figure 1. Map showing locations of plots included in this study. The three-letter codes 

refer to plot codes (see Extended Data Table 1). Adjacent plots (<50 km apart) are shown as one for 

display purposes. Size of the dots corresponds to the relative sampling effort at that location which is 

calculated as the square root of plot size times census length. The grey area shows the cover of all open 

and closed, evergreen and deciduous forests for tropical South America, according to Global Land Cover 

map 2000.  
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Extended Data Figure 2. Scatterplot of mid-interval date against (a) net AGB change (b) AGB 

productivity and (c) AGB loss due to mortality for all data points and plots used in this analysis. Points 

indicate the mid-census interval date, while horizontal error-bars indicate the start and end date for each 

census-interval. To illustrate variation in net AGB change over time within individual plots, examples of 

time series for three individual plots are show as lines.  

 

Extended Data Figure 3. Time trends of subsets of net above-ground biomass change, above-ground 

woody productivity and mortality rates for plots that were continuously monitored for the periods 1990-

2011, 1995-2011 and 2000-2011 (top panels). Locations for the set of plots included in the analysis for 

the different periods are show in the maps in lower panels. Sample sizes (n), slopes of the long-term 

linear trends (sl) and p-levels (p) are shown in top panels. 

 

Extended Data Figure 4. Mean number of plots (red lines), mean interval census length (black lines) 

and mean area (blue lines) of all plots. Note that the increased sampling in 2002 to 2004 is largely due to 

the short-term addition of 72 plots from one site (Ducke, north of Manaus), but this has no discernible 

effect on averaged biomass dynamics (cf. Fig. 1). 

 

Extended data Figure 5. (a) Mean net biomass change on a per live stem basis (i.e., net biomass change/ 

stem), (b) mean growth gains per live tree (i.e., mean biomass accumulation of individual trees), and (c) 

mean mortality losses per dying tree (i.e., the mean biomass of dying trees). Analyses are based on 234 

plots, excluding published studies without available stem-by-stem data. 

 

Extended Data Figure 6. Rates of change in number of stems plus annualized fluxes of stems bigger 

than 10 cm in diameter. (a) Mean net change in number of stems, and (b) number of recruits, and (b) and 

number of dying trees. Analyses are based on 234 plots, excluding published studies without available 

stem-by-stem data. 

 

Extended Data Figure 7. (a) Mean net basal area change, (b) mean basal area productivity, and (c) mean 

basal area mortality. Analyses are based on 234 plots, excluding published studies without available 

basal-area data. 

 

Extended Data Figure 8. Scatterplots of (a) the slope of AGB mortality of individual plots against the 

slope of AGB productivity of plots, (b) the slope of AGB loss due to mortality of individual plots against 

the mean AGB productivity of plots, and (c) the slope of AGB productivity of individual plots against the 

mean AGB loss due to mortality of plots. The set of plots used in this analysis (117 plots, 87 units) 

includes only those that had at least 10 years of data and at least three census intervals (i.e., same criteria 

as plots shown in Figure 2).  

 

Extended Data Figure 9.  Scatterplots of (a) net AGB change or (c) AGB loss due to mortality of 
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individual plots against the total monitoring length of plots, and (b) the slope of net AGB change or (d) 

slope of AGB mortality of individual plots against the total monitoring length of plots. None of the 

relationships are significant (p>0.05). Note that the plots (117 plots, 87 units) used in the panels (b) and 

(d) are only those that had at least 10 years of data and at least three census intervals (i.e., same criteria as 

plots shown in Figure 2). 

 

Extended Data Figure 10. Modelled estimates of the effects of linearly increasing mortality on 

necromass stocks (top panel), and soil organic-matter stocks (middle panel). The final panel shows the 

estimated fluxes of carbon from the forest to the atmosphere in three scenarios, (1) assuming constant 

mortality rate and a lag in decomposition of dead-tree biomass (green line), (2) assuming an increasing 

mortality rate similar to the observed trend (Fig. 1c) and a lag in decomposition as modelled (black line), 

and (3) with increasing mortality but with all dead-tree biomass instantly respired (red line).  
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