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Abstract

Background: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung
function, but less is known about genes influencing longitudinal change in lung function.

Methods: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14
longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects
model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with
longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As
a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these
14 studies using meta-analysis.

Results: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on
chromosome 15 (P = 5.71 6 10-7). In addition, meta-analysis using the five cohorts with $3 FEV1 measurements per
participant identified the novel ME3 locus on chromosome 11 (P = 2.18 610-8) at genome-wide significance. Neither locus
was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3
in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung
samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline
was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively.

Conclusions: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1

that harbor candidate genes with biologically plausible functional links to lung function.
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Introduction

Forced expiratory volume in the first second (FEV1) is a reliable

spirometric parameter that reflects the physiological state of the

lungs and airways. Reduced FEV1 relative to forced vital capacity

(FVC), is a defining feature of chronic obstructive pulmonary

disease (COPD), a leading cause of death globally.[1] FEV1 is also

a predictor of morbidity and mortality in the general popula-

tion.[2,3] Lung function reaches its peak in early adulthood,

followed by a plateau, and then subsequently declines. As first

reported by Fletcher and Peto,[4] decline in lung function is

accelerated in smokers, leading to increased risks of COPD and

premature death. While cigarette smoking is a key risk factor for

accelerated loss of lung function, genetic variation is hypothesized

to also play an important role.[5,6] Family and twin studies of the

longitudinal change in lung function report heritability estimates

between 10 and 39%.[7,8]

Recent large-scale genome-wide association studies (GWAS)

identified 26 novel loci for cross-sectional lung function,[9–11]

demonstrating the power of GWAS with large sample size to

identify common genetic variants with modest effect sizes.

However, cross-sectional measurements in adults reflect the

combination of maximal attained lung growth and subsequent

decline. GWAS that specifically study the longitudinal change in

lung function are needed to distinguish the genetic contributions to

age-related decline. To date, only one population-based GWAS

meta-analysis of longitudinal change in lung function has been

reported.[12] Separate analyses were conducted in 1,441 asth-

matic and 2,667 non-asthmatic participants; association was found

at one novel locus in each analysis, though only the locus in non-

asthmatics replicated.

In this study, we conducted primary GWAS of the rate of

change in FEV1 in each of 14 population-based cohort studies

from the Cohorts for Heart and Aging Research in Genomic

Epidemiology (CHARGE) and SpiroMeta consortia, comprising

27,249 adult participants of European ancestry and 62,130 FEV1

measurements. We then performed meta-analysis of the cohort-

specific results, followed up our most statistically significant

associations in the AGES-Reykjavı́k cohort study and the Lung

Health Study (LHS) for corroborative evidence, and explored the

biological basis for identified associations using cell-specific gene

expression studies, and expression quantitative trait loci (eQTL)

look-up.

Methods

Study populations

Studies performed genotyping following standard quality

control measures; imputation was conducted based on the

HapMap CEU reference panel to generate genotype dosages for

, 2.5 million autosomal single nucleotide polymorphisms (SNPs)

(Table S1 in File S1).

Statistical analysis
For the analysis of repeated measurement data such as

longitudinal change in lung function, mixed effects models offer

more flexibility and statistical power than alternative approaches;

the model allows for the use of unbalanced data and does not

exclude individuals with incomplete records. Each cohort study

performed the GWAS using a linear mixed effects model. The

model included a random intercept and a random slope, and fixed

effects for time (a continuous variable quantifying the time

distance between each FEV1 measurement and baseline), SNP

and its interaction with time (SNP-by-time), baseline age, gender,

standing height, smoking pattern during follow-up and its

interaction with time (smoking-by-time), baseline smoking pack-

years, study site, and principal components for genetic ancestry (as

needed). Cohort-specific results for the SNP-by-time interaction

term, which estimates the effect of genotype on the rate of change

in FEV1, were shared, and two meta-analyses, one using all 14

studies and the other using the five studies with $3 FEV1

GWAS of Longitudinal Change in Adult Lung Function
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All 14 cohort studies are members of the CHARGE or

SpiroMeta Consortium (Table 1). The respective local Institution-

al Review Boards approved all study protocols, and written

informed consent for genetic studies was obtained from all

participants. Spirometry tests were performed at baseline and at

least one follow-up time point by trained technicians and in

accordance with the American Thoracic Society or European

Respiratory Society recommendations (Methods S1 in File S1 for

further details).[13] FEV1 measurements meeting acceptability

criteria were included in the current study.

Competing Interests: All authors have read the journal’s policy, and 57 of the 81 authors have declared that no competing interests exist. The following 24 authors
have possible conflicts, as follows: Dr. Aldrich reports grants from NIH, during the conduct of the study; Dr. Barnes reports grants from NIH, during the conduct of the
study; Dr. Barr reports grants from NIH and US—EPA, during the conduct of the study; Dr. Couper reports grants from NIH, during the conduct of the study; Dr. Deary
reports grants from Age UK, grants from BBSRC, during the conduct of the study; Dr. Dupuis reports grants from Boston University, during the conduct of the study;
Dr. Fall reports personal fees from MSD (Merck), outside the submitted work; Dr. Gudnason reports other from NIH, during the conduct of the study; Dr. Gl
reports grants from BMBF (German Ministry for Research and Education), during the conduct of the study; personal fees from Actelion Pharma, personal fees
from Novartis Pharma, personal fees from GSK, personal fees from Pfizer, personal fees from Boehringer Ingelheim, personal fees from Bayer Pharma, all those apply
outside of the submitted work; Dr. Hall reports grants received from MRC and Pfizer, and Vertex sponsored lecture at ERS, outside the submitted work; Dr. Hodge
reports grants from The Medical Research Council, UK, during the conduct of the study; Dr. Koch reports grants from BMBF, during the conduct of the study, travel
fees from Actelion Pharma, Pfizer, Bayer Pharma, the German Academic Exchange Service, and the Research Network for Community Medicine of the University of
Greifswald, one research prize of the Society of Internal Medicine Mecklenburg-Vorpommern, Germany, outside the submitted work; Dr. Lahousse reports grant
from Belgian Society of Pneumology, during the conduct of the study; Dr. London is funded in full by the Division of Intramural Research, NIEHS, NIH, DHHS; Dr.
Lumley reports grants from NIH, during the conduct of the study; Dr. Mathias reports grants from NIH, during the conduct of the study; Dr. Meibohm reports grants
from NIH, during the conduct of the study; Dr. O’Connor reports personal fees from Sunovion, Inc., outside the submitted work; Dr. Psaty reports grants from NIH,
during the conduct of the study, and Dr. Psaty serves on the DSMB for a clinical trial of a device, which is funded by the manufacturer (Zoll LifeCor), and he is on the
Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson; Dr. L Smith reports personal fees as member of Merck Data Safety and
Monitoring Board, outside the submitted work; Dr. Tobin reports grants from Medical Research Council grant G0902313, grants from National Institute for Health
Research (NIHR), Leicester Respiratory Biomedical Research Unit, during the conduct of the study (the views expressed are those of the authors and not necessarily
those of the NHS, the NIHR or the Department of Health), grants from Pfizer for collaborative research project (on rare sequence variants and the smoking resistant
lung, Nov. 2010 to Nov 2012), outside the submitted work; Dr. Wain reports grants from Pfizer collaborative research project (onrare sequence variants and the
smoking resistant lung, Nov. 2010 to Nov 2012), outside the submitted work; Dr. Wilk reports grants from FAMRI, grants from NIH, during the conduct of the study;
personal fees from Pfizer, outside the submitted work. This does not alter the authors’ adherence to all PLOS ONE policies on sharing data and materials.



T
a

b
le

1
.

B
as

e
lin

e
ch

ar
ac

te
ri

st
ic

s
o

f
co

h
o

rt
st

u
d

ie
s

in
cl

u
d

e
d

in
th

e
m

e
ta

-a
n

al
ys

is
* .

C
o

h
o

rt
:

A
R

IC
B

5
8

C
B

H
S

C
A

R
D

IA
C

H
S

F
H

S
H

e
a

lt
h

A
B

C

N
o

.
o

f
p

ar
ti

ci
p

an
ts

8
,2

4
2

8
2

7
1

,0
0

9
1

,4
9

2
3

,1
5

9
3

,2
3

0
1

,5
8

6

N
o

.
o

f
FE

V
1

m
e

as
u

re
m

e
n

ts
1

5
,5

8
2

1
,6

5
3

3
,0

7
3

6
,1

4
0

7
,1

4
0

1
1

,2
7

5
4

,4
2

6

N
o

.
o

f
FE

V
1

p
e

r
p

e
rs

o
n

2
2

7
5

3
5

4

Fo
llo

w
-u

p
d

u
ra

ti
o

n
,

yr
5

.6
1

0
2

9
2

0
.1

7
.9

1
4

.7
9

.5

M
al

e
s,

%
4

6
.5

4
8

.6
4

1
.6

4
6

.9
3

9
4

7
5

2
.7

B
as

e
lin

e
ag

e
,

yr
5

4
.6

(5
.7

)
3

5
.0

(0
.2

)
3

7
.5

(1
2

.8
)

2
7

.5
(2

.3
)

7
2

.3
(5

.4
)

5
0

.9
(1

0
.3

)
7

3
.8

(2
.8

)

B
as

e
lin

e
h

e
ig

h
t,

cm
1

6
8

.7
(9

.4
)

1
7

0
.1

(9
.5

)
1

6
8

.1
(8

.9
)

1
7

1
.2

(9
.3

)
1

6
4

.6
(9

.4
)

1
6

8
.4

(9
.3

)
1

6
6

.8
(9

.3
)

C
u

rr
e

n
t

sm
o

ke
rs

,
%

2
0

.2
2

7
.1

2
0

.9
2

4
.8

1
0

.8
2

4
.6

6
.4

Fo
rm

e
r

sm
o

ke
rs

,
%

3
2

.6
4

1
.5

1
6

.5
1

7
.3

3
5

.7
3

9
.8

4
9

.9

B
as

e
lin

e
p

ac
k-

ye
ar

s{
2

5
.9

(2
1

.7
)

7
.5

(1
1

.4
)

8
.2

(1
7

.8
)

6
.0

(6
.5

)
3

3
.2

(2
7

.0
)

2
5

.4
(2

1
.3

)
3

6
.8

(3
2

.2
)

B
as

e
lin

e
FE

V
1
,

m
L

2
9

7
2

(7
5

8
)

3
6

3
1

(7
4

4
)

3
2

3
0

(9
2

7
)

3
8

1
8

(7
8

1
)

2
1

2
3

(6
5

2
)

2
9

8
9

(8
0

6
)

2
3

0
8

(6
4

9
)

B
as

e
lin

e
FE

V
1
/F

V
C

,
%

7
4

.1
(7

.1
)

8
0

.6
(5

.8
)

7
8

.2
(9

.2
)

8
1

.6
(6

.5
)

7
0

.5
(1

0
.5

)
7

5
.7

(8
.0

)
7

4
.7

(7
.8

)

C
o

h
o

rt
:

K
O

R
A

L
B

C
1

9
2

1
L

B
C

1
9

3
6

P
IV

U
S

R
S

S
A

P
A

L
D

IA
S

H
IP

N
o

.
o

f
p

ar
ti

ci
p

an
ts

8
9

0
5

1
2

1
,0

0
2

8
1

8
1

,3
2

1
1

,4
0

1
1

,7
6

0

N
o

.
o

f
FE

V
1

m
e

as
u

re
m

e
n

ts
1

,5
9

7
7

0
6

1
,7

9
0

1
,4

6
9

2
,0

1
6

2
,6

9
2

2
,5

7
1

N
o

.
o

f
FE

V
1

p
e

r
p

e
rs

o
n

2
2

2
2

2
2

2

Fo
llo

w
-u

p
d

u
ra

ti
o

n
,

yr
3

.2
8

.9
4

.8
5

.8
8

.3
1

0
.9

7
.9

M
al

e
s,

%
4

7
.2

4
1

.4
5

0
.8

4
9

.9
4

5
.1

4
8

4
9

.4

B
as

e
lin

e
ag

e
,

yr
5

3
.8

(4
.5

)
7

9
.1

(0
.6

)
6

9
.6

(0
.8

)
7

0
.2

(0
.2

)
7

4
.4

(5
.6

)
4

1
.1

(1
1

.2
)

5
2

.4
(1

3
.6

)

B
as

e
lin

e
h

e
ig

h
t,

cm
1

6
9

.3
(9

.3
)

1
6

3
.2

(9
.4

)
1

6
6

.5
(8

.9
)

1
6

9
.0

(9
.3

)
1

6
7

.3
(9

.1
)

1
6

9
.4

(9
.1

)
1

6
9

.5
(9

.7
)

C
u

rr
e

n
t

sm
o

ke
rs

,
%

2
0

.5
7

.0
1

2
.9

1
0

.2
1

1
.1

2
6

.9
3

2
.8

Fo
rm

e
r

sm
o

ke
rs

,
%

4
0

.9
5

0
.4

4
2

.6
3

9
.6

5
6

.7
2

5
.8

2
3

.8

B
as

e
lin

e
p

ac
k-

ye
ar

s{
1

1
.2

(1
7

.1
)

1
5

.3
(2

2
.3

)
1

6
.9

(2
5

.8
)

1
4

.3
(1

5
.8

)
2

5
.7

(2
1

.3
)

1
7

.4
(1

8
.0

)
1

1
.3

(1
1

.9
)

B
as

e
lin

e
FE

V
1
,

m
L

3
2

8
0

(7
9

2
)

1
8

8
7

(6
2

5
)

2
3

7
1

(6
8

7
)

2
4

5
2

(6
8

2
)

2
2

1
5

(6
5

2
)

3
5

1
6

(8
6

1
)

3
2

3
8

(8
7

6
)

B
as

e
lin

e
FE

V
1
/F

V
C

,
%

7
7

.5
(6

.2
)

7
9

.0
(1

1
.8

)
7

8
.3

(1
0

.2
)

7
6

.0
(1

0
.0

)
7

4
.8

(7
.9

)
7

8
.5

(8
.2

)
8

3
.1

(6
.6

)

D
ef

in
it

io
n

o
f

a
b

b
re

vi
a

ti
o

n
s:

A
R

IC
=

A
th

e
ro

sc
le

ro
si

s
R

is
k

in
C

o
m

m
u

n
it

ie
s;

B
5

8
C

=
B

ri
ti

sh
1

9
5

8
B

ir
th

C
o

h
o

rt
;

B
H

S
=

B
u

ss
e

lt
o

n
H

e
al

th
St

u
d

y;
C

A
R

D
IA

=
C

o
ro

n
ar

y
A

rt
e

ry
R

is
k

D
e

ve
lo

p
m

e
n

t
in

Y
o

u
n

g
A

d
u

lt
s;

C
H

S
=

C
ar

d
io

va
sc

u
la

r
H

e
al

th
St

u
d

y
=

FH
S,

Fr
am

in
g

h
am

H
e

ar
t

St
u

d
y;

H
e

al
th

A
B

C
=

H
e

al
th

,
A

g
in

g
,

an
d

B
o

d
y

C
o

m
p

o
si

ti
o

n
;

K
O

R
A

=
C

o
o

p
e

ra
ti

ve
H

e
al

th
R

e
se

ar
ch

in
th

e
R

e
g

io
n

o
f

A
u

g
sb

u
rg

;
LB

C
1

9
2

1
=

Lo
th

ia
n

B
ir

th
C

o
h

o
rt

1
9

2
1

;
LB

C
1

9
3

6
=

Lo
th

ia
n

B
ir

th
C

o
h

o
rt

1
9

3
6

;P
IV

U
S

=
P

ro
sp

e
ct

iv
e

In
ve

st
ig

at
io

n
o

f
th

e
V

as
cu

la
tu

re
in

U
p

p
sa

la
Se

n
io

rs
;R

S
=

R
o

tt
e

rd
am

St
u

d
y;

SA
P

A
LD

IA
=

Sw
is

s
St

u
d

y
o

n
A

ir
P

o
llu

ti
o

n
an

d
Lu

n
g

D
is

e
as

e
s

in
A

d
u

lt
s;

SD
=

st
an

d
ar

d
d

e
vi

at
io

n
;S

H
IP

=
St

u
d

y
o

f
H

e
al

th
in

P
o

m
e

ra
n

ia
.

* D
at

a
ar

e
p

re
se

n
te

d
as

m
e

an
(S

D
)

u
n

le
ss

o
th

e
rw

is
e

in
d

ic
at

e
d

;
to

ta
l

n
o

.
p

ar
ti

ci
p

an
ts

=
2

7
,2

4
9

,
to

ta
l

n
o

.
FE

V
1

m
e

as
u

re
m

e
n

ts
=

6
2

,1
3

0
.

{ P
ac

k-
ye

ar
s

ar
e

ca
lc

u
la

te
d

am
o

n
g

cu
rr

e
n

t
an

d
fo

rm
e

r
sm

o
ke

rs
at

st
u

d
y

b
as

e
lin

e
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

0
7

7
6

.t
0

0
1

GWAS of Longitudinal Change in Adult Lung Function

PLOS ONE | www.plosone.org 5 July 2014 | Volume 9 | Issue 7 | e100776



T
a

b
le

2
.

M
o

d
e

l
e

st
im

at
e

s
fo

r
th

e
ra

te
o

f
ch

an
g

e
in

FE
V

1
in

n
e

ve
r

sm
o

ke
rs

an
d

e
ff

e
ct

s
o

f
o

th
e

r
sm

o
ki

n
g

p
at

te
rn

s
(c

o
m

p
ar

e
d

w
it

h
n

e
ve

r
sm

o
ke

rs
)

o
n

th
e

ra
te

o
f

ch
an

g
e

in
FE

V
1

(m
L/

ye
ar

)* .

S
tu

d
y

A
n

n
u

a
l

F
E

V
1

ch
a

n
g

e
in

n
e

v
e

r
sm

o
k

e
rs

A
d

d
it

io
n

a
l

E
ff

e
ct

{
o

f
sm

o
k

in
g

p
a

tt
e

rn
s

o
n

a
n

n
u

a
l

F
E

V
1

ch
a

n
g

e

(r
e

fe
re

n
t

g
ro

u
p

)
P

e
rs

is
te

n
t

sm
o

k
e

rs
In

te
rm

it
te

n
t

sm
o

k
e

rs
F

o
rm

e
r

sm
o

k
e

rs

b
S

E
b

S
E

b
S

E
b

S
E

A
R

IC
2

1
4

.0
1

.3
2

1
2

.4
1

.7
2

5
.5

2
.1

2
5

.3
1

.4

B
5

8
C

2
2

9
.6

1
.5

2
9

.4
2

.8
2

2
.2

3
.4

2
3

.0
3

.0

B
H

S
2

2
3

.0
1

.0
2

2
0

.0
3

.0
2

8
.0

2
.0

2
9

.0
2

.0

C
A

R
D

IA
2

2
6

.4
0

.5
2

6
.7

1
.3

2
0

.2
1

.0
1

.0
1

.2

C
H

S
2

3
5

.0
1

.1
2

2
.2

3
.3

2
4

.6
2

.2
2

2
.4

1
.7

FH
S

2
2

6
.0

0
.6

2
8

.1
1

.3
2

2
.9

1
.0

2
1

.1
0

.8

H
e

al
th

A
B

C
2

3
9

.7
1

.3
2

1
2

.9
6

.1
2

6
.8

4
.4

2
2

.6
1

.7

K
O

R
A

2
2

2
.1

3
.7

2
.2

7
.2

2
1

0
.4

9
.3

2
.8

5
.2

LB
C

1
9

2
1

2
1

0
.0

3
.6

2
1

1
.6

1
5

.7
2

.8
1

4
.4

2
1

8
.8

4
.9

LB
C

1
9

3
6

2
3

2
.3

3
.6

2
1

9
.0

9
.9

4
0

.1
1

6
.8

4
.3

5
.3

P
IV

U
S

2
2

1
.1

2
.5

2
1

5
.9

8
.2

2
2

1
.7

1
3

.4
2

3
.9

3
.9

R
S

2
2

7
.5

3
.7

2
1

.8
9

.0
9

.3
8

.6
2

4
.6

4
.5

SA
P

A
LD

IA
2

2
9

.7
1

.2
2

7
.4

2
.3

2
2

.0
2

.6
2

2
.8

2
.1

SH
IP

2
3

1
.8

2
.8

2
0

.4
1

0
.9

2
0

.1
3

.9
2

1
5

.0
7

.3

1
4

-c
o

h
o

rt
m

e
ta

-
an

al
yz

e
d

e
st

im
at

e
2

2
6

.9
0

.3
2

8
.8

0
.7

2
2

.6
0

.6
2

2
.3

0
.5

D
ef

in
it

io
n

o
f

a
b

b
re

vi
a

ti
o

n
s:

A
R

IC
=

A
th

e
ro

sc
le

ro
si

s
R

is
k

in
C

o
m

m
u

n
it

ie
s;

B
5

8
C

=
B

ri
ti

sh
1

9
5

8
B

ir
th

C
o

h
o

rt
;

B
H

S
=

B
u

ss
e

lt
o

n
H

e
al

th
St

u
d

y;
C

A
R

D
IA

=
C

o
ro

n
ar

y
A

rt
e

ry
R

is
k

D
e

ve
lo

p
m

e
n

t
in

Y
o

u
n

g
A

d
u

lt
s;

C
H

S
=

C
ar

d
io

va
sc

u
la

r
H

e
al

th
St

u
d

y;
FH

S
=

Fr
am

in
g

h
am

H
e

ar
t

St
u

d
y;

H
e

al
th

A
B

C
=

H
e

al
th

,
A

g
in

g
,

an
d

B
o

d
y

C
o

m
p

o
si

ti
o

n
;

K
O

R
A

=
C

o
o

p
e

ra
ti

ve
H

e
al

th
R

e
se

ar
ch

in
th

e
R

e
g

io
n

o
f

A
u

g
sb

u
rg

;
LB

C
1

9
2

1
=

Lo
th

ia
n

B
ir

th
C

o
h

o
rt

1
9

2
1

;
LB

C
1

9
3

6
=

Lo
th

ia
n

B
ir

th
C

o
h

o
rt

1
9

3
6

;
P

IV
U

S
=

P
ro

sp
e

ct
iv

e
In

ve
st

ig
at

io
n

o
f

th
e

V
as

cu
la

tu
re

in
U

p
p

sa
la

Se
n

io
rs

;
R

S
=

R
o

tt
e

rd
am

St
u

d
y;

SA
P

A
LD

IA
=

Sw
is

s
St

u
d

y
o

n
A

ir
P

o
llu

ti
o

n
an

d
Lu

n
g

D
is

e
as

e
s

in
A

d
u

lt
s;

SE
=

st
an

d
ar

d
e

rr
o

r;
SH

IP
=

St
u

d
y

o
f

H
e

al
th

in
P

o
m

e
ra

n
ia

.
* D

at
a

sh
o

w
n

ar
e

th
e

e
ff

e
ct

e
st

im
at

e
s

(b
an

d
SE

)
o

f
th

e
ti

m
e

an
d

sm
o

ki
n

g
-b

y-
ti

m
e

in
te

ra
ct

io
n

te
rm

s
in

th
e

p
re

lim
in

ar
y

m
ix

e
d

e
ff

e
ct

s
m

o
d

e
l

fu
lly

ad
ju

st
e

d
fo

r
al

l
sp

e
ci

fi
e

d
va

ri
ab

le
s

e
xc

e
p

t
th

e
SN

P
te

rm
s.

T
im

e
re

p
re

se
n

ts
th

e
ra

te
o

f
ch

an
g

e
in

FE
V

1
in

n
e

ve
r

sm
o

ke
rs

an
d

th
e

sm
o

ki
n

g
-b

y-
ti

m
e

in
te

ra
ct

io
n

te
rm

re
p

re
se

n
ts

th
e

e
ff

e
ct

s
o

f
th

e
o

th
e

r
th

re
e

sm
o

ki
n

g
p

at
te

rn
s

o
n

th
e

ra
te

o
f

ch
an

g
e

in
FE

V
1
,c

o
m

p
ar

e
d

w
it

h
n

e
ve

r
sm

o
ke

rs
.S

m
o

ki
n

g
ca

te
g

o
ri

e
s

ar
e

d
e

fi
n

e
d

as
p

e
rs

is
te

n
t

(s
m

o
ke

th
ro

u
g

h
o

u
t

fo
llo

w
-u

p
),

in
te

rm
it

te
n

t
(s

to
p

an
d

/o
r

st
ar

t
sm

o
ki

n
g

d
u

ri
n

g
fo

llo
w

-u
p

)
an

d
fo

rm
e

r
(s

m
o

ke
o

n
ly

p
ri

o
r

to
st

ar
t

o
f

fo
llo

w
-u

p
).

{ Ef
fe

ct
e

st
im

at
e

s
in

sm
o

ki
n

g
ca

te
g

o
ri

e
s

ar
e

ad
d

e
d

to
e

st
im

at
e

s
in

n
e

ve
r

sm
o

ke
rs

to
co

m
p

u
te

th
e

ac
tu

al
ra

te
o

f
ch

an
g

e
in

e
ac

h
g

ro
u

p
(f

o
r

e
xa

m
p

le
,i

n
A

R
IC

,t
h

e
p

o
in

t
e

st
im

at
e

o
f

th
e

ra
te

o
f

ch
an

g
e

in
FE

V
1

in
p

e
rs

is
te

n
t

sm
o

ke
rs

w
as

2
1

4
.0

2
1

2
.4

=
2

2
6

.4
m

L/
ye

ar
).

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

0
7

7
6

.t
0

0
2

GWAS of Longitudinal Change in Adult Lung Function

PLOS ONE | www.plosone.org 6 July 2014 | Volume 9 | Issue 7 | e100776



measurements per participant, were performed using METAL

software with inverse variance weighting to combine effect

estimates after applying genomic control correction.[14]

We sought corroborative evidence for SNPs with P , 1 610-5

in the AGES-Reykjavı́k cohort study (n = 1,494), and in LHS (n

= 4,048), a clinical cohort study of smokers with mild COPD, in

which a longitudinal GWAS was recently reported.[15]

Gene expression analyses
Expression profiles of genes at the novel loci were evaluated in

human lung tissues and primary cell samples using RT-PCR

(Table S7 in File S1). Using publicly available data from the Lung

Genomics Research Consortium (LGRC), expression profiles of

these genes were compared in lung specimens of 219 COPD

patients and 137 controls, and sentinel (most associated) SNPs at

the novel loci were also searched against an eQTL database of

lymphoblastoid cell lines.[16]

This manuscript follows the PRISMA statement and a checklist

is available online (Checklist S1).

Results

Population characteristics
The majority of the 14 cohort studies had FEV1 at two times,

but five studies (BHS, CARDIA, CHS, FHS, Health ABC) had $

3 FEV1 measurements per participant. The maximum length of

follow-up ranged from 4 to 29 years. Studies with older

participants generally had fewer current smokers and more former

smokers, and had lower mean baseline FEV1.

Smoking patterns and rate of decline in FEV1

All 14 studies implemented a preliminary mixed model adjusted

for all specified variables except the SNP terms and reported the

estimated rate of change in FEV1 by smoking pattern (Table 2).

The rate of decline in FEV1 in never smokers ranged from 10.0 to

39.7 mL/year, and was generally steeper in studies with older

participants, as expected.[4] Across all 14 studies, the meta-

analyzed rate of change in FEV1 was a decline of 26.960.3 mL/

year in never smokers, and was 8.860.7, 2.660.6, and

2.360.5 mL/year steeper in persistent, intermittent, and former

smokers, respectively (Table 2). We repeated the meta-analyses in

the five cohort studies with $3 FEV1 measurements per

participant, and found similar, although less statistically significant

results.

Discovery meta-analyses
Study-specific genomic inflation factors (lgc) were calculated for

the SNP-by-time interaction term and used for study-level

genomic control prior to the meta-analyses. Study-specific lgc

values ranged from 0.96 to 1.11 (Table S1 in File S1) and the

meta-analysis lgc was 1.01 for both the 14-study and five-study

meta-analyses. Figures S1 and S2 in File S1 present the

Manhattan and quantile-quantile (QQ) plots.

In the meta-analysis including all 14 cohort studies, 15 SNPs at

nine independent loci were associated with the rate of change in

FEV1 at P , 1 6 1025, and none reached the genome-wide

significance threshold of P , 5 61028. The association results for

the sentinel SNPs at these nine loci are presented in Table 3, and

more detailed results for all 15 SNPs are included in Table S2 in

File S1. The most statistically significant association, and the only

one that reached P , 1 6 1026, was for rs4077833, an intronic

SNP located in the novel IL16/STARD5/TMC3 gene region on

chromosome 15 (P = 5.71 6 1027; Figures 1A and 1B). The C

allele of rs4077833, with a frequency of 10%, was associated with
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an attenuation of the rate of decline in FEV1 by 2.3 mL/year in

comparison to the G allele.

For estimation of longitudinal trajectory in lung function,

having more than two measurements over time provides greater

precision.[4] We performed a further meta-analysis with the five

cohort studies (BHS, CHS, CARDIA, FHS, Health ABC) having

$3 FEV1 measurements per participant, with a combined sample

size of 10,476 participants and 32,054 FEV1 measurements

(Methods S1 in File S1 for further details). A novel region on

chromosome 11 had a genome-wide significant association (P , 5

6 1028) with the rate of change in FEV1 (Table 4). The most

statistically significant finding at this locus was for rs507211, an

intronic SNP located in ME3 (Figures 2A and 2B). Six other SNPs,

which are in linkage disequilibrium (LD) with rs507211 and are

located in ME3, were identified at P , 161026 (Table S3 in File

S1). The rs507211 A allele, with a frequency of 25%, was

associated with an attenuation of the rate of decline in FEV1 by

2.09 mL/year in comparison to the G allele (P = 2.18 6 1028).

Besides the ME3 locus, 17 SNPs from four other chromosomal

regions had P values between 5 6 1028 and 1 6 1025 for

associations with the rate of change in FEV1 (Tables 4 and Table

S3 in File S1).

Additional analyses
Corroborative evidence was sought for the sentinel SNP at each

of the 14 loci associated at P , 1 61025 (from both the 14-study

and five-study meta-analyses) in 1,494 adults from the AGES-

Reykjavı́k population-based cohort study (Table S4 in File S1). A P

value of 0.004, representing the Bonferroni correction for 14 tests

at the a = 0.05 level, was selected a priori as the threshold for

statistical significance. No SNPs achieved this threshold. The

lowest P value was for rs740577 in CACNG4 (P = 0.08), which

showed consistent effect direction and magnitude with the original

meta-analysis.

These same 14 SNPs were further examined in LHS, a clinical

cohort study of 4,048 smokers with mild COPD for evidence of

consistent association between healthy and diseased individu-

als.[17] None of the 14 SNPs were associated with the rate of

change in FEV1 in LHS at P , 0.004 (Table S4 in File S1).

Previous meta-analyses in the CHARGE and SpiroMeta

consortia identified 26 novel loci associated with cross-sectional

FEV1 and/or FEV1/FVC at genome-wide significance.[9-11] We

examined the sentinel SNPs from these loci in the meta-analysis of

the 14 cohort studies for association with the rate of change in

FEV1 (Table S5 in File S1). Given the a priori association with

cross-sectional lung function, a P value threshold of 0.05 was used.

Sentinel SNPs in PID1, HHIP, GPR126, and CFDP1 showed

association with the rate of change in FEV1 (0.005 # P # 0.048).

Gene expression analyses
Three genes (IL16, STARD5, and TMC3) at the novel

chromosome 15 locus and ME3 at the novel chromosome 11

locus were selected for follow-up mRNA expression profiling in

human lung tissue, and primary cultures of human bronchial

epithelial and airway smooth muscle cells, together with control

tissues (peripheral blood mononuclear cells and brain). Transcripts

of STARD5 and ME3 were found in all lung-derived tissues,

transcripts of IL16 were found in lung tissue and smooth muscle

cells, but not in epithelial cells, and TMC3 was not expressed in

any of the lung-derived tissues (Table S6 in File S1).

Using the public LGRC data repository, we found that the

expression profiles of IL16, STARD5, and ME3 in human lung

samples showed statistically significant differences (P , 0.05)

between COPD patients and controls (Figure S3 in File S1). Lower

levels of IL16 (P = 0.004) were observed in COPD patients

compared with controls, whereas higher levels of STARD5 (P =

3.22 6 10-9) and ME3 (P = 0.044) were observed in COPD

patients compared with controls. Data on TMC3 expression were

not available.

We performed additional follow-up analysis of the sentinel SNPs

at the two novel loci using an eQTL database of lymphoblastoid

cell lines (Table S8 in File S1). Trans-eQTL associations were

observed between rs4077833 at the IL16/STARD5/TMC3 locus

and a nuclear receptor, NR1I2 (chromosome 3; P = 6.84 610-4)

and between rs507211 at the ME3 locus and KIAA1109

(chromosome 4; P = 5.20 610-4), which is part of a gene cluster

(KIAA1109-TENR-IL2-IL21) that encodes two interleukins (IL2

and IL21).[18]

Discussion

Although the genetic contribution to cross-sectional lung

function phenotypes has been addressed by large-scale GWAS,

much less information is available for longitudinal lung function

phenotypes. To identify novel loci that specifically affect lung

function change over time, we performed a large-scale GWAS of

the rate of change in FEV1 in 27,249 participants from 14

population-based cohort studies. We identified a novel locus

(IL16/STARD5/TMC3) on chromosome 15 with suggestive

evidence for association with the rate of change in FEV1. Given

the greater precision to estimate longitudinal trends with more

measurements, a meta-analysis of the five cohort studies with $3

FEV1 measurements per participant was performed, and it

identified a second novel locus (ME3) on chromosome 11 at

genome-wide statistical significance. For both loci, the minor allele

was protective, and the magnitude of the association with the rate

of change in FEV1 was similar to that of being an intermittent or

former smoker versus a never-smoker.

The sentinel SNP at the novel chromosome 15 locus is located

in TMC3, although two neighboring genes, IL16 and STARD5

both harbor SNPs that are in modest LD with the sentinel SNP

(Figure 1A). TMC3, a member of the transmembrane channel-like

gene family, likely functions as an ion channel, transporter, or

modifier,[19] and has been associated with deafness and skin

cancer.[20,21] IL16 is a pleiotropic immunomodulatory cytokine

that acts as a chemoattractant for CD4+ cells and contributes to

their recruitment and activation in response to inflammation.[22]

Notably, asthma was the first disease where increased IL16

expression was observed.[23] Subsequent studies confirmed that in

the non-diseased state IL16 is almost exclusively expressed by T

lymphocytes in lymphatic tissue, whereas in asthmatic patients

IL16 is also synthesized by airway epithelial cells to inhibit airway

inflammation.[24-26] A promoter polymorphism (T-295C) in

IL16 was associated with asthma in a Caucasian population in

England,[27] although this finding was not confirmed in an

Australian study.[28] STARD5 belongs to the steroidogenic acute

Figure 1. Association of the chromosome 15 locus with the rate of change in FEV1 in the meta-analysis of 14 cohort studies. A)
Regional association plot, where the X-axis is Megabase (Mb) position and Y-axes are the negative log of the P value on the left and recombination
rate on the right. The sentinel SNP is colored in purple and linkage disequilibrium to the sentinel SNP is depicted by degree of color according to the
legend. B) Forest plot for rs4077833, where the size of the square for each study represents its contributing weight to the meta-analysis.
doi:10.1371/journal.pone.0100776.g001
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regulatory lipid transfer domain protein superfamily, and is

involved in the trafficking of cholesterol and other lipids between

intracellular membranes.[29] Recent in vitro studies showed

increased STARD5 expression and protein redistribution as a

protective mechanism in response to induced endoplasmic

reticulum (ER) stress and consequent over-accumulation of

intracellular free cholesterol.[30] We confirmed the expression of

STARD5 in all human lung tissues examined and of IL16 in human

lung smooth muscle cells, but not epithelial cells, in line with

previous observations. In contrast, no expression of TMC3 was

detected in any of the tested human lung tissues. We also found

significantly lower levels of IL16 in whole lung samples from

COPD patients compared with controls, in contrast to its

increased expression in asthma, and significantly higher levels of

STARD5 in COPD patients compared with controls. Taken

together, these results suggest IL16 as the most likely candidate

accounting for the observed association, but further investigation is

needed to elucidate underlying mechanisms.

The sentinel SNP at the novel chromosome 11 locus is located

in ME3, whose protein product is a mitochondrial NADP(+)-

dependent malic enzyme that catalyzes the oxidative decarboxyl-

ation of malate to pyruvate using NADP+ as a cofactor.[31]

Mitochondrial malic enzymes play a role in the energy metabolism

in tumors, and are considered potential therapeutic targets in

cancer.[32,33] We performed independent expression profiling of

ME3 and confirmed its expression in all human lung tissues

examined, and found significantly higher levels of ME3 in lung

samples from COPD patients compared with controls. In addition,

we looked up the sentinel SNP in ME3 in a recent GWAS of

airway obstruction and found a P value of 0.049.[34] Taken

together, these results support ME3 as a biologically plausible

candidate in the regulation of lung function and pathogenesis of

COPD.

The identification of trans-eQTL associations for the sentinel

SNPs at both the IL16/STARD5/TMC3 and ME3 loci is

interesting, and while the interpretation of trans-eQTL associa-

tions is ambiguous,[35] the regions these SNPs regulate merit

further study.

Besides the GWAS meta-analyses, the assembly of 14 longitu-

dinal cohort studies allowed us to meta-analyze the association of

cumulative smoking patterns with the rate of change in FEV1 in

the general population. The meta-analyzed estimate for the rate of

decline in FEV1 in never smokers was 26.9 mL/year, and the

annual decline was steeper in persistent, intermittent, and former

smokers by 8.8, 2.6, and 2.3 mL/year, respectively. These findings

provide a reference point for the effect of cigarette smoking on

longitudinal lung function change in the general population.

There is phenotypic variation among the 14 cohort studies in

aspects such as baseline age and cigarette smoking, and in factors

that are of special importance to this longitudinal GWAS, such as

the number of FEV1 measurements per participant and follow-up

duration. Phenotypic heterogeneity represents a general challenge

in genetic epidemiology, particularly in the investigation of

longitudinal phenotypes. Thus, we performed a meta-analysis

using the subset of cohort studies with $3 FEV1 measurements per

participant, given that longitudinal trajectories are best estimated

over longer time periods and with more measurements. There was

little overlap between the top loci identified in the two meta-

analyses at P , 1 6 1025, suggesting that phenotypic heteroge-

neity affected the association results. Future meta-studies of lung

function decline should aim to increase sample size while

maintaining high phenotypic comparability among participating

studies. In addition, the trajectory of lung function change,

especially over a long period of time, is known to be nonlinear,
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which may require the use of nonlinear time effects in the

statistical model. In this study, given that over half of the included

cohort studies have FEV1 measurements at only two time points,

our consideration was limited to a linear time effect. Further, the

outcome studied, the rate of change in lung function, represents

one of many ways to describe lung function change. Additional

studies of other aspects of lung function change, such as reduced

growth and premature decline, would be of interest.

We sought corroborative evidence in a single cohort study of

1,494 participants. This sample size is much smaller and arguably

insufficient compared with replications applied to previous studies

of cross-sectional lung function phenotypes. Thus, despite the lack

of corroboration for the two novel loci identified in the meta-

analyses, results from the complementary gene expression analyses

provide compelling evidence for biologically plausible roles of the

implicated genes in the longitudinal change in lung function.

None of the 14 sentinel SNPs were associated with the rate of

change in FEV1 in the COPD patient-based LHS cohort.

Similarly, a previous population-based GWAS of lung function

decline noted a high degree of heterogeneity in findings when

analyses were stratified by presence/absence of asthma.[12] The

observed discrepancy of association results suggests that the

genetic determination of lung function decline may be different

in healthy individuals compared with COPD patients, may

contribute differentially in a pre-diseased vs. post-diseased state

in which medications may influence the rates of decline, or that

LHS was underpowered for confirming our findings.

In this study, statistical models included a comprehensive list of

confounders that are commonly adjusted for when modeling lung

function phenotypes. Given the study’s meta-analysis design and

the objective to carry out the same statistical model in all cohort

studies, additional covariates that were not available in all cohort

studies could not be included. In addition, the adjustment of

certain confounders, such as smoking, is challenging in a

longitudinal study, and although we accounted for the two most

important aspects of smoking, cumulative pattern and dosage,

residual confounding due to smoking cannot be excluded.

In summary, we performed GWAS of the longitudinal change

in lung function and subsequent meta-analyses, using harmonized

data from more than 27,000 participants of European ancestry to

identify genetic loci influencing the rate of change in FEV1. We

identified the novel ME3 locus on chromosome 11 at genome-wide

significance and found suggestive evidence for association at the

novel IL16/STARD5/TMC3 locus on chromosome 15. Additional

expression analyses confirmed the expression of ME3, IL16, and

STARD5 in multiple lung tissues, and found differential expression

profiles of these three genes in the lungs of COPD patients

compared to non-COPD controls. These results support the

involvement of these implicated genes in the longitudinal change

in lung function in adults of European ancestry. Additional studies

with larger sample size and in populations of other races/

ethnicities are warranted.
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