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Abstract
The Human Connectome Project (HCP) faces the challenging task of bringing multiple magnetic
resonance imaging (MRI) modalities together in a common automated preprocessing framework
across a large cohort of subjects. The MRI data acquired by the HCP differ in many ways from
data acquired on conventional 3 Tesla scanners and often require newly developed preprocessing
methods. We describe the minimal preprocessing pipelines for structural, functional, and diffusion
MRI that were developed by the HCP to accomplish many low level tasks, including spatial
artifact/distortion removal, surface generation, cross-modal registration, and alignment to standard
space. These pipelines are specially designed to capitalize on the high quality data offered by the
HCP. The final standard space makes use of a recently introduced CIFTI file format and the
associated grayordinates spatial coordinate system. This allows for combined cortical surface and
subcortical volume analyses while reducing the storage and processing requirements for high
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spatial and temporal resolution data. Here, we provide the minimum image acquisition
requirements for the HCP minimal preprocessing pipelines and additional advice for investigators
interested in replicating the HCP’s acquisition protocols or using these pipelines. Finally, we
discuss some potential future improvements for the pipelines.

Keywords
Human Connectome Project; Image Analysis Pipeline; Surface-based Analysis; CIFTI;
Grayordinates; Multi-modal Data Integration

Introduction and Rationale
The Washington University-University of Minnesota Human Connectome Project
Consortium (WU-Minn HCP) (Van Essen et al., 2012a) is charged with bringing data from
the major MRI neuroimaging modalities, structural, functional, and diffusion, together into a
cohesive framework to enable cross-subject comparisons and multi-modal analysis of brain
architecture, connectivity, and function. Specifically, the imaging modalities include T1-
weighted (T1w) and T2-weighted (T2w) structural scans, resting-state and task-based
functional MRI scans, and diffusion-weighted MRI scans. Additionally, the HCP is
committed to making these complex datasets publicly available and easy to use. Although
the HCP will make the unprocessed NIFTI data available for all usable scans, we anticipate
that many investigators will prefer to use the outputs of the minimal preprocessing pipelines,
developed by members of the WU-Minn HCP in collaboration with members of the MGH/
UCLA HCP. Investigators in the HCP consortia have acquired extensive experience with the
state-of-the-art imaging data being generated by the HCP though their involvement in the 2-
year-long piloting phase (I). The WU-Minn HCP Phase II data are being acquired on a
customized Siemens Skyra 3T scanner, using advanced pulse sequences that are described
elsewhere in this special issue (Ugurbil et al.; Smith et al.; Sotiropoulos it et al., THIS
ISSUE). Many of the HCP datasets are qualitatively different from standard neuroimaging
data, having higher spatial and temporal resolutions and differing distortions. As a result,
these data must be processed differently to achieve optimal results. Users of unprocessed
data must deal with complex and esoteric issues that are particularly relevant for these
acquisitions, such as the correction of gradient nonlinearity distortion in images that were
acquired with oblique slices relative to the scanner’s coordinate system. These and many
other preprocessing considerations have already been resolved in the minimally
preprocessed data. Additionally, the minimal preprocessing pipelines include steps, such as
field map distortion correction, which are widely accepted to be beneficial (Cusack et al.,
2003; Jezzard and Balaban, 1995) but often neglected in practice. Finally, the minimal
preprocessing results are available in standard volume and combined surface and volume
spaces to enable easier comparisons across different studies, both within the HCP
consortium and outside of it. By taking care of the necessary spatial preprocessing once in a
standardized fashion, rather than expecting each community user to repeat this processing,
the minimal preprocessing pipelines will both avoid duplicate effort and ensure a minimum
standard of data quality. Moreover, for users working with HCP data, the preprocessing
pipelines will make it easier to report findings in a common space and replicate analytic
efforts. We anticipate that most investigators will be more interested in the analyses that
they can do with the HCP data, and less interested in repeating or refining the complicated
preprocessing required to best capitalize on these cutting edge data.

The overall goals of the six minimal preprocessing pipelines are 1) to remove spatial
artifacts and distortions; 2) to generate cortical surfaces, segmentations, and myelin maps; 3)
to make the data easily viewable in the Connectome Workbench visualization software
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(Marcus et al, THIS ISSUE); 4) to generate precise within-subject cross-modal registrations;
5) to handle surface and volume cross-subject registrations to standard volume and surface
spaces; and 6) to make the data available in the CIFTI format in a standard “grayordinates”
space (see below). While achieving these goals, the minimal preprocessing pipelines are
designed to minimize the amount of information actually removed from the data. Further
preprocessing, such as, significant spatial smoothing, temporal filtering, nuisance regression,
or motion censoring (scrubbing), all remove significant amounts of information. Moreover,
the preferred strategies for using these techniques remain subjects of debate (Carp, 2011;
Fox et al., 2009; Murphy et al., 2009; Power et al., 2011, 2012; Saad et al., 2012; Turner,
2012). Thus, these forms of preprocessing fall outside the scope of “minimal preprocessing,”
and are largely covered elsewhere (e.g. Smith et al. THIS ISSUE, Barch et al THIS ISSUE).
While the HCP consortium may make some choices and suggestions on these steps that
remove information, many investigators will presumably prefer to make different choices.
Additionally, there is no consensus as to the best way to analyze these imaging modalities
after preprocessing, and new analysis methods will continue to be developed. Thus, while
the HCP will provide data that have undergone additional analyses, we expect many users
will be interested in downloading the minimally preprocessed data as the starting point for
their own analyses.

The CIFTI File Format and Grayordinates, a Combined Cortical Surface and
Subcortical Volume Coordinate System

Standard volume-based neuroimaging analyses will be easy to carry out using the outputs of
the minimal preprocessing pipelines (e.g. Barch et al THIS ISSUE). However, we note that
such analyses will waste many of the potential benefits offered by the high resolution HCP
data for greater accuracy in spatial localization, both within individuals and across subject
groups. It is now well established (Anticevic et al., 2008; Fischl et al., 2008; Frost and
Goebel, 2012; Tucholka et al., 2012; Van Essen et al., 2012b) (Smith et al THIS ISSUE) that
it is beneficial to analyze cortical neuroimaging data with surface-constrained methods. The
fundamental reason is that the convoluted cortical sheet is most easily manipulated and
analyzed as a 2D surface. 2D geodesic distances along the surface, rather than 3D Euclidean
distances within the volume, are most neurobiologically relevant in many circumstances and
are most suited to the geometry of the cerebral cortex. This insight has important
consequences for image processing, especially spatial smoothing and intersubject
registration. For example, cortical areas are spaced farther apart across the surface than they
are in the volume because of the cortical convolutions. Functionally distinct areas may be
separated by only a few millimeters in the volume across sulcal banks or gyral blades.
Therefore, spatial smoothing constrained to the cortical surface will not mix signals from
distinct cortical areas as much as 3D volumetric smoothing—not to mention avoiding
mixing in nuisance signals from CSF or white matter (Jo et al., 2007). Additionally, surface-
based intersubject registration needs only to align data within the plane of the surface (2D),
whereas volume-based intersubject registration must also attempt to align the plane of the
surface itself (3D). Thus, surface-based alignment of data across subjects is a somewhat
easier problem to solve and yields results that achieve greater overlap (Anticevic et al.,
2008; Fischl et al., 2008; Fischl et al., 1999b; Frost and Goebel, 2012; Tucholka et al., 2012;
Van Essen et al., 2012b).

In contrast to cortical data, subcortical data generally come from deep grey matter structures
and nuclei that exhibit 3D geometry, which is different from the 2D cerebral cortical sheet
whose thickness varies only modestly. (Note: the cortical thickness of the cerebellum is
much less than that of the cerebral cortex. It cannot be automatically segmented using the
pipelines presented here, but in the future, new methods may be able to perform cerebellar
surface reconstruction with the high-resolution HCP datasets. For now the cerebellum is
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treated as a volumetric structure, but future surface-based analysis of the cerebellum is
supported within the existing CIFTI file format, Connectome Workbench, and its
commandline algorithms). 3D subcortical structures are best analyzed in 3D volumetric
space, both with regard to spatial smoothing and to cross subject comparisons. We use
FreeSurfer to automatically segment many subcortical grey matter structures (Fischl et al.,
2002). Much like we constrain cortical grey matter analyses to the surface, we can limit
subcortical grey matter analyses to these automatically segmented parcels in each individual.
We can then constrain 3D volumetric spatial smoothing to occur only within parcel
boundaries, for example avoiding mixing signals from the third ventricle into the medial
thalamus. Such parcel-constrained volumetric smoothing should in principle reduce the
amount of noise being mixed into the grey matter structures of interest. Additionally, while
nonlinear volume registration does an excellent job of aligning subcortical parcels
(Andersson et al., 2007; Klein et al., 2009), we can constrain cross-subject comparisons of
subcortical data to occur only within the subcortical parcels of each subject. This precise
correspondence is achieved by resampling the sets of voxels in each of the subjects’
individually defined subcortical parcels to a standard set of voxels in each atlas parcel (see
fMRISurface Pipeline below).

The Connectivity Informatics Technology Initiative (CIFTI) file format was created to
support a variety of connectome-specific data representations, including combinations of
cortical grey matter data modeled on surfaces and subcortical grey matter data modeled in
volumetric parcels (http://www.nitrc.org/plugins/mwiki/index.php/
cifti:ConnectivityMatrixFileFormats). Because gray matter can be modeled as either cortical
surface vertices or subcortical voxels, the more general term “grayordinates” is used to
describe the spatial dimension in this combined coordinate system. When right and left
standard cortical surface meshes and a set of standard subcortical volume parcels are used to
create a CIFTI grayordinates space, it is said to be a standard grayordinates space (Figure 1).
Such a standard CIFTI grayordinates space has more precise spatial correspondence across
subjects than volumetrically aligned data and is the desired endpoint of the HCP minimal
preprocessing functional pipelines. The HCP rfMRI and tfMRI timeseries data are provided
in this space (and also as NIFTI files in MNI volume space).

CIFTI was also developed to enable a more compact representation of high spatial and
temporal resolution MRI data. Generation of a Dense Connectome (a matrix describing the
connectivity from each grey matter point to all other grey matter points) is one instructive
example. Early on in the HCP we realized that the generation of such a matrix would be to
be extremely memory intensive and would require huge storage capacity. For example, the
2mm MNI space brain mask distributed with FSL (Smith et al., 2004) contains 228,483
voxels. A dense connectome with this spatial dimension would need 228,483 × 228,483 ×
4bytes = ~195GB per modality, per analysis method, per subject. A key insight was the
realization that all of grey matter could be represented at a 2mm resolution using only
91,282 grayordinates (Figure 1), including ~30,000 surface vertices (average inter-vertex
spacing of 2mm) for each hemisphere and ~30,000 2mm subcortical grey matter voxels
producing a CIFTI dense Connectome = 91,282 × 91,282 × 4bytes = 31GB. Combining only
surface and volume grey matter data saves 84% of the space while still representing all of
the grey matter to grey matter connectivity at the original 2mm resolution. Similarly for a
single 1200 timepoint resting state run (14.4 minutes at 720ms TR), the CIFTI dense
timeseries, consisting of grayordinates by time is 91,282 × 1200 = 0.41GB versus 228,483 ×
1200 = 1.02GB for the masked volume timeseries, saving 60% of the space. The benefits are
even larger when one considers that rectangular NIFTI volumes are often not masked at all
in memory, storing many voxels outside the brainmask, and the same resting state run
unmasked is 104 × 90 × 72 × 1200 = 3.01GB, with a CIFTI dense timeseries now providing
an 86% savings in uncompressed disk space and, more importantly, memory. Thus, the
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CIFTI file format is important for reducing the computational and storage demands of high
spatial and temporal resolution data. These considerations will only grow in importance as
imaging resolutions continue to increase (e.g. with higher field strength). CIFTI also
combines the left and right cerebral hemispheres and subcortical parcels into a single file,
thereby simplifying file management for combined surface and volume analyses and
visualization.

CIFTI files contain a single 2D matrix. One dimension of the matrix always represents the
spatial domain (often the standard set of grayordinates) and the other dimension may
represent something else. For instance, in the dense timeseries file type, the rows represent
the spatial dimension, and the columns represent timepoints (Figure 2). In the dense
Connectome file type, both matrix dimensions are spatial (grayordinates) (Figure 3). It is
also possible to represent other types of data in grayordinates space, including ICA
component spatial maps or task fMRI z-statistic contrast maps (Figure 4) in dense scalar file,
or parcellation labels in a dense label file. A CIFTI file can be valid even if it contains only
surface data from just one cerebral hemisphere, or the cerebellum, or just volume data.
Within the HCP’s standard CIFTI grayordinates space, datasets from different subjects have
the same spatial dimension, allowing straightforward grayordinate-wise comparisons across
subjects. For the HCP data, these spatial correspondences have been achieved separately
using the registration methods best suited to aligning each domain, i.e., nonlinear surface
registration for the cortical structures and nonlinear volume registration for the volume
structures (see HCP Structural Pipelines below).

Although the cortical surface and subcortical volume data are stored in a single 2D matrix,
the CIFTI header contains information describing the structure that each row and column of
the matrix belong to. For example, inside the HCP’s 2mm standard grayordinates space, row
1000 of the matrix would correspond to vertex 2152 of the left hemisphere surface (not
vertex 1000, because vertices in the medial wall are excluded) and row 91000 would
correspond to voxel (3.9,−1.4, 10.6) of the right thalamus. CIFTI files may contain whatever
space the user chooses, however. Connectome Workbench (Marcus et al THIS ISSUE), the
surface and volume data visualization platform customized for HCP data, can use the
information in the CIFTI header to display the contents of the data matrix on the correct
structures and in the correct spatial locations, as illustrated in Figures 2–4.

CIFTI is a new file format that is currently only supported natively by Connectome
Workbench and its commandline utilities. While we encourage other neuroimaging software
platforms to implement CIFTI compatibility, there are a variety of ways that these
neuroimaging platforms can already make use of CIFTI data, benefiting from existing
Connectome Workbench commandline file conversion utilities. If users need only to
perform an analysis that treats each grayordinate independently, without reference to the
spatial relationships between grayordinates, one can convert a CIFTI file to a NIFTI-1 file
(by wrapping the grayordinates spatial dimension into the volumetric x, y, and z dimensions
and keeping time as the 4th NIFTI-1 dimension). Examples where this is useful include ICA
analysis of a CIFTI dense timeseries in FSL’s melodic, or element-wise task fMRI analyses
with FSL’s contrast_mgr or flameo executables. Similarly for generic analyses, CIFTI files
can be converted to GIFTI external binary files for reading into Matlab. If knowledge of the
spatial relationships needs to be preserved in the external software (an example is FSL’s
film_gls tool for task fMRI analysis), a CIFTI file can be split into GIFTI surface data and
NIFTI volume data, analyzed in separate parts, and then recombined into a CIFTI file.
Finally, in Connectome Workbench’s commandline utilities we have prioritized developing
CIFTI compatible algorithms that require knowledge of the spatial relationships in
grayordinates data, such as spatial smoothing and resampling from one CIFTI standard
space to another. We also provide flexible math commands that can be used evaluate
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mathematical expressions on CIFTI files. FSL is expected to include full CIFTI support in
the future, but will provide surface analysis support via GIFTI files in the short-term (e.g.
Barch et al THIS ISSUE).

During the piloting phase of the HCP grant (first two years) both acquisition (Ugurbil et al
THIS ISSUE) and preprocessing methods were improved. One of these improvements was
to incorporate preprocessing steps that capitalize on the advantages of CIFTI grayordinates
datasets. In particular, we avoid unconstrained volume-based smoothing and cross subject
averaging, instead using the more constrained methods described above. These
methodological changes enable analyses that depend critically on accurate spatial
localization, for example multi-modal cortical areal parcellation in which one attempts to
estimate areal boundaries, measuring the areal extent of task-based activation, or measuring
the areal extent resting state functional connectivity (Glasser et al., 2012a; Glasser et al.,
2011). More conventional neuroimaging analyses that focus on peak activation coordinates
or use spheres of a given radius as connectivity seeds may not require these improvements in
spatial localization. Moreover, these methodological improvements reduce the need for
spatial smoothing to attempt to account for alignment inaccuracies across subjects in group
studies (Turner, 2012). We contend that it is generally better to avoid smoothing group data,
in order to retain as much spatial detail as possible, though individual data may need to be
smoothed (in a grayordinates-constrained way) to increase the signal/contrast of interest
relative to high spatial frequency noise (e.g. myelin maps: (Glasser and Van Essen, 2011)).
Continued improvements in cross-subject registration, such as driving registration with maps
of properties more directly tied to the locations of cortical areas (e.g. myelin maps, task
activations, and/or functional connectivity) (Robinson et al., 2013a; Robinson et al., 2013b)
should accentuate this principle of better cross-subject cortical areal alignment, requiring
even less spatial smoothing.

The above conceptual improvements in methodology served as guiding principles during the
development of the minimal preprocessing pipelines presented here. We chose or developed
methods that are fully automated and robust, so that large amounts of data can be processed
without user intervention. Additionally, we used methods that cause minimal blurring and
achieve accurate cross-modal alignment to enable use cases focused on fine details in the
data. This will likely be an ongoing effort throughout the duration of the HCP, as the
pipelines presented here will presumably undergo additions and improvements over time
(see Future Directions below). Before discussing the pipelines themselves, we describe
aspects of the HCP data acquisitions that are relevant to developing or running the HCP
minimal preprocessing pipelines, but are not covered elsewhere in this issue (Ugurbil et al.
THIS ISSUE; Smith et al. THIS ISSUE; Sotiropoulos et al. THIS ISSUE).

HCP Structural Acquisitions
The HCP structural acquisitions include high resolution T1-weighted (T1w) and T2-
weighted (T2w) images (0.7mm isotropic) for the purpose of creating more accurate cortical
surfaces and myelin maps than are attainable with lower resolution data (Glasser and Van
Essen, 2011). While high spatial resolution was a primary goal, we also optimized the
contrast parameters (flip angle (FA) and inversion time (TI) for the T1w scans, and echo
time (TE) for the T2w scans). The major change from Glasser and Van Essen (2011) was to
lengthen TE in the T2w scans to improve intracortical contrast for myelin detection.
Additionally, B0 fieldmaps, B1−, and B1+ maps are acquired for the purpose of correcting
readout distortion in the T1w and T2w images and to enable future correction of intensity
inhomogeneity by explicitly modeling the B1− receive and B1+ transmit fields. 32 minutes
are spent acquiring the main T1w and T2w structural images, and 8 minutes are spent
acquiring the auxiliary scans on the HCP’s custom 3T Siemens Skyra (Ugurbil et al. THIS
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ISSUE) using a 32-channel head coil. Two separate averages of the T1w image are acquired
using the 3D MPRAGE (Mugler 3rd and Brookeman, 1990) sequence with 0.7mm isotropic
resolution (FOV=224 mm, matrix=320, 256 sagittal slices in a single slab), TR=2400 ms,
TE=2.14 ms, TI=1000 ms, FA=8°, Bandwidth (BW)=210 Hz per pixel, Echo Spacing (ES)
=7.6 ms, with a non-selective binomial (1:1) water excitation pulse (a pair of 100 µs hard
pulses with 1.2 ms spacing) to reduce signal from bone marrow and scalp fat, phase
encoding undersampling factor GRAPPA=2, 10% phase encoding oversampling (anterior -
posterior) to avoid nose wrap-around, asymmetric readout (i.e. omitting the initial 20% of
the total samples before echo) along superior - inferior direction (z) with dwell time of 7.4
µs (used for readout distortion correction with FSL’s FUGUE (Jenkinson et al., 2012)). Two
separate averages of the T2w image are acquired using the variable flip angle turbo spin-
echo sequence (Siemens SPACE (Mugler et al., 2000)) with 0.7mm isotropic resolution
(same matrix, FOV, and slices as in the T1w), TR=3200 ms, TE=565 ms, BW=744 Hz per
pixel, no fat suppression pulse, phase encoding undersampling factor GRAPPA=2, total
turbo factor=314 (to be achieved with a combination of turbo factor and slice turbo factor,
when available), echo train length of 1105 echoes, 10% phase encoding oversampling
(anterior - posterior) to avoid nose wrap-around, readout along superior - inferior direction
with dwell time of 2.1µs (for readout distortion correction with FUGUE).

All auxiliary scans are acquired at 2mm isotropic resolution. The B0 fieldmap is acquired by
a dual-echo gradient echo sequence with delta TE=2.46ms. The B1

− receive field can be
calculated from proton density weighted images acquired from a FLASH sequence once
with the 32 channel head receive coil and once with the body receive coil (similar to
Siemens pre-scan normalize). The B1

+ transmit field can be calculated from an actual flip-
angle imaging (AFI) acquisition (Yarnykh, 2007) with TR1/TR2 = 20/120ms (target flip
angle=50°).

HCP Functional and Diffusion Acquisitions
The functional and diffusion acquisitions are described in detail in other papers of this
special issue (Ugurbil et al.; Smith et al.; Sotiropoulos et al., THIS ISSUE), but a number of
points relevant to the HCP pipelines are noted here as well. The functional data are acquired
at 2mm isotropic, which is of unusually high spatial resolution for whole-brain coverage at
3T. Although the spatial specificity of BOLD fluctuations measured at 3T is around 4mm
FWHM ((Parkes et al., 2005) Ugurbil et al. THIS ISSUE), there are benefits of sampling the
data more finely when the goal is to accurately map grey matter BOLD signals onto the
cortical sheet. From a purely geometrical perspective, higher resolution scans provide the
potential to decrease induced cross-sulcal and cross-gyral timeseries correlation. Figure 5
uses a simple volume to surface mapping model to illustrate this effect by comparing 4mm,
3mm, 2.5mm, and 2mm fMRI acquisition resolutions and showing that the induced
correlations between surface vertices that are far apart across the surface but close together
in the volume are mostly eliminated at 2mm isotropic. Thus, with high-resolution data it
becomes possible to assign the BOLD signal more specifically to opposing banks of sulci
(Figure 6). This effect will become even more beneficial at 7T, where the point-spread-
function of the BOLD fluctuations is closer to 2mm FWHM ((Shmuel et al., 2007) Ugurbil
et al. THIS ISSUE). Higher resolution also helps limit the partial volume effects of other
noise sources such as CSF, large veins, and white matter.

Fast TR sampling using multiband pulse sequences has several benefits (HCP fMRI:
TR=720ms, using a multiband factor of 8, FA=52°--reduced from 90° to match the Ernst
angle, maximizing SNR). Multiband enables higher spatial resolution acquisitions, requiring
large numbers of slices for whole-brain coverage, while still keeping the TR low. It reduces
the need for slice timing correction, as all slices in each volume are acquired much closer
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together than in typical fMRI acquisitions (TR ~ 2.5s). Thus, in the HCP pipelines, no slice
timing correction is employed. Additionally, it provides more robustness against the effects
of rapid head movement, since three volumes are acquired in the time it typically takes to
acquire one standard TR volume. A rapid movement may directly corrupt only one of these
volumes, potentially leaving two intact, though some motion effects may be more persistent.
Fast TR acquisitions require a different strategy for accurate registration to structural data.
Because the multiband timeseries images have reduced tissue contrast (due to incomplete T1
relaxation), HCP pipelines use the single-band reference image with full tissue contrast as
the image for registration to the structural data.

To reduce the signal loss and distortions from the high-resolution acquisition and to
minimize the TE (33ms in our scans) and echo train length, we acquire a balanced number
of volumes with left-right and right-left phase encoding directions using an asymmetric
acquisition matrix, rather than the more typical anterior-posterior or posterior-anterior phase
encoding directions with a symmetric acquisition matrix. The geometrical dimensions of the
gradient echo EPI images are 2mm isotropic resolution (FOV: 208mm × 180mm, Matrix:
104 × 90 with 72 slices covering the entire brain). These left-right and right-left phase
encoding directions also have the benefit of reducing the chance that the fMRI data would
alias in the phase encoding direction or move outside the FOV because of distortion
combined with head motion. To more rapidly measure the b0 field for correction EPI
distortions, we acquire two spin echo EPI images with reversed phase encoding directions
(60 seconds total for 3 pairs of images). (Note that we refer to these images as spin echo
fieldmaps, though they measure the field by reversing the phase encoding direction, which is
a very different mechanism from standard field maps that use a phase difference calculated
from two different TEs). These spin echo EPI images have the same geometrical, echo
spacing (0.58ms in our scans), and phase encoding direction parameters as the gradient echo
fMRI scans. These images enable accurate correction for spatial distortions in the fMRI
images so that these images can be precisely aligned with the structural images. Two of
these spin echo EPI fieldmapping pairs are acquired in each functional session, for added
robustness with respect to acquisition errors and subject movement, along with one set of
B1− receive field-mapping images (with identical parameters to those described in the
structural session).

While the diffusion acquisition is covered in detail in (Ugurbil et al.; Sotiropoulos it et al.,
THIS ISSUE), a few points deserve mention here. Very high-resolution acquisitions
(1.25mm isotropic) were chosen, as this will be critical for accurately mapping connectivity
between cortical grey matter regions, as opposed to just localizing major fascicles in deep
white matter. To obtain these high-resolution images, it was beneficial (in terms of TE) to
use a Stejskal-Tanner (monopolar) diffusion-encoding scheme. This encoding scheme,
together with the customized 100 mT/m gradient set in the HCP’s Skyra, achieves sufficient
SNR at 1.25mm isotropic resolution and a diffusion-weighting of up to b=3000 s/mm2

(Sotiropoulos it et al., THIS ISSUE). However, the use of a monopolar Stejskal-Tanner
diffusion scheme and the more powerful gradients increases eddy current-induced
distortions, which require the use of a sophisticated approach for correction (Andersson et
al., 2012), (Sotiropoulos et al., THIS ISSUE). Correction for EPI and eddy-current-induced
distortions in the diffusion data is based on manipulation of the acquisitions so that a given
distortion manifests itself differently in different images (Andersson et al., 2003). Two
phase-encoding direction-reversed images for each diffusion direction are acquired. To
ensure better correspondence between the phase-encoding reversed pairs, the whole set of
diffusion-weighted (DW) volumes is acquired in six separate series. These series are
grouped into three pairs, and within each pair the two series contain the same DW directions
but with reversed phase-encoding (i.e. a series of Mi DW volumes with RL phase-encoding
is followed by a series of Mi volumes with LR phase-encoding, i=[1,2,3]). These diffusion-
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weighted images are corrected for B0 and eddy current distortions as described in the
diffusion preprocessing pipeline below. In addition to the diffusion-weighted images, one set
of B1− receive fieldmapping images, with identical parameters to those described in the
structural session, is acquired.

HCP Pipelines: Minimum Acquisition Requirements
A number of investigators have asked questions such as: “How do I acquire data like the
HCP?” and “What data do I need in order to use the HCP pipelines?” Though many studies
will not require, or be in a position to acquire, data using protocols identical to those in the
HCP, it is worth describing the minimum acquisition requirements for the HCP pipelines,
along with suggestions for best acquisition practices. For all of the following, a 32-channel
head coil will be very beneficial in providing the SNR necessary to emulate HCP scanning
parameters. For the structural pipelines (upon which the functional and diffusion pipelines
depend), high-resolution T1w and T2w scans are both required for surface reconstruction.
While 1mm isotropic is acceptable, higher resolutions (0.8mm or 0.7mm) appreciably
improve surface reconstructions and myelin maps ((Glasser et al., In Press), see below),
particularly in thin regions of cortex or regions with thin gyral blades of white matter (e.g.
primary somatosensory cortex or early visual cortex, see Figure 13). The T2w image is
required to make accurate pial surfaces that exclude dura and blood vessels, which are
isointense to grey matter in the T1w image (Figure 14). The T2w image is also used to make
myelin maps based on the T1w/T2w ratio (Glasser and Van Essen, 2011). A regular gradient
echo fieldmap (magnitude and phase difference) of relatively high resolution (e.g. 2mm
isotropic) is recommended to correct the structural images for readout distortion, which
differs between the T1w and T2w images because of their differing readout bandwidth (van
der Kouwe et al., 2008). However, in practice the relative distortion between the two images
is small (≤1mm) even in high susceptibility regions (e.g. inferior temporal cortex and
orbitofrontal cortex). For the T1w image, some degree of fat insensitive excitation (Howarth
et al., 2006) is recommended to prevent surface reconstruction errors. Nevertheless, off-
resonance fat saturation should be avoided for either the T1w or T2w images to preserve
contrast for myelin content by not modifying magnetization transfer effects (Glasser et al.,
In Press). In addition, vendor implemented receive bias field corrections, like Siemens’s pre-
scan normalize, must be matched between the T1w and T2w images (either on for both or
off for both).

For the functional pipelines, a fieldmap is required, because any neuroimaging analysis that
aims for precise cross-modal registration between functional and structural (or other data
modalities) will require EPI distortion correction. In general, either standard gradient echo
fieldmaps or spin echo EPI fieldmaps can be acquired, though spin echo EPI field maps can
be acquired more quickly with less chance of motion corruption. The geometrical
parameters (FOV, matrix, phase encoding direction, resolution, number of slices) and echo
spacing must be matched between the gradient echo EPI fMRI timeseries and the spin echo
EPI fieldmaps. A single band reference scan also needs to be saved (as a separate series)
together with the multi-band timeseries when using a multi-band sequence to serve as the
reference for motion correction and for more accurate EPI to T1w registration. Higher
spatial (≤2.5mm) and temporal (≤1s) resolutions are recommended for the reasons discussed
above. For resting state fMRI scans, longer contiguous runs are preferable to shorter
discontinuous runs, for temporal denoising purposes (Smith et al.; THIS ISSUE).

For the diffusion pipelines, the directions of the diffusion-sensitizing gradients should be
distributed across the whole sphere to allow for better correction of eddy-current distortions
and subject movement (Sotiropoulos et al., THIS ISSUE). In addition, and for estimating
EPI distortions as well, pairs of diffusion-weighted volumes acquired with reversed phase-
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encoding directions are needed. Ideally, all volumes are acquired in phase-encoding reversed
pairs, as this further helps in robustly estimating eddy-current distortions, but the minimum
requirement is that at least a few (one in theory) b0 pairs are acquired in this way. A
Stejskal-Tanner (monopolar) diffusion-encoding scheme with multiband acceleration and
phase encoding along the left-right direction are recommended to allow reduction of the TE
(more SNR) and TR (for the collection of a larger number of unique diffusion directions
(Sotiropoulos it et al., THIS ISSUE)). High spatial resolution (≤1.5mm), larger numbers of
unique directions (≥128), and multiple q-space shells with moderately high bmax (e.g. 3000
s/mm2), depending on the employed resolution and the available SNR) will be required to
take advantage of improvements in diffusion fiber orientation modeling and tractography
that are being generated by the HCP. Investigators using standard Siemens Skyra or Trio
equivalent scanners will likely need to sacrifice spatial resolution and/or maximum diffusion
weighting to achieve high quality results, as the 100mT/m gradients of the HCP Skyra
remain an important contributor to the improved diffusion SNR allowing a 1.25mm isotropic
resolution with bmax=3000 s/mm2.

HCP Pipelines
As shown in Figure 7, the six minimal preprocessing pipelines include three structural
pipelines (PreFreeSurfer, FreeSurfer, and PostFreeSurfer), two functional pipelines
(fMRIVolume and fMRISurface), and a Diffusion Preprocessing pipeline. Figure 7 also
shows the overall workflow for preprocessing and data analysis in the HCP. We provide a
brief high-level description of all the pipelines, followed by a detailed description of each,
including the rationale for choices made in the pipelines and descriptions of novel methods
used in them.

HCP Pipelines: Overview
The main goals of the first structural pipeline, PreFreeSurfer, are to produce an undistorted
“native” structural volume space for each subject, align the T1w and T2w images, perform a
B1 (bias field) correction, and register the subject’s native structural volume space to MNI
space. Thus, there are two volume spaces in HCP data (overview in Figure 8): 1) The
subject’s undistorted native volume space (rigidly “aligned” to the axes of MNI space),
which is where volumes and areas of structures should be measured and where tractography
should be performed, as this space is the best approximation of the subject’s physical brain.
2) Standard MNI space is useful for comparisons across subjects and studies, particularly of
subcortical data, which is more accurately aligned by nonlinear volume registration than
cortical data is. The FreeSurfer pipeline is based on FreeSurfer version 5.2, with a number of
enhancements. The main goals of this pipeline are to segment the volume into predefined
structures (including the subcortical parcels used in CIFTI), reconstruct white and pial
cortical surfaces, and perform FreeSurfer’s standard folding-based surface registration to
their surface atlas (fsaverage). The final structural pipeline, PostFreeSurfer, produces all of
the NIFTI volume and GIFTI surface files necessary for viewing the data in Connectome
Workbench, along with applying the surface registration (to the Conte69 surface template
(Van Essen et al., 2012b)), downsampling registered surfaces for connectivity analysis,
creating the final brain mask, and creating myelin maps. There are three surface spaces in
HCP data: the native surface mesh for each individual (~136k vertices, most accurate for
volume to surface mapping), the high resolution Conte69 registered standard mesh (~164k
vertices, appropriate for crosssubject analysis of high resolution data like myelin maps) and
the low resolution Conte69 registered standard mesh (~32k vertices, appropriate for cross-
subject analysis of low resolution data like fMRI or diffusion). These spaces are also shown
in Figure 8. The 91,282 standard grayordinates (CIFTI) space is made up of a standard
subcortical segmentation in 2mm MNI space (from the Conte69 subjects) and the 32k
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Conte69 mesh of both hemispheres (Figure 1). Following completion of the structural
pipelines, the functional or diffusion pipelines may run.

The first functional pipeline, fMRIVolume, removes spatial distortions, realigns volumes to
compensate for subject motion, registers the fMRI data to the structural, reduces the bias
field, normalizes the 4D image to a global mean, and masks the data with the final brain
mask. Standard volume-based analyses of the fMRI data could proceed from the output of
this pipeline. Care is taken in the fMRIVolume pipeline to minimize the smoothing from
interpolation, and no overt volume smoothing is done. The main goal of the second
functional pipeline, fMRISurface, is to bring the timeseries from the volume into the CIFTI
grayordinates standard space. This is accomplished by mapping the voxels within the
cortical grey matter ribbon onto the native cortical surface, transforming them according to
the surface registration onto the 32k Conte69 mesh, and mapping the set of subcortical grey
matter voxels from each subcortical parcel in each individual to a standard set of voxels in
each atlas parcel. The result is a standard set of grayordinates in every subject (i.e. the same
number in each subject, and with spatial correspondence) with 2mm average surface vertex
and subcortical volume voxel spacing. These data are smoothed with surface (novel
algorithm, see below) and parcel constrained smoothing of 2mm FWHM to regularize the
mapping process. The output of these pipelines is a CIFTI dense timeseries that can be used
for subsequent resting-state or task fMRI analyses. The diffusion preprocessing pipeline
does the following: normalizes the b0 image intensity across runs; removes EPI distortions,
eddy-current-induced distortions, and subject motion; corrects for gradient-nonlinearities;
registers the diffusion data with the structural; brings it into 1.25mm structural space; and
masks the data with the final brain mask.

HCP Pipelines: PreFreeSurfer
The PreFreeSurfer pipeline (Figure 9) begins with the correction of MR gradient-
nonlinearity-induced distortions. Because of tradeoffs made in the design of the custom HCP
Skyra, the head is ~5cm above isocenter, making the effects of gradient nonlinearities more
pronounced in HCP Skyra images relative to those from standard 3T scanners, especially in
the frontal lobe (Figure 10). All images used in structural processing (the T1w, T2w, and the
field map magnitude and phase) must be corrected for gradient nonlinearity distortion. We
did not use the Siemens online gradient distortion correction method because it is not
available for all sequences, and the gradient distortion correction must be done on all images
for them to align in cross-modal registrations. For the correction of the distortion, the
magnetic field generated by each gradient coil is modeled by a spherical harmonic
expansion (specific to the SC72 gradients in the 3T Connectome scanner). The correction is
then done with a customized version of the gradient_nonlin_unwarp package available in
FreeSurfer (Jovicich et al., 2006). The customized version calculates an FSL-format
warpfield that represents the spatial distortion of the image by using a proprietary Siemens
gradient coefficient file (available on the scanner used to acquire the images) and the mm
coordinate space of the image (including the rotation between image matrix space and
scanner axes – that is, the oblique portion of the sform, where the sform is the matrix that
relates the voxel coordinates to the mm coordinate space of the scanner, as defined by the
NIFTI standard). This warpfield can then either be concatenated with other transforms or
applied to the image using spline interpolation (which causes less blurring than trilinear
interpolation). While this correction is required for a scanner like the HCP Skyra, which has
more significant gradient nonlinearity, it may not be needed for standard scanners (e.g.
Siemens Trio) with gradients that are more linear over a larger FOV and where the head
position is closer to isocenter. Thus, this correction can be turned off if desired.
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Subsequently, any repeated runs of T1w and T2w images are aligned with a 6 degrees of
freedom (DOF) rigid body transformation using FSL’s FLIRT (Jenkinson et al., 2002;
Jenkinson and Smith, 2001) and averaged (any number of averages are supported). Note that
for the HCP, only T1w and T2w images judged to be “good” or “excellent” in overall
quality (quality control procedures described in Marcus et al THIS ISSUE) were used for
processing. For many subjects, only a single scan was used for the T1w and/or T2w. For
greater robustness, the images are internally cropped to a smaller FOV to remove the neck
(150mm in z in humans,) using FSL’s automated robustfov tool, and aligned with a 12 DOF
(affine) FLIRT registration to the MNI space templates. This alignment allows the MNI
space brain mask to be applied prior to the final registration to mask out any residual shifted
scalp fat signal. The final transformation to the output average space is done with spline
interpolation to minimize blurring.

Next, the average T1w and T2w images are aligned to the MNI space template (with 0.7mm
resolution for the HCP data) using a rigid 6 DOF transform, derived from a 12 DOF affine
registration. The 6 DOF transform aligns the AC, the AC-PC line and the inter-hemispheric
plane, but maintains the original size and shape of the brain. The goal of this alignment step
is to get the images in roughly the same orientation as the template, for convenience of
visualization. This step also aligns the coordinate space axes to those of the MNI template,
removing any rotation between the mm coordinate space and the image matrix (i.e. it
removes the oblique components of the NIFTI sform), as oblique sforms are not consistently
handled across imaging software platforms. Similar to the procedure for averaging across
runs, robustfov is used to make sure this registration is robust and the transform is applied
with spline interpolation. After this “acpc alignment” step, a robust initial brain extraction is
performed using an initial linear (FLIRT) and non-linear (FNIRT) registration of the image
to the MNI template. This warp is then inverted and the template brain mask is brought back
into the acpc-alignment space. We found that this method of bringing the atlas brain mask to
the individual’s space outperforms other common brain extraction methods like FSL’s BET
(Smith, 2002), albeit at the cost of increased processing time. This initial brain mask is used
to assist the final registrations to MNI space and to assist FreeSurfer with its brain mask
creation process.

The final step in creating the subject’s undistorted native volume space is removing readout
distortion (van der Kouwe et al., 2008), which differs between the T1w and T2w images due
to their differing readout dwell times (and thus different bandwidths). This distortion is
fairly subtle in comparison to gradient nonlinearity or EPI distortion, but is similar to EPI
distortion in that it is greatest in regions with high B0 inhomogeneity due to magnetic
susceptibility differences (orbitofrontal cortex and inferior temporal cortex especially).
Thus, readout distortion can be corrected by the same means as EPI distortion, i.e. using a
fieldmap as the distortion field and scaling it according to the readout dwell time. For
fieldmap preprocessing, a standard gradient echo fieldmap, having two magnitude images
(at two different TEs) and a phase difference image, is converted into fieldmap (in units of
radians per second) using the fsl_prepare_fieldmap script. Then the mean magnitude and
fieldmap images are corrected for gradient nonlinearity distortion (just as for the T1w and
T2w images). The fieldmap magnitude image is warped according to the readout distortion
and registered, separately, to the T1w and T2w images using 6 DOF FLIRT. The fieldmap is
then transformed according to these registrations and used to unwarp the T1w and T2w
images, removing the differential readout distortion present in them. Although the T1w and
T2w images being corrected are of higher resolution than the field map, the B0
inhomogeneity is smoothly varying and is accurately corrected with this method (see Figure
11). The readout-distortion-corrected T1w image, which now has all spatial distortions
removed from it, represents the native volume space for each subject. The undistorted T2w
image is cross-modally registered to the T1w image using FLIRT’s boundary-based
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registration (BBR) cost function (Greve and Fischl, 2009) with 6 DOF, bringing it into the
native volume space as well. Boundary-based registration seeks to align intensity gradients
across tissue boundaries rather than minimizing a cost function over the entire set of image
intensities. This registration strategy uses the same contrast mechanism that one uses to
evaluate image alignment by eye. If a fieldmap is not available for the structural images, the
pipeline has the option to run without it and only perform FLIRT BBR cross-modal
registration of the T2w to the T1w, without removing readout distortion.

Once the T1w and T2w images are in the same space, the same intensity inhomogeneity
correction approach used for myelin mapping (Glasser and Van Essen, 2011) is used to
correct the T1w and T2w images for B1− bias and some B1+ bias. As described previously
(Rilling et al., 2011), the bias field F is estimated from the square root of the product of the
T1w and T2w images after thresholding out non-brain tissues. This method works because
the contrast × in the T1w MPRAGE and 1/x in the T2w SPACE within grey and white
matter essentially cancel after multiplication, whereas the bias field F does not
(Approximation 1).

(1)

After dilating the thresholded bias-field estimate (F) to fill the FOV, the bias field is then
smoothed with a sigma of 5mm. This method avoids problems encountered in algorithms
like FSL’s FAST (Zhang et al., 2001) and MINC’s nu_correct (Sled et al., 1998) that use
white matter homogeneity as the basis for bias field correction. Just as grey matter is
inhomogeneous in both T1w and T2w images due to myelin content (Fischl et al., 2004;
Glasser and Van Essen, 2011), white matter is also inhomogeneous. Because grey and white
matter inhomogeneities are not closely correlated, using inhomogeneities in white matter
intensity to correct for those in grey matter is likely to introduce errors (Glasser and Van
Essen, 2011).

After bias field correction of the T1w and T2w images, the T1w image is registered to MNI
space with a FLIRT 12 DOF affine and then a FNIRT nonlinear registration, producing the
final nonlinear volume transformation from the subject’s native volume space to MNI space.
The outputs of the PreFreeSurfer pipeline are organized into a folder (by default called T1w)
that contains the native volume space images and a second folder (by default called
MNINonLinear) that contains the MNI space images. In addition to working robustly for a
number of human datasets (HCP Pilot datasets, Conte69 datasets (Glasser and Van Essen,
2011; Van Essen et al., 2012b), and HCP Phase II datasets), the PreFreeSurfer pipeline also
works robustly on chimpanzee and macaque datasets, if given appropriate chimpanzee and
macaque templates and brain dimensions (Glasser et al., 2012b). The pipeline is thus not
strictly tied to MNI space, and would work with any other standard space, provided that the
appropriate template files are generated at the desired output resolution (e.g. the acquired
resolution of the data for the high resolution templates).

HCP Pipelines: FreeSurfer
After the PreFreeSurfer pipeline, the FreeSurfer pipeline runs (Figure 12). FreeSurfer’s
recon-all pipeline (Dale et al., 1999; Fischl et al., 2001; Fischl et al., 2008; Fischl et al.,
2002; Fischl et al., 1999a; Fischl et al., 1999c; Ségonne et al., 2005) is an extensively tested
and robust pipeline optimized for 1mm isotropic data; however, we fine-tuned several
aspects of this pipeline specifically for the higher resolution HCP Phase II data. A current
limitation with recon-all is that it cannot handle images of higher than 1mm isotropic
resolution or structural scans of greater than 256 × 256 × 256 voxels. The 0.7mm isotropic
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resolution structural scans we acquire exceed these limits, and must therefore be
downsampled to 1mm with spline interpolation prior to launching recon-all. Thus, most
processing within recon-all (aside from final surface placement, see below) is conducted in a
1mm isotropic downsampled (RAS) space, which we refer to as FreeSurfer space. The input
T1w image to the FreeSurfer pipeline is the native volume space output from the
PreFreeSurfer pipeline—the distortion- and bias-corrected T1w image. This T1w image is
normalized to a standard whole brain mean intensity to ensure FreeSurfer’s conversion to an
8-bit datatype is robust. Early on, we found that the HCP Phase II T1w data was not robustly
registered using the linear registration within FreeSurfer that precedes FreeSurfer’s brain
extraction. This registration is now aided using the initial brain mask generated in
PreFreeSurfer to ensure that FreeSurfer’s internal brain mask is correct.

Aside from these changes, FreeSurfer’s recon-all is allowed to run normally, stopping at the
point where final white matter surfaces are generated (almost until the end of the autorecon2
step). Important steps that are performed prior this stage include automated segmentation of
the T1w volume into a variety of structures (Fischl et al., 2002), plus tessellation and
topology correction of the initial white matter surface (Dale et al., 1999). The resultant white
matter surface is generated using a segmentation of the 1mm downsampled T1w image. For
final white matter surface placement, we make use of the full 0.7mm resolution of the HCP
T1w images. The requisite FreeSurfer volume and surface files are brought into the 0.7mm
native volume space, the high resolution T1w volume is intensity normalized, and the white
matter surface position is adjusted based on intensity gradients in the 0.7mm T1w image.
This adjustment corrects for regions in which the white matter surface was placed too
superficially in the grey matter because of partial volume effects at 1mm (Figure 13).
Additionally, the T2w to T1w registration is fine-tuned using FreeSurfer’s BBRegister
algorithm (Greve and Fischl, 2009), which gave slightly more accurate results than FLIRT’s
BBR implementation, most likely because of the higher quality surfaces used in the
FreeSurfer BBR registration (the surface used in the PreFreeSurfer pipeline is based on a
simple FSL FAST segmentation (Zhang et al., 2001)). The corrected white matter surfaces
are then brought back into FreeSurfer space and recon-all processing continues (note that the
surfaces are not retessellated so they do not have as many vertices as native 0.7mm images
would produce). Spherical inflation of the white matter surface (Fischl et al., 1999a),
registration to the fsaverage surface template based on cortical folding patterns (Fischl et al.,
1999c), and automated segmentation of sulci and gyri (Desikan et al., 2006) are among the
steps done during this recon-all stage.

Just before the pial surfaces are generated, recon-all is stopped again and pial surfaces are
obtained with an improved algorithm that uses both the high-resolution T1w and T2w
images. First, T1w and T2w images are normalized to a standard mean white matter
intensity. As noted above, because residual intensity inhomogeneity after PreFreeSurfer
bias-field correction is not necessarily correlated between grey and white matter, we do not
use the FreeSurfer white matter specific intensity normalized image for pial surface
generation. Instead, we carry out a greymatter specific intensity normalization of the T1w
image as follows. Initial pial surfaces are generated from the high-resolution PreFreeSurfer
bias-field corrected T1w image using relaxed Gaussian parameters (including intensities 4
sigmas above and below the grey matter mean intensity, versus the standard setting of 3
sigmas). This tends to include large amounts of dura and blood vessels (See Figure 14) and
may cause the pial surface not to properly follow sulcal fundi, but it reduces the probability
of excluding lightly myelinated grey matter. To remove the dura and blood vessels, the pial
surface is eroded using the T2w image. Both dura and blood vessels are very different in
intensity from grey matter in the T2w image, though they are close to isointense in the T1w
image (Figure 14). This initial pial surface is used together with the white matter surface to
define an initial grey matter ribbon of voxels whose centers lie between the two surfaces.
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The T1w image is smoothed using a ribbon constrained approach and a sigma of 5mm, and
then the original image is divided by this smoothed image (after removing the mean). These
operations effectively perform spatial highpass filtering within the grey matter ribbon,
removing the low frequency effects of differences in myelin content across the image while
keeping the high frequency effects of opposing cortical pial surfaces and radial intracortical
contrast. This spatially highpass filtered T1w image is used to regenerate the pial surface
from scratch with much more restrictive Gaussian parameters (2 sigmas above and below
the grey matter mean intensity). The T2w surface is again used to remove any dura and
blood vessels, and the result is the final pial surface. The pial surface now appropriately
follows the contours in the volume, but does not exclude lightly myelinated grey matter. The
benefits of these operations are evident in the group average Conte69 myelin maps presented
previously (Glasser and Van Essen, 2011), especially in the very lightly myelinated medial
prefrontal and anterior cingulate cortices (Figure 15). After this pial surface generation step,
recon-all then continues to completion. The final steps include surface and volume
anatomical parcellations and morphometric measurements of structure volumes and surface
areas.

HCP Pipelines: PostFreeSurfer
The first task of the PostFreeSurfer pipeline (Figure 16) is to take the outputs of FreeSurfer
that are in FreeSurfer proprietary formats and convert them to standard NIFTI and GIFTI
formats. Additionally, these data are returned to the native volume space from the
FreeSurfer 1mm RAS space. The white, pial, spherical, and registered spherical surfaces are
all converted to GIFTI surface files; thickness, curvature, and sulc are all converted to
GIFTI shape files. The three FreeSurfer cortical parcellations are converted to GIFTI label
files and the three full subcortical volume parcellations are converted to NIFTI label files.
One of these volume parcellations, the wmparc, is binarized, dilated three times and eroded
twice to produce an accurate subject-specific brain mask of grey and white matter, which
serves as the final brain mask that is used in any subsequent functional or diffusion
processing. The goal of the erosion and dilation process is to fill in most holes (from sulci)
inside the mask while maintaining a tight fit to the brain. One more dilation than erosion is
used to ensure that when the mask is downsampled (e.g. to the fMRI resolution of 2mm)
partial volume brain voxels are not left out of the mask. Additionally, the structural
transforms for T1w and T2w images (which were generated in the PreFreeSurfer and
FreeSurfer steps) are all combined into a single transform and applied to the averaged T1w
and T2w images, bringing them into the native volume and MNI spaces with a single spline
interpolation. From this base set of files, a mid-thickness surface is created by averaging the
white and pial surfaces. Inflated and very inflated surfaces are created from the mid-
thickness. These files are organized into a “spec” (specification) file, which lists relevant
files grouped by data type and can be immediately loaded into Connectome Workbench for
viewing the standard set of anatomical data. While the surface maps are made available as
single hemisphere GIFTI files, the spec files list CIFTI files that combine each scalar or
label map across left and right hemispheres, which allows them to be manipulated
concurrently as single Connectome Workbench layers.

The above surface coordinate files all exist in the native volume space, and the surface
topology is that of the native mesh. Together, these files represent the native volume, native
surface mesh space. This space is mainly useful for individual analysis of myelin content
maps (discussed below) and quality control of the surface reconstructions, and the data
reside in the T1w/Native folder. The next space produced by the PostFreeSurfer pipeline is
the native mesh, MNI volume space, in which all anatomical surface files are transformed
using the native to MNI nonlinear volume transformation. This space is most useful for
accurate volume to surface mapping of individual subject’s fMRI timeseries. As with the
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previous surface/volume space, a spec file is produced containing the standard set of
anatomical data and the data reside in the MNINonLinear/Native folder.

PostFreeSurfer’s next step is to register the individual subject’s native-mesh surfaces to the
Conte69 population-average surfaces, which have correspondence between left and right
hemispheres (Van Essen et al., 2012b). This registration involves concatenation of the
standard FreeSurfer registration (to the fsaverage mesh, and represented by the registered
sphere, ‘sphere.reg’) with the group fsaverage to Conte69 atlas registration (Van Essen et
al., 2012b). This combined surface registration is applied to all surfaces and surface data
files, bringing them into correspondence with the 164k_fs_LR standard surface mesh. This
mesh has an average vertex spacing of around 0.9mm on the midthickness, and it has an
appropriate sampling resolution for analyzing high-resolution anatomical data such as
myelin maps. A spec file listing the standard set of anatomical data resides along with the
data in the MNINonLinear root folder.

The average vertex spacing of 0.9mm for the 164k_fs_LR atlas mesh represents an
oversampling for fMRI data acquired at 2mm isotropic resolution. Since fMRI and
connectivity datasets tend to have a large second temporal or spatial dimension, many
surface datasets sampled on the 164k_fs_LR mesh would be prohibitively large. Instead, we
use a downsampled surface space, the 32k_fs_LR space, which has an average vertex
spacing of around 2mm on the midthickness surface. Although this surface does not track
the anatomical contours in the volume as accurately as the native meshes, it represents the
shape of the subject’s cerebral cortex fairly accurately for the purposes of visualization and
surface-constrained analysis. Because of the smaller number of vertices, this lower
resolution surface is more amenable to functional or connectivity analyses once data have
been mapped onto the surface using the more accurate native mesh (see fMRISurface). A
spec file listing the standard set of anatomical data resides along with the data in the
MNINonLinear/fsaverage_LR32k folder. Finally, this 32k_fs_LR mesh is transformed from
MNI space back to native volume space to enable tractography visualization using these
meshes to occur in native volume space. A spec file containing the standard set of
anatomical data resides along with the data in the T1w/fsaverage_LR32k folder.

The capability for bi-directional resampling between the native, high-resolution
(164k_fs_LR), and low-resolution (32k_fs_LR) meshes is useful for a variety of purposes
(e.g., viewing myelin maps generated at high resolution on the low-resolution map or
viewing task-fMRI generated at low resolution on a high-resolution myelin map). We
implemented a novel adaptive barycentric surface resampling approach in Connectome
Workbench commandline utilities that provides greater accuracy than the methods
previously available. The goal of the new method is to minimize blurring during resampling
while ensuring that all data from the source mesh contributes to the result on the target
mesh, even when the meshes are of significantly different resolution, or when a mesh has
highly variable vertex spacing. The method first computes both the barycentric weights of
the target sphere vertices in the source sphere triangles (forward weights), and the
barycentric weights of the source sphere vertices in the target sphere triangles (backward
weights). Next, it rearranges the backwards weights by target sphere vertex, so that they can
be used in the same manner as the forward weights. These converted backward weights have
an advantage when downsampling because there are as many of them as for the equivalent
upsampling, meaning that all data on the source sphere is used in the resampling. However,
they are inadequate on their own for upsampling, because some vertices could have no
converted backward weights to get data from. (This is the converse of the problem of
downsampling by a simple barycentric algorithm, where some vertices of the high-
resolution mesh go unused.) The algorithm builds a set of adaptive weights by going through
every target sphere vertex and comparing the two lists of weights. If the converted backward
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weights for the target vertex contain a source vertex that the forward weights do not, then
the converted backward weights are used at that vertex, otherwise the forward weights are
used. After generating these adaptive weights, the algorithm applies an area correction step
using midthickness surfaces on the source and target meshes to derive the vertex areas. (See
the surface smoothing algorithm described below for additional methodological details.) In
this area correction step, the method multiplies the adaptive weights by the vertex area of
their target vertex, normalizes them by the sum at their source vertices, then multiplies by
the source vertex areas. Application of these weights to scalar data is straightforward, but for
label data, a popularity technique is used: at each vertex, sum the weights by which label
value they contribute to, then use the label value that has the highest weight sum.

Additionally, the PostFreeSurfer pipeline produces an accurate volume segmentation of the
cortical ribbon based on the signed distance function of the white and pial surfaces. The
pipeline also sets up the 2mm standard CIFTI grayordinates space for the fMRISurface
pipeline. Finally, the PostFreeSurfer pipeline produces surface myelin maps and ribbon
volume myelin maps using the methods described in (Glasser and Van Essen, 2011) together
with the improvements described in (Glasser et al., In Press). Briefly, the T1w/T2w ratio in
the voxels between the white and pial surfaces is mapped onto the midthickness surface. The
principal difference from the original method (Glasser and Van Essen, 2011) is that less
artifact correction of the myelin maps is needed given the various enhancements to surface
reconstruction and positioning accuracy described in the FreeSurfer pipeline above. For
quality control and evaluation of the structural pipelines, the myelin maps serve as a useful
end point where errors anywhere along the preprocessing stream are likely to be evident.
Subtle errors in registration or surface placement will produce clearly deleterious effects on
the myelin maps (e.g. the example shown in Figure 15). Indeed, many of the refinements
described above were developed to fix errors in processing that negatively impacted the
myelin maps. Thus, the consistently high quality myelin maps in individual subjects
produced at the end of the PostFreeSurfer pipeline indicate that the preceding steps of the
pipeline generally work well (Figure 17).

Although the bias field correction method used in PreFreeSurfer is adequate for surface
reconstruction, the myelin maps generated from the HCP Skyra data have more variable
residual bias than those previously generated from Siemens Trios or a GE scanner (Glasser
et al., 2012b; Glasser and Van Essen, 2011). This is likely because the positioning of the
head is ~ 5cm above isocenter and because of the smaller (customized 56 cm) body transmit
coil, making it more difficult to achieve the kind of B1 transmit homogeneity found in other
whole body scanners. We use a model of the expected low spatial frequency distribution of
T1w/T2w intensities across the surface to correct the residual bias field present in the image.
We take the previous group average myelin maps on the Conte69 mesh (e.g. from (Glasser
and Van Essen, 2011)) and bring them onto each individual’s native mesh using the inverse
of the surface registration from the PostFreeSurfer pipeline. Taking the difference between
the group myelin map and the individual map, and smoothing this difference a substantial
amount (e.g. a sigma of ~14mm) creates a field that can be subtracted from the individual
myelin map, replacing the low spatial frequency content with that of the group map. The
group map is considerably more robust, as it has been shown to be highly stable across
scanners and acquisitions (Glasser and Van Essen, 2011) and shows a very similar
distribution to that seen with other myelin mapping methods (Cohen-Adad, 2013; Sereno et
al., 2012). Such low frequency correction does not affect the discriminability of neighboring
cortical areas with differing myelin contents, whose boundaries exist at a much higher
spatial frequency than a sigma of ~14mm (FWHM=~33mm). Figure 18 shows the effects of
this correction on an HCP subject with a particularly large residual bias field. Both the
original and the corrected, MyelinMap_BC, myelin maps will be included in the HCP data
releases from Q2 onward.
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HCP Pipelines: fMRIVolume
The fMRI volume pipeline (Figure 19) is in many ways like the PreFreeSurfer pipeline,
solving analogous problems. It requires completion of the HCP structural pipelines
(PreFreeSurfer, FreeSurfer, and PostFreeSurfer). As in the PreFreeSurfer pipeline, the first
step is correction of gradient-nonlinearity-induced distortion, using the same methods as in
the PreFreeSurfer pipeline. This step is optional but is strongly recommended for scanners
with significant gradient nonlinearity. Next is realignment of the timeseries to correct for
subject motion, which is accomplished with a 6 DOF FLIRT registration of each frame to
the single-band reference image. An extra registration step is avoided by using the single-
band reference image as the registration target, because its greater anatomical contrast is
needed in the EPI to T1w registration. Additionally, the motion parameters are output in a
twelve column text file with the following format: <x translation in mm> <y translation in
mm> <z translation in mm> <x rotation in degrees> <y rotation in degrees> <z rotation in
degrees> <derivative of×translation> <derivative of y translation> <derivative of z
translation> <derivative of×rotation> <derivative of y rotation> <derivative of z rotation>.
A demeaned and linearly detrended motion parameter file is provided as well for nuisance
regression.

EPI fMRI images contain significant distortion in the phase encoding direction. This
distortion can be corrected with either a regular (gradient-echo) fieldmap or a pair of spin
echo EPI scans with opposite phase encoding directions. Reversing the phase encoding
direction reverses the direction of the B0 field inhomogeneity effect on the images. The FSL
toolbox “topup” (Andersson et al., 2003) can then be used to estimate the distortion field.
The distorted spin echo EPI images are aligned with a 6 DOF FLIRT registration to the
distorted gradient echo EPI single-band reference image. This registration is concatenated
with the topup-derived distortion field, producing a nonlinear transform that can be used to
undistort the fMRI images. The single-band reference image is corrected for distortions
using spline interpolation and is then registered to the T1w image, first using 6 DOF FLIRT
with the BBR cost function and using FreeSurfer’s BBRegister for fine tuning (Greve and
Fischl, 2009). The result is an accurate registration between the fMRI data and the structural
data, which is important for volume to surface mapping in the fMRISurface pipeline.

The final steps of the fMRIVolume pipeline include concatenating all of the transforms for
each registration and distortion correction step into a single nonlinear transformation that
can be applied in a single resampling step. Each fMRI timepoint has a unique transformation
driven by its 6 DOF motion correction matrix, but preceding that is the gradient nonlinearity
distortion correction and following it is the EPI distortion correction, the EPI to T1w
registration, and the native volume to MNI nonlinear registration. Every frame from the raw
timeseries is transformed, according to its unique nonlinear transformation, directly to MNI
space with a single spline interpolation, minimizing interpolation-induced blurring. The bias
field calculated from the structural images is removed, reducing the B1 intensity bias
(however, this bias correction is only approximate in its present form because it is estimated
from the structural data that are acquired in a different session). The data are then masked by
the final brain mask from the PostFreeSurfer pipeline and normalized to a 4D whole brain
mean of 10000. The outputs of the fMRIVolume pipeline include a NIFTI volume
timeseries in MNINonLinear/Results/fMRIName that is in 2mm MNI space and has
undergone the processing described above, a single-band reference image in 2mm MNI
space, a Jacobian file representing the intensity modulations of the distortion correction, and
both original and demeaned/de-trended motion parameters. Conventional volume-based
fMRI analyses can proceed using this dataset.
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HCP Pipelines: fMRISurface
The goal of the fMRISurface pipeline (Figure 20) is to take a volume timeseries and map it
to the standard CIFTI grayordinates space. The first step is a novel partial volume weighted
ribbon-constrained volume to surface mapping algorithm, in which the white and pial
surfaces are used to define which fMRI voxels are within the grey matter ribbon. For
maximum accuracy, the native mesh surfaces (in MNI volume space) are used in this step,
because they have not been resampled and thus follow the tissue contours in the volume
most precisely. Some voxels will be partially inside the grey matter ribbon and partially
outside of it. The intensity value assigned to each surface vertex is the weighted average of
the voxels wholly or partially within the grey matter ribbon, with partial voxels weighted
according to their partial volume inside the ribbon. At each vertex, the algorithm finds the
triangles that contain the vertex on both the white and pial surfaces (the surfaces must have
vertex correspondence) and connects these triangles with the quadrilaterals formed by
connecting their edges, constructing a polyhedron. Then, it creates a grid of points inside
each voxel, and tests each one to see if it is inside the polyhedron. If this test is ambiguous
because the quadrilaterals are twisted, the algorithm counts the point as half inside if it falls
on opposite sides of a quadrilateral depending on which diagonal is used to split the
quadrilateral into two triangles. The weight used for a voxel is the number of grid points
inside, plus half the number of grid points half inside the polyhedron.

Additionally, voxels having a locally high coefficient of variation in the timeseries data
(greater than 0.5 standard deviations above the mean coefficient of variation of other voxels
in a 5mm sigma Gaussian neighborhood) are excluded from volume to surface mapping.
The mask of all brain voxels not excluded by the coefficient of variation threshold is
provided as a pipeline output (RibbonVolumeToSurfaceMapping/goodvoxels.nii.gz). The
practical effect of excluding voxels with high coefficient of variation is to remove voxels
that are near the edge of the brain parenchyma or contain large blood vessels. The deviation
from the local neighborhood coefficient of variation is used instead of the absolute
coefficient of variation because the SNR varies across the brain according to the receive coil
sensitivity profile and any EPI signal dropouts. The coefficient of variation of the surface
timeseries is markedly reduced (Figure 21) as a result of this process. Additionally, a notable
gyral bias in high coefficient of variation is eliminated with this exclusion process.

The surface timeseries are resampled from the high-resolution native mesh to the registered
downsampled 32k_fs_LR mesh, where the sampling resolution matches the original voxel
resolution more closely, using the adaptive barycentric surface resampling algorithm
described above. The medial wall vertices are masked according to the Conte69 left and
right atlas masks, as the medial wall is not a defined grey matter structure. The fMRI
timeseries are slightly smoothed (2mm FWHM) on the surface to match the subcortical
parcel constrained process described below and to regularize them after the mapping process
to match the 2mm average vertex spacing of the 32k_fs_LR mesh.

The smoothing is performed using a novel geodesic Gaussian surface smoothing algorithm.
At each vertex, the algorithm finds all vertices within a geodesic distance of three times the
Gaussian sigma and assigns them initial weights according to their geodesic distance and the
Gaussian function, forming the smoothing kernel for that vertex. Geodesic distance is
computed on the midthickness surface using both the direct paths to immediate neighbor
vertices, and by finding triangles that share an edge and computing the shortest path across
them between the two vertices not on that edge. In practice, this method adds minimal
computational time and substantially reduces biases caused by the discrete directions of
triangle edges, resulting in more accurate geodesic distance measurements.
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Next, the smoothing algorithm applies a correction for differences in the triangle areas
associated with each vertex. The area of each vertex is computed as one third of the sum of
the surface areas of the triangles that contain the vertex. The smoothing algorithm first
multiplies each geodesic Gaussian vertex weight within each smoothing kernel by the area
of the kernel’s center vertex (the vertex that the geodesic distance was computed from).
Then, in each kernel, it divides each vertex's weight by the sum of the weights at that vertex
across all of the smoothing kernels. Finally it multiplies each vertex’s weight within each
kernel by its vertex area. If an ROI is being used to exclude certain vertices’ data values
from the smoothed output, the algorithm includes their weights in the vertex area correction,
but removes them from the kernel when the final Gaussian weighted average is computed.
This inclusion in the areal correction prevents vertices on the edge of an ROI from having a
stronger influence on their neighbors than if an ROI is not being used.

The two area multiplication steps serve to minimize two different biases that can occur on
irregular meshes. The first multiplication reduces a bias related to the effect of triangle area
irregularity on the effective shape of the kernel. To understand the first bias, consider two
scenarios of a center vertex and a neighboring vertex, each having the same vertex area, but
in Scenario A there are many vertices with small areas around and in Scenario B there are
only a few large vertices. In Scenario A, the sums of the weights without this multiplication
step would be larger than in Scenario B, which after division, would result in a change in
amount of influence between the two unchanged vertices in Scenarios A and B. With this
first multiplication of the weights by the area of the center vertex, the weight sums used for
normalization become approximations of the surface integral of Gaussian kernels, which are
largely independent of local mesh density. The result is a very similar weight between the
unchanged vertices between the two scenarios after division.

The normalization and second multiplication, by the vertex area of each weight within the
kernel, reduces a second bias that overemphasizes values at vertices with smaller area. The
effect of the second bias on smoothing with and without these corrections was tested on a
subject's native mesh right midthickness surface with a sigma of 3mm. The vertex area
metric was used as the test data, in order to exacerbate the bias of vertex area in uncorrected
smoothing, as the small values at small vertices are given too much importance, decreasing
the value of the surface integral. The surface integral before smoothing was 91,894, after
smoothing without area correction it was 73,372, and after smoothing with area correction it
was 91,890. The units of this integral are mm4, resulting from the unusual procedure of
integrating vertex area over the surface, rather than merely summing it. While this is a fairly
extreme case designed to cause the uncorrected method to show a very large difference in
surface integral, it does demonstrate that the corrected method avoids this bias very
effectively.

The geodesic Gaussian surface smoothing algorithm with vertex area correction described
above is more analogous to the typical Gaussian smoothing that is applied to volume data
that exists on a regular grid. It is more complex because surface distances are geodesic
rather than Cartesian and because the vertices containing the data are not regularly spaced,
causing biases that the algorithm must correct. Thus, it is different from previous algorithms
that needed to smooth and then estimate smoothness iteratively (e.g. (Hagler Jr et al., 2006)).
The end results are 2mm FWHM smoothed surface timeseries on a standard mesh in which
the vertex numbers correspond to spatially matched locations across subjects.

For volume voxels, a process similar to resampling onto a standard mesh is used to produce
a set of corresponding voxels across subjects. As a part of the FreeSurfer pipeline, the
subcortical grey matter is segmented into the following left and right structures: nucleus
accumbens, amygdala, caudate, cerebellum, ventral diencephalon, hippocampus, pallidum,
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putamen, and thalamus along with the midline brain stem (Figure 1). The pipeline takes as
one of its inputs, provided by PostFreeSurfer, the modal-average subcortical parcellation of
these structures across the Conte69 atlas subjects in 2mm MNI space. Although the subjects’
data have been nonlinearly registered to MNI space with FNIRT, allowing individual and
atlas parcellations to be directly overlaid, there is not a one-to-one correspondence of the
voxels in each subcortical parcel across subjects. To achieve this kind of correspondence,
the timecourse in each atlas voxel of a parcel is assigned the value of the Gaussian weighted
average (2mm FWHM to match the surface smoothing) of the nearby voxels in the
individual subject’s parcel. This parcel-constrained atlas smoothing/resampling process is
best illustrated by an example: A particular voxel is a part of the left thalamus in the atlas
parcellation. To find its timecourse in an individual, the timecourses of all of the nearby
voxels within the left thalamus of the individual parcellation are averaged with a 2mm
FWHM Gaussian weighting. This strategy both achieves the desired smoothing of the data
while ensuring that voxels that are not a part of the left thalamus (e.g. third ventricle voxels)
are not included in the timeseries. The FNIRT nonlinear registration is relied upon to
achieve a high degree of correspondence between the individual and atlas parcels.
Occasionally, single atlas parcel voxels or single individual parcel voxels may be outside the
Gaussian neighborhood (i.e. the distance at which the Gaussian has fallen close to zero). In
these cases, the closest individual voxels are used to assign the value to the atlas voxel,
effectively a dilation operation. Alternatively, if individual voxels are far from an atlas
voxel, they will not contribute much to the resampled timeseries. In practice, these effects
occur in only a few voxels in a few subjects, as the subcortical parcellation and nonlinear
volume registration are quite accurate in matching individuals to the atlas. Thus, each
individual subject’s timeseries is sampled onto a standard set of left and right hemisphere
surface vertices and a standard set of subcortical grey matter voxels, forming the standard
CIFTI grayordinates space. The surface timeseries from both hemispheres and the
subcortical volume timeseries from each subcortical structure are combined in a single data
matrix that has the dimensions grayordinates × time (e.g. Figure 2). This CIFTI dense
timeseries is the final output of the fMRI minimal preprocessing pipelines and represents the
most compact yet still complete representation of the grey matter timeseries data.
Additionally, the two hemispheres’ surface timecourses and the parcel-constrained
subcortical volume timecourses can be regenerated from the CIFTI dense timeseries using
Connectome Workbench’s commandline utilities.

HCP Pipelines: Diffusion Preprocessing
The Diffusion Preprocessing pipeline (Figure 22) starts by intensity normalizing the mean
b0 image across the six diffusion series (three with one phase encoding direction and the
other three with the opposite phase encoding direction). These phase encoding direction
reversed b0 pairs are used to estimate the EPI distortion. This is done using the “topup” tool
(Andersson et al., 2003) in FSL5. The estimated distortion field is then fed into a Gaussian
Process predictor (Andersson et al., 2012) that uses all the data together and additionally
estimates the eddy-current induced field inhomogeneities and head motion for each image
volume. All these distortions are corrected in a single resampling step using the “eddy” tool
in FSL5 (Andersson et al., 2012), (Sotiropoulos it et al., THIS ISSUE). Eddy also produces a
text file that includes the modeled motion parameters and the parameters of the eddy current
fields. The first six columns contain the rigid motion parameters <x translation in mm> <y
translation in mm> <z translation in mm> <x rotation in radians> <y rotation in radians> <z
rotation in radians> and the last 10 contain the eddy current distortion parameters.

The gradient nonlinearity correction warpfield is then calculated for the diffusion data to
remove this spatial distortion (Jovicich et al., 2006), and the mean b0 image is distortion
corrected. Additionally, the effects of gradient nonlinearity on the diffusion encoding
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magnitudes and directions are calculated (Bammer et al., 2003), (Sotiropoulos it et al., THIS
ISSUE). The partial derivatives of the spatially-dependent magnetic field are used to
calculate a gradient field tensor at each voxel, which maps “nominal” to actual gradient
magnitudes and directions (Bammer et al., 2003). Using the gradient field tensor, the
magnitude and direction of the diffusion-sensitizing gradients can be corrected at each brain
voxel. This information is subsequently used for more accurate fiber orientation estimation.

It is worth noting that the gradient nonlinearity correction is done at a much later stage in the
diffusion pipeline than in the fMRIVolume pipeline. Ideally the gradient nonlinearity
distortion correction would be done simultaneously with the B0 inhomogeneity distortion
correction, as well as with the eddy current distortion correction and rigid-body motion
correction, as all of these interact. However, we do not currently have tools that integrate all
the distortion correction methods into a single process. Therefore it is necessary to choose
the order in which the corrections are applied. Since the combined eddy-current and B0
inhomogeneity distortions in the phase-encode reversed diffusion acquisitions are much
larger than the amount of rigid rotation between images within the sequence, it is a better
approximation to run the topup and eddy tools prior to the gradient nonlinearity correction
within the diffusion pipeline. This causes the rigid rotation corrections to be approximate but
allows the eddy-current and B0 inhomogeneity distortions to be corrected more accurately,
as the original phase-encoding image axis direction is maintained and these distortions occur
along this direction. (In contrast, the fMRIVolume pipeline deals with fMRI images where
the magnitude of the rigid rotations and the B0 inhomogeneity distortion are more similar in
areas without much signal loss. For simplicity this pipeline applies the gradient nonlinearity
correction earlier, although in practice it is likely to make very little difference.) Future tools
will hopefully fully integrate all sources of distortion, making it unnecessary to choose the
order.

The final stage of the diffusion pipeline calculates the transform between the native
diffusion space and the native structural space. The gradient nonlinearity corrected mean b0
image is registered to the T1w structural image using a 6 DOF boundary-based registration,
first with the FLIRT BBR cost function (FSL5) and then with FreeSurfer’s BBRegister for
fine-tuning (Greve and Fischl, 2009). The diffusion data output by eddy are then
transformed according to both the gradient nonlinearity correction and b0 to T1w
registration into 1.25mm native structural volume space in a single step. Finally, the data are
masked with the final brain mask from PostFreeSurfer to reduce the file size. The diffusion
gradient vectors are rotated according to the rotational component of the b0 to T1w
registration so that they will point in the correct directions relative to the structural space
diffusion data. The gradient field tensor containing the effects of the gradient nonlinearity on
the diffusion weighting and direction in each voxel is also transformed using the b0 to T1w
registration using a method that preserves the tensorial nature of this data (Alexander et al.,
2001). The transformation of the diffusion image data and auxiliary data to structural space
allows direct visualization of the diffusion data together with the structural space surfaces
and images in Connectome Workbench. The structural space diffusion data can then be
subsequently used for fiber orientation estimation with FSL’s multi-shell spherical
deconvolution toolbox (bedpostx) (Jbabdi et al., 2012). However, fiber orientation
estimation and tractography are not parts of the minimal preprocessing diffusion pipeline,
and thus they are described elsewhere (Sotiropoulos et al., THIS ISSUE).

Future Directions for the HCP Minimal Preprocessing Pipelines
There are several specific areas in which the minimal preprocessing pipelines might be
improved. One would be to use the acquired B1− and B1+ fields to correct the T1w and T2w
images for receive and transmit inhomogeneities prior to myelin map generation, rather than
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relying on the myelin map normalization algorithm described in PostFreeSurfer. Another
area of improvement is subcortical segmentation. Although FreeSurfer’s subcortical
segmentation is highly reliable, in some areas it consistently makes mistakes (e.g. in the
putamen near the insula and claustrum) and further improvements are possible. First,
segmentation could be done on the full 0.7mm resolution data instead of being limited to
1mm isotropic, allowing more accurate definition of existing structures. Second, additional
modalities could be used in subcortical segmentation in addition to the T1w image. For
example, the T2w image shows iron-related contrast in a number of subcortical nuclei, such
as the globus pallidus and red nucleus. The high-resolution diffusion data acquired by the
HCP offers another potential source of information for subcortical segmentation. Use of
higher resolution images with more contrast may allow additional subcortical structures to
be defined, such as distinguishing the claustrum from the putamen and the extreme and
external capsules.

Better cross-subject surface-based registration, using more than cortical folding patterns is
another improvement to the minimal preprocessing pipelines that is likely to occur in the
future. The goal would be to improve cross-subject alignment of cortical areas in the
standard grayordinates space, as some cortical areas are not particularly well aligned based
on cortical folding patterns alone, particularly in regions of high cross-subject folding
variability (Glasser et al., 2012a; Van Essen et al., 2012b). Additionally, FreeSurfer’s
current folding-based registration algorithm introduces more areal distortion of the cortical
surfaces than is desired relative to its ability to align cortical areas in these variable regions
(Van Essen et al., 2012b). Such excess distortion may make subsequent registrations based
on other modalities more difficult than if these registrations were performed after a more
gentle registration that focuses on aligning only the more consistent cortical folds. That is
because distortions in regions of high folding variability do not necessarily bring the cortical
areas into better register. Undoing previous distortions that occurred in the wrong direction
will require more a permissive surface registration regularization than if the distortions had
not occurred in the first place. Using myelin maps as a part of surface registration would be
a first step towards a multi-modal surface registration approach that better aligns cortical
areas (Robinson et al., 2013a; Robinson et al., 2013b), as myelin maps are more closely
related to cortical areas than are cortical folding patterns. Additional information from
resting state functional connectivity patterns, task fMRI activation patterns (Sabuncu et al.,
2010), or diffusion tractography (Petrović et al., 2009) should be helpful in achieving better
cross-subject alignment of cortical areas, and methods for incorporating this information are
actively being pursued. The most significant future changes to the minimal preprocessing
pipelines will likely include incorporation of multi-modal surface registration to achieve
better alignment of cortical areas across subjects within the grayordinates space.

Finally, it will be necessary to incorporate additional 7T data from 200 of the HCP subjects
that were scanned at 3T. Rather than separately running the minimal preprocessing pipelines
on 7T data, it will make more sense to build a new pipeline that makes use of the existing 3T
data. For example, after all distortion corrections are applied, it should be possible to align
the 7T structural, functional, and diffusion data with the 3T structural data using a simple
rigid body transform. 7T data could then be analyzed using the same surfaces and standard
grayordinate space as the 3T data. If higher resolution T1w images are acquired at 7T, these
could be used to further refine the cortical surface, allowing improved myelin mapping with
the 3T data or measuring myelin content with another technique directly at 7T such as
MP2RAGE or similar techniques (Marques et al., 2010; Van de Moortele et al., 2009).
Although the above changes may improve the pipelines in the future, the existing pipelines
will be released publicly (http://www.humanconnectome.org/) as a tarball of scripts,
documentation, and example data to allow others to process their data with whatever
components of the HCP minimal preprocessing pipelines they wish to use.
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Highlights

* Multi-modal preprocessing pipelines for the Human Connectome Project

* Description of CIFTI file format and Grayordinates coordinate system

* Combined surface and volume neuroimaging analysis
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Figure 1.
Components of the CIFTI grayordinates spatial dimension and standard space. Left and right
cerebral cortices contribute about 30k surface vertices each (less than the 32k vertex
standard meshes, because the non-cortical medial wall is masked with standard ROIs).
Additionally, 19 subcortical grey matter structures combine to contribute about 30k volume
voxels. In total, there are 91,282 grayordinates corresponding to all of the grey matter
sampled at a 2mm average vertex spacing on the surface and as 2mm voxels subcortically.
The minimal preprocessing pipelines guarantee that each subject will have 91,282
maximally aligned grayordinates, facilitating cross-subject comparisons of multiple data
modalities.
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Figure 2.
A CIFTI dense timeseries. The rows are grayordinates and represent the spatial dimension of
the timeseries, whereas the columns are timepoints. Reading along a row produces a
timecourse (green) for a given spatial point, and a different spatial point produces a different
timecourse (red). The columns represent the spatial pattern across the entire brain at a given
timepoint (yellow) and can be also visualized. A different spatial pattern at a second
timepoint is also shown (cyan).
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Figure 3.
An example of a CIFTI dense connectome. Both dimensions of this 2D matrix are
grayordinates. Rows of the matrix represent seed points for functional connectivity, and the
columns represent the spatial map of the connectivity. If one clicks on a point on the surface
(green), Connectome Workbench finds the appropriate row in the dense connectome matrix,
and displays the connectivity values on the appropriate cortical and subcortical structures. A
different point (cyan) shows a different connectivity pattern.
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Figure 4.
A CIFTI dense scalar file. CIFTI dense scalar files can contain any kind of scalar data, but in
this case, two task fMRI contrast maps are shown (z-statistics). Each contrast corresponds to
a different column in the schematic matrix. The first task contrast, Places – AVG Categories
(yellow), is from a working memory task that used a number of categories of visual stimuli,
including places. The second task contrast, Story – Math (cyan), is from a language task that
contrasted listening to a story to doing math problems. For more details, see Barch et al
THIS ISSUE.
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Figure 5.
A comparison of the geometrical effects of various fMRI acquisition resolutions on folded
cortex averaged across the Q1 20 unrelated HCP subjects all on the same color scale. A,
4mm isotropic, B, 3mm isotropic, C, 2.5mm isotropic, D, 2mm isotropic. When mapping
fMRI data of a given resolution to the midthickness surface, larger voxels can artificially
increase the correlation between geodesically distant surface vertices, as larger voxels can
span both sides of a sulcus or a thin gyral blade of white matter. The measure being
displayed is calculated for each vertex by finding the set of vertices that could potentially
share a voxel's data with the selected vertex during volume to surface mapping with trilinear
interpolation. For each of the vertices in this set, we compute the expected correlation to the
selected vertex that would result from mapping a white noise timeseries by trilinear
interpolation, aligned such that a voxel center is located midway between the two vertices.
We then multiply by the geodesic distance between the vertices in order to upweight the
measure for the vertices that are far apart across the surface. Finally the maximum of the
measure is taken over the set of vertices found to be in range. This model is a significant
simplification of the problem, however, as it does not account for the variable pointspread
function of BOLD at 3T or the effects of larger draining veins. The model also uses a simple
trilinear interpolation volume to surface mapping method instead of the more complicated
ribbon-based method used in the pipelines below. This model does, however, point to the
potential benefits of higher acquisition resolution in reducing the induced cross-sulcal and
cross gyral correlations between vertices that are far apart along the surface (and thus
potentially lying in different cortical areas), but close together in the volume.
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Figure 6.
Illustration of the spatial specificity of the high resolution HCP fMRI acquisition and
minimal preprocessing pipelines in the left (top) and right (bottom) hemispheres of one HCP
subject. Two resting state ICA components are shown, one involving the POS2 and
retrosplenial cortex on the left and the other involving the peripheral visual cortex on the
right. These two components exist on opposite sides of the parieto-occipital sulcus and have
very distinct functional connectivity patterns. With the 2mm isotropic acquisition used here,
the component spatial maps fall nicely between the white (green) and pial (cyan) surfaces
that define the grey matter ribbon on either side of the sulcus.
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Figure 7.
An overview of the HCP Minimal Preprocessing Pipelines. The HCP Structural Pipelines
are run first, and then either the HCP Functional Pipelines or the Diffusion Preprocessing
Pipeline can be run. Afterwards, resting state, task, and diffusion analysis can proceed.
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Figure 8.
An overview of the volume and surface spaces produced by the HCP pipelines. Each space
has specific uses, which are listed.
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Figure 9.
The steps of the PreFreeSurfer pipeline. T1w and T2w images are processed through the
same steps in parallel up until cross-modal registration. A fieldmap is used to remove
readout distortion in the T1w and T2w images, which slightly improves their alignment and
resulting myelin maps. The PreFreeSurfer pipeline also produces the Native and MNI
Volume Spaces, which will be used in later pipelines and analyses.
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Figure 10.
Effect of gradient nonlinearity distortion on the T1w image. Panel A is the T1w image
before gradient distortion correction, whereas Panel B is the T1w image after gradient
distortion correction. The red lines in both panels are from a rough tissue segmentation
generated with FSL's FAST on the gradient distortion corrected image shown in Panel B.
The ellipse highlights the region of maximum distortion, which is as much as the width of
the grey matter ribbon in some places.
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Figure 11.
Precise alignment of T2w (A) and T1w (B) images after correction for readout distortion.
The coronal slice above is in the same anatomical region as van der Kouwe et al (2008)
Figure 4, which illustrates the effects of readout distortion. White matter (green) and pial
(blue) surface contours from the FreeSurfer pipeline are in the same locations relative to the
anatomy in both T2w and T1w images. The ellipses indicate the locations where readout
distortion would be present in uncorrected images.
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Figure 12.
The steps of the FreeSurfer Pipeline. FreeSurfer's recon-all forms the basis of most of the
pipeline, but it is interrupted at certain steps to improve the robustness of the brain
extraction, to fine tune the T2w to T1w registration, and to more accurately place the white
and pial surfaces with high-resolution 0.7mm T1w and T2w data. These inputs are fed back
into recon-all at each stage.
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Figure 13.
The benefits (stars) of a high resolution (0.7mm isotropic) T1w image for reconstructing the
white matter surface in thin, heavily myelinated cortical regions such as the early visual
cortex in the calcarine sulcus (A) and the early somatosensory cortex in the central sulcus
(B). The red surface contour is the output of standard recon-all on the downsampled 1mm
isotropic T1w data and the green surface contour is after adjustment with the original 0.7mm
isotropic T1w data. In general, the white matter surface is placed too superficially in these
regions (Type A error, Glasser and Van Essen 2011).
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Figure 14.
The benefits of using a high resolution (0.7mm) T2w image to assist in pial surface
placement. The blood vessels and dura are close to isointense with grey matter in the T1w
image (A), however they are clearly of different intensity in the T2w image (B), allowing
them to be easily excluded from the grey matter ribbon. The red surface is from the T1w
image whereas the cyan surface is after cleanup with the T2w image.
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Figure 15.
The Conte69 (Glasser and Van Essen 2011) myelin maps before (A) and after (B) correcting
a systematic Type B artifact where the pial surface was being placed too deep. In this
artifact, lightly myelinated superficial cortical layers were being excluded in many subjects
by the default recon-all algorithm (in FreeSurfer versions 4.5, 5.0, and 5.1) leading to
artifactually higher myelin map values within the ellipse. Use of grey-matter specific
normalization and the T2w surface eliminate the problem.
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Figure 16.
An overview of the PostFreeSurfer pipeline. In addition to generating a final brain mask and
myelin maps, it converts data to NIFTI and GIFTI formats and creates Connectome
Workbench spec files in the surface spaces shown in Figure 8 above.
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Figure 17.
The unsmoothed myelin maps from an individual HCP subject.
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Figure 18.
The effect of residual bias field correction on a particularly inhomogeneous HCP subject. A)
Original Myelin Map. B) Reference group average myelin map (Conte69, from Glasser and
Van Essen 2011). C) Estimated residual bias field. D) Bias corrected myelin map. The
artifactual anterior-posterior very low spatial frequency gradient of T1w/T2w intensity is
removed and the corrected myelin map now resembles the reference. All maps are displayed
on the subject’s inflated surface.
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Figure 19.
The steps of the fMRIVolume Pipeline. All images undergo gradient distortion correction.
Motion correction is to the single-band reference (SBRef) image. The SBRef image is used
for EPI distortion correction and is registered to the T1w image. The spin echo EPI images
have reversed phase encoding directions and are used to calculate deviations from the B0
field caused by susceptibility. All transformations, including the MNI space transformation
are concatenated and applied to the original fMRI timeseries in a single spline interpolation
step. Finally, this MNI space timeseries is masked and its intensity is normalized to a 4D
global mean.
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Figure 20.
The steps of the fMRISurface pipeline, which maps cortical grey matter voxels onto
standard surface vertices and subcortical grey matter voxels onto standard subcortical
parcels. These combine to form a standard number of grayordinates that have been aligned
according to the nonlinear surface and volume registrations respectively. This allows precise
cross subject correspondence between data in the grayordinates standard space.
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Figure 21.
The coefficient of variation of the surface timeseries without (A) and with (B) exclusion of
locally noisy voxels. While certain parts of cortex are very noisy due to signal loss from
susceptibility effects, many other parts of cortex, particularly some gyral crowns, have
locally large amounts of noise that is effectively removed with this technique.
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Figure 22.
The steps of the diffusion preprocessing pipeline. After b0 intensity normalization, the b0
images of both phase encoding directions are used to calculate the susceptibility-induced B0
field deviations. Then the full timeseries from both phase encoding directions is used in the
“eddy” tool for modeling of eddy current distortions and subject motion. Gradient distortion
is corrected and the b0 image is registered to the T1w image using BBR. The diffusion data
output from eddy are then resampled into 1.25mm native structural space and masked.
Though not shown in Figure 22, the diffusion directions and the gradient deviation estimates
are also appropriately rotated and registered into structural space.
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