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Abstract A new multiscale finite element formulation1

is presented for nonlinear dynamic analysis of heteroge-2

neous structures. The proposed multiscale approach utilizes3

the hysteretic finite element method to model the micro-4

structure. Using the proposed computational scheme, the5

micro-basis functions, that are used to map the micro-6

displacement components to the coarse mesh, are only eval-7

uated once and remain constant throughout the analysis pro-8

cedure. This is accomplished by treating inelasticity at the9

micro-elemental level through properly defined hysteretic10

evolution equations. Two types of imposed boundary condi-11

tions are considered for the derivation of the multiscale basis12

functions, namely the linear and periodic boundary condi-13

tions. The validity of the proposed formulation as well as14

its computational efficiency are verified through illustrative15

numerical experiments.16

Keywords Heterogeneous materials · Multiscale finite17

elements · Hysteresis · Nonliner dynamics18

1 Introduction19

Composite materials have long been utilized in construc-20

tion and manufacturing in various forms. Nowadays, their21

scope of applicability spans a large area including, though
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not limited to the aerospace, automobile and sports indus- 22

tries [28]. Their appeal lies in the fact that composites exhibit 23

some enhanced mechanical properties, such as high strength 24

to weight ratio, high stiffness to weight ratio, high damp- 25

ing, negative Poisson’s ratio and high toughness. In the 26

field of Civil Engineering, composite materials are used 27

either in the form of fiber reinforcing or more recently 28

as textile composites in various applications such as retro- 29

fitting and strengthening of damaged structures [11], or sup- 30

porting cables for cable stayed bridges and high strength 31

bridge decks [26] amongst many others. This vast and mul- 32

tidisciplinary implementation of composites results in the 33

need for better understanding of their mechanical behav- 34

iour. Research efforts are oriented towards further improving 35

the mechanical properties of composites while at the same 36

time alleviating some of their disadvantages such as high 37

production/ implementation costs and damage susceptibility 38

[52]. 39

Composites are mixtures of two or more mechanically 40

separable solid materials. As such, they exhibit a heteroge- 41

neous micro-structure whose specific morphology affects the 42

mechanical behaviour of the final product [34]. Within this 43

framework, composites are intrinsically multiscale materi- 44

als since the scale of the constituents is of lower order than 45

the scale of the resulting material. Furthermore, the result- 46

ing structure, that is an assemblage of composites, can be of 47

an even larger scale than the scale of the constituents (e.g. 48

a textile strengthened masonry structure [24], a bio-sensor 49

consisting of several nano-wires [44]). Thus, the required 50

modelling approach has to account for such a level of detail 51

that spreads through scales of significantly different magni- 52

tude. Throughout this paper, the term macroscopic (or coarse) 53

scale corresponds to the structural level whereas the term 54

microscopic (or fine) scale corresponds to the composite 55

micro-structure properties such as the sizes, morphologies 56
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and distributions of heterogeneities that the material consists57

of.58

The derivation of reliable numerical models for the sim-59

ulation of mechanical processes occurring across multiple60

scales can aid both the design and/or optimization of new61

composite systems. Using appropriate modelling assump-62

tions accounting for plasticity and damage [38], estimates63

on the damage susceptibility of composites can be read-64

ily derived and parametric models can be established where65

micro-material properties are identified based on experimen-66

tally measured quantities.67

Modelling of structures that consist of composites could68

be accomplished using the standard finite element method69

[65]. However, a finite element model mesh accounting for70

each micro-structural heterogeneity would require signifi-71

cant computational resources (both in CPU power and stor-72

age memory). In general, the computational complexity of a73

finite-element solution procedure is of the order of O
(

n3/2
z

)
74

where nz is the number of degrees of freedom of the under-75

lying finite element mesh [37]. Therefore, the finite ele-76

ment scheme is usually restricted to small scale numeri-77

cal experiments of a representative volume element (RVE)78

[1,53].79

To properly capture the micro-structural effects in the80

large scale more refined methods have been developed.81

Instead of implementing the standard finite element method,82

upscaled or multiscale methods have been proposed to83

account for such types of problems, therefore significantly84

reducing the required computational resources [36,59,67].85

Upscaling techniques rely on the derivation of analytical86

forms to describe a coarser (i.e. large scale) model based87

on smaller scale properties [40]. Usually this is accomplished88

by analytically defining a homogenized constitutive law from89

the individual constitutive relations of the constituents. Thus,90

a continuous mathematical model that is problem depen-91

dent replaces the fine scale information. On the other hand,92

multiscale methods use the fine scale information to formu-93

late a numerically equivalent problem that can be solved in94

a coarser scale, usually through the finite element method95

[2,55]. An extensive review on the subject can be found in96

[33].97

In general, multiscale methods can be separated in two98

groups, namely multiscale homogenization methods [45] and99

multiscale finite element methods (MsFEMs) [20]. Within100

the framework of the averaging theory for ordinary and par-101

tial differential equations, multiscale homogenization meth-102

ods are based on the evaluation of an averaged strain and cor-103

responding stress tensor over a predefined space domain (i.e.104

the RVE) [5]. Amongst the various homogenization meth-105

ods proposed [25], the asymptotic homogenization method106

has been proven efficient in terms of accuracy and required107

computational cost [61].108

However, these methods rely on two basic assumptions, 109

namely the full separation of the individual scales and the 110

local periodicity of the RVEs. In practice, the heterogeneities 111

within a composite are not periodic as in the case of fiber- 112

reinforced matrices . In order to adapt to general heteroge- 113

neous materials, the size of RVE must be sufficiently large 114

to contain enough microscopic heterogeneous information 115

[3,54], thus increasing the corresponding computational cost. 116

Furthermore, in an elasto-plastic problem, periodicity on the 117

RVEs also dictates periodicity on the damage induced which 118

could result in erroneous results. 119

The MsFEM is a computational approach that relies on 120

the numerical evaluation of a set of micro-scale basis func- 121

tions. These are used to map the micro-structure informa- 122

tion onto the larger scale. These basis functions depend both 123

on the micro-structural geometry and constituent material 124

properties. Therefore, the heterogeneity can be accounted 125

for through proper manipulation of the underlying finite ele- 126

ment meshes defined at different scales. MsFEM was first 127

introduced in [31] although a variant of the method was 128

earlier introduced in [7] for one-dimensional problems and 129

later for the multi-dimensional case [6]. Along the same 130

lines, domain-decomposition [66] and sub-structuring [68] 131

approaches have also been introduced for the solution of elas- 132

tic micro-mechanical assemblies. 133

Although MsFEMs have been extensively used in linear 134

and nonlinear flow simulation analysis [19,27] the method 135

has not been implemented in structural mechanics problems. 136

This is attributed to the inherent inability of the method to 137

treat the bulk expansion/ contraction phenomena (i.e. Pois- 138

son’s effect). To overcome this problem, the enhanced mul- 139

tiscale finite element method (EMsFEM) has been proposed 140

for the analysis of heterogeneous structures [62]. EMsFEM 141

introduces additional coupling terms into the fine-scale inter- 142

polation functions to consider the coupling effect among dif- 143

ferent directions in multi-dimensional vector problems. The 144

method has been also extended to the nonlinear static analy- 145

sis of heterogeneous structures [63]. Recently, the geometric 146

multiscale finite element method was introduced [14] along 147

with a novel approach for the numerical derivation of dis- 148

placement based shape functions for the case of linear elastic 149

problems. 150

However, a limiting factor in a nonlinear analysis proce- 151

dure, is the fact that the numerical basis functions need to 152

be evaluated at every incremental step due to the progres- 153

sive failure of the constituents. In [63] the initial stiffness 154

approach is implemented for the solution of the incremen- 155

tal governing equations, thus avoiding the re-evaluation of 156

the basis functions. Nevertheless, this method is known to 157

face serious convergence problems and usually requires a 158

large number of iterations to achieve convergence [46]. The 159

computational cost increases even further for the case of a 160

123

Journal: 466 MS: 1032 TYPESET DISK LE CP Disp.:2014/4/26 Pages: 25 Layout: Large



R
ev

is
ed

Pr
oo

f

Comput Mech

nonlinear dynamic analysis, where a time integration scheme161

is also required on top of the iterative procedure [30].162

In this work, a modified multiscale finite element analysis163

procedure is presented for the nonlinear static and dynamic164

analysis of heterogeneous structures. In this, the evaluation165

of the micro-scale basis functions is accomplished within166

the hysteretic finite element framework [56]. In the hys-167

teretic finite element scheme, inelasticity is treated at the168

element level through properly defined evolution equations169

that control the evolution of the plastic part of the deformation170

component. Using the principle of virtual work, the tangent171

stiffness matrix of the element is replaced by an elastic and172

a hysteretic stiffness matrix both of which remain constant173

throughout the analysis.174

Along these lines, a multi-axial smooth hysteretic model175

is implemented to control the evolution of the plastic strains176

that is derived on the basis of the Bouc–Wen model of hys-177

teresis [10]. The smooth model used in this work accounts178

for any kind of yield criterion and hardening law within179

the framework of classical plasticity [38]. Smooth hysteretic180

modelling has proven very efficient with respect to classi-181

cal incremental plasticity in computationally intense prob-182

lems such as nonlinear structural identification [12,35,43],183

hybrid testing [13] and stochastic dynamics [58]. Further-184

more, the proposed hysteretic scheme can be extended to185

account for cyclic damage induced phenomena such as stiff-186

ness degradation and strength deterioration [4,22]. The ther-187

modynamic admissibility of smooth hysteretic models with188

stiffness degradation has proven on the basis of an equiva-189

lence principle to the endochronic theory of plasticity [21].190

However, such concepts are beyond the scope of this work.191

The present paper is organized as follows. The smooth192

hysteretic model together with the hysteretic finite element193

scheme that form the basis of the proposed method are194

described in Sect. 2. In Sect. 3, the enhanced multiscale finite195

element method (EMsFEM) is briefly described. In Sect. 4,196

the proposed hysteretic multiscale finite element method is197

presented. The method used for the solution of the governing198

equations at the coarse mesh is described in Sect. 5. The lat-199

ter is based on the simulation of the governing equations of200

motion in time using the Newmark direct-integration method201

[17]. In Sect. 6 a set of benchmark problems is presented to202

verify both the accuracy and the efficiency of the proposed203

multiscale formulation.204

2 Hysteretic modelling205

2.1 Multiaxial modelling of hysteresis206

Classical associative plasticity is based on a set of four207

governing equations, namely the additive decomposition of208

strain rates, the flow rule, the hardening rule and the consis- 209

tency condition [38,49]. 210

The additive decomposition of the total strain rate into 211

reversible elastic and irreversible plastic components [41] is 212

established as: 213

{ε̇} =
{
ε̇el
}

+
{
ε̇ pl
}

⇒
{
ε̇el
}

= {ε̇} −
{
ε̇ pl
}

(1) 214

where {ε̇} is the rate of the total deformation tensor,
{
ε̇el
}

215

is the rate of the elastic part of the total deformation vector, 216{
ε̇ pl
}

is the rate of the plastic part of the total deformation 217

vector while (.) denotes differentiation with respect to time. 218

Based on observations, the unloading stiffness of a plastified 219

material is considered equal to the elastic and thus the fol- 220

lowing relation holds between the total stress tensor {σ } and 221

the elastic part of the strain rate: 222

{σ̇ } = [D]
{
ε̇el
}

(2) 223

where [D] is the elastic constitutive matrix. 224

The plastic deformation rate is determined through the 225

flow rule using the following relation 226

{
ε̇ pl
}

= λ̇
∂Φ ({σ } , {η})

∂ {σ } (3) 227

where λ̇ the plastic multiplier, Φ is the yield surface and {η} 228

the back-stress tensor. The consistency condition or normal- 229

ity rule of associative plasticity [38] is defined as: 230

λ̇Φ̇ = 0 (4) 231

The evolution of the back-stress {η}, determines the type of 232

kinematic hardening introduced in the material model during 233

subsequent cycles of loading and unloading and corresponds 234

to the gradual shift of the yield surface in the stress-space. 235

A commonly used type of hardening is the linear kinematic 236

hardening assumption which dictates a constant plastic mod- 237

ulus during plastic loading such that: 238

{η̇} = C
{
ε̇ pl
}

(5) 239

where C is defined as the hardening material constant. During 240

a plastic process the current stress state, the plastic multiplier 241

and consequently the vector of plastic deformations are read- 242

ily evaluated through the solution of the nonlinear system of 243

Eqs. (1)–(5) [49]. 244

Substituting Eq. (3) into relation (1) and using relation (2) 245

the following equation is derived: 246

{σ̇ } = [D]
({ε̇} − λ̇ {α}) (6) 247

where 248

{α} = ∂Φ/∂ {σ } 249
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is a 6 × 1 column vector. From the consistency condition250

defined in Eq. (4) the following relation is established:251

λ̇Φ̇ = 0 ⇒ λ̇
(
{α}T {σ̇ } + {b}T {η̇}

)
= 0 (7)252

where253

{b} = ∂Φ/∂ {η}254

where again {b} is a 6 × 1 column vector.255

The plastic multiplier assumes a positive value when256

the material yields λ̇ >0 and thus relation (7) reduces to:257

{α}T {σ̇ } + {b}T {η̇} = 0 ⇒ {α}T {σ̇ } = − {b}T {η̇} (8)258

Pre-multiplying relation (6) with {α}T the following equation259

is derived:260

{α}T {σ̇ } = {α}T [D]
(
{ε̇} − λ̇ {α}T

)
(9)261

Substituting Eq. (8) into Eq. (9) the following relation is262

established:263

−{b}T {η̇} = {α}T [D]
({ε̇} − λ̇ {α}) (10)264

In classical plasticity the hardening law is defined as a relation265

between the back-stress tensor and the plastic strain tensor.266

This relation can be either rate dependent or rate independent.267

In any case, the back-stress is finally derived as a function of268

the plastic multiplier λ̇ and one can write:269

{η̇} = λ̇G ({η} , Φ) (11)270

where G is defined herein as the hardening function. Sub-271

stituting relation (11) into Eq. (10) the following relation is272

derived:273

−{b}T λ̇G ({η} , Φ) = {α}T [D]
({ε̇} − λ̇ {α}) (12)274

Rearranging and solving for the plastic multiplier the follow-275

ing expression is derived:276

λ̇ = κ {α}T [D] {ε̇} (13)277

where κ is a scalar that assumes the following form:278

κ =
⎛
⎝−{b}T

︸︷︷︸
1×6

G ({η} , Φ)︸ ︷︷ ︸
6×1

+{α}T
︸︷︷︸
1×6

[D]︸︷︷︸
6×6

{α}︸︷︷︸
6×1

⎞
⎠

−1

(14)279

In the case of the elastic perfectly plastic material G = 0, and280

relation (13) coincides with the Karray–Bouc formulation281

described in [15]. Equations (8)–(13) hold when yielding has282

occurred, either in the positive or in the negative semi-plane283

and thus by introducing the following Heaviside functions:284

H1 (Φ) =
{

1, Φ = 0
0, Φ < 0

, H2
(
Φ̇
) =

{
1, Φ̇ > 0
0, Φ̇ < 0

(15)285

a single relation is established for the plastic multiplier, in286

the whole domain of the strain tensor:287

λ̇ = H1 H2κ {α}T [D] {ε̇} (16)288

Instead of describing the cyclic behavior of a material in a 289

step-wise approach considering the domains of non-smooth 290

Heaviside functions [Eq. (15)], Casciati [15], proposed the 291

smoothening of the latter, introducing additional material 292

parameters. According to this approach, the two Heaviside 293

functions are approximated using the following expressions: 294

H1 =
∣∣∣∣
Φ ({σ } , {η})

Φ0

∣∣∣∣
N

, N ≥ 2 (17) 295

and: 296

H2 = β + γ sgn
(
Φ̇
)

(18) 297

where N , β and γ are model parameters and Φ0 is the maxi- 298

mum value of the yield function or yield point. In the special 299

case where β = γ = 0.5, the unloading stiffness is equal to 300

the elastic one. The total derivative Φ̇ in Eq. (18) is derived 301

from the following expression 302

Φ̇ = ∂Φ

∂{σ } ˙{σ } + ∂Φ

∂{η} ˙{η} (19) 303

Substituting the plastic multiplier from Eq. (16) into rela- 304

tion (6) and rearranging, the following expression is derived: 305

{σ̇ } = [D] ([I ] − H1 H2 [R]) {ε̇} (20) 306

where [I ] is the 6×6 identity matrix and [R] is evaluated as: 307

[R]︸︷︷︸
6×6

= κ {α}︸︷︷︸
6×1

{α}T
︸︷︷︸
1×6

[D]︸︷︷︸
6×6

(21) 308

Matrix [R] in equation determines the interaction relation 309

between the components of the stress tensor at yield so that 310

the consistency condition in relation (7) is satisfied. 311

The corresponding smooth back-stress evolution law can 312

be derived accordingly by substituting Eq. (16) into Eq. (11): 313

{η̇} = H1 H2G ({η} , Φ)
[

R̃
]
{ε̇} (22) 314

where
[
R̃
]

is the corresponding hardening interaction matrix 315

defined by the following relation 316

[
R̃
]

=
(
−{b}T G ({η} , Φ) + {α}T [D] {α}

)−1 {α}T [D] 317

(23) 318

Equations (20) and (22) define a smooth plasticity model, 319

valid on the overall domain of the material cyclic response. In 320

classical plasticity the transition from the elastic to the inelas- 321

tic regime, and vice-versa, is controlled through the definition 322

of the yield function and the accompanying hardening law 323

(Fig. 1a). In this work, this transition is smoothed through 324

the introduction of parameters H1 and H2 thus allowing for a 325

more versatile approach on the hysteretic modelling of mate- 326

rials. In Fig. 1b, the corresponding evolution of the smooth 327

Heaviside functions H1 and H2 is schematically presented 328

over a full loading-unloading-reloading cycle. It is deduced 329

from Eqs. (17), (18) and (20) that when either H1 or H2 is 330
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Fig. 1 a Classical plasticity hysteresis. b Smoothed plasticity hysteresis

equal to zero, the material behaves elastically. The elastic331

material behaviour corresponds to either small values of the332

ratio Φ/Φ0 or elastic unloading (in which case Φ̇ < 0). On333

the other hand, when both H1 = 1 and H2 = 1 the material334

yields.335

Although rate forms are used herein for the sake of for-336

malism, an incremental procedure is implemented for their337

solution, described in Sect. 5.3. The continuum tangent mod-338

ulus of the model is readily derived from Eq. (20) as339

[D]T = [D] ([I ] − H1 H2 [R]) (24)340

In the case where a return-mapping scheme is implemented341

for the solution of Eqs. (20) and (22), a consistent, smooth,342

modulus can also be defined, following the procedure intro-343

duced in [50]. The implications of the selection of an appro-344

priate material modulus in conjunction with the solution pro-345

cedure implemented are also discussed in [56].346

2.2 Test case347

The behaviour of the smoothed Heaviside function is pre-348

sented through an illustrative example. A von-Mises no349

hardening material is considered with the following mate-350

rial properties, namely E = 210 GPa, σy = 235 MPa,351

N = 2, β = 0.1 and γ = 0.9. One cycle of imposed strain352

is applied and the corresponding time history is presented353

in Fig. 2a. The resulting stress–strain hysteresis loop is pre-354

sented in Fig. 2b. Due to the small value of parameter N ,355

the transition from the elastic to the inelastic regime of the356

response is smooth. Furthermore, the particular choice of357

parameters β and γ with β < γ results in a bulge hysteresis358

loop, since the material stiffness at the beginning of unload-359

ing is slightly larger than the stiffness of elastic loading.360

In Fig. 2c, the time history of the smoothed Heaviside361

function H1 is presented. The graph displays subsequent362

regions of elastic loading, yielding and elastic unloading cor- 363

responding to the stress–strain hysteresis loop presented in 364

Fig. 1b. In Fig. 2d H1 is multiplied by the sign of the corre- 365

sponding normal stress and plotted with respect to the strain. 366

Small values of imposed strain correspond to small values of 367

H1 and the elastic response is retrieved in Fig. 2b. Finally, in 368

Fig. 2e and f the evolution of function H2 is presented with 369

respect to time and strain respectively. As predicted by the 370

model, in elastic loading it holds that H1 = 1 in both direc- 371

tions of strain. However, during unloading the value of H1 372

turns into H1 = β−γ = −0.8. As long as the value H1 is not 373

sufficiently small, the stiffness retrieved during unloading is 374

different than that of the elastic loading. 375

The smooth hysteretic model implemented in this work is 376

based on the Karray–Bouc model of hysteresis [16]. How- 377

ever, instead of relying on the assumptions of von-Mises yield 378

and linear kinematic hardening, the constitutive formulation 379

proposed herein accounts for any type of yield function and 380

kinematic hardening, within the framework of classical rate- 381

independent plasticity. The advantages of a Bouc–Wen type 382

model accounting for deformation dependent hardening were 383

recently highlighted in [47,60] where the linear kinematic 384

hardening coefficient of the Bouc–Wen model is substituted 385

by a continuous function derived from calibration of experi- 386

mental data. 387

2.3 The hysteretic finite element scheme 388

Substituting Eq. (1) into (2) the following relation is estab- 389

lished 390

{σ̇ } = [D]
{
ε̇el
}

= [D]
(
{ε̇} −

{
ε̇ pl
})

(25) 391

Comparing Eqs. (20) and (25) the following expression 392

for the evolution of the plastic strain component is readily 393

derived: 394
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Fig. 2 a Imposed strain. b Stress–strain hysteresis loop. c Time history of smoothed Heaviside function H1. d Evolution of H1 (normalized by
the sign of the stress component) with respect to the imposed strain. e Time-history of Heaviside function H2, f evolution of H2 with respect to the
imposed strain

{
ε̇ pl
}

= H1 H2 [R] {ε̇} (26)395

where the interaction matrix [R] is defined in Eq. (21). The396

discrete formulation is derived on the basis of the following397

rate form of the principle of virtual displacements [57]398

∫

Ve

{ε}T {σ̇ } dVe = {d}T { ḟ
}

(27)399

where {d} is the vector of nodal displacements over the finite400

mesh, { f } is the corresponding vector of nodal forces and401

Ve is the finite volume of a single element. Only nodal loads402

are considered herein for brevity however the evaluation of403

body loads and surface tractions can be treated accordingly.404

Substituting Eq. (25) into the variational principle (27) the405

following relation is derived:406

∫

Ve

{ε}T [D] {ε̇} dVe −
∫

Ve

{ε}T [D]
{
ε̇ pl
}

dVe = {d}T { ḟ
}

407

(28)408

The following interpolation scheme is considered for the con-409

tinuous displacement field {u}410

{u} = [N ] {d} (29)411

with the accompanying strain-displacement compatibility412

relation:413

{ε} = [B] {d} (30)414

where {d} is the vector of displacements at the finite element 415

nodes, [N ] is the matrix of shape functions, {ε} is the vector 416

of strains evaluated at the nodes and [B] = ∂ [N ] is the strain- 417

displacement matrix [18]. Substituting Eq. (30) into Eq. (28) 418

the following relation is derived: 419

∫

Ve

[B]T [D] [B] dVe
{
ḋ
}−

∫

Ve

[B]T [D]
{
ε̇ pl
}

dVe = {
ḟ
}

420

(31) 421

Next, a set of interpolation functions [Nσ ] for the plastic part 422

of the strain
{
ε pl
}

is introduced, namely: 423

{
ε̇ pl
}

= [Nσ ]
{
ε̇

pl
cq

}
(32) 424

where
{
ε

pl
cq

}
is the vector of plastic strains measured at prop- 425

erly defined collocation points 426

{
ε

pl
cq

}
=
{{

ε
pl
cq

}1 {
ε

pl
cq

}2
. . .

{
ε

pl
cq

}ncq
}T

(33) 427

where ncq is the total number of collocation points within the 428

element. Substituting Eq. (32) in relation (31) the following 429

relation is finally derived: 430

[
kel
] {

ḋ
}−

[
kh
] {

ε̇
pl
cq

}
= {

ḟ
}

(34) 431
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where
[
kel
]

is the elastic stiffness matrix of the element432

[
kel
]

=
∫

Ve

[B]T [D] [B] dVe (35)433

and
[
kh
]

is the hysteretic matrix of the element.434

[
kh
]

=
∫

Ve

[B]T [D] [Nσ ] dVe (36)435

Both
[
kel
]

and
[
kh
]

are constant and inelasticity is controlled436

at the collocation points through the accompanying plastic437

strain evolution equations defined in Eq. (26). The latter is438

based on the smooth plasticity model presented in Sect. 2.1.439

However, any type of plastic evolution law can be imple-440

mented.441

The exact form of the interpolation matrix [Nσ ] depends442

on the element formulation and is also relevant to the stress443

recovery procedure implemented within the finite element444

formulation [56]. In this work the collocation points are445

chosen to coincide with the Gauss quadrature points where446

stresses are evaluated in standard FEM [65]. Furthermore,447

smooth evolution equations of the form of relation (26) are448

implemented. The classical formulation of classical plastic-449

ity however can be also used by considering the flow rule450

defined in relation (3).451

Equation (34) is the rate form of the equilibrium equa-452

tion. Considering zero initial conditions for brevity, rates are453

dropped and the equilibrium equation of the hysteretic finite454

element scheme assumes the following form455

[
kel
]
{d} −

[
kh
] {

ε
pl
cq

}
= { f } (37)456

Equation (37) is supplemented by the set of nonlinear equa- 457

tions accounting for the evolution of the plastic part of the 458

deformation components defined at the collocation points. 459

These are the rates of the plastic strain vector defined in Eq. 460

(33) and assume the following form at the component level 461

{
ε̇

pl
cq

}iq = Hiq
1 Hiq

2 [R]iq{ε̇cq
}iq

, iq = 1, . . . , ncq (38) 462

Equations (37) and (38) form the governing equations of the 463

hysteretic finite element scheme. The latter is then used to 464

describe the micro-scale nonlinear behaviour of the multi- 465

scale scheme introduced in this work. 466

3 The enhanced multiscale finite element method 467

3.1 Overview 468

The EMsFEM is briefly presented in this section as a refer- 469

ence for subsequent derivations. In Fig. 3 the FEM computa- 470

tional model of a composite heterogeneous structure is pre- 471

sented. A 2D periodic structure, meshed with quadrilateral 472

plane stress elements is considered for brevity. However, the 473

numerical method presented in this work is also established 474

for the case of 3D meshes. The corresponding applications 475

are presented in Sect. 6. Since EMsFEM is a computational 476

multiscale scheme, no requirements exist on the periodicity 477

of the underlying mesh [39]. 478

In the MsFEM the structure consists of two layers, namely 479

a fine-meshed layer up to the scale of the heterogeneities and 480

a coarse mesh of the macro-scale where the solution of the 481

discrete problem is performed. In Fig. 3, the fine element 482

mesh consists of 54 quadrilateral micro-elements and 70 483

micro-nodes while the coarse mesh consists of 6 quadrilateral 484

Fig. 3 Multiscale finite element procedure
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macro-elements and 12 macro-nodes. Furthermore, two dis-485

placement fields are established corresponding to each level486

of discretization.487

Thus, in the fine mesh the displacement of a micro-488

material point p is described by the micro-displacement vec-489

tor field490

{dm} = {
um (x, y) vm (x, y)

}T
491

Accordingly, the macro-displacement field is described by492

the vector493

{dM } = {
uM (x, y) vM (x, y)

}T
494

In general, the subscript m is used throughout this work to495

denote a micro-measure while the capital M is used to denote496

a macro-measure of the indexed quantity.497

Instead of implementing a one-step approach, i.e. solving498

the fine meshed FEM model, a two-step solution procedure499

is performed. In the first step, a mapping is numerically eval-500

uated that maps the fine mesh within each coarse-element501

to the corresponding macro-nodes. Next, the solution proce-502

dure is performed in the coarse mesh. Finally, the fine-mesh503

stress and strain history is retrieved by implementing the504

inverse micro-mapping procedure onto the results obtained505

on the coarse mesh.506

3.2 Numerical evaluation of micro-scale basis functions507

The numerical mapping is established by considering each508

type of coarse element and its corresponding fine mesh as509

a sub-structure. Considering groups of coarse-elements that510

bare the same geometrical and mechanical properties these511

coarse element types can be grouped into sets of represen-512

tative volume elements (RVE). In this work the term RVE513

will be used to denote the coarse element together with its514

underlying fine mesh structure as in [62]. For each RVE a515

homogeneous equilibrium equation is established consider-516

ing specific boundary conditions. The solution of this equi-517

librium problem forms a vector of basis functions that maps518

the displacement components of the fine mesh within the519

element to the macro-nodes of the RVE.520

In Fig. 4, the RVE finite element mesh of the periodic com-521

posite structure (Fig. 3) is presented. This mesh is assigned522

a local nodal numbering since it is solved as an independent523

structure.524

EMsFEM is based on the assumption that the discrete525

micro-displacements within the coarse element are interpo-526

lated at the macro-nodes using the following scheme:527

um (xi , yi ) =
nMacro∑

j=1

Ni j xx uM j +
nMacro∑

j=1

Ni j xyvM j528

vm (xi , yi ) =
nMacro∑

j=1

Ni j xyuM j +
nMacro∑

j=1

Ni jyyvM j (39)529

Fig. 4 Finite element mesh of an RVE

Ni j xx = N j xx (xi , yi ) , Ni jyy = N jyy (xi , yi ) , 530

Ni j xy = N j xy (xi , yi ) , i = 1, . . . , nmicro 531

where um, vm are the horizontal and vertical components 532

of the micro-nodes, nmicro is the number of micro-nodes 533

within the coarse element, nMacro is the number of macro- 534

nodes of the coarse element, (xi , yi ) are the local coordi- 535

nates of the micro-nodes, uM j , vM j are the horizontal and 536

vertical displacement components of the macro-nodes and 537

N j xx , N j xy, N jyy are the micro-basis functions. In MsFEM 538

as well as the interpolation techniques of the standard dis- 539

placement based finite element procedure [8] the interpolated 540

displacement fields are considered uncoupled. However in 541

EMsFEM the coupling terms Ni j xy are introduced that are 542

more consistent with the observation that a unit displacement 543

in the boundary of a deformable body may induce displace- 544

ments in both directions within the body. 545

It can be demonstrated [20,62] that a necessary and suf- 546

ficient condition for relations (39) to hold is that the micro- 547

basis functions adhere to the following property 548

nMacro∑
i=1

Ni j xx = 1
nMacro∑

i=1
Ni j xy = 0

nMacro∑
i=1

Ni jyx = 0
nMacro∑

i=1
Ni jyy = 1

, j = 1, . . . , nMacro 549

(40) 550

Further details on the numerical evaluation of the micro-basis 551

functions are given in the Appendix section. 552

Considering the micro to macro-displacement mapping 553

introduced in relation (39), the following equation can be 554

established in the micro-elemental level 555

{d}m(i) = [N ]m(i) {d}M (41) 556

where {d}m(i) is the nodal displacement vector of the ith 557

micro-element, [N ]m(i) contains the micro-basis shape func- 558

tions evaluated at the nodes of the ith micro-element while 559

{d}M is the vector of nodal displacements of the correspond- 560

ing macro-nodes. For the case of micro-element #6 of the 561

coarse-element presented in Fig. 4, the corresponding micro 562

and macro-displacement vectors assume the following form, 563

namely 564
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{d}m(6) = {
um9 vm9 um10 vm10 um14 vm14 um13 vm13

}T
565

(42)566

and567

{d}M = {
uM1 vM1 uM2 vM2 uM6 vM6 uM5 vM5

}T
(43)568

respectively. Variables umi and vmi in Eq. (42) stand for the569

horizontal and vertical displacement component of micro-570

node i while uM j and vM j in Eq. (43) are the correspond-571

ing macro-displacement components of coarse node j . The572

micro-basis shape function matrix is defined as:573

[N ]m(6)574

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N9,1xx N9,1xy N10,1xx N10,1xy N14,1xx N14,1xy N13,1xx N13,1xy

N9,1xy N9,1yy N10,1xy N10,1yy N14,1xy N14,1yy N13,1xy N13,1yy

N9,2xx N9,2xy N10,2xx N10,2xy N14,2xx N14,2xy N13,2xx N13,2xy

N9,2xy N9,2yy N10,2xy N10,2yy N14,2xy N14,2yy N13,2xy N13,2yy

N9,3xx N9,3xy N10,3xx N10,3xy N14,3xx N14,3xy N13,3xx N13,3xy

N9,3xy N9,3yy N10,3xy N10,3yy N14,3xy N14,3yy N13,3xy N13,3yy

N9,4xx N9,4xy N10,4xx N10,4xy N14,4xx N14,4xy N13,4xx N13,4xy

N9,4xy N9,4yy N10,4xy N10,4yy N14,4xy N14,4yy N13,4xy N13,4yy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

575

(44)576

The (2nmicro × 1) vector of nodal displacements of the577

micro-mesh {d}m is evaluated as:578

{d}m = [N ]m {d}M (45)579

where in this example580

{d}m = {
um1 vm1 um2 vm2 um3 vm3 . . . um16 vm16

}T
581

(46)582

and {d}M is defined in Eq. (43).583

Matrix [N ]m in Eq. (45) is a 32 × 8 matrix containing584

the components of the micro-basis shape functions evaluated585

at the nodal points
(
x j , y j

)
, j = 1, . . . , 16 of the micro-586

mesh. According to the property introduced in Eq. (40), each587

column of [N ]m corresponds to a deformed configuration of588

the RVE where the corresponding macro-degree of freedom589

is equal to unity and all of the remaining macro-degrees of590

freedom are equal to zero.591

Deriving micro-basis functions with these properties can592

be accomplished by considering the following boundary593

value problem594

[K ]RV E {d}m = {∅}595

{d}S = {
d̄
}

(47)596

where [K ]RV E is the stiffness matrix of the RVE, {d}S is a597

vector containing the nodal degrees of freedom defined at598

the boundary S of the RVE and
{
d̄
}

is a vector of prescribed599

displacements. The r.h.s vector {/0} in Eq. (47) stands for the600

zero vector.601

The RVE stiffness matrix [K ]RV E is formulated using the602

standard finite element method [8]. Thus, [K ]RV E is assem-603

bled by evaluating the contribution of the individual stiffness604

of each micro-element in the stiffness of the RVE, the latter 605

being considered as a stand-alone structure. In this work, the 606

direct stiffness method [65] is implemented for that purpose. 607

In the example case presented in Fig. 4, the RVE consists of 608

16 nodes and 9 quadrilateral plane stress elements. Therefore, 609

the corresponding [K ]RV E is a 32 × 32 matrix. 610

Each column of the shape function matrix [N ]m in Eq. (45) 611

corresponds to a displacement pattern derived from the solu- 612

tion of the linear system introduced in Eq. (47) for a specific 613

set of boundary conditions. Thus, for the example case pre- 614

sented in Fig. 4, eight (8) different prescribed displacement 615

vectors
{
d̄
}

need to be defined and the corresponding solu- 616

tions need to be performed. In this work, the solution of the 617

boundary value problem established in Eq. (47) is performed 618

using the Penalty method [9,23]. 619

The type of the boundary conditions implemented for the 620

evaluation of the micro-basis shape functions significantly 621

affects the accuracy of EMsFEM. Four different types of 622

boundary conditions are established in the literature namely 623

linear boundary conditions, periodic boundary conditions, 624

oscillatory boundary conditions with oversampling and peri- 625

odic boundary conditions with oversampling. In the first case, 626

the displacements along the boundaries of the coarse element 627

are considered to vary linearly. Periodic boundary conditions 628

are established by considering that the displacement compo- 629

nents of periodic nodes lying on the boundary of the coarse 630

element differ by a fixed quantity that varies linearly along 631

the boundary of the coarse element. The oscillatory bound- 632

ary condition method with oversampling considers a super- 633

element of the coarse element whose basis functions are eval- 634

uated using the linear boundary condition approach. Finally, 635

the periodic boundary conditions with oversampling com- 636

bine the oversampling technique with the periodic boundary 637

condition method, thus allowing for the implementation of 638

the latter in non-periodic RVE meshes [39,63]. 639

In this work, the cases of linear and periodic boundary 640

conditions are considered. An example on the application of 641

the periodic boundary conditions is described in the Appen- 642

dix, however further details on the procedure implemented 643

for the derivation of the micro-basis functions can be found 644

in [20,63]. 645

3.3 Macro equivalent micro-nodal forces 646

The interpolation scheme introduced in Eq. (45) maps the 647

macro-displacement vector to the micro-displacement com- 648

ponents of the fine mesh. Through this approximation, the 649

solution of the structural problem can be performed in the 650

coarse mesh. Consequently, the external applied loads have 651

to also be defined in the coarse mesh nodes. Therefore, a pro- 652

cedure is required that maps the external applied loads acting 653

on the micro-mesh to equivalent loads acting on the coarse 654

mesh nodes. By means of equivalence of the potential energy 655
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Fig. 5 Micro to macro-force equivalence

between the macro and the micro-scale [63], the following656

relation is derived for the equivalent macro-loads657

{F}M(i) = [N ]T
m(i) {F}m(i) (48)658

where {F}M(i) is the equivalent force vector of the micro-659

nodal forces {F}m(i) of the ith micro-element. Since these660

equivalent forces are derived in terms of an energy equiva-661

lence principle, compatibility within the fine mesh needs to662

be enforced by calculating a set of “perturbed” micro-forces.663

The micro-forces, acting on the micro-nodes will result in664

the correct stress distribution within the fine mesh without665

altering the displacement assumption along the boundary of666

the coarse-element.667

Therefore, an additive decomposition scheme is enforced668

where the effect of a micro-force nodal vector { f }p acting669

on a micro-node p is decomposed into the effect of the same670

force on the fine mesh but considering fixed boundaries and671

the effect of the macro-equivalent forces on the coarse ele-672

ment (Fig. 5).673

The local effect of the “perturbed” micro-forces on the674

micro-mesh is numerically evaluated from the solution of675

the following equilibrium equation676

[K ]RV E

{
d̃
}

m
=
{

F̃
}

m
677

{
d̃
}

S
= {

d̄
}

(49)678

where
{

F̃
}

m
is the vector of nodal “perturbed” micro-forces,679 {

d̃
}

m
is the corresponding nodal displacement vector, while680 {

d̃
}

S
is the vector of imposed boundary conditions

{
d̄
}
. The681

boundary conditions considered are similar to the boundary682

conditions implemented for the evaluation of the micro to683

macro mapping [Eq. (47)] [62,63] .684

The evaluation of the “perturbed” micro-displacement685

vector is crucial for the efficiency of the multiscale scheme686

and will be further treated in Sect. 5.2 where the numerical687

aspects of the proposed method are presented. Equivalently,688

the actual stress field within the micro-element needs to be 689

evaluated taking into account the contribution of both the 690

micro-forces evaluated from the micro to macro-mapping 691

and the “perturbed” forces. 692

4 The hysteretic multiscale analysis scheme 693

4.1 Equilibrium in the fine scale 694

In this work the hysteretic finite element scheme defined by 695

Eqs. (37) and (38) is used to formulate the governing equa- 696

tions of the micro-scale. Thus, at the micro-scale the follow- 697

ing relations are defined 698

[
kel
]

m(i)
{d}m(i) −

[
kh
]

m(i)

{
ε

pl
cq

}
m(i)

= { f }m(i) (50) 699

and 700

{
ε̇

pl
cq

}iq

m(i)
= Hiq

1 Hiq
2 [R]iq{ε̇cq

}iq
m(i), iq = 1, . . . , ncq 701

(51) 702

where the index m (i) denotes the corresponding measure 703

of the ith micro-element. Substituting Eq. (41) into Eq. (50) 704

and pre-multiplying with [N ]T
m(i) the following relation is 705

derived: 706

[
kel
]M

m(i)
{d}M −

[
kh
]M

m(i)

{
ε

pl
cq

}
m(i)

= { f }M
m(i) (52) 707

where 708

[
kel
]M

m(i)
= [N ]T

m(i)

[
kel
]

m(i)
[N ]m(i) (53) 709

is the elastic stiffness matrix of the ith micro-element mapped 710

onto the macro-element degrees of freedom while
[
kh
]M

m(i) is 711

the corresponding hysteretic matrix of the ith micro-element, 712

evaluated by the following relation: 713
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[
kh
]M

m(i)
= [N ]T

m(i)

[
kh
]

m(i)
(54)714

Finally, { f }M
m(i) in Eq. (52) is the equivalent nodal force vec-715

tor of the micro-element mapped onto the macro-nodes of716

the coarse element and is evaluated from Eq. (55) below717

{ f }M
m(i) = [N ]T

m(i) { f }m(i) (55)718

Rearranging terms, Eq. (52) can be cast in the following form719

[
kel
]M

m(i)
{d}M = { f }M

m(i) − { fh}M
m(i) (56)720

where721

{ fh}M
m(i) = −

[
kh
]M

m(i)

{
ε

pl
cq

}
m(i)

(57)722

can be considered as a nonlinear correction to the externally723

applied load vector { f }M
m(i).724

Equation (52) is a multiscale equilibrium equation involv-725

ing the displacement vector {d}M that accounts for the nodal726

displacements of the coarse-element nodes and the plastic727

part of the strain tensor
{
ε

pl
cq

}
m(i)

that is evaluated at col-728

location points within the micro-scale element mesh. Using729

the micro-displacement to macro-displacement interpolation730

relation [Eq. (41)] the micro-element state matrices, namely731

the elastic stiffness matrix and the hysteretic matrix, defined732

in Eqs. (35) and (36) respectively are mapped onto their mul-733

tiscale counterparts
[
kel
]M

m(i) and
[
kh
]M

m(i).734

The derived multiscale elastic stiffness and hysteretic735

matrices are constant and need only be evaluated once during736

the analysis procedure. Therefore, the corresponding micro-737

basis functions introduced in relation (47) are also evaluated738

once, thus significantly reducing the required computational739

cost.740

4.2 Micro to macro scale transition741

Having established the micro-element equilibrium in Eq. (52)742

in terms of macro-displacements using the micro-basis map-743

ping introduced in Eq. (41), a procedure is required to also744

formulate the global structural equilibrium equations in terms745

of macro-quantities. Denoting with a subscript M the corre-746

sponding macro-measures over the volume V of the coarse747

element, the Principle of Virtual Work is established at the748

coarse scale as749

∫

VM

{ε}T
M {σ }M dVM = {d}T

M { f }M (58)750

where { f }M is the vector of nodal loads imposed at the coarse751

element nodes. Equivalently to relation (34) the variational752

principle of equation (58) gives rise to the following equation:753

∫

VM

{ε}T
M {σ }M dVM =

[
K el
]M

C R( j)
{d}M 754

−
[

K h
]M

C R( j)

{
ε

pl
cq

}
M

(59) 755

where
[
K el
]M

C R( j) ,
[
K h
]M

C R( j) are the equivalent elastic stiff- 756

ness and hysteretic matrix of the jth coarse element respec- 757

tively while
{
ε

pl
cq

}
M

is the vector of plastic strains defined 758

at the collocation points. Within the multiscale finite ele- 759

ment framework, these quantities are not known a priori and 760

need to be expressed in terms of micro-scale measures, thus 761

accounting for the micro-scale effect upon the macro-scale 762

mesh. This is accomplished by postulating that the strain 763

energy of the coarse element is additively decomposed into 764

the contributions of each micro-element within the coarse- 765

element. Thus, the following relation is established: 766

∫

V

{ε}T
M {σ }M dV =

mel∑
i=1

∫

Vm(i)

{ε}T
m(i) {σ }m(i) dV(i) (60) 767

where {ε}m(i) , {σ }m(i) are the micro-strain and micro-stress 768

field defined over the volume Vm(i) of the ith micro-element. 769

Using relation (37), the following equation is established for 770

the r.h.s of equation (60) 771

mel∑
i=1

∫

Vm(i)

{ε}T
m(i) {σ }m(i) dV(i) 772

=
mel∑
i=1

(
{d}T

m(i)

[
kel
]

m(i)
{d}m(i) 773

−{d}T
mi

[
kh
]

m(i)

{
ε

pl
cq

}
m(i)

)
(61) 774

Substituting relation (45) into relation (61) gives rise to the 775

following expression 776

mel∑
i=1

∫

Vmi

{ε}T
m(i) {σ }m(i) dVi = {d}T

M 777

·
mel∑
i=1

(
[N ]T

M(i)

[
kel
]

m(i)
[N ]M(i) {d}M 778

− [N ]T
M(i)

[
kh
]

m(i)

{
ε

pl
cq

}
m(i)

)
(62) 779

Substituting Eqs. (59) and (62) into Eq. (60), the following 780

expression is derived: 781

[
K el
]M

C R( j)
{d}M −

[
K h
]

C R( j)

{
ε pl
}

cq
782

=
mel∑
i=1

[
kel
]M

m(i)
{d}M −

mel∑
i=1

[
kh
]M

m(i)

{
ε

pl
cq

}
m(i)

(63) 783
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Relation (63) holds for every compatible vector of nodal dis-784

placements {d}M as long as:785

[
K el
]M

C R( j)
=

mel∑
i=1

[
kel
]M

m(i)
(64)786

and787

[
K h
]M

C R( j)

{
ε

pl
cq

}
M

=
mel∑
i=1

[
kh
]M

m(i)

{
ε

pl
cq

}
m(i)

(65)788

thus, substituting in relation (59) the following multiscale789

equilibrium equation is derived for the coarse element:790

[
K el
]M

C R( j)
{d}M = { f }M − { fh}M (66)791

Vector { fh}M in Eq. (66) is the nonlinear correction to the792

external force vector. This correction is evaluated by consid-793

ering the micro to macro mapping arising from the evolution794

of the plastic strains within the micro-structure.795

{ fh}M = −
mel∑
i=1

[
kh
]M

m(i)

{
ε

pl
cq

}
m(i)

=
mel∑
i=1

{ fh}M
m(i) (67)796

where { fh}M
m(i) has been defined in Eq. (57) while the plastic797

strain vectors
{
ε

pl
cq

}
m(i)

are considered to evolve according798

to relation (26).799

Equations (66) and (67) are used to derive the equilibrium800

equation at the structural level as will be described in the801

next section. In analogy to the equilibrium equation of the802

micro-element (mapped onto the coarse element) defined in803

relation (56), the hysteretic force nodal load vector { fh}M is804

the nonlinear correction to the external force vector { f }M at805

the coarse element level. However, the evolution of { fh}M806

is manifested through the evolution of the plastic deforma-807

tions at the micro-level and is therefore the link between the808

inelastic processes occurring at the fine scale and the macro-809

scopically observed nonlinear structural behaviour.810

The coarse element stiffness matrices are evaluated con-811

sidering only their individual micro-mesh properties. Thus,812

they are independent and their evaluation can be performed813

in parallel.814

5 Solution procedure815

5.1 Governing equations in the macro-scale816

Considering the general case of a coarse mesh with ndofM817

free macro-degrees of freedom and using Eq. (66), the global818

equilibrium equations of the composite structure can be819

established in the coarse mesh. In the dynamic case the fol-820

lowing equation is established:821

[M]C R
{
Ü
}

M + [C]C R
{
U̇
}

M 822

+
[

K el
]

C R
{U }M = {F}M − {Fh}M (68) 823

where [M]C R , [C]C R ,
[
K el
]

C R are the (ndofM × ndofM ) 824

macro-scale mass, viscous damping and stiffness matrix 825

respectively, evaluated at the coarse mesh. 826

The formulation of the mass matrix, defined at the coarse 827

mesh, is established on the grounds of the micro-basis shape 828

functions presented in Sect. 3. This leads to a multi-scale 829

consistent mass matrix formulation where the derived mass 830

matrix is non-diagonal. Well-known mass diagonalization 831

techniques can then be performed to derive an equivalent 832

lumped mass matrix [18]. However, the implications of such 833

approaches are beyond the scope of this work. Similarly, the 834

viscous damping can be of either the classical or non-classical 835

type [17]. 836

The global stiffness matrix of the structure, defined at 837

the coarse mesh, is formulated through the direct stiffness 838

method from the contributions of the coarse elements equiv- 839

alent stiffness matrices
[
K el
]M

C R( j) [Eq. (64)]. Accordingly, 840

the (ndofM × 1) vector {U }M consists of the nodal macro- 841

displacements. 842

The external load vector {F}M and the hysteretic load 843

vector {Fh}M are assembled considering the equilibrium of 844

the corresponding elemental contributions { f }M and { fh}M , 845

defined in Eqs. (58) and (67) respectively, at coarse nodal 846

points. 847

Equation (68) is supplemented by the evolution equations 848

of the micro-plastic strain components defined at the colloca- 849

tion points within the micro-elements. These equations can 850

be established in the following form: 851

{
Ė pl

cq

}
m

= [G]
{

Ėcq
}

m (69) 852

where the vector 853

{
Ė pl

cq

}
m

=
{{

ε̇
pl
cq

}
m(1)

{
ε̇

pl
cq

}
m(2)

. . .
{
ε̇

pl
cq

}
m(mel )

}T
(70) 854

holds the plastic strain components evaluated at the colloca- 855

tion points of each micro-element and 856

{
Ėcq

}
m =

{{
ε̇cq
}

m(1)

{
ε̇cq
}

m(2)
. . .

{
ε̇cq

}
m(mel )

}T
(71) 857

are the corresponding total strain components. Index mel 858

denotes the total number of micro-elements within each 859

coarse element. Matrix [G] in relation (69) is a block diago- 860

nal matrix that assumes the following form 861
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[G] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣

[g1]
. . . [

gncq

]

⎤
⎥⎦

(1)

. . . ⎡
⎢⎣

[g1]
. . . [

gncq

]

⎤
⎥⎦

(mel )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

862

(72)863

where
[
giq
]
, iq = 1, . . . , ncq are 6×6 sub-matrices defined864

as865

giq(i) = Hiq
1m(i)Hiq

2m(i) [R]iq
m(i)866

and ncq is the total number of collocation points within each867

micro-element.868

Equations (69) are independent and thus can be solved869

in the micro-element level resulting in an implicitly paral-870

lel scheme. Both relations (69) and (72) depend on the cur-871

rent micro-stress state within each micro-element and conse-872

quently on the micro-strain and micro-displacement distrib-873

ution. Thus, a procedure needs to be established that down-874

scales the macro-displacements {U }M evaluated at the coarse875

mesh to the micro-displacements of the micro-nodes within876

the fine mesh.877

5.2 Downscale computations878

Considering that the value of the coarse mesh displace-879

ments {U }M is known, the interpolation scheme introduced880

in relation (39) can be used to derive the micro-displacement881

components within each coarse element. Extracting the882

nodal macro-displacements {d}M of a macro-element from883

{U }M the corresponding micro-displacement vector of the884

ith micro-element {d}m(i) is derived through relation (41)885

that is re-written here for brevity886

{d}m(i) = [N ]m(i) {d}M (73)887

However, this micro-displacement vector only contains infor-888

mation derived from the macro to micro-displacement map-889

ping and does not take into account the local effect of the890

micro-displacement on the neighbouring micro-nodes, as891

discussed in Sect. 3.3. Therefore, the actual displacement892

vector
{
d̄
}

m(i) that is compatible with the strain field within893

the micro-element is evaluated as894

{
d̄
}

m(i) = {d}m(i) +
{

d̃
}

m(i)
(74)895

where
{

d̃
}

m(i)
is evaluated from relation (49). The total strain896

vector at the collocation points is then evaluated by using the897

strain-displacement relation defined in Eq. (30)898

{
εcq
}iq

m(i) = [B]iq
m(i)

{
d̄
}

m(i) , iq = 1, . . . , ncq (75)899

where ncq is the number of collocation points within the ele- 900

ment and [B]iq
m(i) is the strain-displacement matrix evaluated 901

at each collocation point iq. The rate of total strains is derived 902

accordingly through 903

{
ε̇cq
}iq

m(i) = [B]iq
m(i)

{ ˙̄d
}

m(i)
, iq = 1, . . . , ncq (76) 904

The total stresses at the collocation points are evaluated by 905

integrating Eqs. (25) and (22) defined at the micro-scale as 906

{
σ̇cq
}iq

m(i) = [D]m(i)

({
ε̇cq
}iq

m(i) −
{
ε̇

pl
cq

}iq

m(i)

)
(77) 907

and 908

{
η̇cq
}iq

m(i) 909

= Hiq
1m(i) Hiq

2m(i)G
(
{η}iq

m(i) , Φ
iq
m(i)

) [
R̃
]iq

m(i)

{
ε̇cq
}iq

m(i) 910

(78) 911

respectively. Equations (77) and (78) are supplemented by 912

the following set of evolution equations for the plastic strain 913

{
ε̇

pl
cq

}iq

m(i)
= Hiq

1m(i) Hiq
2m(i) [R]iq

m(i)

{
ε̇cq
}iq

m(i) (79) 914

Since the current micro-stress state is required to evaluate 915

the Heaviside functions Hiq
1m(i), Hiq

2m(i) [Eqs. (17) and (18) 916

respectively] and the interaction matrix [R]m(i) [Eq. (21)] an 917

iterative procedure is required at the micro-element level. 918

5.3 Newton iterative scheme 919

In this section, the nonlinear static analysis procedure imple- 920

mented is presented for clarity, while the dynamic case is 921

treated accordingly using the Newmark average acceleration 922

method to integrate the equations of motion [17]. 923

Dropping the inertia and viscous damping terms from Eq. 924

(68) the following equation is derived: 925

[
K el
]

C R
{d} = {F}M − {Fh}M (80) 926

Considering an iterative Newton–Raphson incremental 927

scheme the following equation is established 928

[
K el
]

C R

j
i {�d} = j

i {�P} − j
i {�Fh}M (81) 929

where j stands for the current iteration within the current 930

loading step i, j
i {�P} is the current externally applied force 931

increment that at the beginning of the load increment is eval- 932

uated as: 933

0
i {�P} = i

{
Pext}− i−1

{
Pext} (82) 934

while j
i {�Fh}M is the incremental nonlinear correction to 935

the externally applied load vector assembled considering the 936

individual contribution of each coarse element vector { fh}M 937

defined in Eq. (67). Equation (81) is supplemented by nmel × 938
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ncq incremental equations of the plastic component of the939

strain tensors, defined at the fine-scale940

j
i

{
�E pl

cq

}
m

= j
i [G] j

i

{
�Ecq

}
m (83)941

where nel is the total number of coarse elements.942

Thus, considering that convergence has been established at943

the (i − 1)th incremental step, the following procedure is944

used to evaluate the structural response at the next incremen-945

tal step, solving equation946

[
K el
]

1
i {�d} = 1

i {�P} − 1
i {�Fh}M (84)947

where the incremental plastic deformation vector at the948

beginning the ith step has been evaluated at the end ( jth iter-949

ation) of the previous step, thus:950

0
i

{
�E pl

cq

}
m

= j
i−1

{
�E pl

cq

}
m

(85)951

Solving Eqs. (84) and (85), the current increment of the dis-952

placement vector 1
i {�d} is evaluated. Next, the correspond-953

ing incremental strains need to be evaluated at the colloca-954

tion points of the fine-scale mesh taking into account both955

the macro-displacement contribution and the perturbed dis-956

placement contribution (Eq. (74)).957

Therefore, for each coarse element the following proce-958

dure is established:959

1. Solve Eq. (49) for the fine-scale residual forces evaluated960

at the beginning of the step and retrieve the perturbed961

displacement vector 1
i

{
�d̃
}

m(i)
962

2. Evaluate the fine-scale incremental displacement com-963

ponents from Eq. (73)964

1
i {�d}m(i) = [N ]m(i)

1
i {d}M (86)965

3. The total strains at the collocation points are then derived966

as967

1
i

{
εcq
}iq

m(i) = [B (ξ, η)]
(

i−1 {d} +1
i � {d}m(i)968

+1
i

{
�d̃
}

m(i)

)
(87)969

The total stresses are derived by integrating Eqs. (77)–(79).970

This is a system of first order nonlinear differential equations.971

In this work, an Euler scheme is implemented to retrieve the972

updated stress field at the Gauss points for brevity. How-973

ever, more refined sub-stepping explicit [32,51] or implicit974

methods [49] can be implemented for the solution of the975

incremental equations of plasticity.976

Thus, at the end of the iterative procedure, both the cur-977

rent stress field and the interaction matrix [R] are evaluated.978

Therefore, the updated plastic strain vector is derived as:979

1
i

{
ε

pl
cq

}iq

m(i)
= 1

i H iq
1

1
i H iq

2
1
i [R]iq 1

i

{
εcq
}iq

m(i) (88) 980

Having evaluated the nodal displacement field and plastic 981

strain field at the micro-element level the corresponding 982

incremental micro-forces 1
i {� f }m(i) can be evaluated using 983

relation (50). These are then used to derive the next increment 984

of the perturbed micro-displacement vector 2
i

{
�d̃
}

m(i)
, 985

using relation (49) as well as the increment of the macro 986

equivalent nodal forces using relation (55). Assembling at 987

the coarse element level the increment of the internal forces, 988

defined at the coarse level is readily derived as: 989

{
Pint

}1

i
=
{

Pint
}0

i
+
[

K el
]1

i
{�d} −

[
K pl

]1

i

{
�ε pl

p

}
990

(89) 991

The current internal force vector is then compared to the 992

external applied load vector through an appropriate conver- 993

gence criterion and the iterative procedure continues until 994

convergence. Any type of convergence criterion can be used; 995

a work based criterion is implemented herein assuming the 996

following form [23]: 997

W 1
i =

{
�U 1

i

}({
Pext}

i −
{

Pint
}1

i

)
≤ ε (90) 998

where ε is a user defined tolerance. Usually ε is chosen such 999

that 10−7 ≤ ε ≤ 10−4. 1000

Relations (80)–(89) define an explicit Newton solution 1001

scheme, where the state matrices remain constant through- 1002

out the analysis procedure. The resulting iterative scheme 1003

relies on constant global matrices and does not require the re- 1004

evaluation and re-factorization of the global stiffness matrix. 1005

Inelasticity is introduced as an additional load vector that 1006

acts as a nonlinear correction to the externally applied load. 1007

This hysteretic load vector is evaluated by considering the 1008

evolution of the plastic strain at collocation points defined in 1009

the micro-scale. 1010

Consequently, the re-evaluation of the micro to macro 1011

numerical mapping [relation (47)] is not required either. The 1012

numerical schema described herein can be extended for the 1013

case of nonlinear dynamic analysis by introducing a time- 1014

marching method on top of the iterative procedure. Both the 1015

static and dynamic analysis case has been treated and their 1016

corresponding results are discussed in the Sect. 6. 1017

5.4 Comparison to the classical iterative solution procedure 1018

The EMsFE method significantly reduces the size of the finite 1019

element mesh to be solved, since the solution procedure is 1020

applied in the coarse mesh. This is accomplished by the eval- 1021

uation of a numerical mapping that interpolates the displace- 1022

ment components of the fine mesh onto the displacement 1023

components of the coarse mesh through relation (39). 1024
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Fig. 6 Schematic flow chart of the classical multiscale finite element scheme implementing a N–R iterative procedure

The evaluation of this numerical mapping is performed1025

through the procedure described in Sect. 3.2. This proce-1026

dure involves the solution of an indeterminate structure and1027

thus the derived micro-basis shape functions depend on the1028

mechanical properties of the constituents of the micro-mesh.1029

Thus, in a nonlinear analysis procedure where these mechan-1030

ical properties depend on the value of the current displace-1031

ment, the evaluation of the micro-basis function needs to be1032

performed in every computational step. This leads into a sig-1033

nificant increase on the computational cost of the proposed1034

numerical scheme. A schema of the nonlinear analysis pro-1035

cedure of an EMsFEM is presented in Fig. 6.1036

However, in the proposed computational scheme that is1037

schematically presented in Fig. 7 the need for re-evaluation of1038

the micro to macro displacement mapping is alleviated. This1039

is accomplished by treating inelasticity at the local micro-1040

level through the introduction of the additional hysteretic1041

components [Eq. (32)]. These, account for the plastic part1042

of the strain tensor, measured at specific collocation points.1043

In this work, these points are so chosen to coincide with1044

the Gauss quadrature points of the micro-elements. The pro-1045

posed procedure expands the vector of unknown quantities1046

and introduces an additional set of nonlinear equations that 1047

need to be solved [Eq. (69)]. However, the solution of these 1048

equations is performed at the local micro-level. Each set of 1049

equations is independent and can be solved in parallel, thus 1050

significantly enhancing the computational efficiency of the 1051

proposed scheme. 1052

Since the proposed scheme is based on constant state 1053

matrices the corresponding rate of convergence is expected to 1054

be slower than the full Newton–Raphson method that guar- 1055

antees quadratic convergence. Nevertheless, the significant 1056

reduction of the order of the computational model in con- 1057

junction with the implicit parallelicity of the proposed algo- 1058

rithm render the hysteretic scheme an efficient method for 1059

the solution of multiscale problems. 1060

6 Examples 1061

In this section examples are presented for the verification of 1062

the proposed methodology. All analyses were performed on 1063

an Intel Xeon PC fitted with 16 GB of RAM. The Abaqus 1064

commercial code [29] is used for the validation of the derived 1065
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Fig. 7 Schematic flow chart of the proposed hysteretic multiscale finite element scheme

multiscale numerical scheme. The implementation of the lat-1066

ter has been performed using the FORTRAN 2003 program-1067

ming language.1068

6.1 Compression experiment of a cubic specimen1069

In this example, a cubic specimen is examined (Fig. 8) as a1070

benchmark problem to verify the accuracy and the efficiency1071

of the proposed multiscale scheme under monotonic load-1072

ing. Two cases are considered. In the first, the specimen is1073

homogeneous while in the second, a band of heterogeneity1074

is introduced within its volume. Results are derived with the1075

proposed methodology and compared with solutions derived1076

using the standard FEM methodology and Abaqus commer-1077

cial code [29].1078

The model is considered fixed at its base, while a uniform1079

pressure is applied at its top edge. The elastic parameters1080

considered are Em = 10 GPa and ν = 0.2 for the Young’s1081

modulus and the Poisson’s ration respectively. An associa-1082

tive linear Drucker–Prager plasticity model is used to model1083

the nonlinear behaviour of the matrix. The following values1084

are considered for the friction angle and the Drucker–Prager1085

cohesion namely φ = 30◦ and d = 2000 kPa respectively.1086

To establish the FEM solution that will serve as a ref- 1087

erence for further comparisons, three different discretiza- 1088

tion schemes are considered, namely a 16, 512 and 4096 1089

hex element mesh. All analyses are performed using the dis- 1090

placement based 8-node hex element implementing the b-bar 1091

integration scheme [29]. A full Newton–Raphson procedure 1092

in 1000 incremental steps is used in Abaqus with the same 1093

ammount of steps being applied in the proposed formulation 1094

for comparison purposes. The specimen is loaded up to a 1095

vertical displacement equal to 2.0 × 10−6 m . In Fig. 9a, the 1096

derived pressure-displacement paths are shown for the three 1097

different discretization schemes. 1098

The hysteretic multiscale finite element method is imple- 1099

mented considering 8 coarse elements. Each coarse element 1100

is meshed into 64 micro-elements so that the total num- 1101

ber of fine elements remains equal to 512. The correspond- 1102

ing pressure-displacement path is presented in Fig. 9b. The 1103

obtained solution is compared to the derived solution from 1104

the standard FE analysis. The difference between the two for- 1105

mulations is less than 1.0 %. Furthermore, while the Abaqus 1106

analysis procedure concluded in 51 s, the multiscale analysis 1107

module concluded in 13 s resulting in a 70 % reduction of 1108

the computational time. 1109
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Fig. 8 Concrete cube under uniform compression and multiscale model (8 coarse elements—64 fine scale elements each)

0

500

1000

1500

2000

2500

3000

)aPk(
erusser

P

Vertical Displacement (mm  10-3)

16 Elements

512 Elements

4096 Elements

(a)

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 0 5 10 15 20

P
re

ss
ur

e 
(k

P
a)

Vertical Displacement (mm  10-3)

HMsFEM-Linear

FEM

(b)

Fig. 9 a FEA derived pressure-displacement path for different discretization schemes. b Comparison of the proposed hysteretic multiscale formu-
lation and Abaqus 512 element mesh

Next, a “heterogeneous” band is introduced within the1110

volume of the specimen. The assumed pattern is presented1111

in Fig. 10a. The band material is considered elastic with the1112

following material properties, namely Eb = 0.1 GPa and1113

vb = 0.3 for the Young’s modulus and the Poisson’s ratio1114

respectively.1115

The derived pressure displacement path is presented in1116

Fig. 11a, where the displacement is measured at node #6 (Fig.1117

10a). Although the multiscale solution with linear boundary1118

conditions succeeds in capturing both the elastic stiffness1119

of the body as well as the maximum attained pressure, the1120

overall difference from the 512 finite element mesh solu-1121

tion is greater than 5 %. On the contrary, the multiscale solu-1122

tion obtained using the periodic boundary HMsFEM solution1123

practically coincides with the FEM solution.1124

The linear boundary constraint imposed on the coarse ele-1125

ment cannot compensate for the curvature variation along the1126

edges of the solid as shown in Fig. 10b. Further increasing 1127

the number of coarse elements reduces the discrepancy at the 1128

cost of increasing the required computational time. In Fig. 1129

17b, results obtained considering a multiscale model com- 1130

prising of 64 coarse elements (each one including 8 fine-scale 1131

elements) are presented. 1132

6.2 Cantilever with periodic micro-structure 1133

In this example, a composite cantilever beam is examined. 1134

The beam (Fig. 12a) consists of a 30×6 matrix of RVEs. The 1135

RVE presented in Fig. 12b comprises of a square matrix and 1136

a circular inclusion. Two test cases are examined, a homo- 1137

geneous case where the matrix and the inclusion share the 1138

same material and a heterogeneous one. 1139
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(a)

(b)

Fig. 10 a Material pattern. b Deformed configuration (FEM model)

Nodes in sector AB are considered fixed in both directions 1140

(Fig. 12a. A traction load T is applied at the free end of the 1141

cantilever. 1142

Using the Abaqus commercial code [29] a detailed FEM 1143

model is formulated, to serve as a reference model for the 1144

validation of the proposed methodology. The derived model 1145

consists of 76380 nodes and 75686 quadrilateral plane stress 1146

elements. 1147

Due to the periodicity of the structure, a periodic finite 1148

element mesh is derived accordingly. Thus, using the mul- 1149

tiscale finite element method, a single fine mesh compo- 1150

nent needs to be evaluated comprising of 353 nodes and 1151

320 quadrilateral plane stress elements. The corresponding 1152

coarse-element structure (Fig. 12a) consists of 217 nodes and 1153

180 elements. Therefore, using the proposed methodology, 1154

the computational complexity of the initial finite element 1155

problem reduced from a magnitude of O
(
763802

)
to that of 1156

O
(
3532

)
. 1157

The micro-mesh considered for the RVE together with 1158

the material properties considered in the two test cases are 1159

presented in Fig. 13, where Em, nm and Ei , ni are the elas- 1160

tic properties of the matrix and the inclusion respectively. 1161

Furthermore, σy and c stand for the yield stress and the lin- 1162

ear kinematic hardening constant. For both materials, the 1163

following smooth hysteretic model material parameters are 1164

used, namely n = 6, β = 0.5 and γ = 0.5. A displacement 1165

control monotonic analysis is performed, with the maximum 1166
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Fig. 13 RVE micro-mesh
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controlled displacement (centroidal node at the tip) set to1167

uc = 10 cm.1168

The derived load-displacement path for both the homo-1169

geneous and heterogeneous cases are presented in Fig. 14a1170

and b respectively. In the first case, both the linear bound-1171

ary condition (HMsFEM-L) and periodic boundary solution1172

(HMsFEM-P) coincide with the exact FEM solution. Differ-1173

ences emerge in the heterogeneous case; however, the aver-1174

age error with respect to the exact (FEM) solution is less than1175

1.5 % in both cases.1176

These differences are observed during the inelastic regime1177

of the cantilever response, with the HMsFEM-L solution1178

being stiffer than the exact one and the HMsFEM-P solu-1179

tion being more flexible than the exact one. In this case, the1180

error introduced by the linear boundary condition assumption1181

are reduced, with respect to the case examined in Example 1.1182

However in the case considered herein, the actual cantilever1183

deformed configuration can be adequately reproduced with1184

a piece-wise linear displacement distribution, provided that1185

the number of coarse elements along the length of cantilever1186

is sufficient enough.1187

Next, a dynamic analysis is performed considering a vary-1188

ing amplitude sinusoidal excitation of the following form1189

T (t) = 260

8
t sin (3π/2t)1190

Only the heterogeneous case is examined in this loading 1191

scenario. To further examine the efficiency of the proposed 1192

scheme, the structure is driven well beyond its yield limit. 1193

Also, an average acceleration Newmark scheme is imple- 1194

mented in all cases with a constant time step dt = 0.0002 1195

s. The load is applied for a total duration of T = 10 s, thus 1196

the total number of requested incremental steps is equal to 1197

Nsteps = 50000. 1198

A lumped mass matrix approach is implemented consid- 1199

ering the following densities, namely γm = 1KN/m3 and 1200

γi = 0.1KN/m3 for the matrix and the inclusion respec- 1201

tively. The time history of the tip vertical displacement for the 1202

two formulations is presented in Fig. 15a where in the mul- 1203

tiscale case both linear (HMsFEM-L) and periodic bound- 1204

ary (HMsFEM-P) conditions are considered. Similar to the 1205

monotonic case, the solution derived with linear boundary 1206

conditions is stiffer. This is evident during the last cycle of 1207

the cantilever response where severe inelastic deformations 1208

occur. 1209

However in this case, the relative error between the linear 1210

boundary condition case (HMsFEM-L) and the FEM solution 1211

assumes the maximum value of 2.75 % while the correspond- 1212

ing error for the HMsFEM-P solution is less than 1.5 %. The 1213

evolution of the relative error for the three different models is 1214

presented in Fig. 16. The relative error assumes its maximum 1215
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Fig. 15 a Tip vertical displacement time-history. b Applied-traction—
vertical displacement hysteretic loop

value at the time instant t = 8.20 s where plastic deforma-1216

tion initiates and remains constant for the remaining of the1217

analysis procedure. This error is attributed to the evaluation1218

of the additional “perturbed” micro-displacements that are1219

used to evaluate the total vector of micro-strains [Eqs. (73)1220

and (74)]. As described in Sect. 3.3, the evaluation of the1221

vector of “perturbed” micro-displacements
{

d̃
}

m(i)
depends1222

on the RVE boundary condition assumption.1223

The corresponding load displacement paths for the mul-1224

tiscale and FEM solution are presented in Fig. 15b. As far1225

as the analysis time is concerned while the standard finite1226

element procedure concludes in 1756 min the proposed hys-1227

teretic multiscale scheme concludes in 432 min. Although1228

the time integration parameters implemented on this example1229

are not necessary for the accurate evaluation of the structural1230

response, they do yield a computationally intensive case, thus1231

revealing the advantages of both the hysteretic scheme and1232

the derived multiscale formulation.1233

6.3 Masonry wall under earthquake excitation1234

In this example, the cantilever masonry wall presented in Fig.1235

17a is examined. The wall consists of layers of masonry and1236
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Fig. 16 Relative error time history
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Fig. 17 a Cantilever masonry wall. b Finite element mesh

mortar, while a layer of composite reinforcement is consid- 1237

ered at its exterior. An additional mass of 10 tn is considered 1238

at the top of the wall. 1239

The elastic material properties considered for each of the 1240

constituents are presented in Table 1. Isotropic elastic con- 1241
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Table 1 Stone and mortar material properties

Stone Mortar

Young’s modulus (MPa) 20200 3494

Poisson’s ratio 0.2 0.11

Plasticity Von-Mises Mohr–Coulomb

Friction angle (◦) – 21.8

Cohesion (MPa) – 0.1

Yield stress (MPa) 69.2 –

Table 2 Textile composite material properties

Young’s modulus E11 = 54000 E22 = 53200 E33 = 53200

(MPa) E12 = 53200 E23 = 54000 E12 = 54000

Poisson’s ratio v12 = 0.14 v23 = 0.2 v13 = 0.2

stants are used for both stone and mortar [48]. Accordingly, a1242

von-Mises plasticity model is considered for the stone layer1243

while Mohr–Coulomb yield is used to model the nonlinear1244

behaviour of mortar.1245

A homogenized orthotropic elastic material is used for the1246

textile composite layer [24]. The corresponding properties1247

are presented in Table 2.1248

A finite element model is constructed in Abaqus for verifi-1249

cation, using 2204 8-node displacement based hex elements.1250

To avoid numerical instabilities stemming from the imple-1251

mentation of the Mohr–Coulomb plasticity model, equiva-1252

lent properties for the more robust Drucker–Prager model1253

are acquired using the following relations [29]1254

tan β =
√

3 sin φ√
1+ 1

3 sin2 φ
= 32.17◦ d =

√
3 cos φ√

1+ 1
3 sin2 φ

1255

c = 0.157 MPa1256

Since the exact representation of masonry behaviour is out1257

of the scope of the present work, associative plasticity rules1258

are considered for brevity.1259

Ten coarse elements are used in the proposed formulation.1260

Two coarse element types are consequently defined for the1261

implementation of the proposed multiscale scheme. The first1262

one consists of stone, mortar and composite layers, while the1263

-4
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-2

-1

0
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4
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Fig. 19 Lefkada ground acceleration record (Lefkada 2003)

second one consists of stone and composite layers only and 1264

accounts for the top coarse element of the wall (Fig. 18). 1265

The wall is subjected to the Lefkada ground excitation 1266

record (Lefkada 2003) presented in Fig. 19. The peak ground 1267

acceleration of the record is approximately αmax = 0.33g at 1268

t = 6.8 s and the sampling time is dtacc = 0.01 s. The aver- 1269

age acceleration Newmark integration method is used in both 1270

cases, with a constant time step dt = 0.001 s. The first 20 s 1271

of the ground motion record are considered in this example. 1272

The time-history of the relative horizontal displacement mea- 1273

sured at the top of the masonry wall is presented in Fig. 20a. 1274

The two solution methods yield practically the same results. 1275

Differences are observed during the last 5 s of the response. 1276

These are attributed to the different plasticity formulations 1277

(and the accompanying integration algorithms) implemented 1278

in the two approaches that result in different values for the 1279

corresponding residual deformations. In Fig. 20b a stress– 1280

strain hysteretic loop is presented derived at micro-element 1281

‘#’19 (Fig. 17b). The values presented are the average values 1282

of the corresponding components evaluated at the 8 Gauss 1283

quadrature points. The two solutions are in good agreement. 1284

In Fig. 21, the time history of the relative error between 1285

the two solutions for the normal stress–strain hysteretic loops 1286

of Fig. 20b is presented. The relative error in this case is 1287

evaluated as: 1288

Err =
√

(σF E M − σH Ms F E M )2 + (εF E M − εH Ms F E M )2

σ 2
F E M + ε2

F E M

1289

Element 8 : Type 1

Element 9 : Type 1

Type 1 Coarse 
Element

Type 2 Coarse 
Element

Element 7 : Type 1

Element 6 : Type 1

Element 5 : Type 1

Element 4 : Type 1

Element 3 : Type 1

Element 2 : Type 1

Element 1 : Type 1

Element 10 : Type 2

Fig. 18 Coarse element assignment
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The maximum error is 1.18 % and corresponds to the time1290

increment where the maximum plastic deformations occur.1291

The average error is 0.63 %.1292

Finally, the proposed formulation concludes in approxi-1293

mately 49 min while the standard FEM procedure requires1294

195 min, thus leading to a 75 % reduction of the required1295

computational time.1296

7 Conclusions1297

In this work, a novel multi-scale finite element method is pre-1298

sented for the nonlinear analysis of heterogeneous structures.1299

The proposed method is derived within the framework of1300

the enhanced multiscale finite element method. However, the 1301

necessary re-evaluation of the the micro to macro basis func- 1302

tions is avoided by implementing the hysteretic finite element 1303

formulation at the micro-level. Consequently, inelasticity is 1304

treated at the micro-level through the introduction of local 1305

inelastic quantities. These are assembled at the macro-level 1306

in the form of an additional load vector that acts as a non- 1307

linear correction to the externally applied loads. As a result, 1308

the state matrices of the multiscale problem need only to be 1309

evaluated once at the beginning of the analysis procedure. 1310

The evolution of the additional inelastic quantities, e.g. the 1311

plastic part of the strain tensor, are bound to evolve accord- 1312

ing to a generic smooth hysteretic law. The hysteretic model 1313

implemented is a generalized form of the Bouc–Wen model 1314

of hysteresis, allowing for a more versatile approach on mate- 1315

rial modelling. In the application section, examples are pre- 1316

sented that verify the computational efficiency of the pro- 1317

posed formulation as well as its accuracy. 1318

Appendix 1319

In this section, the procedure for the evaluation of the micro- 1320

basis shape functions of the RVE presented in Fig. 4 is 1321

briefly presented. The RVE comprises 9 quadrilateral plane 1322

stress micro-elements with corresponding stiffness matrices 1323[
kel
]

m(i) where i = 1 . . . 9. By means of the direct stiffness 1324

method [65], the stiffness matrix of the RVE is evaluated as 1325

[K ]RV E = 9
A

i=1

[
kel
]

m(i)
1326

where
9
A

i=1
denotes the direct stiffness assemblage operator. 1327

The resulting size of [K ]RV E is 32 × 32. 1328

The stiffness matrix [K ]RV E is used to evaluate the micro- 1329

basis shape functions that are readily derived as solutions of 1330

the boundary value problem defined in relation (47). The 1331

boundary conditions imposed are evaluated in such a way 1332

that the fundamental property of the micro-basis functions 1333

defined in relation (40) holds. A set of values satisfying rela- 1334

tions (40) can be retrieved by means of the following rea- 1335

soning; For the first set of equations (40) to hold it suffices 1336

that a micro-basis function mapping the micro-displacement 1337

components along x to a macro-displacement along the same 1338

direction x of a coarse-node is equal to unity at that specific 1339

coarse-node and zero to every other coarse-node. Moreover, 1340

the second set of equations (40) is satisfied if and only if a 1341

micro-basis function mapping the micro-displacement com- 1342

ponent along x to the macro-displacement component along 1343

the direction y is equal to zero in every coarse-node. 1344

Based on this rationale, the following procedure is utilized 1345

to evaluate the micro-basis functions defined in relation (39), 1346

namely: 1347
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Data: Coarse Element Stiffness Matrix [K ]RV E
for iM=1 …Macro-Nodes(=4) do

for jM=1 …Macro-dof(=2) do
Evaluate prescribed boundary displacement vector

{
d̄
}i M

j M
;

Solve

⎧
⎨
⎩

[K ]RV E {d}m = {/0}

{d}S = {
d̄
}i M

j M

;

imicroShape = 2 (i M − 1) + j M ;
[N (:, imicroShape)] = {d}m ;

end
end

Algorithm 1: Micro-Basis Function Evaluation

The definition of vector
{
d̄
}i M

j M depends on the bound-1348

ary condition assumption utilized. The implementation of1349

the periodic boundary condition assumption is presented in1350

this example for the evaluation of micro-basis function N9, j1351

[e.g. the first column of matrix [N ]m in Eq. (45)]. The peri-1352

odic boundary condition kinematic constraint is based on1353

the assumption that the displacement components of oppo-1354

site nodes of a periodic mesh on a pre-defined direction will1355

defer by a small perturbation. The periodic boundary nodes1356

are defined by the edge pairs S12 − S34 and S14 − S23. For1357

the evaluation of N9, j the following relations are applied1358

between the periodic nodes (Fig. 22):1359

{u}S12 = {u}S43 + � {u}1360

{v}S12 = {v}S431361

{u}S14 = {u}S23 + � {u}1362

{v}S14 = {v}S231363

where � {u} is the imposed perturbation. The latter, is not1364

a periodic function of the RVE geometry but varies linearly1365

from �u = 1 to �u = 0 along the corresponding bound-1366

ary. Thus, the boundary conditions for the boundary pair1367

(S12 − S43) are defined as1368

(S12 − S43) →

⎧⎪⎪⎨
⎪⎪⎩

u1 = u4 + 1 v1 = v4

u5 = u15 + 2/3 v5 = v15

u6 = u16 + 1/3 v6 = v16

u2 = u3 v2 = v3

(91)1369

The deformation pattern introduced in relation (91) does not1370

exclude rigid body motions. These are avoided by constrain-1371

ing also the displcement components at micro-node 3 (Fig.1372

4), thus setting1373

u3 = 0
v3 = 0

(92)1374

Equations (91) and (92) constitute a set of multi-freedom1375

non-homogeneous constraints that are treated in this work1376

using the Penalty method [9,23]. For this purpose, Eqs. (91)1377

are augmented to account for the whole RVE and the imposed1378

Fig. 22 Periodic boundary conditions of the evalation of N9, j

boundary condition relation assumes the following form 1379

[A] {d}m = {c} (93) 1380

where {d}m is the 18 × 1 nodal displacement vector of the 1381

RVE defined in relation (46), [A] is the following 10 × 32 1382

constraint coefficient matrix 1383

[A]T =

um1

vm1

um2

vm2

um3

vm3

um4

vm4

um5

vm5

um6

vm6

um7

vm7

um8

vm8

um9

vm9

um10

vm10

um11

vm11

um12

vm12

um13

vm13

um14

vm14

um15

vm15

um16

vm16

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1
+1

+1
+1

−1 +1
−1 +1

−1
−1

+1
+1

+1
+1

−1
−1

−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(94) 1384

and {c} is a 32 × 1 column vector assuming the following 1385

form 1386

{c} = {
1 0 2

3 0 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

}T
(95) 1387

The periodic boundary conditions introduce a numerical 1388

perturbation on the displacement field of periodic boundary 1389

nodes. Thus, they can in principle be used in non-periodic 1390
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media (i.e. RVEs with non-periodic material distribut0ions).1391

However in this case the size of the RVE should be small1392

enough for the considered perturbation to be valid, i.e. for1393

the displacements of periodic boundary nodes to differ by a1394

small variation of the displacement field. Furthermore, the1395

applicability of the method is restricted on periodic micro-1396

element meshes. To alleviate such problems, a procedure has1397

been established for the generalization of the periodic bound-1398

ary condition assumption allowing its application to non-1399

structured, non-periodic meshes [42]. Also, refined bound-1400

ary condition assumptions such as the oversampling tech-1401

nique [19] and the generalized periodic boundary condition1402

method (combining periodic boundary conditions with over-1403

sampling) have been effectively used in [63] for non-periodic1404

media. The effect of different boundary condition assump-1405

tions on the accuracy of the EMsFEM method is examined1406

in [64].1407
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