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Abstract
In this article we discuss some aspects of double field theory cosmology with an
emphasis on the role played by the dilaton. The cosmological solutions of double field
theory equations of motion after coupling a shifted dilaton to them are investigated.
The equations of motion for a constant shifted dilaton and a constant usual dilaton in
an FRW universe are obtained. The solutions of these equations are obtained in both
the supergravity frame and in the winding frame. We also consider three possible dark
energy candidates in a 4D universe using double field theory cosmology and find some
basic conditions which the three dark energy candidates should satisfy. We consider
the results for a more general potential of shifted dilaton as well.
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1 Introduction

Despite its great success, General Relativity (GR) faces several shortcomings when
applied to the universe. In particular, the concepts of dark matter and dark energy
must be introduced in order to provide an explanation for the large-scale dynamics
of the universe. Furthermore, in order to solve the horizon and the flatness problems,
new dynamics, such as inflation, involving additional degrees of freedom, which may
play an important role near the strong-coupling regime at which GR breaks down, are
required [1]. In order to make quantitative predictions concerning the early universe
a consistent quantum gravity theory needs to be developed.

At present, string theory appears to be the most promising candidate for quantum
gravity theory. It is presently being used to study cosmology in the low energy effective
supergravity (SUGRA) limit at weak coupling [2]. In GR, the only gravitational field
is the spacetime metric gμν . A Weyl transformation on the metric can be performed
to convert it from the string frame to the Einstein frame.

The T-duality plays an important role in string theory [3]. It states that the physics of
small compact spaces of radius R is equivalent to the physics of large compact spaces
of radius 1/R (in string units) [3]. For example, for strings on a torus of radius R, the
symmetry implies that the spectrum of string states is unchanged if R→ 1/R (in string
units) and string momentum modes are interchanged with string winding modes. T-
duality symmetry is assumed to be a fundamental symmetry of non-perturbative string
theory [4].

The fields of double field theory (DFT) are O(D, D) generalizations of spacetime
fields [5–9]. The equivalence of spacetimemomenta andwinding numbers in the string
spectra gives rise to a set of dual coordinates x̃i , conjugated to winding numbers [10].
These dual coordinates are treated on the same footing as the usual coordinates xi.
Then space–time dimension has changed from D to 2D. DFT is given (see, e.g., [11]
for a review) by an action for a generalized metric in 2D space-time dimensions which
is constructed from the metric, the antisymmetric tensor field and the dilaton (the
background ) of the massless sector of D space-time dimensional string theory. In
particular, after imposing a section condition the dynamical equations for the back-
ground reduce to those of super-gravity. T-duality is already present in supergravity
even in the absence of the O(D, D) covariant structure introduced in DFT. However,
T-duality is manifested as an O(D, D) symmetry in the action of DFT [10]. The full
set of coordinates in DFT can be denoted as XM (xi , x̃ i ), where xi(i � 1, 2, …, D)
is the usual spacetime coordinate, x̃ i the dual co-ordinate and M � 1, 2, …, 2D the
O(D, D) index. All of the spacetime component fields depend on both the usual and
the dual coordinates, i.e., φI � φI (xi , x̃ i ) [10].

Cosmology in double field theory is a relatively new research field which has been
investigated only recently and at present only a few papers are available on this topic.
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DFT equations ofmotion for cosmology has been studied in ref. [10] but in the absence
of sources of matter. The authors demonstrate that the contraction of the conjugated
space leads to both an inflation phase and a decelerated expansion of the ordinary
space during different evolution stages [10]. Sources of matter have been included in
the general equations derived in ref. [12]. Furthermore, refs. [3] and [13] considered
the T-dual cosmological solutions. In ref. [14], Robert Brandenberger et al. made use of
the T-duality symmetry of superstring theory and of the double geometry from double
field theory and postulated that the cosmological singularities of a homogeneous and
isotropic universe would disappear. Furthermore, Peng Wang et al. considered the
effect of non-singular cosmology via α

′
corrections [15]. In addition, in refs. [16, 17],

the same authors considered the O(D, D) duality string cosmology to all orders α′.
Further details are not listed here since these papers are not directly related to this
article.

In the present article,wediscuss some aspects of double field theory cosmologywith
an emphasis on the role played by the dilaton. The cosmological solutions from double
field theory equations of motion after coupling a shifted dilaton to them are discussed
in both a supergravity frame and a winding frame. In section 2 double field theory
and dual cosmology are brie y reviewed. In section 3 the equations of motion (EQM)
coupling a shifted dilaton in an FRW metric are obtained. In section 4 the solutions
of the EQM for a constant shifted dilaton in an FRW universe are considered. In
section 5 the solutions for a constant usual diffeomorphic dilaton in an FRW universe
are considered. In section 6 we consider three dark energy candidates in 4D DFT
cosmology. In section 7 we analyze a more general potential of shifted dilaton. In
section 8 conclusions and a discussion of future work are presented.

We adopt the following notations: capital letters M,N ,… represent indices which
encompass both regular and dual spacetime dimensions; small letters i, j,… denote
indices which encompass regular D � d + 1 spacetime dimensions. a(t) is the cosmo-
logical scale factor, where t is the physical time whilst the dual time is denoted by t̃ .
The ω � p/ρ is the equation of state, where p and ρ are pressure and energy density,
respectively.

2 Short review of double field theory and dual cosmology

2.1 Double field theory

Current research has primarily been focused on the massless sector of closed string
spectra [10]. The DFT action includes a D dimensional metric gij, the anti-symmetric
Kalb–Ramond field bij and the dilaton field φ. The action rewrites these fields in an
O(D, D) covariant way, where D is the dimensionality of space-time. If the fields
were only dependent on the usual coordinates, the DFT action could be reduced to a
supergravity action [3]. The DFT action is given by [3]

S �
∫

dxdx̃e−2d R, (1)
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where d contains the usual dilaton φ and the determinant of the metric g, i.e.

e−2d �
√

−ge−2φ, (2)

and [10]

(3)

R � 1

8
HMN ∂MHKL∂N HKL − 1

2
HMN ∂N HKL∂L HMK

− ∂Md∂N HMN + 4HMN ∂Md∂Nd,

where the generalized metric, HMN , is defined as

HMN � gij − gikbkj
bikgk j gi j − bikgklbl j

(4)

The level matching condition in closed string theory imposes the weak constraint
∂∂̃φ(x, x̃) � 0 for any field φ(x, x̃). To ensure that the action is locally equivalent
to the low energy effective string action, the following so-called strong constraint is
required: ∂∂̃ � 0 as an operator equation, acting on any products of the fields [10].

2.2 Dual cosmology

In this article, we will set the Kalb-Ramond field bij � 0 and adopt the following FRW
like metric:

dS2 � −dt2 − dt̃2 + a2(t, t̃)dx2 + ã2(t, t̃)dx̃2, (5)

where ã � a−1 [13].
The vacuum equations of motion for DFT in the presence of a dual time associated

with the winding sector are given by [10]

4d ′′ − 4d ′2 − (D − 1)H̃2 + 4d̈ − 4ḋ2 − (D − 1)H2 � 0, (6)

(D − 1)H̃2 − 2d ′′ − (D − 1)H2 + 2d̈ � 0, (7)

H̃ ′ − 2H̃d ′ + Ḣ − 2Hḋ � 0 (8)

where a prime denotes a derivative with respect tot̃ , and a dot denotes a derivative
with respect to t. Noting that 2d � 2φ − (D − 1) ln a defines the shifted dilaton and
H̃ � a′/a, by variation of action (1) with respect to d, we can obtain the equation
(6) for a shifted dilaton and by variation of action (1) with respect to the generalized
metric HMN , we can obtain eqs.(7) and (8) for a graviton.
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In ref. [12], the authors proposed the following cosmological equations in the pres-
ence of matter by the following prescription:

4d ′′ − 4d ′2 − (D − 1)H̃2 + 4d̈ − 4ḋ2 − (D − 1)H2 � 0, (9)

(D − 1)H̃2 − 2d ′′ − (D − 1)H2 + 2d̈ � 1

2
e2d E(t, t̃), (10)

H̃ ′ − 2H̃d ′ + Ḣ − 2Hḋ � 1

2
e2d P(t, t̃), (11)

where E and P are the energy and pressure associated with the matter sector.
In the following, we will consider the stabilized dilaton φ � φ0. In this case we

have
2ḋ � −(D − 1)H and 2d ′ � (D − 1)H̃ , and eqs. (9) − (11) become

2(H̃ ′ − Ḣ ) − D(H̃2 + H2) � 0, (12)

(H̃2 − H2)(H̃ ′ + Ḣ ) � 1

2(D − 1)
Gρ(t, t̃), (13)

(H̃ ′ + Ḣ ) + (D − 1)(H2 − H̃2) � 1

2
Gp(t, t̃), (14)

where G depends on φ � φ0 which is the fixed value of a dilaton [3].
The mass spectrum of a closed string in one dimensional space, compactified on a

circle, is given by [3]

M2 � (N + Ñ − 2) + p2
I 2s
R2 + ω2 I 2s

R̃2
, (15)

where N ,Ñ are the oscillaratory modes of the string, p denotes the momentum modes
which associated with the center of mass, andω denotes the windingmodes which rep-
resent the number of times the string has wrapped itself around the compact dimension
in a topologically nontrivial way [3]. Taking the limit of large R all physical quantities
depend solely on t which identifies the so-called supergravity frame. Taking the limit
of small R, all physical quantities depend solely on t̃ , which identifies the so-called
winding frame [3].

3 The equations of motion coupling a shifted dilaton in an FRW like
universe

Following ref. [18], we will add a dilaton potential V (d) into the action (1), so that

S �
∫

dxdx̃e−2d{R − 2V (d)} + Sm, (16)
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where Sm is the action of the matter sector. The manner of introducing matter is
described in Appendix. The reason for considering the effect of a dilaton in double
field theory cosmology is that, in standard string cosmology, a dilaton is often regarded
as quintessence (such as ref. [18]), which can be used to explain the origin of inflation
and the accelerating expansion of the universe. In this article, wewill consider whether
a shifted dilaton can be used to account for the real physical phenomena.

In order to avoid the singularity, we introduce a dilaton potential

V (d) � V0e
8d , (17)

where V0 > 0 [10]. It is known that non-singular solutions can be obtained at low
cur- vatures in the presence of an approriate non-local effective potential [19]. This
non-local potential represents the back reactions of higher loop corrections [19]. V0
includes a proper volume which makes the dilaton potential a scalar under generalized
diffeomorphisms. This potential guarantees the O(D, D) symmetry [10]. In fact, V0
cannot be negative. We should point out two points. Firstly, V0 is a volume [14, 19]
which cannot be zero. Moreover, in ref. [19], the Hubble parameter t−1 � eφ0

√
V0,

where φ0 is an integration constant. If V0 is negative, then the result is unphysical.
However, the prefactor of potential can be negative, i.e., the potential can be V (d) �
−V0e8d ,where V0 > 0. But in Sects. 3, 4, 5 and 6, we only consider potential Eq. (17),
which can be regarded as a particular example. In Sect. 7, we will consider a more
general potential V (d) � Aend , where A and n can be arbitrary real numbers.

By variation of the shifted dilaton d of action (17), we can obtain the equation of
motion of the shifted dilaton

4d ′′ − 4d ′2 − (D − 1)H̃2 + 4d̈ − 4ḋ2 − (D − 1)H2 − 12V0e
6d � 0. (18)

By variation of the generalized metric HMN of action (17), the equations of motion
of graviton are the same as Eqs. (10) and (11) so that the complete list of the equations
of motion are:

4d ′′ − 4d ′2 − (D − 1)H̃2 + 4d̈ − 4ḋ2 − (D − 1)H2 − 12V0e
6d � 0, (19)

(D − 1)H̃2 − 2d ′′ − (D − 1)H2 + 2d̈ � 1

2
e2d E(t, t̃), (20)

H̃ ′ − 2H̃d ′ + Ḣ − 2Hḋ � 1

2
e2d P(t, t̃). (21)

In a supergravity frame, all physical quantities depend solely on physical time t:

4d̈ − 4ḋ2 − (D − 1)H2 − 12V0e
6d � 0, (22)

−(D − 1)H2 + 2d̈ � 1

2
e2d E(t), (23)
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Ḣ − 2Hḋ � 1

2
e2d P(t). (24)

In a winding frame, all physical quantities depend solely on dual time t̃ :

4d ′′ − 4d ′2 − (D − 1)H̃2 − 12V0e
6d � 0, (25)

(D − 1)H̃2 − 2d ′′ � 1

2
e2d E

(
t̃
)
, (26)

H̃ ′ − 2H̃d ′ � 1

2
e2d P

(
t̃
)
. (27)

In the following sections, we will consider the solutions of the above equations
for constant shifted dilaton d0 and a constant usual dilaton φ0 in both a supergravity
frame as well as in a winding frame.

4 Solutions of the equations of motion for a constant shifted dilaton
in an FRW like universe

In this section, we will obtain the solutions of the equations of motion for a constant
dilaton.

For a constant shifted dilaton d in a supergravity frame, i.e., ḋ � 0, d � d0,
equations of motion become then the

−(D − 1)H2 − 12V0e
6d0 � 0, (28)

−(D − 1)H2 � 1

2
e2d0E(t), (29)

Ḣ � 1

2
e2d0 P(t). (30)

From Eq. (28), we obtain

H �
r___________−12V0

D − 1
e3d0 , (31)

when V0 > 0, H is a complex number, therefore there is no physical solution.
In a similar manner to that presented above, we can obtain the corresponding solu-

tions in a winding frame:

H̃ �
r___________−12V0

D − 1
e3d0 , (32)

which is also a complex number as in the supergravity frame, therefore the solution is
unphysical.
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5 Solutions of the equations of motion for a constant usual dilaton
in an FRW like universe

In this section, we brie y consider the T-dual solutions in both a supergravity frame
and a winding frame firstly. Then we will consider the solutions of the equations of
motion for a constant usual dilaton φ in both a supergravity frame and in a winding
frame.

For constant φ � φ0, considering T-dual solutions, then we have [13]:

2ḋ � α(D − 1)H , (33)

2d ′ � α̃(D − 1)H̃ , (34)

whereα and α̃ are both constants. In particular, for (α, α̃) � (−1, 1)we have a constant
usual dilaton in the supergravity frame and a non-constant usual dilaton in the winding
frame; for (α, α̃) � (−1, 1) we have a constant usual dilaton in the winding frame
and nonconstant usual dilaton in the supergravity frame. The case of (α, α̃) � (−1, 1)
corre- sponds to having a constant usual dilaton in both frames [13].

5.1 Solutions in a supergravity frame

We obtain respective sets of equations for the supergravity frame and the winding
frame. In the supergravity frame, the equations of motion are:

2α(D − 1)Ḣ−−H2(D − 1)
[
α2(D − 1) + 1

]
− 12V0e

6d � 0, (35)

−(D − 1)H2 + α(D − 1)Ḣ � 1

2
e2d E(t), (36)

Ḣ − α(D − 1)H2 � 1

2
e2d P(t), (37)

therefore

H2 �
12V0e6d

[
ω 1

α(D−1)

]
[
1 − α2(D − 1)

][ 1
α
+ ω(D − 1)

] . (38)

Applying the section conditions, then for stabilized φ � φ0, 2ḋ � −(D −
1)H and 2d̈ � −(D − 1)Ḣ , then the Eq. (22) becomes

2(D − 1)Ḣ + (D − 1)2H2 + (D − 1)H2 + 12V0e
6d � 0, (39)

namely,

Ḣ � − 1

2(D − 1)
{H2[(D − 1)2 + (D − 1)] + 12V0e

6d}. (40)

123



Dilatonic effect in double field theory cosmology Page 9 of 18    18 

Inserting Eq. (40) into eqs. (23) and (24), we have

1

2
H2(D2 − 3D + 2) + 6Ve6d0 � 1

2
e2d E(t), (41)

1

2
H2(D − 2) − 6V0

(D − 1)
e6d � 1

2
e2d P(t). (42)

Combining eqs. (41) and (42), we obtain that

H2 � (D − 1)ω + 1

2(D − 1)(D − 2)
e2d E(t) � (D − 1)ω + 1

2(D − 1)(D − 2)
e2φ0a−(D−1)E(t), (43)

E(t) � 24V0
1 − ω(D − 1)

e4φ0a−2(D−1), (44)

where ω is the equation of state. From Eq. (43), it is apparent D cannot be 1 and 2
unless ω � − 1

D−1

When ω � 1
D−1 , V (d) � 0, and

H2 � 1

(D − 1)(D − 2)
e2φ0a−(D−1)E(t), (45)

which corresponds to the case with no dilaton potential [3].
In particular, for D � 4, if ω � 1

D−1 � 1
3 , where radiation dominates the universe,

then.

H2 � 1

6
e2φ0a−3E(t). (46)

Moreover, if we assume ω is a constant, considering Eqs. (43) and (44), then we
obtain

a � 9

4
(D − 1)2

1

3(D − 1)

2

t3(D − 1)
(47)

where we have set integration constant to be zero. Then

ȧ � 9

4
(D − 1)2

1

3(D − 1)

2

3(D − 1)

5 − 3D

t3(D − 1)
(48)

H � ȧ

a
� 2

3(D − 1)
t−1, (49)

ä � 9

4
(D − 1)2

1

3(D − 1)

10 − 6D

9(D − 1)2
8 − 6D

t3(D − 1)
(50)

In order to account for the accelerating expansion of the universe, a¨ must be larger
than 0. However, this is impossible for D �� 1.
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5.2 Solutions in a winding frame

Similarly, in the winding frame, the equations of motion are:

2α̃(D − 1)H̃ ′ − H̃2(D − 1)[α̃2(D − 1) + 1] − 12V0e
6d � 0, (51)

(D − 1)H̃2 − α̃(D − 1)H̃ ′ � 1

2
e2d E

(
t̃
)
, (52)

H̃ ′ − α̃(D − 1)H̃2 � 1

2
e2d P

(
t̃
)
, (53)

therefore

H̃2 �
12V0e6d

[
ω + 1

α̃(D−1)

]
[
1 − α̃2(D − 1)

][
ω(D − 1) − 1

α̃

] . (54)

For stabilized φ � φ0, 2d � 2φ0 − (D − 1) ln a and 2d ′ � (D − 1)H̃ , we obtain

H̃2 � [(D − 1)ω + 1]

2(2 − D)(D − 1)
e2d E(t̃) � [(D − 1)ω + 1]

2(2 − D)(D − 1)
e2φ0a−(D−1)E(t̃), (55)

E
(
t̃
) � 24V0

1 − ω(D − 1)
e4φ0a−2(D−1), (56)

where ω is the equation of state. From Eq. (55), it is apparent D cannot be 1 and 2
unless ω � − 1

D−1 .

When ω � 1
D−1 , V (d) � 0, then

H̃2 � − 1

(D − 2)(D − 1)
e2d E(t̃) � − 1

(D − 2)(D − 1)
e2φ0a−(D−1)E(t̃), (57)

which is the case without a dilaton potential [3]. In particular, for D � 4, if ω �
1/3, then

H2 � −1

6
e2φ0a−3E(t). (58)

Moreover, if we assume ω is a constant, considering eqs. (56) and (57), then we
obtain

a � 9

4(D − 1)2
1

3(D − 1)

2

t̃3(D − 1)
, (59)

where we have set integration constant to be zero. Then

a′ � 9

4(D − 1)2
1

3(D − 1)

2

3(D − 1)

5 − 3D

t̃3(D − 1)
, (60)
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H � a′

a
� 2

3(D − 1)
t̃−1, (61)

a′′ � 9

4(D − 1)2
1

3(D − 1)

10 − 6D

9(D − 1)

8 − 6D

2t̃3(D − 1)
, (62)

6 Candidates for dark energy

Since V0 > 0, in order to ensure that a is real, according to (48), we must require

1
D−1 + ω

(D − 2)[1 − ω(D − 1)]
> 0. (63)

From Eq. (63), we obtain two critical dimensions. One is D � 2, and the other one
is

D � 1 + 1. Therefore, for critical dimensions, ω � 1
n , where n denotes positive

integers.
From Eq. (63), we can obtain the constraints for ω to be

− 1

D − 1
< ω <

1

D − 1
(64)

Therefore, for the real universe, i.e., D � 4 the constraints on ω are, −1/3 < ω <
1/3. Based on ref. [20], we know that for any general spacetime dimension D, tensile
matter has the equation of state

p � ωρ. (65)

In order to explain the origin of the accelerating expansion of the universe [20]

−1 < ω < −
(
D − 3

D − 1

)
, (66)

namely,−1 <ω <−1/3.We therefore conclude that this model with a constant usual φ
� φ0 cannot be used as an explanation for the accelerating expansion of the universe.
We will now consider three possible dark energy candidates in D � 4 double field
theory cosmology.

Firstly, for a holographic dark energy scenario ρD � 3c2m2
ρ/L2, where c is a

dimensionless parameter (usually we take c > 0), m2
ρ is Planck mass and L � ar(t) �

Rh, where Rh is the radial size of the horizon [21]. If an interaction between matter
and holographic dark energy exists, i.e.

ρ̇D + 3HρD(1 + ωD) � −Q (67)
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ρ̇m + 3Hρm � Q (68)

where Q � 3b2H(ρm + ρD), b2 is a coupling parameter and ρm and ρD are the energy
densities of matter and dark energy respectively [22] then

ωD � −1

3
− 2

√
�D

3c
− b2

�D
, (69)

where ωD is the equation of state of dark energy, c is a dimensionless parameter and
�D is the fractional energy density which is de ned as:

�D � ρD

ρcr
, (70)

where ρcr � 3m2H2
ρ . Therefore ωD < − 1

3 when c > 0. Considering Eq. (64), so that
in view of Eq. (64) a holographic dark energy scenario cannot exist in D � 4 DFT
cosmology. Secondly, for a ghost dark energy scenario, ρD � αH , where α denotes
a constant of order 	3

QCD and QCD represents the QCD mass scale and H is the
Hubble constant. Taking the same interaction Q between matter and dark energy as in
Eqs. (67) and (68), we have [23]

ωD � − 1

2 − �D

(
1 +

2b2

�D

)
, (71)

therefore

1
−3 + ωD

1 − 3ωD
� − 1 + �D + 6b2

�D

3
(
5 − �D + 6b2

�D

) < 0, (72)

since 0 < �D < 1. According to Eq. (48), AD is a complex number so that in view of
Eq. (64), the ghost dark energy scenario cannot exist in D � 4 DFT cosmology.

Thirdly, for a Tsallis holographic dark energy scenario ρD � BH−2δ+4, where B
is an unknown parameter and δ represents the non-additivity parameter [24]. Taking
the same interaction Q between matter and dark energy as in Eqs. (67) and (68), we
have [25]:

ωD � δ − 1 + b2/�D

(2 − δ)�D−1 . (73)

Considering Eq. (63), if Tsallis holographic energy can exist in D � 4 double field
theory scosmology of the universe, then the parameters must satisfy the inequalities:

(2 − δ)�2
D + (3δ − 4)�D + 3b2 > 0, (74)

(2 − δ)�2
D + (−3δ + 2)�D + 3b2 > 0, (75)
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or

(2 − δ)�2
D + (3δ − 4)�D + 3b2 < 0, (76)

(2 − δ)�2
D + (−3δ + 2)�D + 3b2 < 0. (77)

7 Analysis of a more general potential

In this section, we will analyze a more general potential V (d) � Aend , where A and n
are arbitrary real numbers. We will see how the results in sections 3, 4 and 5 change.

7.1 Case 1: A > 0

When A > 0, the potential can be written as V (d) � V0end , where V0 > 0. In a
supergravity frame, the equations of motion are:

4d̈ − 4ḋ2 − (D − 1)H2 − 2(n − 2)V0e
(n−2)d � 0, (78)

−(D − 1)H2 + 2d̈ � 1

2
e2d E(t), (79)

Ḣ − 2Hḋ � 1

2
e2d P(t). (80)

In a winding frame, the equations of motion are:

4d ′′ − 4d ′2 − (D − 1)H̃2 − 2(n − 2)V0e
(n−2)d � 0, (81)

(D − 1)H̃2 − 2d ′′ � 1

2
e2d E

(
t̃
)
, (82)

H̃ ′ − 2H̃d ′ � 1

2
e2d P

(
t̃
)
. (83)

7.1.1 Solutions for a constant shifted dilaton

In a supergravity frame, a constant shifted dilaton means d˙ � 0 and d � d0. Then
according to Eqs. (78)–(80), we obtain 3 cases: if n < 2, then

H �
S______________________________

−2(n − 2)V0e(n−2)d0

D − 1
,

E � 4(n − 2)V0e
(n−4)d0 , P � 0,

(84)
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which are physical solutions; if n � 2, then H � 0, E � 0 and P � 0; if n > 2, then
the solutions are unphysical.

In a winding frame, a constant shifted dilaton means d
′ � 0 and d � d0. Then

according to Eqs. (81)−(83), we obtain 3 cases as well: if n < 2, then

H̃ �
S______________________________

−2(n − 2)V0e(n−2)d0

D − 1
,

E � −4(n − 2)V0e
(n−4)d0 , P � 0,

(85)

which are physical solutions; if n � 2, then H � 0, E � 0 and P � 0; if n > 2, then
the solutions are unphysical.

7.1.2 Solutions for a constant usual dilaton

In a supergravity frame, a constant usual dilaton means φ � φ0, 2ḋ � −(D −
1)H and 2d̈ � −(D − 1)Ḣ . Then according to Eqs. (78) to (80), we have

H2 � 1 + ω(D − 1)

2(D − 1)(D − 2)
e2d E(t), (86)

and

E(t) � 4(n − 2)V0e(n−4)d

1 − ω(D − 1)
, P(t) � ωE(t). (87)

In a winding frame, a constant usual dilaton means φ � φ0, 2d ′ � (D −
1)H̃ and 2d ′′ � (D − 1)H̃ ′. Then according to Eqs. (81) to (83), we have

H̃2 � 1 + ω(D − 1)

2(D − 1)(D − 2)
e2d E(t̃), (88)

and

E
(
t̃
) � 4(n − 2)V0e(n−4)d

ω(D − 1)−1
, P

(
t̃
) � ωE

(
t̃
)
. (89)

7.2 Case 2: A < 0

When A < 0, we can rewrite the potential as V (d) � −V0end , where V0 > 0. In a
supergravity frame, the equations of motion are:

4d̈ − 4ḋ2 − (D − 1)H2 + 2(n − 2)V0e
(n−2)d � 0, (90)

−(D − 1)H2 + 2d̈ � 1

2
e2d E(t), (91)
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Ḣ − 2Hḋ � 1

2
e2d P(t). (92)

In a winding frame, the equations of motion are:

4d ′′ − 4d ′2 − (D − 1)H̃2 + 2(n − 2)V0e
(n−2)d � 0, (93)

(D − 1)H̃2 − 2d ′′ � 1

2
e2d E

(
t̃
)
, (94)

H̃ ′ − 2H̃d ′ � 1

2
e2d P

(
t̃
)
. (95)

7.2.1 Solutions for a constant shifted dilaton

In a supergravity frame, a constant shifted dilaton means d˙ � 0 and d � d0. Then
according to Eqs. (90)–(92), we obtain 3 cases: if n > 2, then

H �
S______________________________

2(n − 2)V0e(n−2)d0

D − 1
,

E � −4(n − 2)V0e
(n−4)d0 , P � 0,

(96)

which are physical solutions; if n � 2, then H � 0, E � 0 and P � 0; if n < 2, then
the solutions are unphysical.

In a winding frame, a constant shifted dilaton means d
′ � 0 and d � d0. Then

according to Eqs. (93)–(95), we obtain 3 cases as well: if n > 2, then

H̃ �
S______________________________

2(n − 2)V0e(n−2)d0

D − 1
,

E � 4(n − 2)V0e
(n−4)d0 , P � 0,

(97)

which are physical solutions; f n � 2, then H � 0, E � 0 and P � 0; if n < 2, then the
solutions are unphysical.

7.2.2 Solutions for a constant usual dilaton

In a supergravity frame, a constant usual dilaton means φ � φ0, 2ḋ � −(D −
1)H and 2d̈ � −(D − 1)Ḣ . Then according to Eqs. (90) to (92), we have

H2 � 1 + ω(D − 1)

2(D − 1)(D − 2)
e2d E(t), (98)
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and

E(t) � −4(n − 2)V0e(n−4)d

1 − ω(D − 1)
, P(t) � ωE(t). (99)

In a winding frame, a constant usual dilaton means φ � φ0, 2d ′ � (D −
1)H̃ and 2d ′′ � (D − 1)H̃ ′. Then according to Eqs. (93) to (95), we have

H̃2 � − 1 + ω(D − 1)

2(D − 1)(D − 2)
e2d E(t̃), (100)

and

E
(
t̃
) � −4(n − 2)V0e(n−4)d

ω(D − 1)−1
, P

(
t̃
) � ωE

(
t̃
)
. (101)

8 Conclusion and discussion

The T-duality plays an important role in string theory [3]. Due to the equivalence
of space- time momenta and winding numbers in the string spectra, a set of dual
coordinates x˜i, which is conjugated to winding numbers [10] has been introduced in
double field theory (DFT). These dual coordinates are treated on the same footing as
the usual coordinates xi. Therefore, the dimensionality of spacetime is from D to 2D
naturally.

Cosmology in double field theory is a relatively new research field which has
received attention only in the last few recent years. At present there are relatively
few papers dealing with this topic. The equations of motion for double field theory
cosmology have been studied in ref.[10] in the situation where sources of matter are
absent. Furthermore, the situation where sources of matter are present has have been
discussed in the general equations derived in ref.[12]. T-dual cosmological solutions
have also been dealt with in refs.[3, 13] and [27]. In this article, we have discussed
some aspects of double field theory cosmology with an emphasis on the role played by
the dilaton and have investigated the cosmological solutions from double field theory
equations of motion after coupling a shifted dilaton to them. In fact, many researches
have been done to study the properties of dilaton potential in classical supergravity and
double field theory to higher loop orders, such as refs.[28, 29]. However, the dilatonic
effect in DFT cosmology has not been discussed. In this acticle, we only consider the
effect to lowest order. The equations of motion coupling a shifted dilaton in an FRW
universe have been obtained in section 3. In section 4, we obtained the solutions of the
equations of motion for a constant shifted dilaton in both a supergravity frame and a
winding frame. For the potential we studied in section 4, the solutions are unphysical
in both supergravity frame and winding frame. In section 5, we brie y considered
the T- dual solutions in both frames and obtained the solutions of a constant usual
diffeomorphic dilaton φ0 in an FRW universe in both a supergravity frame and in a
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winding frame re- spectively. In section 6, we found the basic conditions for three
dark energy candidates in D � 4 DFT cosmology. In section 7, we analyzed a more
general potential V (d) � Aend , where A can be arbitrary real numbers. More general
results have been obtained.

A further line of study using string theory would be to use exceptional field theory
(ExFT) [11] ofwhichDouble field theory (DFT) is a subset. Both geometrization of the
p-form fluxes in 10-/11d supergravity and their unification with the metric of degrees
of freedomwould also be interesting lines for further research. DFT corresponds to the
NS− NS sector of 10D supergravity, whilst ExFT would also include the R− R sector
of 10D type II supergravity or would work for 11D supergravity. These theories are
sometimes referred to as being duality invariant: in this sense, DFT captures T-duality
and ExFT extends this to U-duality. There have been no studies so far of cosmology
using exceptional field theory as proposed above and in future work we therefore
intend to investigate the effects of ExFT cosmology.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
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is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
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A Appendix: A note concerning T-dualizingmatter

Matter is introduced in supergravity by the following action [3, 26]:

S �
∫

dDx
√

−ge−2φ f �
∫

dt
√−gtt F(loga, β

√−gtt , φ), (102)

where F is the free energy,

F �
∫

dD−1xaD−1e−2φ f . (103)

We can consider a T-dual covariant generalization of F by defining the following
action:

S �
∫

dDxdDx̃e−2φF, (104)

with F dependent on both sets of coordinates. Then we can write

S �
∫

dt

√
1

−gtt

{∫
dD−1 x̃dt̃ F

}
(105)
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or

S �
∫

dt̃

√
1

−gtt

{∫
dD−1 x̃dt̃ F

}
(106)

where F is also a function of both sets of coordinates.
Finally, the standard de nitions of the energy and pressure of the system are derived
as usual according to

E(t, t̃) � −2
δF

δg00
, (107)

Pi (t, t̃) � − δS

δlnai
. (108)

All data generated or analysed during this study are included in this published
article.
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