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Abstract
It is widely believed that Hawking radiation originates from excitations near the hori-
zons of black holes (Hawking in CommunMath Phys 43:199, 1975, Giddings in Phys
Lett B 754:39, 2016, Mathur in Class Quantum Gravity 26:224001, 2009). However,
Giddings (Phys Lett B 754:39, 2016) proposed that the Hawking radiation spectrum
that characterizes evaporating semi-classical black holes originates from a quantum
“atmosphere”, which extends beyond the horizon of a black hole. Although several
research projects have been conducted in this field, they have not yet taken into account
the effect of Rényi entropy. In the present article, we will therefore consider the effect
of Rényi entropy on Hawking radiation power. We assume that if the effect of Rényi
entropy is very small, we suggest that the Hawking radiation should originate from
the quantum “atmosphere” which extends beyond the black hole’s horizon for finite
dimensions. That is, that Giddings’ suggestion is the more likely of the above possi-
bilities. However, for infinite dimensions, both suggestions are equally credible. We
briefly consider the very large effect of Rényi entropy on Hawking radiation power as
well. We find that if the effect of Rényi entropy is very large and ω/TBH is very small,
then the power spectral density SR is proportional to the power spectral density SBH .
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1 Introduction

Based on Hawking’s original paper, the evaporation process of black holes is charac-
terized by a non-unitary evolution of quantum fields in curved spacetimes [1]. More
specifically, matter fields in a pure quantum state will collapse to form a black hole
that eventually evaporates into a mixed thermal state [1]. It is widely believed that the
semi-classical Hawking radiation spectra should be modified to ensure quantum uni-
tarity since unitary temporal evolution is one of the fundamental principles of quantum
mechanics [2,3].

It is generally believed that Hawking radiation spectra originate from quantum
excitations near the horizon region, namely,�r = r−rH � rH [2,3]. Therefore, itwas
widely expected that modified Hawking radiation spectra should also be characterized
by a relatively short length scale �r � rH , where rH is the radius of the black hole’s
horizon [3].

However, Giddings suggested that the radiation spectra of a black hole originates
from an effective quantum “atmosphere” which extends well beyond the horizon of the
black hole [2]. By comparing the numerical results for the Hawking radiation power
PBH of an evaporating (3 + 1)-dimensional Schwarzschild black hole of horizon
radius rH with the familiar Stefan–Boltzmann radiation power PBB = σ AT 4 of a
(3+ 1)-dimensional flat space perfect blackbody emitter of radius rA [4,5], Giddings
concluded that the source of Hawking radiation was a quantum region which was
located outside the black hole and that the effective radius rA was described by the
following relation

�r = rA − rH ∼ rH . (1.1)

According to Ref. [2], Eq. (1.1) is consistent with the existence of an effective emitting
“atmosphere” which extends well beyond the horizon of a black hole, i.e., “atmo-
sphere” is outside and far from the horizon of a black hole.

In considering the correctness of Giddings’ conclusion, one interesting question
that should be addressed is if the radiation spectra of a black hole in any (D + 1)-
dimension originates from an effective quantum “atmosphere” which extends well
beyond the horizon of the black hole? In order to answer this question, in Ref. [6],
the author studied the Hawking radiation spectra of Schwarzschild black holes in
a (D + 1)-dimension. Following Giddings’s method, the author defined the effective
radii rA(D) of the black-hole quantum atmospheres by equating theHawking radiation
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powers of the (D+1)-dimensional black holes to the correspondingStefan–Boltzmann
radiation powers of flat space perfect blackbody emitters [6]. The dimensionless radii
rA/rH parameters, which characterize the effective black-hole quantum atmospheres,
are functions which monotonically decrease as the number (D + 1) increases [6].
In particular, in the large D � 1 regime, Ref. [6] suggests that radiating (D +
1)-dimensional Schwarzschild black holes are characterized by the relation (rA −
rH )/rH � 1.

Following Giddings’ argument, other studies on black-hole quantum atmospheres
have been conducted [7–9]. For example, in Ref. [7], Yan-Gang Miao and Zhen-Ming
Xu investigated the Hawking radiation cascade from a five-dimensional charged black
hole with a scalar field coupled to higher-order Euler densities in a conformally invari-
ant manner. Myungseok Eune and Wontae Kim [8] showed that the outer temperature
vanishes at the horizon and has a peak at a scale whose radial extent is set by the
horizon radius which then decreases to the Hawking temperature at infinity. Ramit
Dey, Stefano Liberati and Daniele Pranzetti [9] have shown that the Hawking quanta
originate from a quantum atmosphere around the black hole with energy density and
fluxes of particles peaking at about 4MG, which is contrary to the popular belief that
these quanta originate from ultra high energy excitations very close to the horizon. At
present, the theory of a “black-hole quantum atmosphere” is a frontier area of research
which is still far from reaching any final widely accepted conclusion. Results on this
topic which are not directly related to the present article are not listed here for reasons
of brevity.

One important element that appears to have received little attention in previous
articles is the following. In 1902 Gibbs pointed out that, in a system where the parti-
tion function diverges, the standard Boltzmann–Gibbs theory cannot be applied, and
large-scale gravitational systems are known to fall within this class [10]. Then Tsal-
lis generalized standard statistical mechanics (which arises from the hypothesis of
weak probabilistic correlations and their connection to ergodicity) to nonextensive
one, which can be applied in all cases, and still possessing standard Boltzmann–Gibbs
theory as a limit [10]. Therefore, the usual Boltzmann–Gibbs additive entropy must be
generalized to the nonextensive, i.e., non-additive entropy (the entropy of the whole
system is not necessarily the sum of the entropies of its sub-systems), which is named
Tsallis entropy [10]. Non-extensive statistical mechanics does not only include one
example, i.e., Tsallis entropy. Rényi entropy is another main example of such a non-
extensive entropy. In this paper, we will therefore principally discuss the effect of
Rényi entropy on Hawking radiation power, in particular on the effective radius of a
Schwarzschild black hole quantum atmosphere. In Sect. 2, we introduce the basic con-
cepts of Hawking radiation spectra of Schwarzschild black holes and Rényi entropy.
In Sect. 3, we derive the effective radius of a black-hole quantum atmosphere taking
Rényi entropy into consideration. In Sect. 4, numerical results of the effective radius of
the black-hole quantum atmosphere are obtained. In Sect. 5, we briefly discuss when
the effect of Rényi entropy is very large, how it impacts on Hawking radiation power.
In Sect. 6, we discuss the results we have obtained.
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2 Basics

2.1 The Hawking radiation spectra of (D+1)-dimensional Schwarzschild black
holes

For (D+1)-dimensional Schwarzschild black holes, the semi-classical Hawking radi-
ation power for one bosonic degree of freedom is described as [4,5,11,12]

PBH = 1

2D−1πD/2�(D/2)

∑

j

∫ ∞

0
�

ωD

exp(ω/TBH ) − 1
dω, (2.1)

Here j is the angular harmonic index of the emitted field modes and ω is the emitted
frequency of field. The Bekenstein–Hawking temperature of the black hole is given
by

TBH = (D − 2)

4πrBH
. (2.2)

We have set G = c = kB = � = 1. rBH is the horizon radius of the black hole
[6,13]. The greybody factors of the black-hole-field system composition are denoted as
� = �(ω; j, D), which are dimensionless coefficients which quantify the interaction
of the emitted fields with curved black-hole spacetime [4,5].

2.2 An area law prescription for Rényi entropy

One of the most remarkable discoveries in fundamental physics is that the entropy of
a black hole has a value equal to a quarter of the horizon area in Planck units [3,14]:

S = Area(Horizon)

4GN
. (2.3)

Here GN is the Newton’s constant. Ryu and Takayanagi [14,15] generalized the rela-
tionship eq.(2.3) in the context of gauge/gravity duality. They proposed that the von
Neumann entropy is determined by the area of a codimensional-2 minimal surface in
the dual spacetime [14,15]:

S = Area(Minimal Sur f ace)

4GN
. (2.4)

The above discussions of area laws eq.(2.3) and (2.4) are limited to the von Neumann
entropy. However, according to Gibbs’ argument [10], the Boltzmann–Gibbs (BG)
theory cannot be applied in systems with divergence in the partition function, such
as in a gravitational system [10]. Therefore, thermodynamic entropy of such non-
standard systems cannot be described by an extensive entropy but must instead be
generalized to a non-extensive entropy [10]. In Ref. [14], the author has generalized
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the area laws to the case of Rényi entropy, in which a label index q is used and the
entropy is defined in terms of the density matrix ρ of the entangling region as [14]:

Sq = 1

1 − q
ln Trρq . (2.5)

When q → 1, the von Neumann entropy S = −Tr(ρ ln ρ) is recovered. Rényi
entropy contains richer physical information about the entanglement structure of a
quantum state. The properties of Rényi entropy have been extensively studied using
by numerical methods [16], in spin chains [17], in tensor networks [18], in free field
theories [19], in two-dimensional CFTs [20] or higher [21], and in the context of
gauge/gravity duality [22]. These results have also been generalized to charged [23]
and supersymmetric cases [24].

The generalized area-law prescription for holographic Rényi entropy can be derived
by applying the replica trick in the context of gauge/gravity duality [14,25]. Rényi
entropy (2.5) of integer q > 1 is determined by the partition function of the QFT on
a branched cover Mq , defined by taking q copies of the original Euclidean spacetime
M1 on which the QFT lives with a cut along the entangling region and gluing them
along the cuts in a cyclic order. This can be written as [14,25]:

Sq = 1

1 − q
(ln Z [Mq ] − q ln Z [M1]), (2.6)

where Z [M1] and Z [Mq ] are the partition functions on the branched original and cover
spacetime, respectively. For holographic QFTs, one can calculate Z [Mq ] by finding
the dominant bulk solution Bq whose asymptotic boundary is Mq [14,25]. In the large
N limit where the bulk physics is classical, we have [14]:

Z [Mq ] = e−Ibulk [Bq ], (2.7)

where Ibulk[Bq ] denotes the on-shell action of the bulk solution Bq . If we assume the
Zq replica symmetry, then one can obtain that [14]:

Sq = q

q − 1
(Ibulk[B̂q ] − Ibulk[B̂1]), (2.8)

where B̂q = Bq/Zq and the bulk action Ibulk is the Einstein action

Ibulk = − 1

16πGN

∫
dd+1X

√
GR + Imatter . (2.9)

Here Xμ, Gμν and R are the coordinates, metric and Ricci scalar in the bulk [14]. As
a result, one can obtain a generalized area law:

q2∂q

(
q − 1

q
Sq

)
= Area(Cosmic Braneq)

4GN
, (2.10)
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where the cosmic brane is analogous to the Ryu-Takayanagi minimal surface [14].
The above arguments can be generalized to non-integer q [14]. More details can be
found in Ref. [14].

2.3 Basic formulae for Rényi entropy

A long-standing problem of non-extensive thermodynamics is deriving a formulation
which is compatible with the zeroth law of thermodynamics [26]. Based on the concept
of composability, Abe showed [26,27] that the most general non-additive entropy
composition rule which is compatible with a homogeneous equilibrium has the form

Hλ(S12) = Hλ(S1) + Hλ(S2) + λHλ(S1)Hλ(S2), (2.11)

where Hλ is a differentiable function of S and λ is a real constant parameter. S1, S2
and S12 are the entropies of the subsystems and the total system, respectively.

Biró and Ván [28] showed that, the most general entropy function compatible with
the zeroth law for homogeneous systems has the following form:

L(S) = 1

λ
ln[1 + λHλ(S)], (2.12)

which is additive for composition, namely,

L(S12) = L(S1) + L(S2). (2.13)

The corresponding temperature is then

1

T
= ∂L(E)

∂E
, (2.14)

where we have assumed the principle of additivity holds for the energy composition
[26].

For classical black holes, the Bekenstein–Hawking formula satisfies the Eq. (2.3),
i.e.,

S12 = S1 + S2 + 2
√
S1

√
S2, (2.15)

where Hλ(S) = √
S and λ → 0 [26,27].

The Rényi entropy can be defined as

SR = 1

1 − q
ln

∑

i

pqi , (2.16)

which is equivalent to the choices of Hλ(S) = S and λ = 1 − q in eq.(2.4) [26], if
the original entropy functions satisfy the following condition

S12 = S1 + S2 + λS1S2, (2.17)
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where q is a real parameter called the non-extensivity parameter. It can be shown that
the formal logarithm of Tsallis entropy

ST = 1

1 − q

∑

i

(pqi − pi ), (2.18)

provides the Rényi entropy, namely,

SR = L(ST ) = 1

1 − q
ln[1 + (1 − q)ST ]. (2.19)

When q approaches to 1 (λ → 0), both Rényi and Tsallis entropy give the Shannon
entropy S = −∑

i pi ln pi [26].

3 The effective radius of a black-hole quantum atmosphere taking
Rényi entropy into consideration

In this section, in order to determine the location of effective radius of a Schwarzchild
black hole, we will derive the formulae for black hole thermodynamics considering
the perturbations of Rényi entropy.

3.1 The Rényi temperature of a (D+1)-dimensional Schwarzschild black hole

Considering Eq. (2.2), TBH = M ′(rBH )/S′(rBH ) = (D−2)
4πrBH

, we have

S(rBH ) = 4π

(D − 2)

∫
rBH M ′(rBH )drBH . (3.1)

Based on Ref. [6], the horizon radius of a (D + 1)-dimensional Schwarzschild black
hole of mass M is given by

rBH = [16πM/(D − 1) ÂD−1]1/(D−2), (3.2)

where ÂD−1 = 2πD/2/�(D/2) is the generalized area of a unit (D−1)-sphere. Then
we have

M ′(rBH ) = (D − 1)πD/2

8π�(D/2)
(D − 2)r D−3

BH . (3.3)
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Then the thermodynamic entropy 1 of (D+1)-dimensional Schwarzschild black hole
is

S(rBH ) = 4π

(D − 2)

∫
rBH M ′(rBH )drBH = πD/2

2�(D/2)
r D−1
BH . (3.4)

We have pointed out that the entropy of large-scale gravitational system cannot be
described byGibbs–Boltzmann statisticalmechanics and should be replaced byTsallis
entropy [10]. Then if we regard the entropy of a black hole as being Tsallis entropy,
namely, S(rBH ) = ST [26,29], then the Rényi entropy of a (D + 1)-dimensional
Schwarzschild black hole is then

SR = 1

λ
ln(1 + λS(rBH )) = 1

λ
ln

(
1 + λ

πD/2

2�(D/2)
r D−1
BH

)
, (3.5)

where λ = 1 − q. We can therefore conclude that irrespective of the value of λ, the
value of SR will be positive. The derivative of Rényi entropy can then be obtained as

S′
R = 1

1 + λ πD/2

2�(D/2)r
D−1
BH

πD/2

2�(D/2)
(D − 1)r D−2

BH . (3.6)

So that the Rényi temperature 2 of a (D + 1)-dimensional Schwarzschild black hole
is

TR = M ′(rBH )/S′
R = (D − 2)

4πrBH
+ λ

(D − 2)πD/2

8π�(D/2)
r D−2
BH . (3.7)

When D = 3 and λ → 0, the Rényi temperature becomes

T = 1

4πrBH
, (3.8)

which is the well-known result for a (3 + 1)-dimensional Schwarzschild black hole
[6].

Equation (3.7) can be rewritten as TR = TBH (1 + x), where x = λ
πD/2r D−1

BH
2�(D/2) . In

Sect. 3, we consider only the case of |x | � 1 and a modification to order x .

3.2 The effective radius of a black-hole quantum atmosphere taking Rényi
entropy into account

On the one hand, for (D + 1)-dimensional Schwarzschild black holes, the semi-
classical Hawking radiation power for one bosonic degree of freedom should be

1 The reason why we emphasize “thermodynamic” is that this formula is derived by thermodynamics
absolutely without using the definitions of entropy in statistical mechanics.
2 Here Rényi temperature refers to the black-hole temperature considering the effect of Rényi entropy.
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modified as

PR = 1

2D−1πD/2�(D/2)

∑

j

∫ ∞

0
�

ωD

exp(ω/TR) − 1
dω, (3.9)

where TR = TBH (1 + x) and x = λ
πD/2r D−1

BH
2�(D/2) . Since |x | � 1, then 1

exp(ω/TR)−1 is
approximately equal to

1

exp(ω/TR) − 1
≈ 1

exp(ω/TBH ) − 1
+

xω
TBH

exp(ω/TBH )

[exp(ω/TBH ) − 1]2 . (3.10)

So that Eq. (3.9) can be written as

PR = 1

2D−1πD/2�(D/2)

∑

j

∫ ∞

0
�

ωD

exp(ω/TBH ) − 1
dω

+ 1

2D−1πD/2�(D/2)

∑

j

∫ ∞

0
�ωD

xω
TBH

exp(ω/TBH )

[exp(ω/TBH ) − 1]2 dω.

(3.11)

The first term in Eq. (3.11) is the original Hawking radiation power. The second term
of Eq. (3.11) can be written as

− xβBH
∂

∂βBH
PBH , (3.12)

where βBH = 1/TBH . Then Eq. (3.11) is equal to

PR = PBH − xβBH
∂

∂βBH
PBH . (3.13)

On the other hand, the scalar radiation power of a spherically-symmetric blackbody
(BB) at temperature T and having radius R in (D + 1) spacetime dimensions is given
by the generalized Stefan–Boltzmann radiation law [6]

PBB = σ AD−1(R)T D+1, (3.14)

where σ is the Stefan–Boltzmann constant in (D + 1)-dimensions:

σ = D�(D/2)ζ(D + 1)

2πD/2+1 , (3.15)

and AD−1(R) is the surface area of an emitting body in (D + 1)-dimensions:

AD−1(R) = 2πD/2

�(D/2)
RD−1. (3.16)
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In this article, we suggest that the Stefan–Boltzmann law (3.14) still holds since it is a
non-gravitational systemwhich can be described by the standard statistical mechanics.
However, it should be modified as,

PBB = σ AD−1(r)T
D+1
R , (3.17)

where TR and r are the Rényi temperature and radius in (D + 1)-dimensions, respec-
tively. The reason can be explained as the following. If we repeat the derivation of
Stefan–Boltzmann’s law [30], we can know that the only thermodynamic quantity is
temperature T , while other physical quantities are mechanical quantities. Now that we
have considered the effect of Rényi entropy and Rényi temperature, the only change
in Stefan–Boltzmann’s law is to change the ordinary temperature T into Rényi tem-
perature TR , and the other parts remain unchanged.

Giddings pointed out that the effective radius of a black-hole atmosphere can be
determined by equating the radiation power PBB of a flat space perfect blackbody
emitter with the Hawking radiation power PBH [2,6]. Therefore, following Ref. [2,6],
we can define the effective radius rA of the black-hole quantum atmosphere by the
following relation:

PBH (rBH , TBH ) = PBB(rA, TBH ). (3.18)

In this article, the eq.(3.18) is modified to,

PR(rBH , TR(TBH )) = PBB(rA, TR(TBH )), (3.19)

where TR(TBH ) means that TR is a function of TBH .
Since TR = TBH (1 + x) and |x | � 1, therefore

T D+1
R = T D+1

BH (1 + x)D+1 ≈ T D+1
BH [1 + (D + 1)x] = T D+1

BH + (D + 1)xT D+1
BH ,

(3.20)

where we have used the binomial theorem in the second step.
Assuming now, that Eq. (3.18) still holds and considering Eqs. (3.13), (3.18), (3.19)
as well as (3.20), we then have,

σ AD−1(rA)(D + 1)xT D+1
BH = −xβBH

∂

∂βBH
PBH (rBH , TBH ). (3.21)

From Eq. (3.21), we have,

T D+1
BH = CD+1PBH (rBH , TBH ), (3.22)

where CD+1 is a constant in (D+ 1)-dimensions. Considering Eqs. (3.14) and (3.18),
we can therefore derive that,

CD+1 = 1/σD AD−1(rA), (3.23)
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which means that our assumption is self-consistent.
Combining Eqs. (3.13), (3.17), (3.19) and (3.22), we can obtain the effective radius
rAR of a black-hole quantum atmosphere as being,

rAR = { π

Dζ(D + 1)
(

4π

D − 2
)D+1 P̄BH } 1

D−1 × rBH ×
{

D+1−x
D+1

1 + (D + 1)x

} 1
D−1

,

(3.24)

where we have defined the scaled Hawking radiation power of a black hole in (D+1)-
dimensions [6] as,

P̄BH = PBH × r2BH . (3.25)

If we define the effective radius rA of the black-hole quantum atmosphere without
taking into account the effect of Rényi entropy [6] as

rA =
{

π

Dζ(D + 1)

(
4π

D − 2

)D+1

P̄BH

} 1
D−1

× rBH , (3.26)

and the entropy difference as,

F =
{

D+1−x
D+1

1 + (D + 1)x

} 1
D−1

. (3.27)

When x = 0, then F = 1, and the effective radius rAR of the black-hole quantum
atmosphere, taking into account the effect of Rényi entropy, can be written as

rAR = rAF . (3.28)

There are two reasons why we only expand 1
exp(ω/TR)−1 to order x . Firstly, if we

expand the term to order x then the effective radius rAR can be written as the product
of the standard effective radius rA and the difference F , which makes for an easier
comparison of the results with that given by standard statistical mechanics. Secondly,
standard statisticalmechanics can describe the universe accurately, therefore, the effect
of Rényi entropy can be neglected completely under normal circumstances. In fact, as
we have pointed out in Sect. 2.3, when x is zero, the standard results are recovered.

4 Numerical results for the effective radius of a black-hole quantum
atmosphere

Following Ref. [6], we can define the functional dependence r̄AR = r̄AR(D) of the
dimensionless ratio
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r̄AR ≡ (rAR − rBH )/rBH , (4.1)

which characterizes the effective quantum atmospheres of the radiating black holes in
(D + 1) dimensions. Considering Eq. (3.28), we can rewrite Eq. (4.1) as,

r̄AR = r̃AF − 1, (4.2)

where r̃A = rA/rBH . Based on Hawking’s and Giddings’ arguments [2,6], there are
two possible values of r̄AR in (D + 1) dimensions, namely, r̄AR ∼ O(0) or r̄AR ∼
O(1). We will calculate the numerical results for the two possibilities respectively.

For r̄AR ∼ O(0), if we set r̄AR = 0, we have,

xD = (1 − r̃1−D
A )(D + 1)

(D + 1)2r̃1−D
A + 1

. (4.3)

For r̄AR ∼ O(1), if we set r̄AR = 1, we have,

xD = (1 − 2D−1r̃1−D
A )(D + 1)

2D−1(D + 1)2r̃1−D
A + 1

, (4.4)

where the subscript D denotes the dimensionality of space.

4.1 The (3 +1)-dimensional case

The Hawking radiation power of scalar quanta from a (3 + 1)-dimensional
Schwarzschild black hole is given by [6,31]

PBH (D = 3) = 2.976 × 10−4 1

r2BH

. (4.5)

Then we have r̃A = 2.679 for the effective radius of the black-hole quantum atmo-
sphere.

For r̄AR ∼ O(0), from Eq. (4.3), we have x3 = 1.0661, which is O(1) and incon-
sistent with the assumption in Sect. 3, namely, |x | � 1. We cannot adjust the value
of r̄AR to make |x | � 1. Therefore, for the (3 + 1)-dimensional case, Hawking’s
suggestion is less feasible.

For r̄AR ∼ O(1), from Eq. (4.4), we have x3 = 0.1786. In fact, we can adjust the
value of r̄AR so that x can be very closed to zero. Therefore, for the (3+1)-dimensional
case, Giddings’ suggestion is more feasible.

4.2 The (D +1)-dimensional cases

In the previous subsection, we have seen that the effective quantum atmosphere for a
(3 + 1)-dimensional Schwarzschild black hole is described by the relation
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Table 1 The dimensionless radii rA(D) ≡ (rA − rBH )/rBH and r̃A = rA/rBH which characterize the
effective quantum atmospheres of the radiating black holes in (D + 1) dimensions

D+1 5 6 7 8 9 10 11

(rA − rBH )/rBH 0.982 0.727 0.590 0.502 0.439 0.391 0.355

r̃A = rA/rBH 1.982 1.727 1.590 1.502 1.439 1.391 1.355

Table 2 The values of xD for the radiating black holes in (D + 1) dimensions using Hawking’s suggestion

D+1 5 6 7 8 9 10 11

xD 1.0349 1.0552 1.0841 1.1110 1.1302 1.1416 1.1612

Table 3 The values of xD for the radiating black holes in (D + 1) dimensions using Giddings’ suggestion

D+1 5 6 7 8 9 10 11

xD −5.152 × 10−3 −0.0729 −0.0969 −0.1023 −0.0990 −0.0945 −0.0882

r̄AR ≡ (rAR − rBH )/rBH . (4.6)

Based on the numerical results in (3+ 1) dimensions, we can deduce, that Hawking’s
suggestion is less feasible than that of Giddings’.
We shall now calculate the values of the dimensionless radii r̄AR , which describe the
effective quantum atmospheres of the radiating Schwarzschild black holes, and the
value of x , which quantifies the effect of Rényi entropy in (D + 1)-dimensions. In
Ref. [6,32], the Hawking radiation powers of Schwarzschild black holes in (D + 1)-
dimensions have been obtained numerically. We list the results of the dimensionless
radii rA(D) in Table 1 [6].

4.2.1 The Hawking’s cases for intermediate D-values

For r̄AR ∼ O(0), from Eq. (4.3) and Table 1, we have x4 = 1.0349. Similarly, we
can obtain the values for other dimensions. The results have been listed in Table 2.
Based on Table 2, we find that if r̄AR ∼ O(0), then the values of xD cannot be O(0),
therefore we can conclude that for any dimensions, Hawking’s suggestion does not
appear to be feasible.

4.2.2 The Giddings’ cases for intermediate D-values

For r̄AR ∼ O(1), from eq.(4.4) and Table 1, we have x4 = −5.152×10−3. Similarly,
we can obtain the values for other dimensions. The results have been listed in Table 3.
Based on Table 3, we find that if r̄AR ∼ O(1), then the values of xD can be very closed
to zero and we can therefore conclude that for any dimensions, Giddings’ suggestion
appears to be feasible.
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Combining this with the conclusions in Sect. 4.1 and 4.2.1, we can deduce that if
we consider the effect of Rényi entropy, for any dimensions, Hawking’s suggestions
appear to be much less feasible that those of Gidding. Therefore, Hawking radiation
most likely originates from a quantum atmosphere which extends beyond the horizons
of black holes. We can also infer that the above conclusion is a general result and true
independently of the value of λ in non-extensive statistical mechanics.

4.2.3 The large D regime

In this section, we will consider the case for in the large D regime to see whether
the conclusions which we have obtained in Sects. 4.1, 4.2.1 and 4.2.2 are still estab-
lished. The Hawking radiation spectrum for a Schwarzschild black holes in (D + 1)
dimensions is characterized by ωD/(exp(ω/TR) − 1) (see Eq. (3.9)). This frequency
dependent function has a peak at [6]

ωpeak

TR
= D + W (−De−D), (4.7)

whereW (x) is the Lambert function and TR is the Rényi temperature of the black hole
as given in Eq. (3.7). Inserting Eq. (3.7) into Eq. (4.7), we then have

λpeak

rBH
(1 + x) ≈ 8π2

D2 [1 + O(D−1)] � 1, (4.8)

where λpeak is the peak of wave length. Since |x | � 1, the modification term does
not affect the above conclusion, namely, that in the large D regime the characteristic
wavelength is much shorter than the horizon radius rBH of a radiating Schwarzschild
black hole, which is consistent with the result obtained without taking Rényi entropy
into consideration.

References [6] and [32] have pointed out that the inequality (4.8) implies that the
corresponding Hawking emission spectra of these higher-dimensional black holes
are described extremely well by a short wavelength approximation. In particular, the
effective radiating rA of a black hole in the large D regime is determined by the high-
energy (short wavelengths) absorptive radius of the black hole [6,12,32–38], namely,

r̃A ≡ rA/rBH = (D/2)
1

D−2

√
D

D − 2
. (4.9)

In the large D � 1 regime, we find that ,

r̃A ≡ rA/rBH = 1 + O

(
ln D

D

)
≈ 1. (4.10)

For r̄AR ∼ O(0), F ≈ 1. Considering Eq. (4.3), we obtain that (D + 1)x ≈ 0, which
is the necessary condition for Hawking’s arguments.
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For r̄AR ∼ O(1), F ≈ 2. Considering Eq. (4.4), we obtain that 1
1+(D+1)x ≈ 2D−1.

For large D, then (D + 1)x ≈ −1, which is the necessary condition for Giddings’
arguments. We also find that λ < 0.

Since D � 1, we know that |x | is extremely small for the two cases, so that the
effect of Rényi entropy can be neglected completely. In addition, these two suggestions
are both feasible.

5 Very large effect of Rényi entropy on Hawking radiation power

In this section, we will briefly mention the properties of Hawking radiation power in
the situation where the effect of Rényi entropy is extremely large. Although this is
a situation which does not exist in the world we have explored, it is nevertheless of
interest.
On the one hand, since TR = TBH (1 + x), if |x | � 1, then TR = xTBH . We then
have

exp(ω/TR) − 1 ≈ ω

xTBH
. (5.1)

Then the power spectral density of PR is

SR = dPR/dω = xTBH
2D−1πD/2�(D/2)

∑

j

�(ω; j, D)ωD−1, (5.2)

where�(ω; j, D) are the greybody factors of the black-hole field system composition.
On the other hand, if ω/TBH � 1, then

exp(ω/TBH ) − 1 ≈ ω

TBH
. (5.3)

The power spectral density of PBH is

SBH = dPBH/dω = TBH
2D−1πD/2�(D/2)

∑

j

�(ω; j, D)ωD−1. (5.4)

Therefore, if x � 1 and ω
TBH

� 1, then we obtain

SR = xSBH . (5.5)

The meaning of this relationship and the effect of Rényi entropy on Hawking radiation
should be studied in further research.
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6 Summary and discussion

It is widely believed that Hawking radiation originates from the excitations near the
horizons of blackholes. Therefore,most researchers assume that themodifiedHawking
radiation spectra should also be characterized by a relatively short length scale �r ≡
rA − rBH � rBH [2,3]. One of the main arguments for the above assumption is based
on Hawking’s calculation, involving tracing back the modes all the way from future
infinity to the past null infinity, through collapsing matter, so that one has a vacuum
state near the horizon for a free-falling observer [9].

However, Giddings [2] has proposed that the Hawking radiation spectrum that
characterizes evaporating semi-classical black holes originates from an quantum
“atmosphere”, which extends beyond the horizon of the black hole. Giddings has
provided evidence that, for a Schwarzschild black hole in (3 + 1) dimensions, the
source of the Hawking radiation is a quantum region outside the black-hole hori-
zon whose effective radius rA is characterized by the relation �r ∼ rH [2]. Following
Giddings’ argument, other studies on black-hole quantum atmospheres have been con-
ducted [7–9]. Reference [6] raised an interesting question, namely, whether Giddings’
argument is of a general nature and is true for all radiating black holes irrespective
of their dimensions? The results of Ref. [6] showed that at least in some cases, the
effective radii of the black-hole quantum atmospheres are characterized by the relation
rA � 1. This conclusion implies that the Hawking radiation originates from quantum
excitations very near the horizon of a black hole [6].

However, the following important consideration appears not to have been taken into
account in these previous articles. Based on Gibbs’ argument [10], the Boltzmann–
Gibbs (BG) theory cannot be applied to systems with divergence in the partition
function, such as in a gravitational system. Therefore, the thermodynamic entropy of
such non-standard systems cannot be described merely by an extensive entropy but
must instead be generalized to a non-extensive entropy of which Rényi entropy is one
of the main examples.

This article therefore addressed the question in Ref. [6] concerning the effect of
Rényi entropy. The general structure of the present article is similar to that of Ref.
[6]. In Sect. 3, we derived the entropy and temperature of black holes taking Rényi
entropy into consideration. The expressions are universally valid. Considering the fact
that even if there indeed exists the effect ofRényi entropy, itmust be very small since for
now Gibbs–Boltzmann statistical mechanics can still describe physical phenomenon
accurately. Therefore, we further obtained the expression for the effective radius of a
quantum atmosphere including a modification term of order x (x is very small, i.e.,
λ = 1 − q is very small and q approaches to 1).

In Sect. 4, we obtained numerical results for the effective radius of a black-hole
quantum atmosphere in (3+ 1) dimensions and in (D + 1) dimensions. Based on our
calculated results listed in Tables 2 and 3, we suggested that it is much more feasi-
ble that Hawking radiation originates from a quantum “atmosphere” which extends
beyond the horizons of black holes having finite dimensions as suggested byGiddings.
Furthermore, if we want to see whether this conclusion is still established, we found
that for black holes having infinite dimensions, however, two suggestions are both
feasible. In Sect. 5, we briefly considered also the very large effect of Rényi entropy
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on Hawking radiation power. If the effect of Rényi entropy is very large and ω/TBH

is very small, we found that the power spectral density SR is proportional to SBH , that
is, SR = xSBH , where x is defined as in Sect. 3.1 and includes the effect of Rényi
entropy.
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