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Random matrix theory has proven very successful in the understanding of the spectra of chaotic systems.
Depending on symmetry with respect to time reversal and the presence or absence of a spin 1/2 there
are three ensembles, the Gaussian orthogonal, Gaussian unitary, and Gaussian symplectic one. With
a further particle-antiparticle symmetry the chiral variants of these ensembles, the chiral orthogonal,
unitary, and symplectic ensembles (the BDI, AIII, and CII in Cartan’s notation) appear which are
the main point of interest in this paper. Following a recently published work on chiral random matrix
ensembles and their experimental realizations, Phys. Rev. Lett.124, 116801 (2020), this is achieved
by using dielectric cylinders placed between two parallel aluminium plates. These cylinders act as
microwave resonators which are used to create tight-binding chains of finite length up to N = 5. The
different ensembles are achieved by using different types of couplings: (i) for the orthogonal case spatial
proximity is used, for the unitary case microwave circulators are used, and (ii) for the symplectic case
a combination of circulators and cables is used to create the necessary symmetry. In all cases the
predicted repulsion behavior between positive and negative eigenvalues for energies close to zero are
verified by a comparison with theory taking the finite size of the systems into account. We will show
that the difference to the expected universal behavior is given by logarithmic corrections only. These
corrections stem from the Hamiltonians having zero entries in their off-diagonal blocks.

topics: wave chaos, random matrix theory, chiral systems, topological materials

1. Introduction

Symmetries and universality classes belong to
the most fundamental building blocks of mod-
ern physics. Universality can be seen whenever
complex systems are investigated. These are sys-
tems whose simple constituents, when put to-
gether, give rise to a much richer behavior than
the simple building blocks would admit. This very
general observation leads to the applicability of
the same methods to a wide range of problems
ranging from number theory [1] over quantum
physics [2, 3], electronic transport problems [4] and
WiFi-telecommunications [5, 6] to financial mathe-
matics [7, 8] and delay in bus and train times [9, 10].
One of the first and therefore most prominent ex-
amples were early experiments on nuclear scatter-
ing where the statistical properties of measured
resonances of compound nuclei could be described

using random matrices [11–13]. These comparisons
show that symmetries of the systems under con-
sideration play an important role for the univer-
sality class of the system. Early on, the presence
or absence of (generalized) time-reversal symme-
tries were taken into account and gave rise to the
so called three-fold way [11] of Gaussian Orthogo-
nal Ensemble (GOE), Gaussian Unitary Ensemble
(GUE), and Gaussian Symplectic Ensemble (GSE).
If these symmetries are taken into account correctly,
then the universal features of the spectra can be re-
produced to great detail by the corresponding ran-
dom matrix ensembles [14, 15]. This correspondence
between the spectral properties of complex quan-
tum systems and random matrix theory has been
proven on the basis of semiclassical arguments [16].

In random matrix theory the Hamiltonian of
a system is substituted by a matrix H with
randomly, usually Gaussian, distributed matrix
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elements Hnm subject to constraints depending on
symmetry. An immediate constraint results from
the hermiticity of the Hamiltonian, Hmn = H∗nm.

Most important in this context is time-reversal
symmetry. Denoting the time-reversal operator by
T , time-reversal symmetry of the Hamiltonian
means

HT = TH. (1)
For systems without spin 1/2 the time-reversal
operator is just given by the complex-conjugate
T = K, whence follows T 2 = 1. For systems with
spin 1/2 the time-reversal operator has to be re-
placed by T = Kτy, where τy is a quaternion, with
T 2 = −1.

The three options (T 2 = 1, no T , T 2 = −1) give
rise to the three classical random matrix ensembles,
the orthogonal, the unitary and the symplectic one,
respectively.

A new symmetry appears in the context of par-
ticles and anti-particles. Let C be the charge-
conjugation operator. This operator is anti-unitary
and the symmetry with respect to an exchange of
particles and anti-particles means

HC = −CH, (2)
where again there are the three possibilities: C2 = 1
and C2 = −1, and no C. It follows that, if En is
an eigenvalue of H, then the same is true for −En,
including the possibility of eigenvalues at E = 0. If
both C and T exist and obey (1) and (2), respec-
tively, then

HCT + CTH = 0 (3)
follows automatically. Note that CT in (3) is uni-
tary as both C and T are anti-unitary.

All possible combinations of (T 2 = 1, no T ,
T 2 = −1) and (C2 = 1, no C, C2 = −1) yield
a total of nine different random matrix ensem-
bles. Together with the last remaining option no T ,
no C, but CT , one finally ends up with the ten-fold
way [17].

From the very beginning there had been the in-
terest in experimental demonstrations of the pre-
dictions of random matrix theory, where the distri-
bution of spacings of adjacent levels played a dom-
inating role. For the Gaussian orthogonal ensem-
ble there is an abundant number of realizations,
including systems not quantum-mechanical in ori-
gin (for example [18, 19] for vibro–acoustics, but
see also Sect. 3.2 of [20]). For the Gaussian unitary
ensemble the number of realizations is still small,
the first of them being performed in microwave bil-
liard systems [21, 22] and later in microwave net-
works [23]. The Gaussian symplectic ensemble usu-
ally is associated with spin 1/2 systems, but Joyner
et al. [24] proposed an alternative way to realize
the necessary condition T 2 = −1 in a graph with
a peculiarly designed geometry. The proposal was
experimentally realized in our group in a microwave
network [25, 26].

TABLE I

Parameters α, β for the chiral orthogonal, unitary,
and symplectic ensembles, respectively. In the sec-
ond line the Cartan notations for the three ensem-
bles are given. The last rows shows the values of the
squared operators T 2 and C2. The chiral UE has no
such operators which commute or anti-commute with
H (indicated by “×”). However, all ensembles fulfill
H · CT = CT ·H.

chiOE chiUE chiSE
Cartan notation BDI AIII CII

α 0 1 3
β 1 2 4
T 2 +1 × −1

C2 +1 × −1

For the new ensembles systematic experimental
studies still seem to be missing, though there are
a lot of studies of systems showing chiral symme-
try (see [27] for a review). It is the aim of the
present work to provide more details of our re-
cent microwave study [28] and several figures or
sub-figures are taken from it. At its center stand
the three chiral relatives of the classical ensembles,
the chiral orthogonal (chiOE), the chiral unitary
(chiUE), and the chiral symplectic (chiSE) ensem-
ble. More specifically, these are the three ensembles
where H ·CT = CT ·H and the corresponding pres-
ence or absence of T and C, respectively, see Table I.

The studies concentrate on the eigenvalues close
to E = 0. It is here where the positive eigenvalues
feel the existence of their negative partners, result-
ing in a possible repulsion of eigenvalues. The en-
sembles studied by us are not Gaussian. This leads
to a specific, non-universal (i.e., N -dependent) be-
havior of the densities of states and a modification
of the expected repulsion behavior as compared to
random matrix theory (RMT).

2. The chiral relatives
of the classical ensembles

The first extension of the classical ensembles had
been studied by Verbarschoot and coworkers, who
looked for the consequences of particle-antiparticle
symmetry in the context of the Dirac equation [29].
Here the proximity of the electron and the positron
states close to E = 0 generates an oscillatory mod-
ulation in the ensemble averaged density of states.

For the observation of such a symmetry the ex-
istence of particles and anti-particles is not really
needed. Sufficient is a system consisting of two sub-
systems I and II with interactions only between
members of I and II, but no internal interactions
within I or II. The Hamiltonian for such a situation
is given by

H =

(
0 A

A† 0

)
, (4)
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where the off-diagonal blocks contain the interac-
tion between the subsystems. Just like in the tra-
ditional counter parts GOE, GUE, and GSE, the
entries of A are given by real, complex, and quater-
nion real numbers for the three ensembles chiOE,
chiUE, and chiSE, respectively,

anm =


real for chiOE
complex for chiUE
quaternion real for chiSE.

(5)

For all the ensembles, the chiral symmetry is imme-
diately evident from the structure of H by realizing
that the unitary operator

J =

(
1n 0

0 −1m

)
(6)

anti-commutes with H,
JH = −HJ, (7)

where 1n is the unit matrix of rank n.
For sake of completeness we want to give ex-

plicit expressions for T and C for all three chiral
ensembles: for both chiOE and chiUE we can set
T = K and C = KJ such that TC = J in both
cases and (3) holds via (6). Furthermore, we get
the necessary relations (1) and (2) for the chiOE
and T 2 = C2 = J2 = +1n+m. The explicit forms
of T and C for the chiSE follow from writing the
quaternionic elements of A in terms of 2× 2 blocks
of the form

anm = (anm)0 · 1 + (anm)x · τx + (anm)y · τy

+(anm)z · τz =

(
a′nm a′′nm
−a′′∗nm a′

∗
nm

)
(8)

with complex numbers a′nm and a′′nm. With this
we can define

J± =

(
1̃n 0

0 ±1̃m

)
, (9)

where 1̃n is a 2n×2n matrix with n-2×2 matrices

τy =

(
0 −1

1 0

)
(10)

on its diagonal. From this we can set T = KJ− and
C = KJ+. This fulfills the chiral symmetry (3) via
the unitary matrix

TC =

(
−1n 0

0 1m

)
(11)

and we have T 2 = C2 = −12n+2m as needed.
Assuming n ≥ m, the characteristic polynomial

of H for all three chiral ensembles is given by

χ(E) =

∣∣∣∣∣ E · 1n −A
−A† E · 1m

∣∣∣∣∣ =

E−m

∣∣∣∣∣ E · 1n −A
0 E2 · 1m −A†A

∣∣∣∣∣ =

En−m
∣∣E2 · 1m −A†A

∣∣ , (12)

where we multiplied the lowest m rows with E and
added A†·1st row to them in the second equation. In
fact, (12) has a number of important consequences:

(i) For n > m there are ν = n − m eigenvalues
E

(i)
0 = 0, (i = 1, . . . , ν). They are topologically

protected, i.e., they do not depend on the in-
teraction between the two subsystems and can
only be destroyed by lifting the chiral sym-
metry. In other words, they are protected as
long as the Hamiltonian is of shape (4) for
arbitrary sub-matrices A.

(ii) All other eigenvalues appear in pairs En and
E−n = −En (with n = 1, 2, . . . ).

(iii) For energies far from E = 0 the statistical
properties of the chiral ensembles approach
those of the classical ones

(iv) The eigenvalues close to zero, E1, E2, E3, . . . ,
feel the proximity of their partners E−1, E−2,
E−3, . . . .

The last point results in a universal oscillatory mod-
ulation in the density of states ρ(E) and a possible
repulsion of the eigenvalues close to E = 0 [30],

ρ(E) ∼ |E|α+νβ , (13)
where α, β are given in Table I. Parameter β is the
universality index known already from the classi-
cal ensembles, and α = β − 1 for their chiral rela-
tives. For reference, Table I shows the Cartan no-
tations for the three ensembles, used as a math-
ematical classification scheme of the ten universal
ensembles [27].

The study of these ensembles, in particular the
eigenvalue repulsion behavior close to E = 0 is the
objective of the present work. Everything addressed
in the present section is well-known to experts work-
ing in the field, but we considered it appropriate to
summarize the essential features of the chiral en-
sembles here to make the access easier to readers
not familiar with them. For more details see the re-
view by Beenakker [27] which served as the main
basis for the present introduction.

3. The set-up

The main building blocks for the experimental re-
alization of the chiral ensembles are dielectric cylin-
ders (h = 5 mm, r = 3.8 mm ) with an index of
reflection of n ≈ 6 (see inset in Fig. 1). They are
used to create a tight-binding system which is a very
simple realization of the chiral symmetry, see (4).
The cylinders are placed between aluminium bot-
tom and top plates, the latter one being removed
for the photograph. There are two types of reso-
nance modes, the transverse magnetic (TM) mode
with the electric field E parallel and the magnetic
field B perpendicular to the cylinder axis, and the
transverse electric modes (TE) with the roles of E
and B interchanged.
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Fig. 1. Reflection spectrum of a single disk mea-
sured with (i) a monopole antenna exciting the TM
resonances (blue), and (ii) with a bent antenna (see
insert) exciting the TE resonances as well (black).
The arrow indicates the lowest TE mode, i.e., the
one used in the experiment (see [31] for further de-
tails). The inset shows a resonator (height 5 mm,
diameter 7.6 mm, index of refraction n ≈ 6).

For the experiments a vector network analyzer
(Agilent 8720ES) was used allowing for a mea-
surement of microwave reflection and transmission
amplitudes. The TM modes can be excited by
a monopole antenna parallel to the cylinder axis.
Figure 1 shows a corresponding reflection spectrum
showing a large number of resonances. To excite the
TE modes a bent antenna has been used (see inset
of Fig. 1) or a loop antenna on top of the cylinder.
A reflection spectrum obtained with the bent an-
tenna is shown in Fig. 1 too. The TM resonances
are seen again, since the bent antenna also contains
a vertical part. But there are a number of additional
resonances — the TE modes. For the experiments
the lowest TE mode was used, marked by an ar-
row in Fig. 1. It is very sharp compared to the TM
resonances for the following reason: for a cylindri-
cal geometry with top and bottom parallel to each
other, the wave number k may be decomposed as

k2 = k2
⊥ + k2

‖, (14)
where k‖ is the in-plane component, and k⊥ is the
perpendicular component. Component k‖ governing
the in-plane propagation is hence given by

k‖ =
√
k2 − k2

⊥. (15)
Within the disk the perpendicular component is
given by k⊥ = π/(nd) and outside by k⊥ = π/(d),
where d is the height of the disk, and where it is
assumed that top and bottom plate are in direct
contact with the disk [31]. Hence, there is a k range

π

nd
< k <

π

d
, (16)

where the waves are standing within the cylinder,
and evanescent outside. With k = 2πν/c, where c
is the velocity of light and ν the microwave fre-
quency, this corresponds to upper lower and up-
per frequency limits of 5 and 30 GHz. TE modes

within this range, in particular the TE0 mode,
thus correspond to bound states, in contrast to the
TM modes, which are just resonances. This is ex-
actly what is needed for the realization of a tight-
binding system and explains the small line width
of this mode.

In reality, the distance between the two plates
is larger than the height of the cylinders, namely
114 mm as compared to 5 mm . Therefore, there
is a gap of 6 mm between the top plate and the
top face of the cylinder allowing for an insertion
of loop antennas used in part of the experiments.
As a consequence, n in (16) has to be replaced by
an effective neff .

Bringing two cylinders together, the mutual over-
lap of the evanescent tails generates a coupling. The
situation can by phenomenologically described by
a 2× 2 Hamiltonian

H =

(
ν0 + ∆ν

2 a

a ν0 − ∆ν
2

)
, (17)

where a is the coupling constant between the two
cylinders and ν0 ±∆ν/2 are the TE0 eigenfrequen-
cies, different from each other due to fabrication
tolerance and contact imperfections on the metallic
surface. For the cylinders used in the experiments
the mean eigenfrequency was ν0 = 6.880 GHz with
a spread ∆ν of approximately 3 MHz, correspond-
ing to 20% of the linewidth.

The eigenfrequencies of the two-disk systems re-
sulting from Hamiltonian (17) are given by

ν± = ±
√
|a|2 +

(∆ν)2

4
. (18)

Figure 2 shows spectra for the two-disks system in
dependence of their distance d thus yielding the cou-
pling constant in dependence of d, a = a(d). For
the shown example the eigenfrequency of the two
disks had been identical within the limits of exper-
imental uncertainty, i.e., ∆ν = 0 and ν± = ±|a|.
Such two-disks measurements have been used for
a calibration of the distance in terms of the cou-
pling constants d(a). More specifically, we used the
known solution for the electric field in a cylindrical
resonator to fit this relationship from the experi-
mental calibration. The expression used for the fit
was [31]

1

2
(ν+ − ν−) = a =

∫
d2r ψ∗1Ĥψ2 =

a0

∣∣∣∣K0

(
γ

(
rD +

d

2

))∣∣∣∣2 , (19)

see Fig. 5 and Appendix C for details of the mea-
surements and extracted two-resonator couplings.
We used these fits to map the wanted Gaussian
distributions of coupling constants a onto a corre-
sponding distribution of distances d(a) by inverting
the obtained fit.

Dielectric disk systems have been used repeat-
edly in our group, among others also for the re-
alization of a microwave analogue of graphene [32].
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Fig. 2. Spectra of a two disk system in depen-
dence of their distance d, used to establish a re-
lation between the distance and the coupling con-
stant a(d). The measurements for different distances
d are offset along the ordinate for better visibility.
The lowest curve corresponds to a distance of 1 mm
between the two disks. Adjacent curves differ by
∆d = 0.5 mm. The curve formed by the red dots
shows the mean value of the extracted resonance
frequencies.

Fig. 3. (a) Schematic representation of the tight-
binding chain. The two subsystems are indicated
by red and blue (odd and even sites). Arrows indi-
cate the nearest-neighbor couplings a, b, c, and d.
(b) Experimental setup of the chiOE chain with
bent-antenna. The top plate of the setup was re-
moved for the picture.

One reason for the popularity of the latter had been
the similarity of the density of states of graphene
and a Dirac system with a zero mass term. Both
have a triangular gap in their densities of states
stemming from a linear energy-momentum disper-
sion relation at the K and K’ points in the Bril-
louin zone. Microwave graphene at first sight thus
seems to be the best candidate for a realization of
the chiral ensembles. However, there are a number
of disadvantages

(i) To build a microwave graphene lattice 250 to
300 disks are needed. But due to the triangu-
lar gap of the density of states at the so-called
Dirac point, only five to at most ten reso-
nances are expected to show the signatures
of the chiral ensembles, making this approach
highly inefficient.

(ii) In a graphene lattice the next-nearest neigh-
bor distance exceeds the nearest neighbor dis-
tance only by a factor of

√
3. Next-nearest

neighbor contributions can therefore not be
neglected. They appear in the diagonal blocks
of Hamiltonian (4) and spoil the chiral
symmetry.

To avoid these drawbacks, we use a different,
much simpler system, namely the linear chain,
see Fig. 3. This, however, has the following conse-
quence: In RMT, the off-diagonal A matrices in (4)
are completely filled with Gaussian random num-
bers. Due to the nearest-neighbor coupling in the
linear chain of length N , the matrices A become
more and more sparse for increasing N . It is there-
fore necessary to investigate how this increasing
sparsity will affect the RMT behavior.

4. Theory and simulations

In order to show that the experiment conducted
does comply with the prediction for chiral symmet-
ric systems, we need to derive predictions for the
density of states and, as will later be shown, the cor-
relation function for the eigenvalues with the small-
est magnitude.

4.1. Ensemble averaged density
of states for N = 1, . . . , 5

Starting point is the linear chain of resonators
shown in Fig. 3. Figure 3b lower figure shows the
disks used in the experiment next to an antenna at
the left. Figure 3a shows a schematic version with
the two subsystems I and II indicated in red (odd
sites) and blue (even sites). The only coupling (in-
dicated by arrows) is assumed to be between ad-
jacent sites, i.e., there is no internal interaction
within I or II, a precondition for the existence of
a chiral symmetry, see (4). For N ≤ 5 the eigenval-
ues of the Hamiltonian describing the linear chain
can be calculated analytically in terms of solutions
of quadratic equations. For N = 3, e.g. and only
nearest neighbor interactions taken into account,
the Hamiltonian reads, with the sequence 1, 3, 2
of rows and columns,

H =

 · · a

· · b

a∗ b∗ ·

 , (20)

where a is the coupling between sites 1 and 2 and b
is the couplings between sites 2 and 3. This makes
the chiral symmetry of (4) clearly visible. The char-
acteristic polynomial (12) reads

χ(E) = E
∣∣E2 − (|a|2 + |b|2)

∣∣ , (21)
hence, we have the eigenvalues

E0 = 0, E±1 = ±
√
|a|2 + |b|2. (22)

For the chiral orthogonal ensemble, couplings a and
b are real Gaussian variables following a distribu-
tion

p(a) =
1√
2π

e−a
2/2, (23)
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where a variance of one for a has been assumed.
With (23) the distribution of the non-trivial eigen-
values is given by a χ distribution with f = 2 de-
grees of freedom. For the chiral unitary case, a and
b are complex Gaussian variables and the distribu-
tion has f = 4 degrees of freedom. Therefore, we
get Wigner-like distributions for the positive eigen-
value E+1

ρβ+1(E) ∼ E2β−1 e−E
2/2, (24)

and ρβ+1 is zero for negative arguments. For sake of
readability, we omit the superscript β of ρ+1 in the
following. With this, the complete density of state
reads

ρN=3(E) =
1

3

(
δ(E) + ρ+1 (|E|)

)
. (25)

Here, (25) also holds for the symplectic case, β = 4,
where the entries a and b in (20) are given by quater-
nions.

Due to the symmetry of the spectrum, the corre-
lation between E+ and E− is given by

ρ+1,−1(E) =
1

2
ρ+

(
E

2

)
(26)

and the integrated correlation function follows as

I+1,−1 (E) = I+1

(
E

2

)
, (27)

where I+1 is the cumulative distribution function
for a χ distribution with f = 2β degrees of free-
dom. The expressions for N = 4 and N = 5 are
more complicated and are given in Appendix A. For
a graphical representation of the theoretical curves
for N = 1, . . . , 5, see the dashed lines in Figs. 6, 8,
and 10.

4.2. Repulsion behavior at small energies

One of the most helpful aspects of RMT is the
ability to predict universal behavior in experimen-
tal data. The paradigmatic example is the universal
level repulsion of adjacent energy levels for systems
with a chaotic classical limit. In the chiral ensem-
bles there is in addition a repulsion between the
positive and negative eigenvalues with an exponent
of α′ = α+νβ, see (13). For the systems considered
here, the behavior is different in as so far as the re-
sults depend on N . This is apparent from the curves
show in the comparison with the experimental re-
sults, see later. The cases forN = 2 andN = 3 yield
full off-diagonal blocks A as can be seen in (20).
Therefore, they show the expected RMT behavior.
Chains with N ≥ 4 show deviations from the RMT
prediction. This is due to the sparsity of the off-
diagonal blocks A already mentioned above.

Using the analytic expressions forN = 2 (trivial),
N = 3 (shown above), N = 4, and N = 5 (shown in
Appendix A) we can determine the repulsion behav-
ior and compare with the general case of (13). For
N = 3 the scaling behavior of ρ ∼ Eα′ and there-
fore ρ+1,−1 follows directly from (20) for all values
of β. The derivation of the repulsion exponent for
N = 4 and N = 5 is presented in Appendix A.

TABLE II

Behavior of the density of states ρ close to E = 0. The
leading expressions for the linear chains are identical
to (13) indicated in the third column. A comparison
with the full curves is shown in Fig. 4. Details on
the cases N = 4 and N = 5 are given in Appendix B
specifying the form of the logarithmic corrections. For
N = 5, β = 4 an integral expression for ρ(E) given
by (66) can be found in the appendix, but we have
not been able to elaborate the asymptotic behavior.

N β ρRMT ρlinear chain formula
2 1 ∼ |E|0 ∼ |E|0

2 ∼ |E|1 ∼ |E|1

4 ∼ |E|3 ∼ |E|3

3 1 ∼ |E|1 ∼ |E|1 (25)
2 ∼ |E|3 ∼ |E|3 (25)
4 ∼ |E|7 ∼ |E|7 (25)

4 1 ∼ |E|0 ∼ |E|0 · (1 + const · ln |E|) (44)
2 ∼ |E|1 ∼ |E|1 · (1 + const · ln |E|) (51)
4 ∼ |E|3 ∼ |E|3 · (1 + const · ln |E|) (63)

5 1 ∼ |E|1 ∼ |E|1 · (1 + const · ln |E|) (59)
2 ∼ |E|3 ∼ |E|3 · (1 + const · ln |E|) (62)
4 ∼ |E|7 ∼ |E|7 · (1 + const · ln |E|) (66)

For N = 4 and β = 1 the density of states ρ
shows a logarithmic divergence at E = 0 instead
of a constant behavior. An overview of the ob-
tained repulsion exponents for the correlation func-
tion ρ+1,−1 ∼ Eα

′
, is given in Table II.

One can see that the leading exponents are indeed
as expected from (13) for all cases up to logarithmic
corrections for N = 4 and N = 5.

Figure 4 shows a comparison of the analytical
curves for the integrated curves I+1,−1 and the ex-
pected scaling ∼ Eα

′+1 following from (13). Note
that the logarithmic corrections are too small to be
visible.

5. Results

5.1. The chiral orthogonal ensemble

For the realization of the chiOE the set-up shown
in Fig. 3b has been used. Up to five disks have been
placed in a row. Reflection spectra have been ob-
tained with a bent antenna placed close to the left-
most disk. Figure 5 shows typical reflection spec-
tra for N = 2, . . . , 5 disks obtained by removing
one disk after the other from the right. The chi-
ral symmetry is clearly evident from the spectra.
Firstly, the spectrum is symmetric around ν0. Sec-
ondly, for odd N there is a resonance at ν0. The
length N = 5 showed to be a practical limit for the
experiments. The extraction of the resonance po-
sitions are performed by searching local reflection
minima and perform a fit of a Lorentzian around
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Fig. 4. Repulsion behavior of the integrated corre-
lation function I+1,−1 for small energies. (a) Curves
for N = 2 (red), N = 4 (blue). (b) Curves for N = 3
(green), N = 5 (violet). The upper, middle, and
lower pair of curves correspond to β = 1, 2, 4, re-
spectively as indicated. The dashed lines indicate
the scaling ∆Eα

′+1. The value of α′ is taken from
the scaling behavior of ρRMT in Table I.

it and in case of overlapping resonances a multi-
Lorentzian fit. Depending on the coupling strength
of the antenna and on the wave function amplitude
at the resonator to which the antenna is coupled
(always at the end of the chain to avoid zeros of the
wave function) we might miss one resonance. For
larger N there has been an increasing tendency of
missing resonances which eventually became intol-
erable around N > 5.

We could not compensate this as the antenna cou-
pling poses two problems. On one hand it should be
strong to get resonances with a good signal-to-noise
ratio, on the other hand it should be weak to avoid
a detuning and broadening of the resonances due to
the presence of the antenna. As a compromise we
chose a distance of 10 mm of the antenna from the
next disk, where the resonance depths amounted to
about 50% of the reflection signal, and the reso-
nance shifts due to the coupling were of about 10%
of the line width.

Altogether spectra of 500 realizations had been
obtained. For the mutual distances between the disk
a distribution had been used mapping onto a Gaus-
sian distribution of coupling constants, as was ex-
plained in Sect. 4. More specifically, we used the
distribution

p(a) =
1√

2πσ2
e−a

2/(2σ2) (28)

Fig. 5. (a) Spectra for a linear chain with N = 2,
3, 4 and 5 dielectric cylinders. (b) Eigenfrequencies
for a two resonator system in dependence of their
distance, used to calibrate the coupling constant a
in terms of the distance. The dashed line denotes the
center of gravity of the two eigenfrequencies. The in-
set shows the used set-up. The top plate has been re-
moved for the photograph (see also Fig. 1 in [28]).

for the couplings and the inverse of the correspond-
ing fits from (19). For more details on the two-
resonator measurements, see Appendix C. We chose
σ = 36.3 MHz as this allowed us to use a range of d
values in Fig. 5b leading to a good representation of
the tails of the Gaussian couplings from (19). This σ
led to a mean value of the distance of d = 5 mm be-
tween adjacent resonators.

Figure 6, left panel, shows the results for the en-
semble averaged density of states 〈ρ(E)〉 for linear
chains of lengths N = 2, 3, 4, 5. For odd N a peak
at E = 0 is predicted, and a linear repulsion of
the eigenenergies from the energy zero, see (13).
For even N there should be no repulsion [27]. All
these features are found in the experiment. The
dashed lines correspond to the analytical expres-
sions for 〈ρ(E)〉, see Sect. 4. A good overall agree-
ment is found, with two exceptions. (i) The eigen-
frequencies of the disks are not identical, but differ
by some MHz, thus spoiling the chiral symmetry
slightly. This results in a hole in the distribution at
E = 0 for N = 2, and to a smaller extent also for
N = 4. (ii) For short distances between the disks
the coupling constant depends very sensitively on
the distance, making a reliable realization of the
Gaussian distribution in the tails problematic. Fur-
thermore, there is a natural cut-off, corresponding
to the direct contact of the disk. This explains the
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Fig. 6. Left: Ensemble averaged density of states
of the chiOE for N = 2, 3, 4, and 5. The dashed
lines correspond to the theoretical expectation.
Right: Two-point correlation function ρ+1,−1(∆ν)
for the chiOE. The dashed lines show the theoret-
ical prediction from (40). The inset shows the in-
tegrated two-point correlation function I+1,−1(∆ν)
in a log–log plot together with the theoretical pre-
diction (42) (see also Fig. 2 in [28]).

significant deviations of the tails of the experimental
distributions from the theoretical ones. Fortunately,
all these drawbacks, though distorting the details of
the distributions, do not influence the repulsion be-
havior at E = 0.

The density of states is not optimal to compare
the experimental results with theory. Each non-zero
element in the diagonal block of the Hamiltonian (4)
destroys the chiral symmetry. Perturbation of the
chiral symmetry result in two imperfections:

(i) a shift of the center of gravity of the spectrum,
(ii) a left-right asymmetry between the “electron”

and the “positron” part of the spectrum.

For the linear chain with an odd number of ele-
ments this has in particular the consequence that
the zero energy peak is smeared out. Therefore, we
studied another quantity, the two-point correlation
function ρ+1,−1(E) giving the probability density
to find an energy distance E between the states +1
and −1. As this uses the difference between two en-
ergies, perturbations resulting in a shift of the ab-
solute frequency across different realizations drop
out. Note that the correlation ρ+1,−1(E) is, up to
a factor of two, identical with the ensemble average
density ρ+1(E) of state 1, i.e., the smallest positive
energy.

Figure 6, right panel, shows these ρ+1,−1,
together with the random matrix expectation
(dashed). To accentuate the repulsion behavior,

Fig. 7. (a) Reflection spectra for the chiUE for
N = 2, 3, 4 dielectric cylinders. The symbols denote
the positions of the resonances extracted by the har-
monic inversion technique. The solid lines in dark
colors correspond to the measurement, the superim-
posed dashed lines in light colors to the reconstruc-
tion. (b) Eigenfrequencies for a two resonator sys-
tem, coupled by a circulator with an open-end side
port terminator in dependence of the distance. The
dashed line denotes the center of gravity of the two
eigenfrequencies. The vertical green line denotes the
lower limit of the distances used for the histograms
in the left column of Fig. 8. The lower inset shows
the set-up for N = 4 with the top plate removed.
The smaller inset shows the loop antenna (indicated
by the black arrow) above the resonator between
bottom and top plates (see also Fig. 3 in [28]).

in addition the integrated pair correlation function
I+1,−1(E) =

∫ E
0

dE′ ρ+1,−1(E′) is shown in the in-
set in a log–log plot.

5.2. Chiral unitary ensemble

For the realization of the chiUE time reversal
symmetry has to be broken. This is achieved by
means of circulators, which had been already used
for this purpose previously [24]. A circulator is a mi-
crowave device with three ports, where waves en-
tering via ports 1, 2, 3 exit only through ports 2,
3, 1, respectively. Figure 7b (inset) shows the set-
up. Now the disks are at distances of ≈ 9 m, too
large for a direct coupling. Instead, the coupling is
achieved by circulators with two attached monopole
antennas oriented horizontally, i.e., perpendicular
to the cylindrical surface of the resonators. The
distance of the monopole antennas from the disk
surfaces can be varied by moving the circulators
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Fig. 8. Description as Fig. 5, but for the chiUE.
Left: Ensemble averaged density of states of the
chiUE for N = 2, 3, 4. Left: Ensemble averaged
density of states of the chiUE for N = 2, 3, 4.
The dashed lines correspond to the theoretical ex-
pectation. Right: Two-point correlation function
ρ+1,−1(∆ν) for the chiUE. The dashed lines show
the theoretical prediction from (40). The inset
shows the integrated two-point correlation function
I+1,−1(∆ν) in a log–log plot together with the theo-
retical expectation, see (42) (see also Fig. 4 in [27]).

back and forth, where the two resonators have the
same distance d to the monopole antennas (see in-
set of Fig. 7b). Since the circulators introduce di-
rectionality, the coupling constants are complex,
a = aR + iaI = |a|e iϕ. In contrast to the chiOE sit-
uation now two parameters have to be varied, real
and imaginary part of a, or, alternatively, modulus
and phase. A Gaussian distribution of aR and aI

results in a distribution
p(a) =

a

σ2
e−a

2/(2σ2) (29)

for the modulus, and a uniform distribution for the
phase.

In the chiUE experiment, we only altered the
modulus |a| as the eigenvalues of the Hamiltonian
do not depend on the phase. The phase was fixed
by choosing standard open-end terminators for all
circulators. For details on other types of termina-
tors and phases, see Appendix C. The distribution
(29) has been realized, just as in the chiOE case,
by a corresponding distribution of the distance be-
tween the disks and the circulators.

Unfortunately, the circulators introduce strong
absorption which is evident in Fig. 7 showing typical
spectra for N = 2, 3 and 4 disks. In contrast to the
chiOE, where the resonances are narrow and well
separated, see Fig. 5, now a considerable broaden-
ing is observed, making an analysis difficult. There-
fore, this time the harmonic inversion technique has
been used, allowing for a analysis of the spectra
also for overlapping resonances, see e.g. [33]. The
larger the number of resonators is, the more often
a small wave function amplitude is obtained at the

first resonator, where the antenna is placed above
(see inset of Fig. 7). For N > 4 the number of these
resonances which could not be detected via the har-
monic inversion lead to a non-negligible number of
missing resonances in the ensemble average. In the
orthogonal case we could evaluate up to N = 5,
which is not possible for the unitary case, due to the
additional broadening introduced by the circulators.

Figure 8 shows the resultant ensemble averaged
density of states for N = 2, 3, 4. Qualitatively the
features of chirality are still found, a “positron”
spectrum for lower energies, an “electron” spec-
trum for the higher ones, and a central peak for
N = 3. But now a strong left-right asymmetry is
found, showing that the chiral symmetry is severely
disturbed.

Responsible for this fact are the circulators. The
eigenfrequencies of the separated disks are identi-
cal up to 10% of the line width, but the presence
of the circulators modify the electric field between
top and bottom plate resulting in a detuning of
the eigenfrequencies by several MHz, comparable
to the distances between the resonances. To check
this assumption, simulations have been performed
taking the detuning into account, see Appendix D.
A good qualitative over-all correspondence was
found. In particular the left–right asymmetry was
reproduced correctly. Fortunately the perturbations
of the chiral symmetry drop out in first order for the
two-point correlation function ρ+1,−1(E), which is
shown in Fig. 8 (right), again with the integrated
pair correlation function I+1,−1(E) in a log–log plot.
The dashed lines correspond to the theoretical ex-
pectations for the unperturbed system and match
the experimental data nicely.

5.3. Chiral symplectic ensemble

In a recent paper we succeeded in the realization
of the Gaussian symplectic ensemble in a microwave
graph mimicking a spin 1/2 system [25]. The main
ingredients had been two subgraphs, complex con-
jugate to each other, coupled by a pair of bonds at
inversionally symmetric points with a phase shift of
∆φ = π in one of the bonds and no phase shift in
the other one. These ideas may be taken over to the
present situation of coupled resonators.

A photograph of this setup is shown in Fig. 9a.
The right hand side shows a zoom into the region
where the resonators 1, 1̄, 2, and 2̄ are placed. The
lower part corresponds to the GUE setup (shown on
the inset of Fig. 7), i.e., the resonators 1 and 2 are
coupled with coupling constant a via two monopole
antennas attached to a circulator where the third
port of the circulator is either open or closed by
a short terminator. The upper part is symmetric
apart from the fact that the circulator has been in-
verted, thus the submatrix describing the system 1̄
and 2̄ is the complex conjugate of the upper one.
The two GUE sub-systems are now coupled on the
left and the right side via two cables of lengths L1
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Fig. 9. Set-up for the realization of the chiSE for
N = 2. (a) Photograph of the total set-up without
top plate including the two cables connecting the
two GUE subsystems which impose a phase differ-
ence of ∆φ = π at the single-resonator resonance-
frequency ν0. (b) Zoom into the region with the 4
coupled resonators introducing also the notations
for the resonator and the coupling constants for the
chiSE used in (30). (For the right see also Fig. 5
(left) in [28]).

and L2, respectively. The length difference results
in a phase difference ∆φ = k(L1−L2) for the prop-
agating waves, where k is the wave number. For
a symplectic symmetry to exist this phase differ-
ence must be ∆φ = π. In order to check that the
system indeed has a symplectic symmetry, we per-
formed further test measurements. They are shown
in Appendix E and test, for example, the presence
of Kramers doublets similar to [26].

The Hamiltonian of this system can be repre-
sented by a 4 × 4 matrix. Written with rows and
columns in the order 1, 1̄, 2, 2̄, it reads

H =


· · a b

· · −b∗ a∗

a∗ −b · ·
b∗ a · ·

 . (30)

Here, the 2 × 2 sub-blocks in the off-diagonal ele-
ments represent the couplings between the two sub-
systems and are chosen according to (7).

To realize the ensemble average, a calibration
measurement similar to Figs. 3b and 7b was done.
Because of the symmetry, only two couplings are
free parameters, namely a and b. In order to en-
sure that all couplings are such that they obey (30),
several calibrations needed to be done before the
measurements for the ensemble averages could com-
mence.

In total, there are 4 distances to take into ac-
count:

(i) the vertical distance of the bottom circulator
to resonators 1 and 2,

(ii) the vertical distance of the top circulator to 1̄
and 2̄,

(iii) the horizontal distance of the left wire to res-
onators 1 and 2̄, and

(iv) the horizontal distance of the right wire to
resonators 1̄ and 2.

Now, (i) and (ii) give rise to the coupling strength
|a| and (iii) and (iv) to the coupling strength
|b| in (30). Like in the chiUE case, the complex

Fig. 10. (a) Ensemble averaged density of states
of the chiSE for N = 2. The dashed lines cor-
respond to the theoretical expectation. (b) Two-
point correlation function ρ+1,−1(∆ν) for the chiSE.
The dashed lines show the theoretical prediction
from (40). The inset shows the integrated two-point
correlation function I+1,−1(∆ν) in a log–log plot
together with (42). (For the right see also Fig. 10
(right) in [28]).

parameters only enter the eigenvalues by their mag-
nitude. Therefore, a distribution of the form (29) is
chosen here as well.

The characteristic polynomial for Hamilto-
nian (30) is given by

χ(E) = |E · 1−H| =
(
E2 − |a|2 − |b|2

)2
. (31)

Hence, there are doubly degenerate eigenvalues at
the two positions

E+1,−1 = ±
√
|a|2 + |b|2. (32)

The four-disk system thus show both the chiral sym-
metry, with E+1 and E−1 = −E+1 coming in pairs,
and the symplectic symmetry, with the characteris-
tic Kramers doublet structure of the spectrum. Be-
cause the eigenvalues are given by (32), the density
of states ρ+ has the same form as in (20) as a and b
are both complex numbers in (32). Therefore, (26)
and (27) originally obtained for N = 3, β = 2 are
also valid for N = 2, β = 4.

In total, 200 measurements with open-end circu-
lators were done and 170 measurements with short-
end ones allowing to extract the resonances in a sim-
ilar fashion to Sect. 5.2 using the harmonic inversion
technique. Figure 10 shows (a) the density of states
ρ and (b) the correlation function ρ+1,−1. Just as
before for the chiUE we see that the density of states
is distorted. This is again due to the presence of the
circulators. Using the correlation function instead
overcomes the problem and shows good agreement
with the predictions just like before for the chiUE.
Hence, we see the expected cubic repulsion of E+1

and E−1 in accordance with Table II. An extension
to larger N values seem hardly feasible. Each ad-
ditional pair of resonators would mean four more
bonds and a corresponding increase of absorption.
Therefore, we have to be content with this demon-
stration for N = 2.
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6. Conclusions

We present an experimental realization of the or-
thogonal, unitary, and symplectic version of the chi-
ral ensembles BDI, AIII, CII, or, as in this paper
simplified to chiOE, chiUE, and chiSE. All real-
izations are based on tight-binding chains created
by coupled microwave resonators. The key ingredi-
ent are small resonators with a high index of re-
fraction placed between two conducting plates. Dif-
ferent types of couplings between the resonators
were then used to create the different ensembles.
These are presented in Sects. 5.1, 5.2, and 5.3,
respectively.

While the orthogonal ensemble could be created
up to a length of N = 5 resonators, only N ≤ 4 and
N = 2 were possible for the unitary and symplectic
case, respectively. This is mainly due to the more
complex set-up of these cases using microwave cir-
culators. Furthermore, the presence of these circula-
tors creates a perturbation which distorts the den-
sity of states. However, focusing on the correlation
function ρ+1,−1, and its integrated version I+1,−1,
allows to clearly see the expected RMT repulsion
between positive and negative eigenvalues close to
E = 0. The sparsity of the coupling matrices for
N ≥ 4, however, leads to logarithmic corrections,
too small to be seen in our experiment.
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Appendix A: Density of States
for N = 4 and N = 5

Following the derivation of (25), we can calculate
the corresponding densities and correlation func-
tions for N = 4 and N = 5. For N = 4, the hamil-
tonian H reads

H =


· · a ·
· · b∗ c

a∗ b · ·
· c∗ · ·

 , (33)

where we ordered rows an columns just as in (20),
first all odd and then all even sites. Thus the char-
acteristic polynomial becomes

χ(E) = E4 − E2
(
|a|2 + |b|2 + |c|2

)
+ |a|2|c|2.

(34)
It is helpful to introduce polar coordinates, where
r2 = |a|2 + |b|2 + |c|2. The specific choice of angles
a = rfa(ϑ, ϕ, . . . ), b = rfb(ϑ, ϕ, . . . ) etc. depends

on the dimensionality of the problem, i.e., whether
β = 1 or β = 2 is considered. With this the eigen-
values can be written as(

2E2
±
)

= r2
(

1±
√

1− f2(ϑ, ϕ, . . . )
)
, (35)

where the angular part f(ϑ, ϕ, . . . ) = 2|a||c|/r2 de-
pends on the specific choice of coordinates. The
sign ± indicates the larger and smaller of the
two positive eigenvalues. The whole spectrum is
given by (−E+,−E−, E−, E+) and therefore cen-
tered around zero. For later convenience, we intro-
duce the function

h±(x) =
1√

1±
√

1− x2
(36)

such that we have
√

2E± = r/h±(f(ϑ, ϕ, . . . )).

The density of states for the values E± follows
from the averages over the Gaussian degrees of free-
dom in a, b, c. This density is identical to zero for
E < 0 therefore the argument E can be assumed
positive in the following equations. For β = 1,
we have to calculate the average in three dimen-
sions, for β = 2 in six dimensions.

Hence, for β = 1 the 3-dimensional integral be-
comes a 2-dimensional integral

ρ±(E) =

∫
dΩ

π3/2
h±(f)

(
Eh±(f)

)2
e−(Eh±(f))2 ,

(37)
where

∫
dΩ indicates the integration over the an-

gles including the Jacobian, e.g. for the 2-sphere
in the usual spherical coordinates

∫
dΩ . . . =∫ 2π

0
dϕ
∫ π

0
dϑ sin(ϑ) . . . . This can be used to intro-

duce a distribution function for the quantity f over
the sphere via

pf(r) =
1

A

∫
dΩ δ

(
r − f(ϑ, ϕ, . . . )

)
, (38)

where we set the constant A =
∫

dΩ such that pf

is normalized. Note that the value of A depends on
the choice of the polar coordinates used to parame-
terize the integrals. Furthermore, we can introduce
the abbreviation

pr(r) =
r2

c
e−r

2

, (39)

which is normalized over r ∈ [0,∞) by setting
c =
√
π/4.

With the help of these abbreviations we can for-
mulate the densities of states ρ via

ρ±(E) =
Ac

πn/2

1∫
0

df pf(f)h±(f)pr (Eh±(f)) .

(40)
The value n in the prefactor reflects the dimen-
sionality of the integral and is, for example, n = 3
from (37). The integrated density of states follows
from integrating (39) to

nr(r) = erf (r)− 2r√
π

e−r
2

(41)
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and yields

I±(E) =
Ac

πn/2

1∫
0

df pf(f)nr

(
Eh±(f)

)
(42)

together with n = 3 and c =
√
π/4 from above. In

what follows we will give the necessary expressions
for A, c, n, pf , and pr also for N = 4 and N = 5 for
the different ensembles.

For N = 4 and β = 1 we use ordinary
spherical coordinates, i.e., a = sin(ϑ) cos(ϕ), b =
sin(ϑ) sin(ϕ), and c = cos(ϑ). This yields A = 4π
and from (36)

pf(f) =
1

4π

2π∫
0

dϕ

π∫
0

dϑ sin(ϑ)

×δ
(
f − sin2(ϑ)| sin(2ϕ)|

)
=

4

π
√

1 + f
K

(√
1− f
1 + f

)
, (43)

where K is the complete elliptic integral. For later
reference, we also state the behavior of this function
for small values of f ([34], see page 359)

pf(f) =
2

π

[
3 ln(2) + ln

(
1

f

)]
+

4

3π
f

+O
(
f2 ln

(
1

f

))
. (44)

For β = 2, the integral in (37) becomes six-
dimensional and

pr(r) =
r5

c
e−r

2

, (45)

nr(r) = 1− 1

2

(
r4 + 2r2 + 2

)
e−r

2

, (46)

with c = 4 to normalize (37). Choosing the six-
dimensional coordinates in the following form

a = r cos(ζ) sin(ψ)e iϕ1 , (47)

b = r cos(ζ) cos(ψ)e iϕ3 , (48)

c = r sin(ζ)e iϕ2 , (49)
leads to A = π3 and we obtain

pf(f) = f ln

(
1 +

√
1− f2

1−
√

1− f2

)
. (50)

The limiting behavior is

pf(f) = 2

[
ln(2) + ln

(
1

f

)]
f +O

(
f2
)
. (51)

The same procedure can be applied to the N = 5
case starting from

H =


· · · a ·
· · · b∗ c

· · · · d∗

a∗ b · · ·
· c∗ d · ·

 (52)

with eigenvalues(
2E2

)
± = r2

(
1±

√
1− f2(ϑ, ϕ, χ, . . . )

)
, (53)

where f(ϑ, ϕ, . . . ) = 2
r2 (|a|2|c|2 + |a|2|d|2 +

|b|2|d|2)−
1
2 . The four-dimensional integral leads to

prefactor Ac/π4/2 = Ac/π2 in (40) and

pr(r) =
r3

c
e−r

2

, (54)

nr(r) = 1− (1 + r2)e−r
2

, (55)
with c = 2 to normalize (54). Choosing the four-
dimensional coordinates in the following form

a+ ib = r cos(ψ)e iϕ1 , (56)

c+ id = r sin(ψ)e iϕ2 , (57)
leads to A = 2π2 and we obtain (using Eq. (6)
from [36])

pf(f) =
8f

π2(1 + f)
K

(√
1− f
1 + f

)
K

(√
2f

1 + f

)
(58)

with the limiting behavior

pf(f) =
30 ln(2)− 1

3π2

[
3 ln(2) + ln

(
1

f

)]
f

+O
(

ln
1

f
· f2

)
. (59)

For completeness, we also state the following re-
sults. For N = 5 and β = 2, we have n = 8, c = 3
in

pr(r) =
r7

c
e−r

2

, (60)

nr(r) =
e−x

2

2π4

(
−x6 − 3x4 − 6x2 + 6ex

2

− 6
)
(61)

and we get A = π4/3 and

pf(f) = 3f

[√
1− f2 ln

(
f2

4(1− f2)

)

+ ln

(
1 +

√
1− f2

1−
√

1− f2

)]
=

3f3

[
ln 2 +

1

2
+ ln

(
1

f

)]
+O

(
f4
)
. (62)

Expressions for the case N = 4 and β = 4 can be
done in a similar way and yield

pf(f) = 30f3

[
ln
(√

1− f2 + 1
)

− ln(f)−
√

1− f2

]
=

30

[
ln(2)− 1 + ln

(
1

f

)
f3

]
+O

(
f4
)

(63)

pr(r) =
1

π6
r11 e−r

2

, (64)

nr(r) =
1

2π6

[
120−

(
r10 + 5r8 + 20r6 + 60r4

+120r2 + 120
)

e−r
2
]
. (65)
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For N = 5 and β = 4 we obtain

pf(f) =
8!

29
f7

1∫
f2

dβ
(1− β)

β7/2
√
β − f2

×
[
− (2− β) ln(1− β)− 2β

]
=

const
(
1 + logarithmic corrections

)
f7, (66)

pr(r) =
1

2520
r15 e−r

2

, (67)

nr(r) =
1

2π8

[
5040−

(
r14+7r12+42r10+210r8

+840r6 + 2520r4 + 5040r2 + 5040
)

e−r
2
]
.

(68)

These expression provide the densities of states
and the integrated density of states for the positive
values E± via (40) and (42). The overall expressions
for the density of states is then given by the sum of
the expressions above. For N = 4, we get

ρ(E) =
1

4

(
ρ−(|E|) + ρ+(|E|)

)
(69)

and for N = 5, we have

ρ(E) =
1

5

(
δ(E) + ρ−(|E|) + ρ+(|E|)

)
, (70)

where the δ(E) accounts for the symmetry-
protected central eigenenergy.

Like (25) in the main text, these results are valid
for the specific value of N they were derived for.
This is due to the fact that the matrices A are sparse
for N > 3.

Appendix B: Repulsion behavior
for the correlation function ρ+1,−1

for N = 4 and N = 5

As mentioned in the main text in Sect. 4.1., the
analytical results can be used to derive the repulsion
behavior. For N = 2 and N = 3 the results are
trivial. For N = 4 and N = 5 they can be obtained
from the analytic expressions of ρ+1,−1 as follows.

The smallest eigenvalue is given by using the mi-
nus sign in (35) and (53). For small values of the
energy, we have

E− =
r√
2

√
1−

√
1− f2 ≈ rf

2
. (71)

and the density is given by

ρ(E) =

〈
δ

(
E − rf

2

)〉
r,f

=

∞∫
0

dr pr(r)

1∫
0

df pf(f)δ

(
E − rf

2

)
. (72)

For small E values there are hence two contributions
from the delta function to the integral, one from the
region of small r of the integrand, the other one from
the region of small f . Because of the asymptotic be-
havior pr(r) ∼ rn−1 the contribution from the small
r is negligible, and we are left with

ρ(E) =

∞∫
0

dr
2

r
pr(r)pf

(
2E

r

)
. (73)

The repulsion exponents of ρ−(E) ∼ Eα′ follow di-
rectly from the limiting behavior of pf(f) ∼ fα

′
.

The exponent for I+1,−1(E) ∼ Eα′+1 is larger by 1
due to the additional integration. These exponents
α′+1 are used to create the dashed lines in Fig. 4 for
comparison with the integrated correlations I+1,−1.

Appendix C: Two Resonator Couplings

When considering the ensemble averages for the
different ensembles, the couplings must be put in
relation to a parameter one can control. In the case
of the chiOE, this is the distance between the res-
onators and in case of the chiUE and chSE, it is
the distance between the resonators and the two
monopole antennas which are attached to the circu-
lators since those mediate the coupling (see Fig. 7).
Furthermore, to get different complex couplings dif-
ferent phase shifts can be introduced to the circu-
lators in this case.

In this appendix, we want to present how we
extract the coupling-distance relationship for the
chiOE and chiUE case (the chiSE case is done
analogously, see Sect. 5.3). The results for the
chiUE coupling experiment lead to the decision
to only use the open termination for all circula-
tors to avoid the effects of on-site shifts discussed
in Appendix D.

For the chiOE case, two resonators were set up
similar to the inset in Fig. 3b. For different dis-
tances d between the resonator borders the trans-
mission S21 has been measured and the two reso-
nance frequencies ν− and ν+ have been extracted.
The corresponding (a) eigenfrequencies, (b) their
splitting ∆ν, and (c) their mean 〈ν〉 are shown
in Fig. 11. The two resonance frequencies ν± for
every distance d can be used to extract the cou-
pling a via (19). The dashed lines in Fig. 11 shows
a fit to the experimental data based on (19) for the
splitting with a0 = 1.32 GHz and γ = 0.233 mm−1.
The mean frequency shift 〈ν〉 = (ν+ − ν−)/2 in the
chOE case can be approximated by
〈νOE〉 = ν0 + amK0

(
γm(2rD + d)

)
, (74)

as it is related to the wavefunction at the position
of the second resonator. Fitting this equation to
the data gives ν0 = 6.882 GHz, am = 0.137 GHz
and γm = 0.327 mm−1. As γm and γ describe
the decay of the wavefunction outside the resonator
they should be approximately the same. Note, that
the K0 dependence is an effective description as in
the experiment the air gap above the resonators
leads to excitation of higher modes outside the res-
onator (for details see [36]) provoking a difference
in γ and γm.

To check the assumption of constant ν0, i.e., no
on-site detuning, we take a look on the right hand
side plot of Fig. 11 showing the center of mass
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Fig. 11. The extracted resonances ν− (lower curve) and ν+ (upper curve), using Lorentzian fits, are shown
by blue triangles for the 2-resonator chiOE setup (a). The resonances have been extracted from a transmission
(S21) measurement. The corresponding splittings ∆ν = ν+−ν− (b) and the mean frequency 〈ν〉 = (ν+ +ν−)/2
(c) are presented. The dotted lines present the fits to (19) (see panel (b)), (74) (see panel (c)), and their sum
(see panel (a). The fit values are given in the text.

Fig. 12. Description as in Fig. 11 but for the chiral GUE case where an open termination was used to close
the third port of the circulator. Additionally, eigenvalues extracted from the inverse transmission S12 (crosses)
are shown.

Fig. 13. Description as in Fig. 11 where instead of an open termination three different terminations corre-
sponding to ϕT = π (short), π/2, and 3π/2 were used.

of the two resonances on the left. While the scale on
this plot of the shift is much smaller than the scale
for the extracted resonances, one can still see, that
there is a detuning present for small distances. In-
stead of being constant, the mean of the extracted
eigenfrequencies varies of the order of ±2 MHz. This

detuning violates the chiral symmetry as mentioned
in the main text. However, it is sufficiently small to
be negligible in the chiOE case against the split-
ting ∆ν, typically larger than 10 MHz. For this rea-
son Fig. 6 shows a good agreement for the density
of states between experiment and theory.
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TABLE III

Fit values for the resonance splitting ∆ν obtained
by (75) for the chiUE case for different termination
of the third port of the circulator.

Terminator
c1

[GHz]
c2

[mm−1]
c3

[GHz]
c4

[mm]
open (ϕT = 0) 0.0003 0.000 −0.0203 0.23
short (ϕT = π) 0.0010 0.099 0.0020 0.19

ϕT = π
2

0.0007 0.033 −0.0009 0.23
ϕT = 3π

2
0.0012 0.057 −0.0004 0.21

TABLE IV
Description as in Table III but for the mean resonance
〈ν〉 obtained by (76). Note that a5 and a6 are given
in meter scales.

Terminator
a1

[GHz]
a2

[mm−1]
a3

[GHz]
a4

[mm]
a5

[m−1

a5
[m−2]

open (ϕT = 0) −0.0037 0.246 6.882 0.18 −1.0 46
short (ϕT = π) −0.0062 0.033 6.891 0.15 −0.9 9

ϕT = π
2 −0.0061 0.112 6.885 0.24 −1.0 34

ϕT = 3π
2 −0.0091 0.002 6.927 0.22 −1.8 50

In case of the chiUE experiment the description
using (19) and (74) is not valid anymore as the cou-
pling is mediated by the monopole antennas, the
circulator and the closing of the third port of the
circulator. The phases acquired by the wave going
through the circulator in the two directions and the
distortion of the electromagnetic field by the pres-
ence of the metallic case of the circulator lead to
additional dependencies of the mean frequency and
the splitting. In lack of any theoretical model we
assume the splitting ∆ν can be described by

∆ν(d) = c1
∣∣K0

(
c2(d− c4)

)∣∣2 + c3 (75)
to account for the uncertainties regarding the dis-
tances and for the mean frequency 〈ν〉 an additional
linear and quadratic term were added
〈ν〉(d) = a1K0

(
a2(d− a4)

)
+ a3 + a5(d− a4)

+a6(ν − a4)2. (76)
As can be seen in Figs. 12 and 13 these dependencies
are sufficient to describe our experimental data and
the difference between the fit and the experimen-
tally measured points is smaller than the symbol
size for the data. For completeness the extracted
fit values of the frequency splittings and the mean
frequencies are given in Tables III and IV, corre-
spondingly for the different terminators.

In Fig. 12, we show the results for open-end cir-
culators, i.e., the setup used to generate the his-
tograms in Fig. 8. The left plot shows the two ex-
tracted resonances ν±. As one can already observe
here the behavior of these two resonances is far
from being symmetric especially for distances d less
than 2 mm. From this figure we observe that for the
whole distance range the variation of the mean fre-
quency (around 4 MHz) is of the order of the split-
ting (10 MHz). Taking only distances into account

for d ≥ 2 mm the mean fluctuates less than 0.5 MHz
compared to splittings of the order of 5 MHz. There-
fore we decided to adjust the distribution of cou-
plings taking into account only distances d ≥ 2 mm
(see discussion in the main text).

For completeness we want to address the vari-
ation of the phases of the couplings a = |a|e iϕ.
Because the eigenvalues do not depend on ϕ the re-
sulting histograms in Fig. 8 should be unchanged
when different phases ϕ are used. For this we con-
sider now different terminators for the free port of
the circulator as mentioned in Sect. 5.2. In a prelim-
inary investigation, the value of ϕT was restricted
to three more choices in addition to the already
mentioned open-end termination (giving ϕT = 0
upon reflection): standard short terminators were
used to realize phases shifts of π upon reflection.
It is important to note that the phase of the ter-
minator reflection ϕT equals ϕ only approximately
as some additional lengths are introduced by the
open and short terminator. However, these addi-
tional lengths are small compared to the wavelength
used in our setup. In addition, phase shifts of π/2,
and 3π/2 were realized by introducing short cables
of appropriate lengths between the circulator exit
and the terminator. For these three additional ter-
minations, Fig. 13 shows the 2-resonator couplings
and extracted fits. We never observe a reasonably
symmetric coupling behavior for any distance range
but both of the resonances shift always to larger fre-
quencies with increasing distance. Additionally, the
shift has increased compared to the open termina-
tion roughly by a factor of 3 whereas the splitting
is similar or even smaller.

To avoid problems due to on-site variations we
therefore only used the open-end setup for the his-
togram in the chiUE case. Note, again, that a vari-
ation of the phase is not really needed since the
eigenvalues of the Hamiltonian depend on the mod-
ulus of the coupling constants only.

Appendix D: Simulation of the perturbation
of the chiral symmetry

The circulators used to break time-reversal sym-
metry disturb the chiral symmetry. This is visible
in the densities of states in the right-hand side of
Figs. 8 and 10. These perturbations result in spec-
tra which do not follow the analytical predictions
from Sect. 4.1. In order to account for this, we also
investigate perturbed systems theoretically. In par-
ticular, we show that perturbations of the model
Hamiltonians will result in curves similar to the per-
turbed experimental data shown later in Sect. 5.1.
In order to achieve this, we calculate spectra nu-
merically and show that the deviations from the
expected formulas from Sect. 4.1 can be understood
this way. The perturbation can occur in two ways:
by an onsite detuning or a next-to-nearest neighbor
coupling. Both introduce non-zero elements in the
diagonal blocks of H, see (4).
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Fig. 14. Histogram showing the influence of onsite
detuning proportional to the coupling.

The coupling between the disks does not only
split their eigenfrequencies according to (18) but
also leads to a detuning of their unperturbed eigen-
frequencies. This is already evident for Fig. 2 show-
ing the splitting of the eigenfrequencies of two cou-
pled disk in dependence of the distance. This split-
ting is not symmetrical about the disk eigenfrequen-
cies. There is an additional shift of the center of
gravity of the two resonances shown as red dashed
line in Fig. 2. This effect is moderate if the disks
are coupled directly, as for the chiOE studies, but
it becomes more pronounced for the chiUE stud-
ies where the coupling is accomplished by means of
circulators.

For a better qualitative understanding of these
findings we performed a series of simulations tak-
ing into account the eigenfrequency detuning. There
is an obvious correlation between the coupling be-
tween two disks and the detuning of the eigenfre-
quencies of the involved disk. To describe the ef-
fect we applied the most simple assumption, namely
that a disk experiences a shift of its eigenfrequency
proportional to the coupling. For the example of
N = 4 we then obtain a Hamiltonian

H =


ε|a| · a ·
· ε(|b|+ |c|) b∗ c

a∗ b ε(|a|+ |b|) ·
· c∗ · ε|c|

 , (77)

where ε is a free parameter representing the
strength of the onsite detuning.

In order to check the influence of this parame-
ter we calculated an example spectrum based on
2000 random realizations of the Hamiltonian (77).
For this the off-diagonal elements were chosen from
a complex Gaussian distribution thereby creating
a chiral unitary ensemble.

The density of states from this calculation is
shown in Fig. 14. The orange histogram is a nu-
merical calculation for ε = 0 and corresponds to
the case with unbroken chiral symmetry (33). It is
predicted by the theoretical curve for the density
of states (40). For ε = 0.4 (blue histogram) the
obtained distribution resembles the one found in
the experiment, see the bottom left panel of Fig. 8,

Fig. 15. The different subfigures from top left to
bottom right, read from the left to the right, cor-
respond to the modulus of different measured S-
matrix elements, |S11|, |S11̄|, |S12|, |S12̄|, |S1̄1|, . . . ,
|S2̄2̄|. The abscissa corresponds to the phase change
∆φ induced by a variation of length using a phase
shifter in one of the connecting arms whereas the
ordinate shows the frequency range between 6.835
and 6.882 GHz. Color scale is adjusted for each sub-
figures where dark blue is the minimal and light
green the maximal value. The dotted vertical lines
emphasize the π, 2π, and 3π phases.

showing a clear asymmetric behavior. This supports
the assumption that indeed a detuning of the eigen-
frequencies is responsible for the experimental de-
viations from the theoretical curves.

While this explains the detuning, there is a better
way to compare the experimental data with theoret-
ical predictions by means of correlation functions,
see (27) and (42). This achieves that any shift of
the spectra between realizations drops out of the
comparison.

Appendix E: Testing the symplectic
symmetry

To verify that the symplectic symmetry is present
we have performed a test measurement where in-
stead of the cable L1 an additional phaseshifter was
attached thus the length of L1 can be changed. 200
measurements for different lengths of L1 have been
taken. This approach is similar to [26] where a graph
of microwave cables was used to create the sym-
plectic symmetry. In Fig. 15 the modulus of all four
S-parameter are shown as a function of the phase
difference ∆φ (abscissa) and frequency (ordinate).
Dark blue corresponds to the minimal value and
bright yellow to the maximal value. Each subfigure
is scaled individually. Figure 15 shows that reflec-
tion (diagonal) and transmission (off-diagonal) be-
have differently as expected. Besides this, there is
a 1-1̄ symmetry, i.e., S11̄ = S1̄1 etc. This is due to
the time-reversal symmetry of the system. Further-
more, the elements of S are roughly 2π periodic, as
suggested by the repeated bright spots in the trans-
missions or the dark spots in the reflections.
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Fig. 16. Two different transmission measurements
for |S11̄| (a) and |S12̄| (b) as a function of phase dif-
ference between the two couplings and frequency.
The vertical dotted lines correspond to a phase dif-
ference of 1π, 2π, and 3π. They are enlargements
from Fig. 15. Additionally, the circles show the po-
sition of extracted resonances. The color scales have
been adjusted individually, where bright yellow cor-
responds to the maximal value (panel (a): 0.068,
panel (b): 0.053) and dark blue to 0.

For the phase differences ∆φ = π and 3π the sys-
tem should show a symplectic symmetry which we
will detail below. At this this phase differences the
four |S11|, |S11̄| panels, |S1̄1|, |S1̄1̄| should be inter-
preted as a reflection quarternion and 2× 2 subplot
|S12|, |S12̄|, |S1̄2|, |S1̄2̄| as transmission quarternion.
The same holds for the two other subplots corre-
spondingly.

In Fig. 16 two transmission S11̄ (a) and S12̄ (b)
are shown enlarged. Additionally, vertical dotted
lines indicate the phase-differences corresponding to
multiples of π. Figure 16a shows S11̄, i.e., a trans-
mission to the “symmetric point” in the other sub-
system. In the presence of a symplectic symmetry
the transmission S11̄ should vanish, a direct con-
sequence of the quaternionic structure of the scat-
tering matrix, see [25, 26] for details. This can in-
deed be seen in the reduced transmission close to
the 1π and 3π lines. As one can see, the minimal
transmission around 6.85 and 6.87 GHz occur at
slightly different ∆φ values which comes from the
fact that ∆φ was determined using the two electrical
lengths at the fixed eigenfrequency of a single res-
onator at 6.86 GHz and we did not take into account

the phase variation induced by the frequency depen-
dence. Also the minimal value |S11̄|2 ≈ 10−4 (com-
pared to a maximal transmission of ≈ 2.5−3) is not
zero due to experimental imperfections:

(i) two subsystems are not perfectly the complex
conjugate of each other,

(ii) the two coupling between the subsystems are
not exactly the same in absolute (absorption
and impedance mismatches) as well as the
phase difference (deviations from π).

Nevertheless, the dark vertical regions close to
∆φ = π and 3π do indicate the chiral symmetry
as there is a reduced amount of transmission S11̄.

Figure 16b shows the transmission S12̄, i.e.,
a transmission between the two different points in
the subsystems. Instead of minima at the values
of ∆φ = π and 3π, we see non-zero values (or
small values) of the transmission allowing to extract
the resonances and especially the eigenfrequencies
of the system. The filled circles correspond to ex-
tracted resonances using first the harmonic inver-
sion technique [37] as initial parameter determina-
tion and then a fit of a sum of four Lorentzians plus
a linear complex background. From the extracted
resonances we can see a clear approximate degen-
eracy close to the ∆φ = π for the two lower reso-
nances and the upper ones are getting close as well
and then only a single resonance can be fitted to
the peak (green dots for ∆φ slightly larger than π).
This also shows that the symplectic symmetry is
approximately present where we should see two de-
generate eigenfrequencies corresponding to the two
Kramer’s doublets. Again the degeneracy is not per-
fect due to the same reasons as mentioned above.
Increasing the phase difference further the lowest
resonance separates from the central region and fi-
nally a new resonance is approaching from higher
frequencies (yellow dots) when coming closer to 2π
(similar to the phase difference at 0).

To perform the final experiments on the chiGSE-
system we constructed two different coaxial cables
in total shorter than the setup with the phase-
shifters by approximately 45 cm on each connection
to reduce the above mentioned discrepancy of ∆φ
with frequency. Also the setup has a slightly reduced
absorption and removed additional reflections stem-
ming from the insertion of the phase shifter in the
connecting bond.
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