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Abstract

The ability to predict how far a drug will penetrate into the tumour microenvironment

within its pharmacokinetic lifespan would provide valuable information about therapeutic

response. As the pharmacokinetic profile is directly related to the route and schedule of

drug administration, an in silico tool that can predict the drug administration schedule that

results in optimal drug delivery to tumours would streamline clinical trial design.

This paper investigates the application of mathematical and computational modelling

techniques to help improve our understanding of the fundamental mechanisms underlying

drug delivery, and compares the performance of a simple model with more complex ap-

proaches. Three models of drug transport are developed, all based on the same drug binding

model and parameterised by bespoke in vitro experiments. Their predictions, compared for a

“tumour cord” geometry, are qualitatively and quantitatively similar. We assess the effect of

varying the pharmacokinetic profile of the supplied drug, and the binding affinity of the drug

to tumour cells, on the concentration of drug reaching cells and the accumulated exposure

of cells to drug at arbitrary distances from a supplying blood vessel. This is a contribution

towards developing a useful drug transport modelling tool for informing strategies for the

treatment of tumour cells which are “pharmacokinetically resistant” to chemotherapeutic

strategies.

Keywords: computational modelling; mathematical modelling; drug delivery; drug trans-

port; drug binding; pharmacokinetic profiles.



1 Introduction

A characteristic feature of solid tumours is the presence of a poorly organised and dys-

functional vasculature. The blood vessels that develop in response to angiogenic stimuli

are structurally and functionally different to those of normal tissues, leading to poorly per-

fused areas of the tumour [1]. This results in the establishment of a microenvironment that

can have profound effects on tumour biology and response to chemotherapy. The tumour

microenvironment is characterised by gradients of oxygen tension, nutrient status, catabo-

lite concentrations, extracellular pH, cell proliferation rates and a multitude of biochemical

changes that enable cells to adapt to these hostile conditions [2], unless conditions become

so extreme that tumour cells cannot survive and regions of necrosis occur. Where deliv-

ery of cancer drugs to cells within the tumour microenvironment is impaired, these cells

are “pharmacokinetically resistant”; this form of resistance, distinct from cellular resistance,

is increasingly recognised as a barrier to effective treatment [3]. In this paper we use the

generic term “chemotherapy” to cover both conventional cytotoxic drugs and novel “targeted”

therapies, since the challenges of drug delivery apply to both.

The variations in microenvironment in vivo are extremely complex, and depend on dis-

tance from a supporting blood vessel. Important insights can, however, be gained from a

much simpler representation, that of a “tumour cord”, where a “collar” of cells surrounds a

supporting blood vessel, with cells at a distance from the vessel comprising regions of necro-

sis (Figure 1). This model forms the biological platform for the studies described within this

paper, which focuses on predicting the ability of drugs to penetrate through several layers

of cells from a central blood vessel, and reach more distant cells. This ability of drug to

reach cells some distance from the vessel is key to the effectiveness of chemotherapy, for both

cytotoxics and targeted drugs, because these cells are typically resistant to current cytotoxic

treatment, mainly due to inadequate drug penetration.

The interplay between cellular factors and drug transport is complex, but drug delivery

can be broken down into three stages; drug delivery to a tumour is determined by the supply

of drug via the blood vessels in tumours, the flux or movement of drug through the tumour

mass, and sequestration which includes binding to cellular or extracellular components and

metabolism of the drug [3]. The impact of each stage on drug delivery will vary depending

upon the pharmacology of individual drugs and the biological properties of individual cancers

(e.g. differential expression of targets or drug metabolising enzymes).

It is recognised from the outset that the models describing these processes represent con-

siderable simplifications of complex biology and geometry [4], which may be better described

by a more sophisticated computational framework [5]. However, we believe simpler math-

ematical models play an important role in developing more complex schemes by providing

what might be described as “semi-quantitative” understanding of the biological transport

mechanisms, and offering a simple approach to assessing the relative merits of different pro-

tocols. Changing drug administration protocols varies the concentration and exposure time
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Figure 1: HCT116 human colorectal tumour xenografts. A Histological sections at low

magnification showing blood vessels (BV) surrounded by cords of viable cells and necrotic

areas (N) further distanced from the vessels. B Higher magnification of blood vessel and

surrounding viable area. C Section through a clinical sample of a transitional cell carcinoma

of the bladder immunostained for Glut-1, a glucose transporter which is up-regulated under

hypoxic conditions. Glut-1 positive staining (brown membrane staining) can clearly be seen

distal from supporting blood vessel (BV). D Schematic representation of the tumour cord

where the central blood vessel (BV) is surrounded by viable cells but as distance from the BV

increases (as indicated by the arrow) the microenvironment becomes more extreme, leading

to regions of necrosis. Cells that reside some distance away from the BV are “pharmacokinet-

ically resistant” to chemotherapy as drugs cannot effectively penetrate through multicellular

layers. The solid scale bars represent 500 µm (A, C) and 100 µm (B). (Online version in

colour.)

of drugs within the central blood vessel (both in practice and in our tumour cord models)

and these models allow us to investigate how these factors influence drug delivery. To test

a range of scheduling options in purely experimental animal tumour models is expensive

and conflicts with the aim of reducing, refining and replacing (the 3Rs) animal experiments
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that is currently promoted by institutions such as the Medical Research Council. In sil-

ico modelling offers the promise of being able to test multiple experimental scenarios and

streamline the search for drug treatment regimens that optimise drug delivery to tumour

cells throughout the tumour microenvironment.

There exists a plethora of models describing the transport of drugs in tissue, ranging

from compartmental models that account for exchange of drug within spatially distinct

intracellular compartments [6, 7, 8, 9], to continuum models describing the transport over

macroscopic tissue scales [10, 11, 12, 13, 14]. If modelling is to have greater predictive impact

on the development of new therapeutic agents, it is important that the relative merits and

limitations of these different descriptions are clearly understood.

The key questions this paper seeks to address are “Does each of these models give sim-

ilar results for the variation in drug concentration in the tumour cord?” and “How do the

administration schedule and cell response affect drug delivery?” Where differences do ap-

pear, we will seek to explain the reasons for them and the consequences for the choice of

modelling approach. Three approaches to modelling the spatio-temporal evolution of drug

concentrations in a tumour cord are compared, each of which is representative of a class of

models: (i) a multidimensional cell-centre model that defines a network of nodes (each node

corresponding to computational cell which is identifiable with a biological cell), in which

drug transport is defined locally between nodes and their nearest neighbours; (ii) a compart-

mental model, which makes use of the concentric-layer structure of tumour cords; and (iii)

a continuum model that assumes Fickian diffusion in the cylindrical geometry of the cord.

The first of these approaches is amenable to multi-scale modelling [5, 15] since each node

may be characterised by a bespoke microenvironment consisting of, for example, a cell cycle

and molecular pathways. The remaining models are tailored to the tumour cord geometry,

so are less flexible but much simpler (and faster) computationally.

In Section 2, after outlining the underlying binding model, which is parameterised by

experimental data for the cytotoxic drug doxorubicin, a description of each spatio-temporal

model is given, emphasising the relationship between the three discrete transport models.

In Section 3, the model predictions are compared for two scenarios; in the first, each model

is tested using a single set of model parameters (and hence a single homogeneous biological

environment) estimated from bespoke in vitro experimental data, allowing us to investigate

the influence that the choice of mathematical approach to drug transport has on the predic-

tions (with the same binding model). The second scenario explores the effect on the model

predictions of varying the pharmacokinetic profile and model parameters representing the

drug’s binding affinity, a biological characteristic which can, to some degree, be controlled

by the administration of other drugs. The results are then discussed in Section 4 in relation

to the choice of modelling approach.
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2 Models

Three distinct modelling approaches are considered, each of which represents drug delivery

from a central blood vessel to a surrounding tumour cord. Each model assumes axial unifor-

mity – the dependence of the drug concentration on the distance from the central vessel does

not vary along the vessel, to reduce the complexity (as in [16]). A genuinely multidimen-

sional model is developed in Section 2.2, followed by two simplified, one-dimensional models

(Sections 2.3 and 2.4) in which radial symmetry is assumed.

The interaction of the chemotherapeutic agent with the microenvironment is restricted to

drug binding only. This binding model, which is common to all three approaches, is discussed

in Section 2.1. The in vitro experiments used to parameterise the model were conducted over

relatively short time-scales and contained no elimination mechanism for the drug: explicit

modelling of decay or elimination (other than clearance via the supplying vessel) is left to

future work.

2.1 Binding Model

The interaction of the chemotherapeutic agent with the microenvironment of cells is de-

scribed by a three-compartment model, composed of extracellular space (volume V1) with a

concentration C1 of free drug and intracellular space (volume V2) with concentrations C2 and

C3 corresponding to free and bound drug (where, in this model, the term bound includes

both DNA-intercalated drug and drug bound to the cell in other ways). The binding is

described by a simple kinetic model: drug binds reversibly to sites within the cell.

Applying the principle of mass action leads to three coupled ordinary differential equa-

tions which describe the system:

V1
dC1

dt
= ak1(C2 − C1) , (1)

V2
dC2

dt
= ak1(C1 − C2) − V2k2C2(C0 − C3) + V2k−2C3 , (2)

V2
dC3

dt
= V2k2C2(C0 − C3) − V2k−2C3 . (3)

in which k1 is the rate constant for the transmembrane transport of drug, a is the area

of the interface between the extracellular and intracellular spaces (the surface area of the

cell), k2 and k−2 are the drug association and disassociation rates, respectively, and C0 is the

concentration of binding sites within the cell. It is assumed that mixing in each compartment

is instantaneous – that is intracellular and extracellular diffusion are assumed to be fast on

the scale of an individual cell. This model is illustrated by the two-dimensional schematic

in Figure 2. Note that the model presented in (1)–(3) is an extension of those in [12] and

[17], in which drug binding is non-saturable and non-reversible. It would be straightforward

to modify the binding model in this way, or to account for Michaelis-Menten-type transport

should this be required, as in [8, 18, 19], for example.
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C1 C2 C3 with C3 ≤ C0

V1

V2

extracellular space
intracellular space

k1 k2

k
−2

Figure 2: A three-compartment model of drug distribution in tissue. C1

represents extracellular drug concentration, C2 free intracellular drug con-

centration and C3 bound intracellular drug concentration. (Online version

in colour.)

Values for the kinetic rate constants for the binding process are derived from a bespoke

experimental binding assay. Doxorubicin binding to DLD-1, a colorectal adenocarcinoma

cell line, was studied by incubating 106 tumour cells suspended in tissue culture medium

(37◦ C), with a range of doxorubicin concentrations (0-100 µM). At evenly distributed times

between 0-2 h a fixed volume of the culture was removed and cells pelleted by centrifugation.

Free doxorubicin in the supernatant was extracted and measured by a sensitive and specific

high performance liquid chromatography (HPLC) technique [20]. Binding was calculated by

comparison with cell-free doxorubicin solutions incubated in parallel. The data from these

experiments are included in the Supplementary Material. DLD-1 was also the cell line used

to estimate the transport rate, k0, taken from [6].

Two sets of experiments were performed, providing both steady-state and time-dependent

data. A χ2 minimisation, described in the Supplementary Material, was then performed to

provide estimates for the parameters k1, k2, k−2 and C0, given in Table 1.

2.2 Multidimensional Cell-Centre Model

The most general approach considered here is a multidimensional model in which each biolog-

ical cell in the cord is represented as a computational node (cell centre) characterised by ge-

ometric and biological information: position, cell radius, binding rates, and concentration of

binding sites. Each of these nodes in isolation acts in accordance with the three-compartment

binding model illustrated in Figure 2, providing the potential to insert a bespoke model of

the microenvironment for each node/cell. The binding model is augmented by a description

of the spatial transport of the drug, described locally by defining transport terms between

nodes and their nearest neighbours.

A representative geometry of a slice through the tumour cord is illustrated in Figure 3

(cf. Figure 1B). We assume uniformity in the axial direction – variations along the vessel are

assumed negligible – so only two-dimensional cord cross-sections are considered in this paper.

The terms volume and area are used as though the model were fully three-dimensional but,
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Variable Value Description Source of Estimate

l 1.6 × 10−5 m Vessel radius Histology [21]

L 2.0 × 10−4 m Cord radius Histology [22, 23]

(vessel + ∼ 9 cells)

r ∼ 1.0 × 10−5 m Cell radius Histology [24]

δ 0.0625 Extracellular:Intracellular Histology [6, 25]

volume ratio parameter

α ∼ 1.94028 × 105 m−1 Membrane surface:Tissue α = 2/(r
√

1 + δ)

volume ratio

k0 2.5 × 10−6 m s−1 Permeability between cells [6]

k1 1.0 × 10−6 m s−1 Permeability across Experiment

cell membrane

k2 0.90 × 10−6 µM−1 s−1 Drug association rate Experiment

k−2 14.0 × 10−5 s−1 Drug disassociation rate Experiment

kv 1.25 × 10−7 m s−1 Permeability across Estimated

vessel wall

D 5.0 × 10−11 m2 s−1 Interstitial diffusion rate D = 2k0r

C0 2.6 × 103 µM Binding site concentration Experiment

Table 1: Summary of model parameter values for baseline studies. In the final column

“Experiment” refers to the fitting to experimental data described in Section 2.1 and the Sup-

plementary Material, and “Histology” indicates estimation from histological tissue images,

such as those illustrated in Figure 1 or at www.virtualpathology.leeds.ac.uk, or from

the cited references. The parameter k0 has been estimated based on the value of r1 (trans-

port rate between cell layers) in the multi-layer model of [6]. The parameter kv has been

chosen to give slower transport across the vessel wall than across the cell membrane, though

in the disordered, leaky, tumour vasculature this is likely to be highly variable. Note that

the volume fractions used in Section 2 are defined by δ1 = δ
1+δ

and δ2 = 1
1+δ

, where they

are combined with the relevant compartmental volumes, Vi. We choose these to match the

volumes of biological cells, though this is not necessary.
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for simplicity, the factor of the cord length is omitted from all of the analysis, since it cancels

out in the model equations.

Figure 3: A representative tumour cord geometry for the two-dimensional cell-centre model in

which the computational nodes (cell centres) surround a central vessel. The radius associated

with each node is illustrated by the surrounding circle and the connectivity is designated by

the connecting lines. (Online version in colour.)

Each computational node (cf. Figure 3) is assigned associated interstitial and intracellular

volumes, δ1Vi and δ2Vi, respectively, where δ1 and δ2 are volume fractions, parameterised by δ

in Table 1 (see Supplementary Material for full details) and three concentrations: interstitial,

intracellular free and intracellular bound drug denoted by C
(i)
1 , C

(i)
2 and C

(i)
3 , respectively.The

transport between nodes is assumed to be proportional to the concentration difference and

the interface area, Aij , between connected nodes.

Under these assumptions, the spatial variation represented by introducing distinct com-

putational nodes can be included in the model by adapting Equations (1)-(3) to include

terms for transport between nodes and having a separate set of equations for each node, i.e.

δ1Vi

dC
(i)
1

dt
=

∑

j∈Ni

Aijk0

(

C
(j)
1 − C

(i)
1

)

+
∑

j∈Vi

Aijkv

(

C(j)
v − C

(i)
1

)

(4)

+ a(i)k1

(

C
(i)
2 − C

(i)
1

)

,

δ2Vi

dC
(i)
2

dt
= a(i)k1

(

C
(i)
1 − C

(i)
2

)

(5)

− δ2Vi

{

k2C
(i)
2

(

C0 − C
(i)
3

)

− k−2C
(i)
3

}

,

δ2Vi

dC
(i)
3

dt
= δ2Vi

{

k2C
(i)
2

(

C0 − C
(i)
3

)

− k−2C
(i)
3

}

. (6)
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Here, Aij is the area of the interface between nodes i and j (cf. Supplementary Material) and

a(i) is the area of the interface between the intra- and extracellular space surrounding node i.

Ni and Vi are sets of indices of, respectively, the nodes and blood vessels neighbouring node

i: all simulations presented in this paper have been carried out with a single central vessel.

Cv(t) is a predefined pharmacokinetic profile in the blood vessel and determines the flux of

drug through the vessel wall. At the outer boundary this model automatically implies zero

flux of drug since there are no connections to nodes outside the cord geometry. This models

a situation in which the tumour cord is surrounded by similar cords – providing a symmetry

boundary condition.

It is assumed in this model that the transport of drug is limited to the interstitium

– drug is only exchanged between neighbouring nodes via the compartments representing

extracellular space. Internalisation and binding terms in Equations (4)-(6) are analogous

to those for the binding model. The additional rate parameter in this model is the spatial

transport coefficient k0, which has the units of permeability and is estimated in Table 1

according to data provided in [6].

2.3 Radially-Symmetric Compartment Model

A simpler way to augment the binding model with a spatial component is to exploit the

shell-like nature of tumour cords, the geometric property that cells are broadly arranged in

concentric circles around a central blood vessel (cf. Figures 1 and 4(a)). It is again assumed

that variations along the vessel are negligible.

l

L

d

d

V1V2· · ·· · ·Vn

A0

A1

A2

An

(a)

l

L

V

(b)

Figure 4: Schematics of the two radially-symmetric models: (a) the shell-like arrangement

for the compartmental model and (b) the continuum model, for the tumour cord. (Online

version in colour.)

We now assume that the rate of transport of drug between neighbouring shells is pro-

portional to the shared interface area (denoted by Ai for the interface between shells i and

i+1) and the difference in concentration across the interface. Under these assumptions, the
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spatial variation in the radial direction can be included by adapting Equations (1)-(3) to

give

δ1Vi

dC
(i)
1

dt
= Ai−1k0(C

(i−1)
1 − C

(i)
1 ) + Aik0(C

(i+1)
1 − C

(i)
1 )

+ aik1(C
(i)
2 − C

(i)
1 ) , (7)

δ2Vi

dC
(i)
2

dt
= aik1(C

(i)
1 − C

(i)
2 )

− δ2Vik2C
(i)
2 (C0 − C

(i)
3 ) + δ2Vik−2C

(i)
3 , (8)

δ2Vi

dC
(i)
3

dt
= δ2Vik2C

(i)
2 (C0 − C

(i)
3 ) − δ2Vik−2C

(i)
3 , (9)

for i = 1, . . . , n, where n is the number of shells, and ai is the cellular surface area within

the ith shell. In this work n = 9 is chosen so that each shell can be identified with a layer of

biological cells. The superscript corresponds to the shell number, and this index increases

with distance from the blood supply (cf. Figure 4(a)). The boundary conditions are imposed

at the vessel wall by setting C
(0)
1 = Cv(t) to be a predefined pharmacokinetic profile in the

blood vessel and replacing k0 by kv at this interface. A no-flux boundary condition is imposed

at the outer boundary of the cord by setting An = 0 (equivalent to replacing k0 by zero at

this interface).

The volumes Vi of the shells are readily determined from the geometry: assuming a shell

thickness d and a vessel radius l, the volume (again omitting the factor of the vessel length

due to the assumed uniformity along the vessel) of the ith shell is

Vi = π((2i − 1)d + 2l)d . (10)

The factors δ1 and δ2 are defined as in the cell-centre model, so that δ1 Vi and δ2 Vi are,

respectively, the extracellular and intracellular volumes in the ith layer. The interface area

between shells i and i + 1 is

Ai = 2π(l + id) . (11)

Note the similarity between compartmental and cell-centre equations. In fact, Equations

(7)–(9) can be viewed as a special case of Equations (4)–(6), in which nodes are replaced by

shells and the concentrations within each shell represent the averages over the conglomerate

of biological cells it contains.

2.4 Radially-Symmetric Continuum Model

The final model, the geometry of which is illustrated in Figure 4(b), is derived by disregarding

the cellular structure of the tumour cord and assuming that transport of molecules occurs

by isotropic Fickian diffusion in a continuum. A model for the tumour cord is then readily
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obtained as the system of partial differential equations [10, 12]

δ1
∂C1

∂t
= D∇2C1 + αk1(C2 − C1) , (12)

δ2
∂C2

∂t
= αk1(C1 − C2) − δ2k2C2(C0 − C3) + δ2k−2C3 , (13)

δ2
∂C3

∂t
= δ2k2C2(C0 − C3) − δ2k−2C3 , (14)

where the factors δ1 and δ2 are defined as before, and D is a diffusion coefficient related to

the permeability k0. The precise nature of this relationship can be derived by noting that
∫

Vi

D∇2C dV =

∮

∂Vi

n · D∇C dS (15)

=
∑

j∈Ni

∫

∂Vij

n · D∇C dS (16)

≈
∑

j∈Ni

Aij

dij

D(C
(j)
1 − C

(i)
1 ) , (17)

in which n represents the unit normal pointing outwards from volume Vi. Note that the

direction of n varies over the surface of Vi. Hence, the relationship between transport

coefficients of discrete and continuum models is

D = d k0 , (18)

where d is a length parameter, taken here to be the average cell diameter, 20 µm. The

parameter α in Equations (12) and (13) is easily derived from Equations (7) or (8) and

represents the ratio of the cellular surface area within a region to that region’s volume,

α = a
V

(see Table 1).

Given these definitions, integrating Equations (12)-(14) over a cell or shell returns the

equations of the multidimensional cell-centre and radially-symmetric compartmental models,

respectively. The boundary conditions imposed are the same as for the other two models.

The flux of free drug across the vessel wall is assumed to be proportional to the difference

in concentration between vessel and interstitium, so [15]

D∇C1 · n1 = kv(Cv − C1|r=l) , (19)

that is, the normal flux at the vessel wall is proportional to kv, the vessel permeability, and the

difference in free drug concentration across the vessel wall (Cv being the drug concentration

in the blood, determined by the prescribed pharmacokinetic profile). A no-flux condition is

imposed at the outer boundary;

D∇C1 · n2 = 0 at r = L . (20)

The respective unit normal vectors at the vessel and the outer boundary, pointing out of the

intervening tissue, are denoted by n1 and n2.
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A spectral method [26, 27] is used in this work for the spatial discretisation of Equations

(12)–(14). Note that, since radial symmetry is assumed, the Laplacian term in Equation (12)

is actually of the form

D∇2C1 = D

(

∂2C1

∂r2
+

1

r

∂C1

∂r

)

. (21)

2.5 Pharmacokinetic Profiles

The clinical pharmacokinetics of doxorubicin are well characterised in the literature [28].

Doxorubicin concentrations are known to decay in a tri-exponential manner following IV

bolus or infusion and typical parameters are available in the literature (e.g. [29], in which

doxorubicin is administered as an IV bolus, not infusion).

The first pharmacokinetic (PK) profile considered here is based on the data provided by

[29], in which Cv(t) is assumed to decay as a tri-exponential (see also [8]), i.e.

Cv(t) =
D0

τ

{

A

α
(eατ − 1) e−αt +

B

β

(

eβτ − 1
)

e−βt +
C

γ
(eγτ − 1) e−γt

}

(22)

for t ≥ τ , where τ is the infusion time, D0 is the dose and parameters A, B, C, α, β and

γ are estimated by taking averages of the values given in Table 2 of [29]. This gives (to 3

significant figures)

A = 7.46 × 10−2 l−1 α = 2.69 × 10−3 s−1

B = 2.49 × 10−3 l−1 β = 2.83 × 10−4 s−1

C = 5.52 × 10−4 l−1 γ = 1.18 × 10−5 s−1

The rapid initial infusion of the drug is modelled by taking

Cv(t) =
D0

τ

{

A

α

(

1 − e−αt
)

+
B

β

(

1 − e−βt
)

+
C

γ

(

1 − e−γt
)

}

(23)

for t < τ , which lifts the concentration to the appropriate value at t = τ . The duration of

the perfusion for the total dose injected, τ = 180 s, was also taken from [29] and the total

dose D0 = 1.19827 × 102 µmol was calculated to give an “area under curve” of

AUC ≡
∫ ∞

0

Cv(t) dt = 104 µM s ≈ 2.78 µM h , (24)

which is typical of what one might find in a patient [30, 31]. The AUC is an important

parameter, because the area under the plasma drug concentration-time curve (AUC) is

considered to reflect the actual tumour (cellular) exposure to drug after administration of

a drug dose, and to correlate with toxicity – though it is more difficult to correlate with

clinical efficacy [32].

Two further pharmacokinetic profiles, both constructed to give the same AUC, are also

simulated, to investigate their influence on the drug distribution.

• A mono-exponential profile, Cv(t) = A′e−α′t with A′ = 50 µM and α′ = 0.005 s−1.
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• A uniform (steady-state) profile, Cv(t) = A′′ = 3.85802× 10−2 µM up to t = 72 h (and

zero afterwards), representing prolonged infusion. This takes the form of a rectangular

pulse.

3 Results

3.1 Model Comparison

The first set of numerical results are generated to address the key question “Does each of

these models give similar results for the variation in drug concentration in the tumour cord

for similar parameters?” In order to assess this we compare the predictions for a set of

parameter values, shown in Table 1, common to all three models. These simulations are

carried out for the tri-exponential (IV bolus) pharmacokinetic profile described in Section

2.5.

All numerical experiments were carried out on the same computational domain, compris-

ing a single circular blood vessel of radius 16µm at the centre of a circular cord of tumour

cells of radius 200µm. The vessel radius approximates the average radius of arterioles and

venules rather than larger vessels. For the radially-symmetric compartmental model the

region between the vessel and outer boundary was divided into 9 shells of equal width (ap-

proximately the diameter of a biological cell). The two-dimensional cell-centre results were

generated using 60 separate configurations, to assess the effect that small random variations

in the distribution of the node positions and radii have on the drug distribution. Each con-

figuration is derived from a different randomly-generated set of node positions and radii (cf.

Section 2.2) and contains approximately 400 nodes, the number required to fill the domain

with cells of the given radius.

The nature of the binding model means that the node spacing does not have to match

the biological cell size, since each compartment contains both intracellular and extracellu-

lar concentrations. However, future developments may treat the cells as separate entities,

immersed in interstitial fluid, so this is a useful length scale at which to investigate the

model. The impact on the results of changing the spacing is similar to that of changing the

resolution in an approximation to a continuum model. Increasing the spacing will effectively

increase the rate of diffusion because the model assumes that, at each time-step, any drug

which passes into a compartment instantaneously equidistributes its concentration through-

out that compartment. We have conducted numerical experiments with different cell sizes

and, although there are small quantitative differences, we have found no evidence that the

qualitative behaviour might be changed.

In order to visualise the two-dimensional simulation results, both mean values and stan-

dard deviations are plotted, after clustering the nodes from all 60 configurations into 20 bins,

according to their distance from the blood vessel. The mean distance is plotted against the

mean concentration for each of these bins, and the standard deviations of both variables are
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illustrated by horizontal (distance) and vertical (concentration) bars. The compartmental

model is illustrated using solid dots plotted at the centres of the cylindrical shells and the

continuum model is represented by a solid line.

Figure 5 shows snapshots of the concentration profiles, as a function of distance from the

source of the drug, for C3 after 1 h, 6 h, 24 h and 72 h, generated using the tri-exponential

PK profile from Section 2.5 and the parameter values in Table 1. Note that the results for

C1 and C2 (in the Supplementary Material) are almost indistinguishable. This similarity is

common to all the tests we have run and consistent with very rapid transport of drug across

the cell membrane.

3.2 Comparing Pharmacokinetic Profiles

Section 2.5 described three distinct pharmacokinetic profiles, one representing administration

by an IV bolus with a tri-exponential decay (characteristic of doxorubicin), a simplified,

mono-exponential, approximation to this decay profile, and a uniform profile representing

infusion of the drug. All profiles had the same AUC, since this is a standard measure of

cellular toxicity.

Since the numerical results presented in Section 3.1 showed similar results for all three

models of the tumour cord, the simplest – the compartmental model described in Section

2.3 – was chosen to illustrate how the distribution of the drug is influenced by the PK profile

of the supplied drug, Cv(t). The model parameters used were those in Table 1. The other

models have been run with the same parameters, but the data are not shown since they

contain no significant differences.

Figure 6 shows the evolution of the extracellular and bound drug distributions, C1 and

C3, as a function of distance from the drug source for each of the three PK profiles described

in Section 2.5. The time variation of the concentrations of both free and bound drug in a

given cell layer generally follows that of the PK profile in the vessel, though there is a time-

lag which increases the further away from the vessel a cell layer is. For both exponential

profiles the concentration increases initially to a peak value (particularly rapidly for the mono-

exponential profile), then decreases monotonically, but for the uniform profile it increases

monotonically for the duration of the experiment.

This is confirmed by examining the temporal variation of the concentrations at specific

points in the domain. Figure 7 shows this at the centres of the first (innermost), fifth (middle)

and ninth (outermost) shells of the compartmental model. Note that the extracellular drug

concentrations at very early times (< 1 h) extend far beyond the maximum value on the

vertical axis of the graph for the IV bolus profiles: the true maximum values are given in

Table 2. These peaks become less extreme further away from the vessel.

Figure 8 shows the variation of the exposure of the cells to the bound drug (AUC, given

by
∫ T

0
C3dt) as a function of distance from the blood vessel, after T = 24 h and T = 72 h.

Early in the simulations the exponential profiles give a far higher exposure than the uniform
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Figure 5: Dependence of the concentrations of bound drug, C3, on distance from the drug

supply at times t = 1 h (top left), t = 6 h (top right), t = 24 h (bottom left) and t = 72 h

(bottom right). The solid line represents the continuum model, the large solid dots represent

the compartmental model and the smaller dots with vertical and horizontal bars represent

the cell-centre model. The tri-exponential (IV bolus) PK profile has been used as input.

(Online version in colour.)
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Layer index 1 5 9

Distance from vessel centre 26 µm 108 µm 190 µm

Tri-exponential/IV bolus

Maximum C1 (µM) 0.382 0.140 0.112

Time of maximum C1 (h:m:s) 00:03:56 00:08:21 00:10:01

Maximum C3 (µM) 1.06 0.838 0.822

Time of maximum C3 (h:m:s) 21:18:33 59:48:33 70:23:33

Mono-exponential/IV bolus

Maximum C1 (µM) 1.80 0.523 0.406

Time of maximum C1 (h:m:s) 00:01:15 00:04:25 00:06:14

Maximum C3 (µM) 1.93 0.983 0.872

Time of maximum C3 (h:m:s) 00:41:02 01:02:28 31:45:39

Uniform/Infusion

Maximum C1 (µM) 0.00830 0.00681 0.00650

Time of maximum C1 (h:m:s) 72:00:00 72:00:00 72:00:00

Maximum C3 (µM) 1.16 0.904 0.853

Time of maximum C3 (h:m:s) 72:00:00 72:00:00 72:00:00

Table 2: Maximum concentrations of free extracellular and bound intracellular drug, to 3

significant figures, and the experiment times at which they occur, to the nearest second (for

three distances from the centre of the blood vessel and all three PK profiles).

profile, but as time progresses the differences between the profiles reduce. However, results

at later times should be interpreted carefully, since elimination of drug is not included in

the model and the only drug clearance is due to the drug returning to the vessel. This effect

will be addressed in future models, through the inclusion of elimination mechanisms such as

cellular metabolism, sequestration/binding to the extracellular matrix and drug efflux. Drug

clearance due to lymphatics may be considered for larger tumour volumes, though functional

lymphatic vessels are not thought to be prevalent in tumours [3].

3.3 Comparing Binding Affinities

The final set of numerical experiments investigates the effect that changing the binding

affinity of the intracellular drug, parameters k2 and k−2 in our model, has on the exposure

of the cells to bound drug. This attempts to address one aspect of the question “How does

the administration schedule and cell response affect drug delivery?” As in Section 3.2, the

compartmental model (Section 2.3) was used to produce the numerical results presented

here. No significant differences were seen when the same tests were carried out with the

other models (data not shown).
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Figure 6: Dependence of the concentrations of extracellular drug, C1 (left), and bound

drug, C3 (right), on distance from the drug supply for three pharmacokinetic pro-

files: tri-exponential/IV bolus (top), mono-exponential/simplified IV bolus (middle), uni-

form/infusion (bottom). Each graph shows profiles at times t = 1 h, t = 6 h, t = 24 h and

t = 72 h. (Online version in colour.)
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Figure 7: Dependence of the concentrations of extracellular drug, C1 (left), and bound drug,

C3 (right), on time for three pharmacokinetic profiles: tri-exponential/IV bolus (top), mono-

exponential/simplified IV bolus (middle), uniform/infusion (bottom). Each graph shows

profiles at the centres of the first, fifth and ninth of the model’s shells (distances 26 µm,

108 µm and 190 µm from the centre of the vessel). (Online version in colour.)
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Figure 8: Dependence of the exposure to bound drug (
∫

C3 dt) on distance from the sup-

ply of drug at t = 24 h (left) and t = 72 h (right) for three pharmacokinetic profiles: tri-

exponential/IV bolus, mono-exponential/simplified IV bolus, uniform/infusion. (Online ver-

sion in colour.)

The qualitative changes caused by adjusting k2 and k−2 depended most significantly on

the ratio k−2/k2, so only results for different values of k2 (the association rate) are shown in

Figure 9. All other parameters take the values shown in Table 1.

4 Discussion

In Section 2, three different approaches to modelling the delivery of drug from a blood

vessel to a surrounding tumour cord were presented. One of these, a discrete cell-centre

model which identifies computational nodes with individual biological cells, is genuinely

multidimensional and could be applied to more complex geometries than the one investigated

here, such as those modelled using a finite element discretisation of a reaction-diffusion

system in [33]. The remaining two (a discrete, compartment-based, model and a continuum,

PDE-based, model) are tailored to the specific problem of drug delivery from a single vessel

to a homogeneous tumour cord, assuming radial symmetry. All were built on a binding

model involving extracellular drug and free and bound intracellular drug, which extends

those of [12] and [17] by allowing drug binding to be saturable and reversible.

The two radially-symmetric models are much simpler and therefore computationally much

faster than the multidimensional model, but this leads to the question “Does each of these

models give similar results for the variation in drug concentration in the tumour cord?”

Figure 5 shows a representative comparison of the bound drug variations of the three models

for a pharmacokinetic profile derived from in vivo data for an IV-bolus. The concentrations

predicted by the three models differ by less than 15% throughout the simulation. In fact,
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Figure 9: Dependence of the exposure to bound drug (
∫

C3 dt) on distance from the supply

of drug at t = 72 h for three different binding affinities where the association rate constant

only varies over the range: k2 = 4 × 10−7 µM−1s−1, k2 = 4 × 10−6 µM−1s−1 and k2 =

4 × 10−5 µM−1s−1. The tri-exponential/IV bolus pharmacokinetic profile was used as input.

(Online version in colour.)

the plotted standard deviations for the multidimensional cell-centre model show that the

variation between the randomly-generated two-dimensional configurations (particularly when

there is a steep gradient in the drug concentration close to the central vessel) is typically larger

than the difference between the average multidimensional results and the radially-symmetric

results. This observation is supported by further simulations some of which are shown in the

Supplementary Material. In all cases, the qualitative features of the concentration profiles

are similar, whichever model is used.

In Figure 5 the two radially-symmetric models agree more closely with each other than

with the multidimensional model. This is not generally the case for all parameter sets.

We note that the discrete models would be expected to converge to the continuum model

asymptotically if the sizes of the “cells” were allowed to tend to zero, though this is not

biologically realistic, since continuum models of this type are designed for use at much larger

length scales. In contrast, although the discrete models operate on realistic cell sizes, in

doing so they implicitly assume that diffusion/mixing within a cell happens instantaneously.

We have conducted a range of numerical simulations for the tumour-cord geometry, with

different parameters, without finding any systematic differences between the results which

might suggest that one model is consistently more accurate than the others. All three mod-

els give qualitatively and quantitatively similar results and we do not yet have experimental

data to enable us to assess whether one model is better or worse than another. The mul-

tidimensional model is, computationally, more expensive and therefore inefficient for the

radially-symmetric tests considered here, but we include it because it would be used for

more complex geometries and heterogeneous tissue. Continuum models are very commonly
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used, but are based on the assumption that the differential equation is valid at every point in

space. The radially-symmetric, compartment-based, model only assumes that the differential

equation is valid in an integral-averaged sense (and is, in effect, a finite volume discretisation

of the continuum model [34], an integration of the continuum model over volumes chosen

to be on the scale of the biological cells) leading to a very natural framework for simulating

mass balance processes. The compartmental model is limited to radially-symmetric prob-

lems (cords, multicell spheroids), but this is a common constraint imposed in computational

modelling for (i) efficiency of computation and (ii) direct comparison with mathematical

analysis, which is often limited to such quasi-one-dimensional geometries.

We therefore choose to use the radially-symmetric, compartment-based model to investi-

gate further the effect of varying the supplied PK profile and the behaviour of the underlying

binding model, and note that the similarity of the results provides some validation of the

more complex approaches. This gives us confidence that they could be used reliably in

the more complex scenarios for which they are designed. A more comprehensive validation

would involve comparison with measurements of drug distribution from an in vitro tumour

cord model system. Simple modifications to the model geometry would also allow validation

against experimental data for multicell spheroids. In both cases, knowledge of heterogeneity

in the system could be readily incorporated in the multidimensional approach described in

Section 2.2.

Drug delivery to tumours is dependent upon a number of factors, the principal ones being

the dose and schedule of administration, delivery of the drug via the blood vessels, the flux

or distribution of drug through avascular tissue and consumption of drug by the cells or the

extracellular matrix [3]. For example, increasing the diffusion rate, k0, tends to make the

distribution of the drug more homogeneous ([35] and Supplementary Material) because the

drug can be transported further before it is bound. However, in this paper we focus on other

factors.

In Section 3.2 three different delivery profiles were compared, all of which provide the

same overall dose. Figures 6 and 7 show significant differences between the distribution of

drug in the tissue at any given point in time. When the PK profile in the blood vessel

represents an IV bolus a sharp peak in free drug concentration occurs in the first hour as

the drug diffuses rapidly into the surrounding tissue and is transported into the cells. The

profiles at t = 1 h in Figure 6 are similar in shape to the experimentally measured gradients

in [23]. The concentration of free drug then drops steeply as it is bound until an approximate

equilibrium is reached. This is followed by a slower decrease once the concentration of drug

in the vessel drops below that of the free drug in the tissue and the net flux is of drug

returning to the vessel. Since the binding process acts more slowly than the initial influx

of drug, the concentration of bound drug changes less rapidly and only cells close to the

vessel experience an initial peak in concentration (most extreme for the mono-exponential

PK profile). As a consequence, early in the simulation, when the concentration in the vessel
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is high and changing rapidly, the drug concentration close to the vessel is much higher than

in cells further away, because drug has not had sufficient time to reach and bind to cells

at a relatively large distance from the vessel. Later, the drug concentration in the vessel is

still decreasing, but slowly enough, relative to the rates at which it is transported through

the tissue and binds to the cells, for the drug distribution in the tissue to remain uniform

throughout.

When the PK profile represents infusion over a longer period, the concentrations in the

tissue steadily increase during the period of infusion, after an initial rapid increase in free

drug concentrations. The spatial distribution of the concentration is quite even, though

slightly higher close to the vessel, since the concentration of supplied drug is not varying in

time.

Given the large differences in concentration profiles, it might be expected that the expo-

sure to bound drug also depends critically on the supplied PK profile. The results shown

in Figure 8 suggest that, for the model of binding proposed in Section 2.1, all of the phar-

macokinetic profiles give a similar spatial distribution of exposure to bound drug. After

72 hours, infusion gives a significantly lower exposure than IV bolus (40%-50% lower than

the mono-exponential profile), but this difference is less significant than after 24 hours and

continues to reduce over longer timescales. However, our binding model contains no explicit

elimination or decay term: drug can only leave the system through free drug returning to

the vessel when the concentration in the vessel is below that in the adjacent tissue. A more

sophisticated binding model could account for this and include a representation of the cell

cycle, which will have an influence over longer timescales. These would need to be included

before investigating the dependence of exposure on PK profiles over longer timescales.

In order to assess how the binding affects the delivery of the drug, a final set of numerical

simulations investigated the influence of binding affinity. Figure 9 shows that the exposure

of the cells to bound drug depends strongly on the ratio of the intracellular drug association

and disassociation rates (β = k−2/k2). For the original parameter set (see Table 1) β ≈
16 µM, for which the exposure of the cells to bound drug was fairly uniformly distributed

between the blood vessel and the outer boundary of the domain (200 µm from the centre

of the vessel), decreasing only slightly with distance from the vessel. When β is increased

– the net affinity for the drug is reduced – the spatial distribution remains uniform but the

exposure of each layer of cells is reduced. When β is decreased, the exposure of the cells

close to the vessel increases, but the exposure further away from the vessel actually starts

to decrease. If k2 is increased further than shown in Figure 9 then this behaviour becomes

more pronounced, to the point where almost no drug gets beyond 100 µm from the supply,

because it is all consumed by the cells close to the vessel. This “binding site barrier” [35, 36]

is reduced in tissue which allows more rapid interstitial drug diffusion (see numerical results

in Supplementary Material).

This suggests that, for this model of binding, there is an optimal binding affinity which
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allows optimal exposure to doxorubicin: if the binding is too weak then none of the cells

gains enough exposure; if it is too strong then the cells distant from the vessel are pharma-

cokinetically resistant because the closer cells consume the drug. If true, this might have

implications for the use of additional agents which can alter the binding behaviour of dox-

orubicin, e.g. by occupying binding sites, to adjust drug penetration. It also suggests that

variations in the tumour microenvironment could also influence the effectiveness of the drug.

The model presented in this paper has been tailored to simulate a tumour cord geometry,

and the parameters have been estimated based on the binding of doxorubicin to colorectal

adenocarcinoma cells (DLD-1). However, it is sufficiently general to be applied to other

drugs and other cell lines if the appropriate data are available. This may require the design

of new binding models.

There is not sufficient evidence to suggest that any of the three models of drug transport

proposed in this paper is better than the others, so the simplest was chosen to investigate the

influence of the delivery profile and the cell biology. However, the comparison has validated

the more flexible multidimensional model, which therefore provides a framework that can

be used to gain insight into progressively more complex situations in which the influence of

the characteristics of the tumour microenvironment on the pharmacokinetic delivery of the

drug and the effects of spatial heterogeneity can be investigated.

It is important to emphasise that all models are approximations to reality and the models

described here are clearly significant simplifications of complex biology and geometry. The

value of models in biology and medicine lies in their role in the iterative development of a

quantitative, logical, predictive framework, placing them at the heart of “model-building”;

the need to write down equations describing the biological mechanisms demands assumptions

and yields predictions which can be tested and measurements which have to be made. This,

in turn, leads to improved models and initiates a further cycle of experimentation and model

building. We also believe that these models have the ability to demonstrate, at least semi-

quantitatively, the relative efficacy of some aspects of therapeutic protocols.
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