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Abstract. We present a detailed perturbative study of the dynamics of several
types of atom–atom correlations in the famous Fermi problem. This is an
archetypal model to study micro-causality in the quantum domain, where
two atoms, one initially excited and the other prepared in its ground state,
interact with the vacuum electromagnetic field. The excitation can be transferred
to the second atom via a flying photon, and various kinds of quantum
correlations between the two are generated during this process. Among these,
prominent examples are given by entanglement, quantum discord and non-local
correlations. The aim of this paper is to analyze the role of the light cone in the
emergence of such correlations.
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1. Introduction

Since its original conception, the two-atom Fermi problem [1] has been the subject of intensive
academic debate. Stated in very simple terms, this gedanken experiment goes as follows.
Suppose that there are two two-level atoms (qubits), say A and B, spatially separated by a
distance r and interacting independently with the (multi-mode) quantized electromagnetic field,
initially in the vacuum state. The atom A is in an excited state |e〉, whereas the atom B is in its
ground state |g〉. At some time t0 the atom A emits a photon. The original question of Fermi
was then the following: as long as the two atoms are causally disconnected, is the excitation
probability of B independent of the presence of A? This question points to the very foundations
of quantum mechanics: do quantum mechanical probabilities respect micro-causality? Over the
last few years, a large body of literature has dealt with this problem, and several solutions have
been proposed [2–6], which sometimes even present opposite conclusions. In [7] the problem
of causality in quantum mechanics was investigated in the information-theoretic framework
of quantum channels. Recently, in [8] a nonperturbative proof of strict causality in the Fermi
problem was finally given beside an explanation of why the existence of correlations outside the
light cone connecting the two atoms is not different from micro-causality. In fact, in a previous
paper [9] some of the same authors had already studied the dynamics of concurrence [10] and
found that it starts increasing just before (t − t0)= r/c by a very tiny amount.

In this paper, motivated by such results, we take a step further and investigate the
dynamics of other types of atom–atom correlations. In particular, besides extending the analysis
of entanglement dynamics, we study the time evolution of geometric quantum discord and
(classical) connected correlation functions. Quantum discord was first introduced by Ollivier
and Zurek [11] and Henderson and Vedral [12] as a novel measure of the quantumness of
correlations. The idea behind it is conceptually very simple. Quantum discord is indeed defined
as the discrepancy, in the quantum regime, between two classically equivalent definitions of
mutual information. It is believed to capture a more general type of quantum correlation than
entanglement, in the sense that quantum states with zero entanglement but non-zero quantum
discord do exist (see, e.g., [13–18]). Unfortunately, the computation of quantum discord implies
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solving a rather complicated minimization problem and, although considerable improvement
has been made over the last few years [19], analytical results are available only for a very few
cases [20–23]. In order to overcome such computational issues, alternative indicators of general
quantum correlations have recently been introduced, developed mostly using distance-based
approaches [24, 25]. On the other hand, connected correlation functions provide a statistical
quantifier of the (classical) correlations extractable during a joint measurement of the two
atoms [26–28].

The results reported in this paper have double merit. On the one hand, they give a more
complete picture of the dynamics of correlations in the two-atom Fermi problem. In fact, to the
best of our knowledge, this is the first study of quantum discord and more general correlation
dynamics in such a physical model, where an exact solution of the dynamics is still missing. As
it turns out, all the types of correlations we consider have a nice physical interpretation in terms
of a few relevant physical processes of the dynamics. On the other hand, our results suggest
a way to detect atom–atom correlations outside the light cone, that is, when the two atoms
are causally disconnected. It is important to remark that our calculations are performed in the
framework of time-dependent perturbation theory and are exact and consistent up to the second
order in the coupling constant. However, this is certainly not a problem since, as stated above,
strict causality in the model has been analytically proven with no use of perturbation theory [8].
Moreover, the time interval under scrutiny falls within the limits to the validity of our approach,
provided that the two atoms are not that distant.

2. The model

We consider a one-dimensional physical setup. A pair of two-level superconducting qubits
(artificial atoms) A and B, separated by a fixed distance r , interact with an electromagnetic
field propagating along the open transmission line connecting them. We name the atomic levels
as {|g〉, |e〉} and assume the following multimode structure for the field:

V (x)=

∫
dk

√
Nωk

[
eikxak + e−ikxa†

k

]
, (1)

where N is a normalization factor which may accommodate different circuit QED architectures,
the dispersion relation is linear ωk = υ|k|, and ak, a†

k are the usual annihilation and creation
operators satisfying the boson commutation relations [ak, a†

k′] = δk,k′ . We define �J = ωJe −

ωJg (J = A, B) the energy separations between the qubit levels and we assume the qubits to
be much smaller than the relevant wavelengths kJ = υ/(�J/(2p)), υ being the propagation
velocity of the field quanta which in this scheme depends on the microscopic details of the
model. Specifically, υ = 1/

√
cl, c and l being the capacitance and inductance per unit length,

respectively. A typical value is υ = 1.2 × 108 m s−1 [45]. Strictly speaking, a cut-off frequency
kc = 2π/λc should be introduced. In this case a sensible choice would be λc ' 10−6 m, which is
the actual finite size of a typical superconducting qubit. However, since this will not affect
our results below, we decided not to include it. Under these conditions the Hamiltonian,
H = H0 + HI, splits into a free part for the qubits and the field

H0 =
1

2
h̄(�Aσ

z
A +�Aσ

z
A)+

∫
∞

−∞

dk h̄ωka†
k ak (2)
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and a point-like interaction between them

HI = −

∑
J=A,B

dJ V (x J ) σ
x
J . (3)

Here x J are the fixed positions of the atoms, and dJ σ
x
J comes from a dimensional reduction

of the matter–radiation interaction Hamiltonian with two-level atoms and the electromagnetic
field. We will consider the following initial state:

|ψ(0)〉 = |eg0〉, (4)

where only qubit A is excited, while B and the field remain in their ground and vacuum states,
respectively. We use the formalism of perturbation theory up to the second order and beyond
rotating wave approximation [9] and trace over the field degrees of freedom to obtain the
corresponding two-qubit reduced density matrix ρX evaluated at t . In the interaction picture
with respect to the free Hamiltonian H0, the system evolves during a lapse of time t into the
state

|ψ(t)〉 = τ [e−i
∫ t

0 dt ′ HI(t ′)/h̄] |eg〉 ⊗ |0〉 , (5)

τ being the time ordering operator. Up to second order in perturbation theory the final state can
be written as

|ψ(t)〉 = [(1 + A) |eg〉 + X |ge〉] ⊗ |0〉 + (UA |gg〉 + VB |ee〉)⊗ |1〉

+(F |eg〉 + G |ge〉)⊗ |2〉 +O(d3). (6)

The coefficients for the vacuum, single-photon and two-photon states are computed using the
action (α = A, B)

S+
α=−

i

h̄

∫ t

0
ei�t ′

〈
eα|dσ

x
α |gα

〉
V (xα, t ′) dt ′

= −(S−

α )
† (7)

among different photon number states |n〉 , n = 0, 1, 2, . . ., being |n〉 〈n| =
1
n!

∫
dk1 . . .

∫
dkn |k1 . . . kn〉 〈k1 . . . kn| and |k〉 = a†

k |0〉. Among the various terms present
here, the only one containing an effective coupling between A and B is

X = 〈0|τ(S+
BS

−

A )|0〉. (8)

This includes photon exchange only inside the light cone, vt > r, and vacuum fluctuations for
all values of t and r , being r = xB − xA the distance between the qubits. The remaining terms
are

A =
1

2
〈0| τ(S+

AS
−

A +S−

B S
+
B) |0〉 ,

UA = 〈1|S−

A |0〉 , VB = 〈1|S+
B |0〉 , (9)

F =
1

2
〈2| τ(S+

AS
−

A +S−

B S
+
B) |0〉 , G = 〈2| τ(S+

BS
−

A ) |0〉 .

Here, A describes intra-qubit radiative corrections, while UA, VB, F and G correspond to single-
photon emission events by one or more qubits. The coefficients in equation (6) will be computed
analytically as a function of two dimensionless parameters, ξ and K . The first one, ξ = υt/r , is
a dimensionless time variable; the time ξ = 1 corresponds to the light cone, which separates two
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different spacetime regions, before and after photons can be exchanged. The second parameter
is a dimensionless coupling strength

K =
4d2 N

h̄2υ
= 2

( g

�

)2
. (10)

Note that the qubit–line coupling g = d
√

N�/h̄ corresponds to the qubit–cavity coupling that
appears by taking the same transmission line and cutting it in order to have a length L = λ (thus
creating a resonator). This formulation has the advantage of being valid for both inductive and
capacitive coupling, the details being hidden in the actual expressions for d and N . Tracing over
the states of the field, we arrive at the following reduced density matrix:

ρX =
1

c


ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ∗

23 ρ33 0
ρ∗

14 0 0 ρ44

 , (11)

representing the two-qubit state in the basis formed by |ee〉 , |eg〉 , |ge〉 and |gg〉 . The
coefficients with the leading order of neglected contributions are

ρ11 = |V |
2
B +O(d4), ρ22 = 1 + 2Re(A)+O(d4),

ρ33 = |X |
2 + |G|

2 +O(d6), ρ44 = |U |
2
A +O(d4),

ρ14 = U ∗

AVB +O(d4)= 〈0|S+
AS

+
B|0〉 +O(d4), (12)

ρ23 = X∗ +O(d4),

and the state is normalized, c =
∑

i ρi i .

3. Dynamics of correlations

In this section, we report our results on the dynamics of correlations between two (artificial)
atoms. We investigate the time evolution of the square root of geometric quantum discord√

D [24], of the entanglement as measured by the negativity N [29] and of the maximum
connected correlation function T [27] in the state ρX . We have chosen these three specific types
of correlations (whose definitions and properties are reported below) for four reasons:

(i) to best relate our results to those reported in [9] by using a different measure of
entanglement;

(ii) to have a more complete description of the time evolution of general quantum correlations;
(iii) to compare quantum correlations with correlations having also a classical nature;
(iv) to issue a comprehensive comparative analysis among compatible measures of different

types of correlations.

The meaning of the last point can be clarified in connection with our choice of using
√

D.
One might, in fact, question why we are comparing different powers of geometric discord and
entanglement. The reason for this is that we want to be consistent in the order of expansion
of the perturbative analysis we have performed. A good test to check whether this is true is
provided by a hierarchy-type relationship that exists between the three chosen quantities for
arbitrary states ρ of two qubits, namely

T (ρ)>
√

D(ρ)> N (ρ) . (13)
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The rightmost inequality in (13) was proven analytically in [17], while the leftmost one was
verified numerically in [31]. Note that for pure two-qubit states both inequalities are saturated
and (13) becomes a chain of equalities.

In our analysis, we found no violation of the hierarchy (13) for any range of the relevant
physical parameters characterizing the states ρX , which serves as a validating indication that our
results are consistent up to the second order. As a general remark, we can conclusively state that
all correlations whose time evolution we have looked at start increasing before the time at which
the two atoms become causally connected. However, the rate of increase changes substantially
from one type of correlation to another.

Let us now introduce the measures of correlations of interest and then discuss the main
aspects of their dynamical behavior. To this end, the Bloch representation of generic two-qubit
states ρ will be useful [20]. Namely,

ρ =
1

4

3∑
i, j=0

Ri jσi ⊗ σ j

=
1

4

I1 ⊗ I2 +
3∑

i=1

xiσi ⊗ I2 +
3∑

j=1

y j I1 ⊗ σ j +
3∑

i, j=1

ti jσi ⊗ σ j

, (14)

where Ri j = Tr[ρ(σi ⊗ σ j)], σ0 = I, σi (i = 1, 2, 3) are the Pauli operators; Ex = {xi} and Ey =

{yi} represent the three-dimensional Bloch column vectors associated with qubits A and B,
respectively; and ti j are the elements of the 3 × 3 correlation matrix T .

3.1. Geometric discord

The geometric measure of quantum discord was first introduced in [24], and further
investigations for two-qubit systems have been reported in [17, 32, 33]. Given a general bipartite
dA ⊗ dB quantum state ρ, the (normalized) geometric discord is defined as

D(ρ)
.
=

dA

dA − 1
min
χ∈�0

‖ρ−χ‖
2
2, (15)

where χ is a so-called classical-quantum state belonging to the set of zero-discord states �0,
χ =

∑
i pi |i〉〈i | ⊗ %i B and ‖P − Q‖

2
2= Tr(P − Q)2 is the squared Hilbert–Schmidt distance

between a pair of operators P, Q. We can look at geometric discord as the minimum disturbance
that would be induced in the system after a projective measurement on one of the two parties
(say A in the above definition) [32]. It is important to remark that its value is dependent on
the choice of the party to be measured8. Although, in principle, this expression can be very
complicated to evaluate explicitly as it involves a minimization problem over the set of zero-
discord states, an analytical formula exists for the general two-qubit case [24, 32, 33]. In terms
of the Bloch picture (equation (14)), one has

D(ρ)= 2 Tr[S] − 2λmax(S) ,

8 The geometric discord D can increase under quantum operations on the party that is not measured [34, 35]; as
such, it should be regarded as an indicator of non-classical correlations rather than as a proper measure [36]. It
nonetheless constitutes a valid lower bound to another bona fide distance-based measure of quantum correlations
defined in terms of relative entropy [14, 25] and enjoys a specific operational interpretation for two-qubit states
[37].
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where λmax stands for ‘maximum eigenvalue’, and the matrix S is defined as S =
1
4(Ex ExT + T T T).

The (square root of) geometric discord of ρX is then√
D(ρX)=

√
[Re(U ∗

AVB)]2 + |X |2 . (16)

The above formula is correct up to the second order and has an immediate physical
interpretation. The two terms in equation (16) indeed come from first- and second-order
contributions to the time evolution of the state. In particular, the X term accounts for photon
exchange between the two atoms and carries all the information available about causal
propagation and atom state dressing. Interestingly, the processes that contribute to non-zero
quantum discord are 0- and 1-photon processes, and even though the (square root of) geometric
quantum discord has a continuous evolution starting from t = 0, it is very sensitive to light-cone
crossing, showing a peak at t = r/c.

3.2. Negativity

Negativity [29] is a well-known and easily computable measure of entanglement for bipartite
systems which is based on the positivity of the partial transposition criterion [38, 39]. Given a
general d ⊗ d quantum bipartite state ρ, the (normalized) negativity is defined as

N (ρ)
.
=

1

d − 1
‖ρTA − IAB‖1, (17)

where Tx refers to the partial transposition operation with respect to the x party (x = A, B), IAB

is the identity operator in the composed Hilbert space HA ⊗HB and ‖M‖1 = Tr|M | =
∑

i |mi |

is the trace norm for a matrix M with eigenvalues {mi}. As in the case of geometric discord we
can easily compute the negativity of ρX up to the second order in time-dependent perturbation
theory and we obtain the following expression:

N (ρX)= max
{

0,
√
(|UA|2 − |VB|2)2 + 4|X |2 − |UA|

2
− |VB|

2
}
. (18)

The three physical processes contributing to entanglement are exactly the same as for geometric
discord. However, in this case there is a time-dependent condition for entanglement to start
increasing. Indeed, it is easy to check that as long as the following condition,

|X |
2

|UA|2|VB|2
6 1 (19)

is fulfilled, entanglement will be zero. Intuitively, this means that for entanglement to be non-
zero, second-order processes must dominate over first-order. Interestingly, we may look at this
behavior either as a sudden birth of entanglement [30] or as a backward-propagation sudden
death of entanglement. It is worth noting that this kind of temporal constraint is absent in the
case of the (square root of) geometric discord, which simply amounts to the sum of two positive
and continuous functions.

3.3. The maximum connected correlation function

Geometric discord and entanglement are quantities that are strictly connected to the quantum
character of a system and, indeed, they miss a classical analogue. In this respect, they are key
quantities when it comes to understanding the interplay between the foundations of quantum
mechanics and micro-causality, one of the postulates of relativity theory. However, one might
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Figure 1. Time evolution of (a) the square root of geometric quantum discord
√

D(ρX), (b) the negativity N (ρX) and (c) the maximum connected correlation
function T (ρX), for r = υp/4� and three different choices of the coupling
strength: Z = 50 (dotted green), Z = 200 (dashed red) and Z = 400 (continuous
blue).

also be interested in correlations arising from observable quantities such as, for instance, angular
momenta and in general spin-like operators. We thus study the atom–atom (classical) connected
correlation functions [28] to reveal the highest level of sensitivity at which the Bloch vectors of
the two atoms perceive each other outside and inside the light cone. Given a bipartite state ρ
of a pair of two-level quantum systems, we define the maximum connected correlation function
T (ρ) as follows:

T (ρ) .= max
n,n′

{
〈(Eσ · n̂)A ⊗ (Eσ · n̂′)B〉ρ − 〈(Eσ · n̂)A〉ρ〈(Eσ · n̂′)B〉ρ

}
, (20)

where Eσ is the three-component Pauli-operator vector and (Eσ · n̂) is the projection of such a spin
vector along the direction pointed by n̂. For generic two-qubit states ρ decomposed in Bloch
form as in equation (14), the maximum in equation (20) can be computed in closed form and
reads as [27, 31]

T (ρ)=

√
λmax(W TW ) ,

where W = T − Ex EyT. We have computed T (ρ) for the state ρX and obtained an exact expression
up to the second order,

T (ρX)= max
{
|UA|

2 + |VB|
2 + 2Re(A), 2(|X | + |L|)

}
, (21)

where L = U ∗

AVB . Once again, in this case only 0- and 1-photon processes contribute to the
above correlation function. Moreover, with T (ρX) being dependent on X , it shows sensitivity
to the light-cone crossing.

3.4. Results and discussion

In the following, we analyze the time evolution of the above correlations and compare their
behavior qualitatively and quantitatively. We remark that all of the above quantities depend on
the three terms UA, VB and X , while the maximum connected correlation function displays an
A-dependence as well. Figure 1(a) shows the behavior of the square root of geometric discord
√

D(ρX) as a function of the rescaled time ξ = r t/υ for different choices of the atom–field
coupling constant, spanning from a weak to a strong coupling regime, and for a fixed distance
r = υp/4� between the qubits.
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The first feature we notice, which is perhaps the most interesting, is the relatively slow but
continuous increase that the (square root of) geometric discord shows prior to the light-cone
crossing. A similar behavior was found previously by one of the present authors in [9] when
studying the time evolution of entanglement measured by the concurrence [10] in the same
model. However, unlike concurrence that started increasing within a very short time interval
just before ξ = 1, the (square root of) geometric discord reaches finite values for a much longer
time interval inside the space-like region JS ≡ {06 ξ 6 1}. If we recall the interpretation of
geometric discord mentioned above, we may argue that a one-party measurement carried out at
any time inside JS will always induce a disturbance on the composite system.

Secondly, we observe a peak at ξ = 1 that is independent of the interaction regime. The
height of such a peak, and more generally the global magnitude of the (square root of) geometric
discord, increases as we increase the coupling. These latter features are easily understood by
looking at equation (16). As we said above, the (square root of) geometric discord is the sum of
a first-order term, which does not carry any causality-related information, and a second-order
term, which instead does carry that kind of information. Hence, the stronger the interaction is,
the bigger this second-order term becomes.

In figure 1(b) we show the time evolution of the negativity for the same three choices
of coupling strengths and the same atom–atom separation. In this case we find essentially the
same behavior as reported in [9] for concurrence. By comparing figures 1(a) and (b), we may
conclude that quantum discord is more sensitive to vacuum fluctuations, which are responsible
for creating correlations between the two atoms outside the light cone. This behavior is again
well understood when one looks at equation (16). The proportionality to X , which is a second-
order 0-photon term, incorporates exactly this kind of trait.

Figure 1(c) shows the time evolution of the maximum connected correlation function
T (ρX) for the same choice of parameters as in the previous plots. In this case, we find something
very interesting and not at all easily predictable. Indeed, like geometric discord, the maximum
connected correlation function starts increasing significantly inside JS and shows a peak at
ξ = 1. The maximum connected correlation function T (ρ) is not a priori a fully quantum
quantity, and it determines how, on average, the Bloch vectors of the two atoms influence
each other. The present results seem to suggest that this might be the key quantity to measure
when it comes to an experimental detection of the dynamics of correlations, provided that a
simultaneous set of optimal measurements on the two qubits can be performed efficiently in the
laboratory frame.

It is worth noting here that the optimal ‘measurement directions’ n̂, n̂′ are completely
different in the space-like region JS and on the light cone. Indeed, for ξ < 1, the correlation
between the two Bloch vectors is best highlighted by measuring the effective spin projections
in the equatorial x–y plane. On the light cone, on the other hand, the best choice is to measure
σz for both qubits. This appears to be related to the fact that no excitation can reach the atom
B before ξ = 1 and that, as demonstrated in [9], it is only after this time that the excited state
population of atom B starts depending on the presence of atom A. The vacuum fluctuations,
thus, are able to correlate essentially transversal observables for ξ < 1, while for a longitudinal
(z–z) correlation, one has to wait for the arrival of the light signal.

One might enquire how such results would change in the three-dimensional case.
Interestingly, as studied in [40], no atom–atom entanglement is present unless a projective
measurement of the state of the field is carried out. Nevertheless, still in that case, the mutual
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Figure 2. Comparative plot displaying the maximum connected correlation
function T (topmost surface, blue online), the square root

√
D of the geometric

discord (middle surface, red online) and the negativity N (bottommost surface,
green online), calculated for the state ρX as functions of the dimensionless time
ξ and of the coupling strength Z , for r = υπ/4�.

information shared by the two atoms is always finite, meaning that other types of correlations
than entanglement are constantly present.

Finally, figure 2 reports a visual comparison of all three indicators of correlations
considered in the present analysis, as functions of Z and ξ . As anticipated, there is no violation
of the general hierarchy (13), thus confirming that the perturbative analysis we have performed
is consistent up to the present expansion order. We note that the apparent growth of correlations
with time, going beyond the value at ξ = 1 in some cases, is just a manifestation of the fact that
the perturbative analysis starts to break down as time goes on.

4. Non-locality

One may wonder what the above results mean in terms of non-locality. In this respect, a
key quantity to investigate non-local effects in the dynamics of two two-level systems is the
Bell parameter [41], resulting from well-known inequalities that local classical hidden variable
theories cannot violate. To make a long story short, one identifies a set of joint measurements
to be carried out on the composite system. Then, based on the outcomes of such measurements,
it is possible to define a statistical parameter B for which a classical threshold value BC exists.
Whenever the inequality

B > BC

is violated, the state of the system under scrutiny is not reproducible by means of local classical
hidden variable theories. Unfortunately, the other way around is not true: some mixed entangled
states exist that do not violate any Bell inequality [42]. In the case of two two-level systems, it
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Figure 3. (a) Bell-CHSH parameter BCHSH and (b) its optimized version
BOPT, plotted for Z = 100 (dotted green), Z = 400 (dashed red) and Z = 800
(continuous blue), as a function of ξ . The straight line at B = 2 gives the limit for
a local realistic description. As one can see, in both cases very strong coupling is
needed in order to have a clear violation of the inequality, which occurs, however,
only very close to the light-cone crossing point. (c) Comparison between BCHSH

(red dashed) and BOPT (blue dotted) for strong coupling Z = 1000. In all these
plots r = υp/4�.

is well known that BC = 2, whereas the maximum violation allowed by quantum mechanics is
given by the so-called Tsirelson bound, Bmax = 2

√
2, which is saturated by maximally entangled

states. Hence, if for a given bipartite quantum state ρ we find that 2< B(ρ)6 2
√

2, such
a state is not classically reproducible. We have considered two different Bell parameters in
the present analysis: the conventional Clauser–Horne–Shimony–Holt (CHSH) one [43] and its
optimized version for ‘X’-shaped states such as ρX , given in [44]. The former, for the states in
equation (11), reads as follows (up to the second perturbative order):

BCHSH(ρX)= −
√

2(ρ11 + ρ44 − ρ22 − ρ33 + 2 Re ρ23 + 2 Re ρ14), (22)

whereas the latter is [44]

BOPT(ρX)= 2
√

u1 + max[u2, u3], (23)

where

u1 = 4(|ρ14| + |ρ23|)
2, u3 = 4(|ρ14| − |ρ23|)

2,

u2 = (ρ11 + ρ44 − ρ22 − ρ33)
2.

The above quantities correspond to two different choices of Bell parameters; that is, different
choices of the angles along which we project the effective spin operators in a joint-measurement
experiment. The main difference between them is that BOPT is optimal in the sense that it
maximizes the violation of the related Bell inequality whenever such a violation is present.
We report in figure 3(a) the time evolution of the Bell parameter BCHSH. It is clear from these
plots that, in order to observe a violation of the Bell inequality, very strong coupling is required
(Z ≈ 1000). However, such a violation is witnessed only in the surroundings of the light-cone
crossing ξ = 1. Figure 3(b) shows, instead, the time evolution of BOPT. Some qualitative and
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quantitative differences between these quantities, especially for ξ > 1 and very strong coupling,
are present. First of all, we note that, as expected, the optimized Bell parameter BOPT is greater
than BCHSH for all couplings and times. Secondly, the latter is clearly more sensitive to the
strong-coupling regime. This result makes sense if we look at the entanglement dynamics as
a function of the coupling constant: the bigger the Z is, the more entanglement is present in
the system, pushing up the Bell parameters’ value. The last two features are shown best in
figure 3(c), where the dynamics of the two Bell parameters we considered is compared in the
case of very strong coupling Z = 1000.

5. Experimental implementation

We now focus on the particular experimental setup that we propose to test the results above.
Clearly, we need fast on–off switching for the qubit–field interaction. We should be able to
prepare the initial state equation (4) and let the interaction be active only during a finite
time. We can conceive of several circuit QED schemes in order to achieve these goals. As
remarked before, our general formalism can accommodate several architectures; in particular,
it is valid for both inductive and capacitive couplings. We can choose, for instance, a pair of
three-junction flux qubits galvanically coupled to the center conductor of an open transmission
line. In [8] it is shown how the desired initial state can be prepared with high fidelity by
varying an external magnetic flux adiabatically for qubit B and non-adiabatically for qubit
A. After that, the interaction has to be switched on and kept constant during a given time
interval. In [46], several modifications to the three-junction scheme are proposed in order to
achieve couplings tunable in strength up to the ultra-strong regime. In particular, a specific
setup featuring an intermediate superconducting loop has been described in detail in [47], where
an effective interaction Hamiltonian between a qubit and a transmission line has been derived
that reads

HI ∝ cos( f )σx V (x), (24)

f being related to an external magnetic flux 8 threading the SQUID: f = 2π8/80 (where
80 = h/2e is the flux unit). By a suitable modulation of the flux 8, thus, the interaction can
be activated and switched off at will. State-of-the-art circuit-QED technology allows variations
of the magnetic flux at frequencies of about 10 GHz [45] and larger values are expected in the
future [48]. As a result, switching times of the order of 0.1 ns and even shorter can be safely
considered. Taking the values that we have considered in our plots, and typical circuit-QED
parameters, such as υ = 1.2 × 108 m s−1 and �= 109 m s−1, the point n = 1 is equivalent to an
interaction time t ' 1 ns. Thus, the region around ξ = 1 is well within experimental reach. In
particular, the strongest value that we considered for the adimensional coupling Z is equivalent
to g/�' 0.3, which is quite similar to those found in cutting-edge experiments investigating
the ultra-strong coupling regime [49, 50].

Once the interaction is switched off, quantum state tomography [51] may be performed
in order to quantify the degree of correlations, using for instance the magnitudes that we have
considered in this work. The dynamics is effectively frozen and the system remains in the state
ρX(t), so measurements can take as much time as required. In particular, it would be interesting
to run the experiment for different interaction times inside and outside the light cone, in order
to test both the peak at ξ = 1 and the correlations for ξ < 1.
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6. Concluding remarks

To summarize, using second-order perturbation theory we have discussed the dynamics of
quantum correlations in the Fermi problem, which can be experimentally tested in a one-
dimensional setup involving two artificial atoms coupled to the electromagnetic field of an
open-ended transmission line. We have compared the time behavior of the entanglement, as
measured by the negativity, and of more general quantum correlations such as the (square root
of) geometric discord, and the maximum connected correlation function. All these correlations
display a peak at the light-cone crossing point, ξ = 1, which corresponds to the time at which a
signal from atom A arrives at B. The geometric discord and the connected correlation, however,
also have a substantially non-zero value in the space-like region. This is due to the fact that
electromagnetic vacuum fluctuations can induce (transverse) correlations that are signaled by
these functions. As the light cone is crossed, these correlations change their character and
become longitudinal as a result of the fact that the excited state population of the second
atom starts to depend on the presence of the first one. Both geometric discord and maximum
connected correlations, which are found to be sensitive to causal propagation, are suitable
candidates for understanding and testing experimentally the role of micro-causality in the
dynamics of quantum correlations. We have briefly investigated non-local effects in this model
as encoded in possible violations of Bell inequalities. We have found that a violation can occur
in the neighborhood of the light-cone crossing and only for a strong coupling between the atoms
and the propagating field.
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[24] Dakić B, Brukner C and Vedral V 2010 Phys. Rev. Lett. 105 190502
[25] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[26] Verstraete F, Popp M and Cirac J I 2004 Phys. Rev. Lett. 92 027901
[27] Popp M, Verstraete F, Martı́n-Delgado M A and Cirac J I 2005 Phys. Rev. A 71 042306
[28] Wolf M M, Verstraete F, Hastings M B and Cirac J I 2008 Phys. Rev. Lett. 100 070502
[29] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[30] Ficek Z and Tanas R 2008 Phys. Rev. A 77 054301
[31] Adesso G 2003 unpublished
[32] Luo S and Fu S 2010 Phys. Rev. A 82 034302
[33] Girolami D and Adesso G 2012 Phys. Rev. Lett. 108 150403
[34] Hu X, Fan H, Zhou D L and Liu W-M 2012 arXiv:1203.6149
[35] Tufarelli T, Girolami D, Vasile R, Bose S and Adesso G 2012 arXiv:1205.0251v2
[36] Piani M 2012 Phys. Rev. A 86 034101
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