
MNRAS 511, 1609–1621 (2022) https://doi.org/10.1093/mnras/stac153 
Advance Access publication 2022 January 28 

Charting galactic accelerations – II. How to ‘learn’ accelerations in the 

solar neighbourhood 

A. P. Naik , 1 ‹ J. An , 2 C. Burrage 

1 and N. W. Evans 3 
1 School of Physics & Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK 

2 Center for Theoretical Astronomy, Korea Astronomy & Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055, South Korea 
3 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 

Accepted 2022 January 12. Received 2021 December 20; in original form 2021 October 14 

A B S T R A C T 

Gravitational acceleration fields can be deduced from the collisionless Boltzmann equation, once the distribution function is 
known. This can be constructed via the method of normalizing flows from data sets of the positions and velocities of stars. Here, 
we consider application of this technique to the solar neighbourhood. We construct mock data from a linear superposition of 
multiple ‘quasi-isothermal’ distribution functions, representing stellar populations in the equilibrium Milky Way disc. We show 

that given a mock data set comprising a million stars within 1 kpc of the Sun, the underlying acceleration field can be measured 

with excellent, sub-per cent level accuracy, even in the face of realistic errors and missing line-of-sight velocities. The effects of 
disequilibrium can lead to bias in the inferred acceleration field. This can be diagnosed by the presence of a phase space spiral, 
which can be extracted simply and cleanly from the learned distribution function. We carry out a comparison with two other 
popular methods of finding the local acceleration field (Jeans analysis and 1D distribution function fitting). We show our method 

most accurately measures accelerations from a given mock data set, particularly in the presence of disequilibria. 

Key words: methods: data analysis – Galaxy: fundamental parameters – Galaxy: kinematics and dynamics. 
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 I N T RO D U C T I O N  

iven a map of the gravitational acceleration field within a kiloparsec 
f the Sun, we could learn a wealth of information about the
urrent state of our Galaxy, the distribution of matter (both dark and
uminous) and the nature of gravity. F or e xample, if the acceleration
ue to the luminous component is known, then we can calculate 
he density distribution of dark matter, unco v ering an y substructures
nd measuring the ambient dark matter density in the Solar system.
his latter number is of great importance in particle physics, as

t is a key parameter in the interpretation of results of dark matter
irect detection experiments (Read 2014 ; de Salas & Widmark 2021 ). 
lternatively, we can use the direction of the acceleration vectors to 

onstrain alternative theories of gravity such as Modified Newtonian 
ynamics (Milgrom 1983 ) or similar. In these theories, there is no
ark matter, so the total acceleration is necessarily co-linear with the 
cceleration due to the baryons, even if the modifications to gravity 
lter its magnitude (Loebman et al. 2014 ). 

Unfortunately, direct acceleration measurements are challenging. 
ven so, promising steps have been recently taken in this direction 
mploying measurements of pulsar orbital decay, which give the 
elative acceleration of a few pulsar systems with respect to the 
olar system barycentre. These can then be converted into absolute 
ccelerations using a measurement of the Solar system acceleration, 
hus providing a small number of direct samples of the Galaxy’s 
cceleration field (Bovy 2020 ; Chakrabarti et al. 2021b ). In future,
 E-mail: aneesh.naik@nottingham.ac.uk 
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reater statistical power will be afforded by complementary accelera- 
ion measurements, such as those derived from binary eclipse timing 
Chakrabarti et al. 2021a ) and those from future high-precision radial
elocity spectrographs (Quercellini, Amendola & Balbi 2008 ; Ravi 
t al. 2019 ; Silverwood & Easther 2019 ; Chakrabarti et al. 2020 ). 

In the meantime, we must instead adopt an alternative approach: 
nferring accelerations (or equi v alently the gravitational potential) 
tatistically from the positions and velocities of the stars. If discrete
tellar encounters are neglected, then the stellar distribution function 
DF), i.e. the probability distribution of the stars in six-dimensional 
 x , � ) phase space, can be related to gravitational accelerations via
he collisionless Boltzmann equation (CBE), 

∂f 

∂t 
+ � · ∇ x f − ∇ � f · ∇ x � = 0 , (1) 

here f is the DF and � is the gravitational potential. 
It can be difficult to constrain the full DF with a statistically small

ata set, so it is often preferable to work with the second moments
f the DF, i.e. the velocity dispersions, which can be related to
he acceleration field via the Jeans equations (e.g. Hagen & Helmi
018 ; Sivertsson et al. 2018 ; Guo et al. 2020 ; Salomon et al. 2020 ).
hile velocity dispersions are comparatively easy to measure from 

inematic data, we lose much of the information content of the
ata compared with techniques working directly with the DF. For 
his reason, many studies have instead adopted the latter approach, 
ypically in one dimension (e.g. Schutz et al. 2018 ; Buch, Leung &
an 2019 ; Widmark 2019 ; Widmark & Monari 2019 ; Li & Widrow
021 ; Widmark, de Salas & Monari 2021a ). Note that either treatment
ecessitates the assumption of dynamical equilibrium, so that the 
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1 Technically, we also assume both f and f −1 are continuously differentiable; 
most practical applications are limited to such transformations. 
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ime-deri v ati ve term in equation (1) can be neglected. The re vie w
rticles by Read ( 2014 ) and de Salas & Widmark ( 2021 ) give good
 v erviews of how these methods work in practice. 
Despite the statistical advantages of the latter class of technique,

here are some limitations. Typical DF models are constructed under
 series of assumptions, such as separability , isothermality , and
arious spatial symmetries. In the era of ‘big data’, it is worth
xamining whether an alternative approach can do better justice
o the full richness of contemporary data sets and their statistical
ower. In An et al. ( 2021 , hereafter Paper I ), we outlined just such
 methodology. Inspired by an idea first proposed by Green & Ting
 2020 ), we described a technique in which a non-parametric DF can
e constructed directly from the data using modern deep learning
echniques. Such an approach is highly flexible; the resulting learned
F is untrammelled by the limitations of an analytical model, and

s instead free to capture the full richness of the training data. After
earning a DF in this manner, Paper I sho ws ho w to convert the DF
nto an acceleration map, via an e xact inv ersion of the CBE under
he assumption of equilibrium. 

In Paper I , we provided a basic demonstration of our technique
ith a mock data set representing a simple, spherical distribution of

tars. In this article, we provide demonstration of the same technique
n much more complex context: mock data on stellar kinematics in
he solar neighbourhood. The reason to confine ourselves to mock
ata for the moment is to gain insights into the biases and limitations
f the technique before we apply it to real data in a companion paper.
A major obstacle is that the assumption of dynamical equilibrium

s not necessarily a good one. Various non-equilibrium structures
av e been observ ed in kinematics of the Milky Way (MW) disc stars,
uch as warping of the disc (Sch ̈onrich & Dehnen 2018 ), north–south
symmetries (Salomon et al. 2020 ), and the well-known phase spiral
Antoja et al. 2018 ). Incorrectly assuming that a stellar population
s in equilibrium will lead to bias in resulting dynamical inferences
Banik, Widrow & Dodelson 2017 , Paper I ). To quantify this effect,
e additionally examine the application of our methodology to a
ock data set resembling a perturbed Galactic disc. 
This article is structured as follows. In the following section (Sec-

ion 2), we recapitulate the methodology described in Paper I
namely, our algorithm to reco v er acceleration fields from 6D

inematics. After that, in Section 3, we describe the mock data
ets we use to test this method. We generate stellar positions and
elocities from realistic models of the MW disc. We calculate
adial and vertical accelerations within ∼1 kpc of the Sun from a
ock data set in Section 4. Then, Section 5 compares the accuracy

f our measured accelerations against those produced using other
echniques, specifically the Jeans analysis method of Salomon et al.
 2020 ) and the 1D DF fitting method of Widmark et al. ( 2021a ).
inally, Section 6 provides a discussion and concluding remarks. 

 M E T H O D S  

he two steps in our method are as follows (see Paper I ): 

(i) Given a stellar kinematic data set, we use a probability
stimation technique to ‘learn’ the underlying DF. 

(ii) From the learned DF, we then calculate the gravitational
cceleration field using an inversion of the (time-independent) CBE.

.1 Learning the DF 

iven data sampled from some unknown distribution, the problem
f trying to derive the underlying probability distribution is known
NRAS 511, 1609–1621 (2022) 
s ‘probability estimation’. In our case, the data are the positions
x and velocities � of stars, and the probability we wish to estimate
s the stellar DF f ( x , � ), i.e. the probability density function of
tars in phase space. One way to do this is to write down some
arametric model for the probability density then compare the
odel’s predictions with the data until the parameters are optimized.

n essence, this is the technique employed by the majority of studies
f stellar dynamics, whether they work directly with the DF or with
ts moments. 

We instead adopt a different methodology: we estimate a non-
arametric DF directly from the data. This data-driven approach has
he distinct advantage of being untrammelled by the limitations and
nderlying assumptions of an explicit model. While non-parametric
robability estimation techniques have long existed (e.g. kernel
ensity estimation), recent years have seen a surge of interest in
achine learning techniques, which in turn has led to a proliferation

f powerful probability estimation algorithms. We employ one such
o v el algorithm: ‘normalizing flows’ (Rezende & Mohamed 2015 ). 
The idea behind normalizing flows is simple: we can generate a

omplex probability distribution by repeatedly transforming a simple
ne, such as a Gaussian. The input Gaussian can be said to ‘flow’
hrough the series of transformations, and after each transformation a
multiplicative) normalizing factor is applied to the new probability
istribution to ensure that it is properly normalized, hence the name
normalizing flows’. 

To see this, consider a continuous random variable z, with
robability density function p z ( z). We can define a new variable x ≡
 ( z), with the only requirement being that the function f is bijective 1 

and thus invertible). The probability distribution for x is then 

 x ( x) = p z 

(
f −1 ( x) 

) ∣∣∣∣det 

(
∂f −1 ( x) 

∂x 

)∣∣∣∣ . (2) 

he determinant on the right-hand side is the normalizing factor. 
This can be generalized to a series of bijective transformations,

.e. x ≡ f ( z) = ( f K 

◦ f K−1 ◦ · · · ◦ f 2 ◦ f 1 )( z). Now, the probability
istribution for x is (here f −1 = f −1 

1 ◦ f −1 
2 ◦ · · · ◦ f −1 

K−1 ◦ f −1 
K 

) 

 x ( x) = p z 

(
f −1 ( x) 

) K ∏ 

i= 1 

∣∣∣∣∣det 

( 

∂f −1 
i ( x) 

∂x 

) 

∣∣∣∣∣ . (3) 

y suitably choosing the input distribution p z and the transformations
 i , we can generate arbitrarily complex probability distributions.
n practice, most applications use a simple unit Gaussian for p z .
urthermore, we typically give each of the transformations f i the same
arametric form, although each transformation can take different
arameters. We can then construct a suitable loss function, such
hat minimizing the loss function (with respect to the transformation
arameters) corresponds to generating a probability distribution p x 
hat best describes the distribution of x . 

In practice, we construct an ensemble of estimators. Before train-
ng, each flow in the ensemble is initialized with different parameters.
he high complexity of a typical loss landscape means that each
ow is then likely to end its training at a different local minimum,

.e. each flow learns a slightly different probability distribution. The
robability p x (and its gradients) is then given by the mean o v er all
he estimators. 

In summary, the user need only specify 

(i) the parametric form of an individual transformation, 



Charting galactic accelerations – II 1611 

D
i
r
f
f
d  

t

a  

a  

o  

t

l
t  

(  

f  

N
 

c  

m  

e  

fl  

m  

8
a
u
p
a

2

S
t  

b  

e
g  

a
c  

b

a

w

A

T  

∇

o  

2

n  

w  

w  

a  

s  

f  

1
 

v  

r  

w
i  

s  

r
W
r  

�  

b  

e
b  

e  

s  

n  

l  

c
w  

w

3

I  

s  

t  

a  

h

3

O  

i
(  

d
o  

a
r
fi
D  

s  

t  

w  

s
M
m  

i
 

d  

s

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/2/1609/6516968 by U
niversity of N

ottingham
 user on 09 February 2022
(ii) the loss function, 
(iii) the number of ‘units’ (i.e. transformations), 
(iv) the number of flows in the ensemble. 

It is worth remarking that the target distribution, the learned 
F, is guaranteed to be a well-behaved probability distribution, 

.e. it is positive everywhere and has unit normalization. The latter 
equirement restricts the space of usable transformations to bijective 
unctions, and this space is then restricted further by the desire 
or computational ef ficiency. Dif ferent normalizing flow techniques 
iffer primarily in their choices of these transformations, as well as
he base distributions and flow architectures. 

More detailed descriptions of normalizing flows are given in the 
rticle by Rezende & Mohamed ( 2015 ) first describing the algorithm,
nd the recent re vie w articles by Kobyzev, Prince & Brubaker ( 2021 )
r Papamakarios et al. ( 2021 ). Also, Paper I provides a discussion of
he advantages of normalizing flows o v er kernel density estimation. 

We do not impose any further physicality requirements on the 
earned DF. For example, the acceleration vectors calculated from 

he DF (see Section 2.2) could in principle show ne gativ e div ergences
i.e. ne gativ e mass densities) or non-zero curls (i.e. non-conserv ati ve
orces). This is advantageous as it allows us to probe deviations from
ewtonian gravity or the effects of disequilibrium. 
Green & Ting ( 2020 ) employed a species of normalizing flow

alled ‘neural spline flows’ (Durkan et al. 2019 ). Applied to our
ock data sets, we find that neural spline flows struggle with hard

dges of the sample volumes. We instead use ‘masked autore gressiv e
ows’ (MAFs; P apamakarios, P avlakou & Murray 2017 ). F or each
ock data set, we train an ensemble of 20 estimators, each with
 transformations along the flow, each transformation being an 
rtificial neural network with one hidden layer of 64 units. We 
se the implementation of MAFs in the publicly available software 
ackage NFLOWS , 2 and train the estimators using the gradient descent 
lgorithm ADAM (Kingma & Ba 2015 ). 

.2 Calculating accelerations from a known DF 

ection 4 of Paper I describes a procedure for calculating gravita- 
ional accelerations a given a known DF f ( x , � ). The calculation is
ased on an inversion of the CBE under the assumption of dynamical
quilibrium. Here, we merely state the main result, i.e. the expression 
iving the acceleration in terms of first derivatives of the DF. At
 given point x in configuration space with the cylindrical polar 
oordinates ( R , ϕ, z), the acceleration vector a = ( a R , a ϕ , a z ) is given
y (cf. equation 24 in Paper I ) 

 = A 

−1 
∑ 

sample 

R , (4) 

here A ≡ [ A ij ] is the matrix with 

 ij = 

∑ 

sample 

∂f 

∂ � i 

∂f 

∂ � j 
; 

R = ∇ � f 

( 

� · ∇ x f + 

� 2 ϕ 

R 

∂f 

∂ � R 
− � R � ϕ 

R 

∂f 

∂ � ϕ 

) 

. 

he gradient operators here are ∇ x ≡ ( ∂/∂R , R 

−1 ∂/∂ ϕ, ∂/∂ z) and
 � ≡ ( ∂ /∂ � R , ∂ /∂ � ϕ , ∂ /∂ � z ). 
The sums labelled ‘sample’ in these expressions are over a number 

f suitably chosen points in velocity ( � R , � ϕ , � z ) space. Formally, we
 NFLOWS : normalizing flows in PYTORCH . 
f

eed at least three sample points for the matrix A to be invertible. This
ould suffice if using a DF that is exactly correct, but in our context
e work with an approximate reconstructed DF that might be more

ccurate in some regions of phase space than others. It is therefore
afer to increase the sample size. We generally find converged results
or ∼100 sample points, but to err on the side of caution we choose
000 sample points every time we calculate an acceleration. 
In Paper I , we gave a discussion of how best to sample these

elocity points. In particular, we described ‘zones of a v oidance’:
egions of velocity space worth a v oiding. These are typically areas
here the DF approaches zero (e.g. near the escape velocity) or where 

ts first deri v ati ves approach zero (e.g. near � = �̄ ). In these areas,
mall absolute errors in the learned DF and its deri v ati ves are large
elative errors, leading to large errors in the derived accelerations. 

ith these points in mind, we sample velocities throughout the 
emainder of this paper as follows: writing � = �̄ + δ� and taking

¯ = (0 , 220 , 0) km s −1 , we sample the magnitude of δ� uniformly
etween 10 and 50 km s −1 , and its orientation isotropically. We have
 xperimented e xtensiv ely with more sophisticated sampling schemes 
 ut these ha v e not yielded an y substantial impro v ement in accurac y.
Having sampled these velocities, it is then straightforward to 

 v aluate equation (4) to give the gravitational acceleration at a given
patial location. As noted in Paper I , a particular benefit here of
ormalizing flows (and their implementation in NFLOWS ) is that the
earned DF is everywhere exactly dif ferentiable, irrespecti ve of the
omplexity of the flow architecture. Using automatic differentiation, 
e can efficiently calculate the exact partial derivatives of the DF
ithout resorting to potentially noisy finite difference schemes. 

 M O C K  DATA  

n Paper I , we tested our technique on a sample of stars distributed
pherically in a Hernquist profile. Here, we turn to a more complex
est case in local stellar kinematics, i.e. the kinematics of stars in
 small, heliocentric region of the MW disc. This section describes
ow the mock data set is constructed. 

.1 Distribution function 

ne model for the DF of Galactic disc populations is the ‘quasi-
sothermal’ action-based DF (or qDF) first described by Binney 
 2010 , 2012b ). Ting et al. ( 2013 ) found that the qDF gives a good
escription of individual ‘mono-abundance populations’ (MAPs) 
f stars, i.e. populations of stars with similar [Fe/H] and [ α/Fe]
bundances. In particular, the qDF gives density profiles that are 
adially and vertically near-exponential, and velocity dispersion pro- 
les that are radially near-exponential and vertically near-isothermal. 
ifferent MAPs will take different parameter values for the qDF (i.e.

cale lengths and normalizations), and the o v erall disc population can
hen be described as a linear superposition of many qDFs. This idea
as then applied to real data by Bovy & Rix ( 2013 ), who subdivided

ome 17 000 G-dwarf stars from SDSS-SEGUE into 43 individual 
APs, modelled each MAP with a qDF, and subsequently derived 
easurements for the scale length of the MW disc among other

mportant parameters. 
For our mock data, we populate the disc with stars drawn from six

istinct MAPs. In other words, we construct a DF from the weighted
um: 

 ( x , � ) = 

6 ∑ 

i= 1 

w i f qDF ( x , � | θi ) . (5) 
MNRAS 511, 1609–1621 (2022) 
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Table 1. Parameters of six MAPs in our disc. The metallicity [Fe/H] and 
abundances [ α/Fe] are not used further, but simply serve to indicate the type 
of stellar population being emulated by each MAP. The weights w i give the 
relative size of each sub-population, cf. equation (5). Finally, h R and σR are 
two of the five qDF parameters, respectively, representing the radial scale 
lengths and radial velocity dispersions. The remaining three qDF parameters 
are either held fixed or depend on the listed parameters; see discussion in the 
text. 

i [Fe/H] [ α/Fe] w i h R σR 

(kpc) (km s −1 ) 

1 −0.7 0.2 0.10 2.0 60.0 
2 −0.3 0.2 0.15 2.0 52.0 
3 −0.3 0.0 0.25 2.6 52.0 
4 0.1 0.0 0.25 2.6 44.0 
5 0.1 −0.2 0.15 3.2 44.0 
6 0.5 −0.2 0.10 3.2 36.0 
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Table 2. Parameters and component normalizations for our MW models. The 
adopted models for the three components (bulge, halo, and disc), and thus 
the meanings of the quoted parameters, are discussed further in the text. The 
component normalizations f given in the lower part of the table are defined 
such that component x contributes fraction f x to the MW circular velocity at 
8 kpc. 

Parameter Value 

Bulge power-law exponent −1.8 
Bulge cut-off radius (kpc) 1.9 
Halo scale radius (kpc) 16 
Disc scale length (kpc) 3 
Disc scale height (pc) 280 

Component normalization 
f b 0.05 
f h 0.35 
f d 0.6 
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ere, w i is the relative weight and θ i the various qDF parameters for
opulation i . The qDF requires specification of five scale parameters:
he radial scale length h R , the R and z velocity dispersions in the
isc-plane σ R , σ z , and the radial scale lengths of these dispersions
 σR 

, h σz 
. We remark that these numbers are merely scale parameters

nd not physical, measurable quantities describing the system. For
xample, a qDF with σR = 40 km s −1 will not necessarily generate
 stellar population with exactly that radial velocity dispersion. 

In choosing our qDF parameters, we start by picking pairs of
lemental abundances [Fe/H] and [ α/Fe] – one pair per MAP – to
haracterize the six MAPs. These abundances are not used further
n our investigation, but serve to give an indication of the type of
tellar population being emulated by each MAP, and thus inform
he choice of qDF parameters. We manually choose abundances to
oughly match those of the Hypatia catalogue of stellar abundances
n the local neighbourhood (Hinkel et al. 2014 ). Note that Bovy &
ix ( 2013 ) confined their analysis to stars at large heights abo v e

he disc plane, and so found a comparatively greater proportion of
-rich, old thick disc stars than is found in the solar neighbourhood
y Hypatia. The elemental abundances we adopt for each MAP are
iven in Table 1 . In matching qDF parameters to these abundances,
e then emulate the trends observed by Bovy & Rix ( 2013 ): Fe-poor,
-old populations have short radial scale lengths h R and large velocity
ispersions σ R , while Fe-rich, α-young populations are opposite on
oth counts. Alongside the abundances, Table 1 gives the assigned
 R , σ R values, as well as the relative weights w i of the six MAPs.
he remaining three qDF parameters are fixed following Bovy & Rix
 2013 ): σz = σR / 

√ 

3 and h σR 
= h σz 

= 8 kpc . 
We have thus arrived at a DF that can be used to sample a
ock stellar population containing a mix of thick and thin disc sub-

opulations. 

.2 Milky Way model 

he qDF is a function of orbital actions rather than phase space
oordinates, and the conversion from one coordinate system to the
ther requires the specification of a potential. 3 In this way, the
nderlying gravitational potential is encoded in the stellar kinematics.
The various components and parameters of our adopted MW mod-
ls are listed in Table 2 . It is identical to the MWPotential2014 

 F or a giv en potential, we calculate actions utilizing the St ̈ackel approxima- 
ion, adopting a focal length of 3.6 kpc (Binney 2012a ). 

g  

t  

a  

a  

NRAS 511, 1609–1621 (2022) 
odel of Bovy ( 2015 ): a three-component model, comprising a
ower -law b ulge with exponential cut-off, an NFW dark matter halo,
nd a Miyamoto–Nagai disc. 

.3 Sampling 

e usually sample 10 6 stars within an annulus between R = 7
nd 9 kpc, with no restrictions on vertical height z. Note that we
ssume axisymmetry, and so neglect the azimuthal coordinate and
ample 5D data, ( R, z, � R , � ϕ , � z ). Re garding the size of the re gion,
e generally find that for accurate results, surv e y re gions of size
 300 pc around the Sun are needed. If smaller regions are used,

he flows have difficulty accurately estimating the spatial gradients
f the DF, leading (via equation 4) to inaccurate estimates for the
cceleration. 

The assumption of axisymmetry is not strictly necessary, but
eads to a substantial impro v ement in accurac y. This is due to

ore than just the reduction in dimensionality: in an axisymmetric
r near-axisymmetric system, ∂ f / ∂ ϕ should be zero or close to
ero. Ho we ver, � ϕ is larger than the other velocity components,
ue to the Galactic rotation. So, small errors in the estimation of
 f / ∂ ϕ are disproportionately amplified in the � · ∇ x f term appearing
n equation (4). Assuming axisymmetry (i.e. fixing ∂ f / ∂ ϕ = 0)
liminates this effect. 

We sample the data directly from the DF (equation 5) using a
arkov chain Monte Carlo (MCMC) technique. For this, we use

he af fine-inv ariant ensemble sampler implemented in the software
ackage EMCEE (F oreman-Macke y et al. 2013 ). To e v aluate the DF in
his procedure, we use the qDF implementation and various potential
odels aboard the software package GALPY (Bovy 2015 ). 

 RESULTS  

n Section 4.1, we calculate solar neighbourhood accelerations in
ur MW model. Then, in Section 4.2, we consider the effects of
isequilibria in the MW disc by perturbing this data set. 

.1 The local acceleration field 

raining an ensemble of normalizing flows on the mock data set
enerated from our MW model, we arrive at a learned DF describing
he local population of disc stars. Fig. 1 depicts this learned DF,
longside the true DF (equation 5) and residuals. Three phase planes
re depicted in Fig. 1 : R –z, � R –� ϕ , and z–� z . In each case, a 2D slice
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Figure 1. Three slices through phase space: R –z (top), � R –� ϕ (middle), and z–� z (bottom). In each case, the left-hand panel shows the true, underlying DF 
(equation 5), the middle panel shows the flow-learned DF, and the right-hand panel shows fractional residuals between the two. In each panel, the DF is e v aluated 
by varying two coordinates while holding the remaining coordinates at fixed values. The values of the DF are shown in units of f ref : the DF evaluated at the solar 
position ( R = 8 kpc, z = 10 pc) and the local standard of rest. This figure demonstrates that our technique is capable of reproducing the underlying stellar DF 
with excellent accuracy within the well-populated regions of phase space. 
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hrough phase space is shown, i.e. two coordinates are varied while
he other three are held constant at R = 8 kpc, � ϕ = 220 km s −1 ,
 = � R = � z = 0. 

Inspecting the residuals (the right-hand panels of Fig. 1 ), we
nd e xcellent per cent-lev el agreement between the true DF and the

earned DF in the well-populated region of phase space, i.e. within
 � − �̄ | � 60 km s −1 and | z| � 2 kpc. The errors only start to grow
arge at greater velocities or greater heights abo v e or below the mid-
lane, where the estimators have very few data points with which to
rain. 

Another remarkable feature of Fig. 1 , which might escape notice
t first glance, is in the R –z plane (top row). Here, there are hard
dges in the exact DF at R = 7 and 9 kpc. These represent the
dges of our sample region (Section 3.3). When feeding the data to
he normalizing flows during the training procedure, the flows are
ntirely unaware of these hard edges a priori. None the less, these
harp edges are detected and reproduced excellently in the model DF,
lbeit with increased residuals immediately inside the edges. This is
 demonstration of the flexibility of normalizing flows, which can
eal with sharp transitions in the data. 

We now have a DF model that we can input to the machinery
f Section 2.2 to calculate gravitational accelerations. The result of
oing so is shown in Fig. 2 , which plots derived vertical and radial
ccelerations alongside the actual accelerations in our MW model.
s in Fig. 1 , the fractional residuals in the well-populated regions

re at the sub-per cent level. One exception is the region near z = 0
here the residuals artificially grow large as a result of dividing by

mall numbers; by eye, it is clear that the agreement remains good
n this region. On the other hand, the radial acceleration residuals
o truly grow large in the regions immediately near the edges at 7
nd 9 kpc, as a result of the DF deri v ati ves being poorly estimated
n these regions. As suggested by Fig. 1 , similar issues also arise at
arge heights abo v e and below the mid-plane. 

Edge effects aside, Fig. 2 encapsulates the key result of this paper:
iven 10 6 stars in equilibrium in an annulus between R = 7 and 9 kpc,
e can calculate the underlying gravitational acceleration field with
 xcellent accurac y. 

Before forecasting such accuracy for application to the Gaia data,
t is worth ensuring that this accuracy persists in the presence of
ealistic errors. We perform this test by adding errors to the parallax,
ine-of-sight (los) velocity, and proper motions of each mock star,
eglecting errors in the sky positions which we assume to be
ubdominant. We universally assign Gaussian errors of σ
 

= 25 μas ,
� = 1 km s −1 , and σ℘ = 25 μas yr −1 to each star’s parallax ( σ
 

),
os velocity ( σ � ), and proper motion ( σ℘ ), respectively, assuming
ero covariance. In the real Gaia data, these uncertainties correlate
ith the apparent G -band magnitudes: brighter stars have more
recise astrometry. Our chosen errors correspond to stars with G
 14.5 in Gaia EDR3 (Gaia Collaboration 2021 ; see also the σ℘ 

tting function of Dong-P ́aez, Vasiliev & Evans 2022 ). The subset
f stars with G < 14.5 is the most kinematically robust sample,
nd at least for Gaia DR2, Sch ̈onrich, McMillan & Eyer ( 2019 )
ecommend restricting kinematic analyses to this subset to a v oid
erious systematic errors. Our assigned errors therefore closely
esemble the typical errors in the kind of subset of Gaia data to
hich our method is likely to be applied in future. 
We propagate these errors following the method suggested in

aper I : when training an ensemble of flows, each flow is provided
ith a different data set, representing a different realization of the

rror distribution. In practice, each flow takes in the original error-
ree data set, transforms the data coordinates to the heliocentric
pherical frame, inverts distances to parallaxes, shifts parallaxes, los
NRAS 511, 1609–1621 (2022) 
elocities, and proper motions by random amounts as generated from
aussian distributions of widths σ
 

, σ � , σ℘ , respectively, transforms
he data back to the original Galactocentric cylindrical frame, then
nally commences the training procedure as normal. Subsequently,

he differences in the DFs learned by different flows quantify not
nly the variability intrinsic to the technique (see Section 2.1), but
lso the statistical uncertainty in the training data. 

Fig. 3 plots vertical and radial accelerations measured after
ropagating uncertainties in this way (orange points with error bars).
ach point represents the median measured value across the flow
nsemble, while the accompanying error bars give the 16th and 84th
ercentile values. Reassuringly, the accuracy remains excellent, with
ub-per cent level residuals ev erywhere e xcept near the radial edges
nd large | z| as before. 

Another obstacle facing the application of our technique to real
ata is that many Gaia stars do not have accompanying los velocity
ata. Of the EDR3 stars with G < 14.5, around 30 per cent have
easured los velocities. The full third data release (scheduled 2022)
ill fill in many gaps and we can boost the proportion even further
y cross-matching the Gaia stars with those from independent radial
 elocity surv e ys, but it remains inevitable that a significant proportion
f the data set will lack this sixth dimension. 
There are a number of ways to circumvent this issue. Arguably the

implest is to assume the los velocity selection has minimal kinematic
ias, so that all of the stars can be used to learn the stellar density
( x ), and the subset of stars with available los velocities can be
sed to learn the (position-dependent) velocity distribution p( � | x ).
ormalizing flows can be employed in both cases, and the full DF is

hen given by the product of the two probability distributions. Fig. 3
hows the results of such an approach, plotting accelerations (blue
oints) obtained from the same mock data as that used for Figs 1 and
 , but now with a randomly chosen 50 per cent sample of stars taken
s having missing los velocity measurement. In other words, the full
ata set is used to learn ν( R , z), but only half of the data set is used
o learn p( � | R, z). The residuals remain generally small, indicating
hat the issue of missing los velocities is not insurmountable. 

There are, ho we ver, some issues arising: the residuals are some-
hat noisier and grow larger ( ∼ 10 per cent ) at large z. Both of

hese facts result from half of the data being discarded when learning
( � | R, z). In particular, the spatial gradients of p( � | R, z) are less
ell estimated as a consequence. Given that the discarded stars
o have two dimensions of velocity information (i.e. their proper
otions), we might attain better results by instead retaining these

tars and estimating their missing los velocities. A possible technique
o do so has been suggested by the work of Dropulic et al. ( 2021 ),
hich demonstrated that artificial neural networks can be successful

n recreating the missing los velocities of Gaia stars. 

.2 Disequilibria 

here is a growing body of evidence for non-equilibrium structure
n the stellar kinematics of the MW disc. Whereas the first step
f our methodology (learning the DF) assumes only axisymmetry,
he second step (converting to an acceleration field) requires the
ssumption of dynamical equilibrium so that the time-deri v ati ve term
an be neglected in the CBE. 

In Paper I , we showed that the incorrect assumption of equilibrium
eads to a bias in the derived accelerations that is linear in ∂ f / ∂ t .
imilarly, Banik et al. ( 2017 ) estimated that, under plausible pertur-
ations, the bias induced by incorrect assumption of equilibrium in
easurements of vertical accelerations is at the 10 per cent level

r so. Ho we ver, their assumed methodology was dif ferent from that
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Figure 2. Maps of vertical (top) and radial accelerations (bottom). In each case, the left-hand panel plots our reconstructed accelerations, the middle panel the 
exact accelerations of the model, and the right-hand panel the fractional residuals. This figure demonstrates that, assuming dynamical equilibrium, our technique 
is capable of calculating accelerations in the solar neighbourhood with excellent accuracy. 
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Figure 3. Accelerations measured using a mock data set with Gaia -like uncertainties in parallax, los velocity, and proper motions (orange points with error 
bars) and a mock data set with 50 per cent missing los velocities (blue points). The vertical accelerations (left) are taken at R = 8 kpc and the radial accelerations 
(right) are taken at z = 0. In the case of the mock data with uncertainties, these are propagated by providing a different realization of the error distribution to 
each flow in the ensemble. The points give the median values across the ensemble, while the error bars show the 16th and 84th percentile values. The black 
dashed line plots accelerations in the underlying MW model. The smaller panels below show fractional residuals between the measured and true values. Even 
with realistic errors or missing los velocities, our method recovers the underlying acceleration field with sub-per cent accuracy in well-populated regions. 
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f the present work, and so the applicability of this estimate is not
ntirely clear. 

Here, we quantify the disequilibrium bias by applying our method-
logy to a mock data set representing a perturbed stellar population.
o generate this perturbed data set, we start by employing the method
escribed in Section 3 to sample an equilibrium data set comprising
.5 × 10 7 stars between R = 1 and 16 kpc, under our fiducial
W model. Note that this population size gives roughly the desired

umber of stars (10 6 ) in our region of interest, 7 kpc < R < 9 kpc. 
Next, we apply a ‘kick’ to these equilibrium stars, mimicking the

rocedure of Li & Widrow ( 2021 ): we randomly choose 10 per cent
f the stars and boost their vertical velocities by δ� z = + 20 km s −1 .
uch a kick can be understood as being roughly resemblant to the

mpact of the Sagittarius dwarf passing through the Galactic disc (e.g.
aporte et al. 2019 ; Bland-Hawthorn & Tepper-Garc ́ıa 2021 ): under

he impulse approximation, δ� ≈ 2 GM/b � , where M , � , and b are,
espectively, the mass, speed, and impact parameter of the perturber.
dopting plausible values of M = 10 10 M �, � = 300 km s −1 , and
 = 15 kpc, the resulting kick is δ� ≈ 20 km s −1 . 
After applying this perturbation, we evolve the stars’ orbits under

he (unperturbed) MW potential for 500 Myr, saving snapshots of
his evolution at t = 0, 200, and 500 Myr after the initial perturbation.
t each snapshot, we isolate the stars between R = 7 and 9 kpc and

eed them through the pipeline of Section 2 to measure accelerations.
ig. 4 shows the resulting accelerations at these times. 
Immediately after the perturbation, accelerations are everywhere

 v erestimated by 10 per cent or so: a similar level of bias to that
redicted by Banik et al. ( 2017 ). Note that as in Fig. 2 , we are still
isregarding the residuals immediately around z = 0. After 200 Myr,
he magnitude of the bias has decreased to ∼ 5 per cent , and is
onfined to larger heights, | z| � 0.5 kpc. The stars confined to lower
eights appear to have equilibriated more quickly, as expected given
heir shorter dynamical times. 
NRAS 511, 1609–1621 (2022) 
Finally, after 500 Myr, the perturbation appears to have decayed
eyond our sensitivity: the residuals are everywhere comparable to
he equilibrium case (cf. Fig. 2 ). There is a feature in the residuals at
 ≈ −1.5 kpc, but it is unclear whether this is due to lingering effects
f the perturbation at large heights or the smaller sampling densities
here. 

Our finding that the stars have largely equilibriated after 500 Myr
s at odds with Li & Widrow ( 2021 ), who still see a significant
ias 500 Myr after an identical perturbation. There are a number
f possible causes for this discrepancy. First, a denser Galactic
isc has a shorter dynamical time and thus faster equilibriation.
o we ver, the dif ference in the two models does not appear to be
reat enough: the density in our model is only around 35 per cent
arger, meaning the dynamical time is only around 15 per cent shorter
taking t dyn ∝ ρ−1/2 ). Another possibility is the dimensionality. Under
ur treatment, we evolve the stellar orbits in three-dimensional con-
guration space after the initial perturbation, whereas Li & Widrow
 2021 ) use a one-dimensional approximation. This is tantamount
o assuming integrability, as all Hamiltonians with one degree of
reedom are e xactly inte grable. A bundle of trajectories in phase
pace spreads linearly with time in an integrable system, and so
ixing times are longer. A final possibility is the difference in DF
odels. Whereas we learn a non-parametric DF, Li & Widrow ( 2021 )
t the stellar kinematics with an analytical DF. It is possible that after
00 Myr, ∂ f / ∂ t is sufficiently small that equation (4) can be employed
ith minimal resulting bias provided the correct DF is used, but the

nalytical DF used by Li & Widrow ( 2021 ) is not (yet) a good fit
or the stars, which still retain some memories of the perturbation
n their distribution. In other words, the bias Li & Widrow ( 2021 )
nd at 500 Myr might not be directly induced by disequilibrium, but

ndirectly, via the misapplication of their analytical DF model. 
The estimated biases and time-scales shown here can only be

sed as a rough guide. The real perturbation in the MW disc due

art/stac153_f3.eps
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Figure 4. Vertical accelerations derived by applying our methodology to a stellar population following a perturbation. The three main panels present different 
snapshots in time: immediately following the perturbation (left), 200 Myr later (middle), and 500 Myr later (right). In each case, the coloured points plot the 
derived accelerations, and the black dashed line plots the true accelerations under our adopted MW model. The three smaller panels below show fractional 
residuals. This figure illustrates the bias induced by incorrectly assuming equilibrium, and how the bias varies with height and decays with time. 
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o the Sagittarius dwarf could well be larger, and thus induce a
onger-lasting bias in the measured accelerations. Moreo v er, there 
re other potential sources of vertical perturbation beyond the 
agittarius dwarf, such as stellar bar buckling (Khoperskov et al. 
019 ). Be yond these v ertical perturbations, there are also in-plane
erturbations to consider. For example, moving groups (i.e. coherent 
inematic structures in the local � x –� y space) are either dynamical 
ootprints of the Galactic spiral arms and bar (e.g. Antoja et al.
008 ; Michtchenko et al. 2018 ), or dissolving open clusters and
ssociations (e.g. Oh & Evans 2020 ; Gagn ́e et al. 2021 ). These
ould provide additional contributions to the systematic bias in our 
stimation of the Galactic acceleration field, but a full accounting is
eyond the scope of the present work. Ho we ver, such ef fects can be
itigated in practice by masking the stars known to belong to these

ubstructures. 
Given this uncertainty, it is worth asking whether our framework 

ro vides an y way to directly detect the presence of disequilibria.
i & Widrow ( 2021 ) achieved this by comparing their best-fitting
odel of the DF directly with their perturbed data binned in z–� z 

pace, and found that a clear ‘phase spiral’ emerged in the residuals.
s a star progresses along its orbit, it exhibits oscillatory motion 

n the z–� z plane. In particular, defining the ‘vertical energy’ E z = 

 

2 
z / 2 + � z ( z), where � z is the vertical part of the galactic potential,
tars mo v es on clockwise ‘circles’ of constant E z . In an y potential
xcept a harmonic ( � z ∝ z 2 ) potential, the orbital period in this plane
s not constant with respect to E z ; there is differential rotation. An
nitial o v erdensity in z–� z space is thus stretched, after the passage of
ime, into a phase spiral. Eventually, the spiral is stretched and wound
o the point where it is no longer detectable, and the population is
phase mixed’. The detection of a phase spiral in a stellar population
onstitutes clear evidence that the population is not fully phase mixed, 
.e. not in equilibrium. 

Inspired by Li & Widrow ( 2021 ), we search for a phase spiral in the
F trained on the perturbed data. Unlike in their case, a phase spiral
ill not emerge in our residuals, because any phase spiral encoded in
he data will be similarly encoded in the learned DF . W e instead
onsider a symmetrized DF f̄ constructed from the learned DF 

 via 

 ̄( z, � z , R, � R , � ϕ ) ≡ f ( z, � z , R, � R , � ϕ ) + f ( - z, - � z , R, � R , � ϕ ) 

2 
. (6) 

n other words, we take average of f and its 180 ◦ rotation in the
–� z plane, holding R, � R , � ϕ fixed. We then calculating residuals by 
omparing f with f̄ , and so extract any asymmetric component of f . 

Fig. 5 plots f / f̄ − 1 after 200 Myr, fixing R = 8 kpc, � ϕ =
20 km s −1 , and � R = 0. A remarkably clear phase spiral emerges.
he spiral is sharply defined: the residuals swing from ∼ 10 per cent

o ∼ −10 per cent very rapidly between the overdense and under- 
ense regions, although the innermost part of the spiral is a bit fainter.
e find that the spiral emerges much more cleanly and clearly in

hese DF slices rather than in projections (i.e. integrating f o v er
 ϕ , � R ), where the residuals are ∼ 1 per cent . This is because the
rientation and winding of the spiral vary as a function of � ϕ and � R ,
o that integrating over velocity space serves to partially wash out
he signal. 

This detection of the phase spiral is an encouraging result: it
uggests that a phase spiral would be easy to detect in real data,
nabling a straightforward diagnosis of disequilibrium. Moreo v er, 
 phase spiral has various uses beyond the simple diagnosis of
isequilibrium. In particular, the exact shape of the spiral encodes 
 wealth of information. F or e xample, Li & Widrow ( 2021 ) fit the
hase spiral shape (both their mock spiral and the real Gaia DR2
piral) to find the time elapsed since the spiral-inducing perturbation. 
eanwhile, Widmark, Laporte & de Salas ( 2021b ) and Widmark

t al. ( 2021c ) use the spiral shape to derive the vertical potential in
he Galactic disc, and from there the tightest constraints to date on a
hin dark disc. 
MNRAS 511, 1609–1621 (2022) 

art/stac153_f4.eps


1618 A. P. Naik et al. 

Figure 5. The asymmetric component of the DF trained on the non- 
equilibrium stellar population, 200 Myr after the perturbation. The asymmet- 
ric component is extracted by dividing by a symmetrized DF f̄ (definition: 
equation 6). A clear phase spiral emerges when plotting the learned DF in 
this manner. 
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 C O M PA R I S O N  WITH  OTH ER  M E T H O D S  

ere, we test our technique by a direct performance comparison
ith other, competing methods. Two such techniques are described

n Section 1: Jeans analysis (e.g. Salomon et al. 2020 ) and the
D DF-fitting approach (e.g. Widmark et al. 2021a ). We outline
he two methods here, and give more detailed descriptions of our
mplementations of them in Appendices A and B, respectively. 

In the Jeans analysis of Salomon et al. ( 2020 ), stars are binned into
adial and vertical bins, and radial and v ertical v elocity dispersions
re computed in each bin, along with the stellar density. Parametrized
unctional forms are assumed for the spatial variation of the density
nd dispersions, and these functions are fit to the values obtained
rom the bins. Given the functional forms and the best-fitting
arameters, the vertical Jeans equation is solved to give the vertical
cceleration. Along with the assumed functional forms, another key
ssumption concerns the tilt of the local velocity ellipsoid (i.e. the
ovariance between radial and vertical motions), which is assumed
o be spherically aligned. This has been shown empirically to be a
enerally good assumption, except perhaps very close to the disc
lane (Everall et al. 2019 ). 
By contrast, the DF-fitting approach of Widmark et al. ( 2021a )

oes not bin the data, but directly fits the positions and motions
f individual stars. Here, the key assumptions are that the DF
s separable, i.e. f ( x , � ) = f ⊥ 

( z, � z ) f ‖ ( x , y , � x , � y ), and that the
vertical energy’ E z ≡ � 2 z / 2 + � ( z) is an integral of motion. These
ssumptions, taken together with an assumed parametrization for the
otential � ( z), give an analytical expression for f ⊥ 

which can be
irectly fit to the data. The vertical accelerations are then given by
rst deri v ati ve of � ( z), taking the best-fitting parameters. 
Fig. 6 shows the results of this test for two mock data sets in

articular: the unperturbed data set studied in Section 4.1, and
he perturbed data set studied in Section 4.2, 500 Myr after the
nitial perturbation. In the unperturbed case (left-hand panel), the
NRAS 511, 1609–1621 (2022) 
ertical accelerations calculated with our method reproduce the
nderlying model with excellent sub-per cent level accuracy, as
lready demonstrated in Section 4.1. Here, the DF-fitting approach of
idmark et al. ( 2021a ) performs nearly as well, giving residuals of
 5 per cent everywhere. As the data are binned and only the second
oments are considered rather than the full shape in a Jeans analysis,
uch information content is lost. It is then perhaps predictable that

he Jeans approach performs the least well of the three. Turning to
he perturbed case (right-hand panel), our measured accelerations
re of comparable accuracy to the unperturbed case (cf. Fig. 4 , right-
and panel). The accuracy of other two methods, ho we ver, appears
o worsen. The change is most marked in the DF-fitting approach,
here the residuals approximately double to the ∼ 10 per cent

evel. This finding lends support to our speculation of Section 4.2:
hile our technique assumes equilibrium and is thus susceptible to
isequilibrium-induced bias, it less susceptible than other techniques.

 C O N C L U S I O N S  

 no v el procedure for calculating gravitational accelerations from
tellar kinematical data was introduced in An et al. ( 2021 ). In this
rticle, we test the methodology in the context of the neighbourhood
f the Sun, with a view towards an upcoming paper in which we
pply our technique to the Gaia data. 

The procedure is split into two stages. First, we ‘learn’ the phase
pace DF of the data by training normalizing flows (Rezende &

ohamed 2015 ; Kobyzev et al. 2021 ; Papamakarios et al. 2021 ).
n so doing, we construct a data-driven, non-parametric DF, without
ecourse to any assumptions about the underlying kinematics of the
tars, e.g. we do not assume the stellar populations are isothermal or
educe the problem to one dimension. One assumption we do make is
xisymmetry, i.e. we learn a five-dimensional DF in ( R, z, � R , � ϕ , � z ),
ut this assumption can be easily relaxed if desired. In the second
tep of the procedure, we convert the learned DF to gravitational
ccelerations, via an inversion of the CBE. At this stage, we assume
hat the stars are in dynamical equilibrium. 

To test our method, we apply it to a mock data set resembling
 population of MW disc stars in equilibrium. The stars are drawn
rom multiple ‘MAPs’, and so represent a mix of stars mirroring the
ix of sub-populations in the real Galactic disc. F ollowing Bo vy &
ix ( 2013 ) and Ting et al. ( 2013 ), we construct the mock data set by
ssuming that each MAP can be individually described by a ‘quasi-
sothermal’ DF (Binney 2010 , 2012b ), tracing the underlying bulge
 halo + disc MW model of Bovy ( 2015 ). We sample 10 6 stars

etween 7 and 9 kpc in Galactocentric radius. 
Given this mock data set, we apply our outlined technique, i.e. train

ormalizing flows to learn the DF, then convert the DF to a map of
ccelerations. We find an excellent sub-per cent level match between
he measured radial and vertical accelerations and the underlying
cceleration field in the adopted MW model. As we will apply our
ethod to data from the Gaia satellite (Gaia Collaboration 2021 ), we

heck that this excellent accuracy persists even when realistic errors
re added to the data and propagated to the measured accelerations,
nd when a substantial proportion of los velocities are unavailable.
his is the key result of the paper: given the observed positions and
otions of a million bright ( G � 14.5) stars within a kiloparsec

f the Sun, we can robustly determine the underlying gravitational
ccelerations. 

A potential source of systematic bias in our technique is dise-
uilibrium. In converting a learned DF to accelerations, we assume
ynamical equilibrium. We test this by employing our technique on
 mock data set following a perturbation emulating the passage of

art/stac153_f5.eps
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Figure 6. Vertical accelerations at the solar radius ( R = 8 kpc) inferred from mock data using different techniques. The two panels correspond to two different 
mock data sets: the unperturbed data set of Section 4.1 (left), and the perturbed data set of Section 4.2, 500 Myr following the initial perturbation (right). In each 
case, the black dashed line gives the true accelerations under the assumed MW model, and the coloured lines plot the accelerations inferred via the different 
techniques as labelled in the legend. By bypassing various limiting assumptions made by other techniques, our method is capable of more accurately measuring 
accelerations. 
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he Sagittarius dwarf through the outer disc. Immediately following 
he perturbation, we find that accelerations are o v erestimated by 

10 per cent . This bias decays o v er time, until it is no longer
etectable in the residuals (at least within | z| � 1 kpc) by 500 Myr.
dditionally, we find that a remarkably clear and distinct phase spiral

an be extracted from the DF trained on the perturbed data set. Not
nly can such a phase spiral be used to diagnose disequilibrium, but
ts shape can also reveal insights into the MW potential and pertur-
ation history (e.g. Li & Widrow 2021 ; Widmark et al. 2021b , c ) 
We compare the performance of our method to that of two other

idely used methods: solution of the Jeans equations and fitting the 
ertical (one-dimensional) DF to parametrized models. Using the 
ame mock data set as an input, our method measures accelerations 
he most accurately. This is particularly true in the aftermath of
 perturbation, suggesting that our technique is less susceptible to 
isequilibrium-induced bias than competing techniques. 
In summary, we provide a new algorithm to accurately determine 

he local acceleration field from stellar kinematical data by non- 
arametrically reconstructing the stellar DF. We argue that it is 
he most robust technique yet devised for this purpose. Its strength 
erives largely from the fact that the DF is constructed directly from
he data, thereby bypassing the limiting assumptions and model- 
ensitivity of our existing methods. In the Gaia era, such data-driven 
echniques have the potential to re veal ne w insights into fundamental
hysics and the makeup of our Galactic neighbourhood. 
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PPENDIX  A :  J E A N S  ANALYSIS  

n this appendix, we describe the Jeans analysis used for method
omparison in Section 5. Except where noted, we follow the
rocedure of Salomon et al. ( 2020 ), who used the method to measure
NRAS 511, 1609–1621 (2022) 
he vertical force and local density of dark matter using red clump
tars from Gaia DR2 . 

The three Jeans equations relate stellar velocity dispersions and
ensities to gravitational accelerations, and can be obtained by inte-
rating the CBE (equation 1) o v er the three velocity dimensions (e.g.
inney & Tremaine 2008 ). Under the assumptions of axisymmetry
nd steady state, the time-independent vertical Jeans equation is 

∂ 

∂z 

(
νσ 2 

z 

) + 

1 

R 

∂ 

∂R 

(
Rνσ 2 

Rz 

) = −ν
∂� 

∂z 
, (A1) 

here ν is the stellar density, and σ 2 
z , σ

2 
Rz are the z–z and R –z

omponents of the velocity dispersion tensor. All three of these
uantities are themselves functions of R and z. Assuming that the
ocal velocity ellipsoid is spherically aligned, σ 2 

Rz is given in turn by 

2 
Rz = R z 

σ 2 
R − σ 2 

z 

R 

2 − z 2 
, (A2) 

here σ 2 
R is the R –R component of the velocity dispersion tensor. 

To proceed, we need to measure ν, σ 2 
z , σ

2 
R and their deri v ati ves in

rder to solve equations (A1) and (A2) for a z ≡ −∂ � / ∂ z. We do this
y binning the stars in R and z, calculating the density and velocity
ispersions in each bin, and fitting these with functional forms. 
Radially, we use only three bins of width 0.6 kpc, centred at R =

.4, 8, 8.6 kpc. We discard stars beyond 7.1 and 8.9 kpc. Vertically,
e use adaptive bin sizes, with smaller bins closer to the disc plane.
he bin sizes are chosen so that exactly 400 stars (across all radii) fall

nto each vertical bin. With ∼10 6 in each mock data set, this gives
 few thousand vertical bins. After the radial binning is additionally
mposed, the stellar count in each 2D bin varies, but there is still
 statistically sufficient number of stars in each bin. Note that we
ssume mirror symmetry around the disc plane, and so invert z and
 z for each star below the plane and restrict all analysis to positive z.

In each 2D bin, we measure the stellar density ν and the velocity
ispersions σ 2 

z , σ
2 
R , and assign Poisson errors ( ∝ 1 / 

√ 

N ) to each
easurement. Given these data points, we can fit the functional

orms 

( R, z) = ν0 sech 2 
( z 

h 

)
exp 

(
−R − R �

d ν

)
, (A3) 

2 
z ( R, z) = σ 2 

z, 0 exp 

(
−R − R �

d σz 

)
+ αz, (A4) 

2 
R ( R, z) = σ 2 

R, 0 exp 

(
−R − R �

d σR 

)
+ βz. (A5) 

n all, there are nine free parameters: ν0 , h , d ν , σ 2 
z, 0 , d σz 

, α, σ 2 
R, 0 , d σR 

,
nd β. Note these functional forms differ slightly from those adopted
y Salomon et al. ( 2020 ); we found that these functions gave better
ts to our mock data, and ultimately more accurate acceleration
easurements (cf. Fig. 6 ). This is likely just a reflection of the

ifferences between our mock data set and the red clump sample
nvestigated by Salomon et al. ( 2020 ). 

To fit equations (A3)–(A5) to the measured densities and disper-
ions, we use an MCMC technique to find the parameters which
aximize the Gaussian likelihood of Sivertsson et al. ( 2018 ): 

 = L νL σz 
L σR 

, (A6) 

here L x represents the likelihood in quantity x , given by 

 x = 

∏ 

i 

exp 

[ 

−1 

2 

(
x data ,i − x model ,i 

x error ,i 

)2 
] 

, (A7) 

here the product is o v er the data points (i.e. the measured values in
ach 2D bin). 
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Equations (B1) and (B3) together specify an analytical DF model 
that can be fit directly to the data. There are nine free parameters in 
the model: four density normalizations ρ i , three velocity dispersions 
σ j , and two population weights c j (not three: the third is fixed by ∑ 

c j = 1). 
To obtain the best-fitting parameters, we maximize the likelihood 

L = 

∏ 

i 

S( z i ) f ⊥ 

( z i , � z,i ) “
S( z ) f ⊥ 

( z , � z ) d z d � z 

, (B4) 

where the product is o v er individual stars and S ( z) is the spatial 
selection function. We keep only stars with | z| < 2 kpc, so S ( z) = 1 
if | z| < 2 kpc and S ( z) = 0 otherwise. Integrating the denominator 
o v er � z , this expression simplifies to 

L = 

∏ 

i 

S( z i ) f ⊥ 

( z i , � z,i ) ∫ z max 

z min 

d z 
∑ 

j 

c j exp 

( 

−� ( z) 

σ 2 
j 

) . (B5) 

We use an MCMC technique to find the parameters which 
maximize the this likelihood. We find the best results are obtained if 
the radial range of the data is restricted to [7.8, 8.2] kpc. Once the 
best-fitting parameters have been found, the vertical accelerations 
are given by the first derivative of equation (B3), 

a z ( z) ≡ −∂� 

∂z 
= −4 πG 

3 ∑ 

i= 1 

ρi h i tanh 

(
z 

h i 

)
+ 4 πGρ4 z. (B6) 

This paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/2/1609/6516
Given the best-fitting parameters, everything on the left-hand side 
f equation (A1) can be e v aluated to give the vertical acceleration. 

PPEN D IX  B:  1 D  DF-FITTING  

his appendix describes the DF-fitting approach we use for compar- 
son in Section 5. It follows the procedure of Widmark & Monari
 2019 ), Widmark ( 2019 ), and Widmark et al. ( 2021a ), who use it to
easure the dynamical matter density in the solar neighbourhood 

sing Gaia data. 
Here, the key assumptions are that the DF is separable: f ( x , � ) =

 ⊥ 

( z, � z ) f ‖ ( x , y , � x , � y ), the vertical energy E z ≡ � 2 z / 2 + � ( z) is an
ntegral of motion, and the stellar population comprises three kine- 

atically distinct sub-populations with different velocity dispersions. 
nder these assumptions, the vertical DF f ⊥ 

can be written as 

 ⊥ 

( z, � z ) = 

3 ∑ 

j= 1 

c j 

(2 πσ 2 
j ) 1 / 2 

exp 

( 

− � 
2 
z + 2 � ( z) 

2 σ 2 
j 

) 

, (B1) 

here c j and σ j are the relative weights and velocity dispersions of
ub-population j . Note that 

∑ 

c j = 1 and c j ≥ 0. 
We assume the underlying matter density takes the parametrized 

orm 

( z) = ρ1 sech 2 
(

z 

h 1 

)
+ ρ2 sech 2 

(
z 

h 2 

)
+ ρ3 sech 2 

(
z 

h 3 

)
+ ρ4 , 

(B2) 

here the heights h 1 , h 2 , and h 3 are fix ed, respectiv ely, at 40, 100,
nd 300 pc. These heights are slightly different from those used by
idmark et al. ( 2021a ), and we find they give slightly better fits to

ur mock data. This density model corresponds to a potential 

 ( z) = 4 πG 

3 ∑ 

ρi h 

2 
i ln cosh 

(
z 

h i 

)
+ 2 πGρ4 z 

2 . (B3) 

i= 1 
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