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ABSTRACT
The advent of data sets of stars in the Milky Way with 6D phase-space information makes it possible to construct empirically the
distribution function (DF). Here, we show that the accelerations can be uniquely determined from the DF using the collisionless
Boltzmann equation, providing the Hessian determinant of the DF with respect to the velocities is non-vanishing. We illustrate
this procedure and requirement with some analytic examples. Methods to extract the potential from data sets of discrete positions
and velocities of stars are then discussed. Following Green & Ting, we advocate the use of normalizing flows on a sample of
observed phase-space positions to obtain a differentiable approximation of the DF. To then derive gravitational accelerations, we
outline a semi-analytic method involving direct solutions of the overconstrained linear equations provided by the collisionless
Boltzmann equation. Testing our algorithm on mock data sets derived from isotropic and anisotropic Hernquist models, we
obtain excellent accuracies even with added noise. Our method represents a new, flexible, and robust means of extracting the
underlying gravitational accelerations from snapshots of 6D stellar kinematics of an equilibrium system.

Key words: methods: analytical – methods: data analysis – Galaxy: fundamental parameters – Galaxy: kinematics and dynam-
ics – galaxies: fundamental parameters – galaxies: kinematics and dynamics.

1 IN T RO D U C T I O N

In galactic astronomy, a fundamental problem is to extract the
underlying gravitational potential from the kinematics of a tracer
population. If stars are moving on circular orbits in a spherical
potential, then the matching of the centrifugal force to the gravi-
tational one gives the rotation curve, and by extension the potential.
Elaborations of this basic idea to stellar streams have proved to be
one of the most powerful methods available to us today (e.g. Lynden-
Bell 1982; Johnston et al. 1999; Bowden, Belokurov & Evans 2015;
Erkal et al. 2019; Malhan & Ibata 2019).

If the stellar population is not kinematically cold, the traditional
way in which the problem is tackled is via the Jeans equations
(Binney & Tremaine 2008, chapter 4). Given measurements of the
second velocity moments and the density of the tracer population,
the Jeans equations can be solved to yield the potential. There
are numerous applications of this method both to the Milky Way
(e.g. King et al. 2015; Bowden, Evans & Williams 2016; Nitschai,
Cappellari & Neumayer 2020) and external galaxies (e.g. Cappellari
2008; Walker et al. 2009). Some studies have instead worked directly
with the distribution function, fitting some assumed parametric form
to the observed stellar data (e.g. Binney & Piffl 2015; Williams &
Evans 2015; Posti & Helmi 2019). More rarely, the distribution
function is constructed directly from the data, as in Kuijken &
Gilmore (1989)’s numerical Abel inversion of the vertical tracer
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density. This though relies on the assumption that the vertical and in-
plane dynamics are decoupled, and so is not of general applicability.

However, the advent of the Gaia satellite (Gaia Collaboration
2016) has made possible the empirical construction of the full
phase-space distribution function for stellar populations in the Milky
Way, and perhaps even for some of its satellite galaxies. The data
now comprise the full positions and velocities of many millions
of stars. The process of averaging to obtain the second velocity
moments does not do justice to the richness of the data. Green &
Ting (2020) recently raised the possibility of direct determination
of the gravitational potential from the distribution function using
the collisionless Boltzmann equation itself, which is the continuity
equation satisfied by the distribution function in the 6D phase space
of positions and velocities.

At every location in physical space, the collisionless Boltzmann
equation provides a single constraint on the three unknown compo-
nents of the gravitational force. Thus, it is unclear if the identification
of a stationary distribution function is sufficient to specify the
gravitational potential (modulo an additive constant) uniquely. So,
the first aim of our paper is to establish the conditions under which the
potential can be uniquely recovered, given the distribution function.
The second aim of our paper is to provide a working algorithm to
extract the potential. Whereas Green & Ting (2020) proposed a neural
network, we instead utilize an efficient and accurate semi-analytic
method, based on a direct solution of the collisionless Boltzmann
equation. We demonstrate the efficacy of our method on mock data
sets sampled from isotropic and anisotropic distribution functions of
galaxy models, including the effects of errors.
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2 TH E C O L L I S I O N L E S S BO LT Z M A N N
E QUAT I O N A N D T H E POT E N T I A L

Here, we address the theoretical question that underlies all this work:
namely, when is the potential uniquely specified by the distribution
function? We prove a uniqueness theorem in Section 2.1 subject to
certain conditions, and investigate the instances when the conditions
are violated in Section 2.2.

2.1 Uniqueness theorem

If F ( p; x) is a phase-space distribution function (DF) in equilib-
rium in the static potential �(x), then it is an integral of mo-
tion of the Hamiltonian H = 1

2

∑3
j,k=1 gjkpjpk + �(x). Here p =

(p1, p2, p3) is the momentum component conjugate to a coordinate
set x = (x1, x2, x3) with the metric coefficients gij and its inverse
gij. A mathematical representation of F being an integral of motion
is given by the vanishing Poisson bracket of the integral F with the
Hamiltonian H (An & Evans 2016), namely,

{F, H } =
3∑

i=1

(
∂F

∂xi

∂H

∂pi

− ∂F

∂pi

∂H

∂xi

)

=
3∑

i=1

⎡
⎣ 3∑

j=1

gij pj

∂F

∂xi
−

⎛
⎝ 1

2

3∑
j,k=1

∂gjk

∂xi
pj pk + ∂�

∂xi

⎞
⎠ ∂F

∂pi

⎤
⎦ = 0.

(1)

Considered as a partial differential equation for F, this is equivalent
to the (time-independent) collisionless Boltzmann equation (CBE).1

Since equation (1) is a linear homogeneous equation for F, any
function F = f(J) is its solution if J = J ( p; x) is also a solution.
That is, the CBE only describes a (necessary) condition for the DF
to be stationary and cannot uniquely determine the DF for any given
potential. In fact, physical considerations make it obvious that many
different DFs can indeed be in equilibrium with the given potential.

On the other hand, if a stationary DF is known, the CBE may also
be interpreted as a partial differential equation for the potential. Here
the question is whether the given DF (or more generally an integral of
motion) can determine a unique potential through the CBE. The CBE
is linear in � (albeit non-homogeneous) and so there exists a gauge
freedom such that, if �0 is a particular solution, the function �0 +
G(I), where G(I) is an arbitrary function of a particular solution I to
the homogeneous counterpart, also satisfies the same inhomogeneous
differential equation. However, the potential � = �(x) is a function
of only the configuration-space coordinates, whereas the CBE is a
partial differential equation in phase space. In other words, we must
only consider the solutions that are also constant along any direction
in momentum space; that is, the solution must also be subject to the
constraints that ∂�/∂p1 = ∂�/∂p2 = ∂�/∂p3 = 0. Are these then
sufficient to uniquely determine the potential � for the given DF?

Let us suppose that a DF F ( p; x) is known to be stationary in
the potential �0(x). Then it follows that {F, H0} = 0 where H0 =∑3

i,j=1
1
2 gijpipj + �0 or

3∑
i=1

⎛
⎝ ∂F

∂xi

3∑
j=1

gijpj − 1

2

∂F

∂pi

3∑
j,k=1

∂gjk

∂xi
pjpk

⎞
⎠ =

3∑
i=1

∂�0

∂xi

∂F

∂pi

.

(2)

1The CBE is actually derived from arguments based on number (or probabil-
ity) conservation (see Binney & Tremaine 2008, section 4.1). In fact, F being
an integral of motion may be interpreted as a consequence of the CBE.

If there exists another potential � which the same F is also a station-
ary DF in, the potential � satisfies the CBE with F in equation (1) or
equivalently equation (2) but with �0 → �. Eliminating the common
terms between two CBEs, we can construct a homogeneous linear
partial differential equation for the difference � − �0:

∂(� − �0)

∂x1

∂F

∂p1
+ ∂(� − �0)

∂x2

∂F

∂p2
+ ∂(� − �0)

∂x3

∂F

∂p3
= 0. (3)

Here � − �0 is a function of only the real-space component (x1, x2,
x3), whereas F is a function of phase space in general. Thus taking the
partial derivative with respect to one of the momentum components
results in the set of three differential equations,

3∑
i=1

∂(� − �0)

∂xi

∂2F

∂pj∂pi

= 0 (where j = 1, 2, 3). (4a)

Since the Hessian matrix [∂pi
∂pj

F ] (where ∂pi
= ∂/∂pi and so on)

is real symmetric, it is diagonalizable at least locally by a point-wise
orthogonal transformation. In the local coordinate diagonalizing the
Hessian (in which ∂p̃i

∂p̃j
F = 0 for i �= j), equations (4a) reduce to

λ1
∂(� − �0)

∂q1
= λ2

∂(� − �0)

∂q2
= λ3

∂(� − �0)

∂q3
= 0. (4b)

Therefore, if λi = ∂2
p̃i

F �= 0 for a direction in the transformed
coordinate, then ∂(� − �0)/∂qi = 0 along the conjugate coordinate
direction associated with the non-zero eigenvalue λi. If m is the
rank (i.e. the number of non-zero eigenvalues) of the Hessian, the
difference � − �0 is consequently an arbitrary function of 3 − m
functionally-independent functions qj = qj(x1, x2, x3), which are the
coordinate functions corresponding to the eigenvectors associated
with the null eigenvalues.

In particular, if the Hessian determinant

det

[
∂2F

∂pi∂pj

]
= det

[
∂2F

∂p̃i∂p̃j

]
= λ1λ2λ3 �= 0 (5)

is non-vanishing, then λi �= 0 for all i and m = 3. Solving
equations (4a) as a series of linear equations for ∂(� − �0)/∂xi

then results in

∂(� − �0)

∂x1
= ∂(� − �0)

∂x2
= ∂(� − �0)

∂x3
= 0 ⇒ � = �0 + C,

(6)

where C is an arbitrary constant; that is, the potential �(x) satisfying
the CBE for a given DF, if it exists, is essentially unique up to an
additive constant (resulting in the identical gravitational acceleration
field). In other words, the non-vanishing Hessian of equation (5) is
a sufficient condition for the uniqueness of the potential for a given
stationary DF.

2.2 Are there physical DFs that do not specify a unique
potential?

If the Hessian [∂pi
∂pj

F ] is singular, there exists a local momentum-
space coordinate system (p̃1, p̃2, p̃3) such that the directional deriva-
tive of F in a fixed coordinate direction must be constant in
momentum space. That is to say, the singularity condition indicates
that at least one eigenvalue, which is the second-order partial
derivative in the corresponding coordinate direction, must be zero
(i.e. λj = ∂2

p̃j
F = 0 for ∃j). Since the coordinate can be chosen to be

orthogonal so that all the second-order cross partial derivatives vanish
(∂p̃i

∂p̃j
F = 0 if i �= j), there then exists a coordinate system in which

all the second derivatives involving one particular coordinate should
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be zero (i.e. ∂p̃i
∂p̃j

F = 0 for ∀i and ∃j). Therefore, the directional
derivative of F in the same coordinate direction must be constant
in momentum space; that is, ∂p̃j

F = k0(x) for ∃j. In the original

coordinates, this implies that
∑3

i=1 ki∂pi
F = k0 where ki’s are the

constants in momentum space (but they are functions of the real-
space positions) and at least one of {k1(x), k2(x), k3(x)} is non-zero.
In fact, if there are two or more distinct potentials satisfying the CBE
with the given DF, equation (3) further indicates that there exists {k1,
k2, k3} such that k2

1 + k2
2 + k2

3 �= 0 and (k1∂p1 + k2∂p2 + k3∂p3 )F =
0.

In other words, if the function F is an integral of motion in
two (or more) distinct – as in generating different gravitational
accelerations – potentials, then there exists a fixed direction (k1,
k2, k3) in momentum space that is tangent to the level surfaces
of the DF everywhere in momentum space. However, the integral
curve of a constant vector is a straight line and momentum space is
topologically equivalent to R3. Consequently, all the level surfaces
of F have infinite extent and the inverse image of any real interval
under F−1 in momentum space cannot have a compact support (unless
empty). That is to say, such a function F is not integrable and cannot
be a physical DF.

In light of this, we argue that the unique determination of the
potential is a property related to the global behaviour in momentum
space. That is to say, the CBE only describes the balance amongst
the gradients of the DF and the external acceleration field in the local
neighbourhood of a fixed phase-space location, whilst the external
gravitational acceleration is shared in the whole momentum space
at a fixed real-space position. By joining all the constraints on the
acceleration fields coming from the CBE in different momentum-
space locations (but at a fixed real-space position), we can narrow
down to the unique acceleration. This fact is also demonstrated by
the examples presented in the following section (Section 3) where a
unique potential actually follows from insisting that the CBE holds
for all values of the momentum components.

3 EXAMPLES

To gain insight into the steps needed to extract a unique potential
from the CBE, we first look at some analytic examples.

3.1 Ergodic distributions: a unique potential

We start by examining the case of an ergodic DF F = f(E) in a
fixed potential �0(x), where E = 1

2 �
2 + �0 is the specific energy

and is known as a function of the phase-space coordinates. Here, no
further assumption is made on the self-consistency of the system and
so the potential need not be spherically symmetric (cf. An, Evans &
Sanders 2017). In Cartesian coordinates, the CBE is then reducible to
the differential equation on the difference between any two possible
potentials,(
�x
∂E

∂x
+ �y ∂E

∂y
+ �z ∂E

∂z
− ∂�

∂x

∂E

∂�x
− ∂�

∂y

∂E

∂�y
− ∂�

∂z

∂E

∂�z

)
f ′(E)

= f ′(E)

(
�x

∂

∂x
+ �y ∂

∂y
+ �z ∂

∂z

)
(�0 − �) = 0. (7)

Assuming that the DF in itself is not constant, that is, f ′(E) �= 0,
then in order for this to hold everywhere in phase space,

∂(� − �0)

∂x
= ∂(� − �0)

∂y
= ∂(� − �0)

∂z
= 0. (8)

Therefore � = �0 + C and the potential is unique (up to an additive
constant).

3.2 Separable potentials with third integrals

If there exists a DF of the form F = f(J) where f ′(J ) �= 0 and J is a
quadratic polynomial of pi’s such that J = ∑3

i,j=1
1
2 Kij (x)pipj +∑3

i=1 Xi(x)pi + ξ (x), then the resulting CBE in equation (1) reduces
to a cubic polynomial equation on pi’s. This is of course the old
‘ellipsoidal hypothesis’ (see Chandrasekhar 1939; Camm 1941;
Evans & Lynden-Bell 1991; and references therein). Assuming that
the DF is stationary, the CBE should hold for any pi’s and so the
coefficients to all the monomial terms (pipjpk, pipj, and pi etc.) must
vanish identically. It is then found that the coefficients to the cubic
and quadratic terms respectively only involve the tensor Kij and the
vector Xi, and the first-order partial differential equations resulting
from setting them to be zero restrict the possible forms for Kij and Xi

(An 2013 and references therein). However if the DF is already given
and known to be stationary, these conditions must hold automatically.

On the other hand, setting the coefficients to the linear terms to be
zero results in the set of three differential equations,

3∑
i=1

gij ∂ξ

∂xi
=

3∑
i=1

Kij ∂�

∂xi
(where j = 1, 2, 3). (9)

If ξ (x) is known, these can be considered as the coupled differential
equations on the potential �. Provided that the matrix [Kij] is
invertible (here also note that Kij = ∂pi

∂pj
J ), equation (9) can be

uniquely solved for ∂�/∂xi so that

∂�

∂xi
=

3∑
j=1

K−1
ij

(
3∑

k=1

gjk ∂ξ

∂xk

)
(where i = 1, 2, 3), (10)

where K−1
ij is the matrix element of the inverse matrix of [Kij]. In other

words, if the local DF that is a function of a non-degenerate quadratic
form of the canonical momenta is stationary, the gravitational
acceleration is uniquely specified in the neighbourhood.

As a concrete example, suppose that there exists a stationary DF
of the form F = f(J) where

J = �2 + a2�2z

2
+ ξ (R, z); ξ = ka|z|

[R2 + (|z| + a)2]1/2
(11)

with constants a and k. Here J is the third integral of the Kuzmin
(1956) disc potential in the cylindrical polar coordinate (R, φ, z),
and � = ‖�‖ = (� · �)1/2 is the magnitude of the specific angu-
lar momentum. Here, � = x × ẋ = (R êR + zêz) × (�R êR + �φ êφ +
�z êz) and so follows that �2 = (z�R − R�z)2 + (R2 + z2)�2φ , whilst
(pR, pφ, pz) = (�R,R�φ, �z). Provided f ′(J ) �= 0, the CBE in the
corresponding canonical phase-space coordinate (pR, pφ , pz; R, φ, z)
then results in (here r2 = R2 + z2)

pR

∂ξ

∂R
+ pz

∂ξ

∂z
+ z(Rpz − zpR )

∂�

∂R
+ [

RzpR − (R2 + a2)pz

] ∂�

∂z
− r2pφ

R2

∂�

∂φ

= pR

(
∂ξ

∂R
− z2 ∂�

∂R
+ Rz

∂�

∂z

)

+ pz

[
∂ξ

∂z
+ Rz

∂�

∂R
− (R2 + a2)

∂�

∂z

]
− r2pφ

R2

∂�

∂φ
= 0. (12)

Since this holds for all (pR, pφ , pz), we have ∂�/∂φ = 0 and

z2 ∂�

∂R
− Rz

∂�

∂z
= ∂ξ

∂R
= − kaR|z|

[R2 + (|z| + a)2]3/2
; (13a)

(R2 + a2)
∂�

∂z
− Rz

∂�

∂R
= ∂ξ

∂z
= z

|z|
ka[R2 + a(|z| + a)]

[R2 + (|z| + a)2]3/2
, (13b)

where we have used ∂|z|/∂z = z/|z| (NB: ∂ξ/∂z at z = 0 does not
exist). If a �= 0, we can solve equations (13a,b) for ∂�/∂R and
∂�/∂z
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∂�

∂R
= 1

a2

(
R2 + a2

z2

∂ξ

∂R
+ R

z

∂ξ

∂z

)
= kR

[R2 + (|z| + a)2]3/2
;

(14a)

∂�

∂z
= 1

a2

(
R

z

∂ξ

∂R
+ ∂ξ

∂z

)
= z

|z|
k(|z| + a)

[R2 + (|z| + a)2]3/2
, (14b)

which satisfies the compatibility condition, ∂z(∂R�) = ∂R(∂z�).
Since � = �(R, z) which follows ∂�/∂φ = 0, equations (14a,b)
can be directly integrated to yield a unique solution

� = − k

[R2 + (|z| + a)2]1/2
+ C, (15)

which recovers the axisymmetric potential of the Kuzmin disc up to
an additive constant C.

3.3 Integrals of motion due to the symmetry of the potential

Let us consider the DF F = f(�z) where �z = � · êz is the component
of the specific angular momentum in a fixed (say, Cartesian z)
direction. Technically any such function cannot be integrable over
the whole phase space and so is unphysical. Nevertheless, the
CBE merely requires F to be an integral of motion, and so is
still applicable. Since �z = R2φ̇ = R�φ , the CBE in phase-space
coordinates (�R, �φ, �z; R, φ, z) thus simplifies to

Ṙ
∂F

∂R
+ �̇φ ∂F

∂�φ
=

[
�R

∂�z

∂R
− 1

R

(
�R�φ + ∂�

∂φ

)
∂�z

∂�φ

]
f ′(�z)

=
[
���R�φ −

(
���R�φ + ∂�

∂φ

)]
f ′(�z) = −∂�

∂φ
f ′(�z) = 0. (16a)

Or given that �z = pφ , the CBE in the canonical phase-space
coordinate (pR, pφ , pz; R, φ, z) simply becomes

ṗφ

∂F

∂pφ

= −∂�

∂φ
f ′(�z) = 0. (16b)

Provided f ′(�z) �= 0, this implies that ∂�/∂φ = 0, the general
solution of which is any axisymmetric potential; that is, an arbitrary
function � = �(R, z) of two coordinate functions R and z. Also note
∂F/∂pR = ∂F/∂pz = 0 indicates that the only non-zero component
of the Hessian [∂pi

∂pj
F ] is ∂2F/∂p2

φ and so it follows that the rank

of Hessian is 1 as long as ∂2F/∂p2
φ = f ′′(�z) �= 0.

The result is independent of the choice of the coordinate, although
the calculation may be more complicated. For example, in Cartesian
coordinates, �z = x�y − y�x and so the Hessian becomes⎡
⎣ ∂2
�x F ∂�x∂�y F ∂�x∂�zF

∂�y∂�x F ∂2
�y F ∂�y∂�zF

∂�z∂�x F ∂�z∂�y F ∂2
�zF

⎤
⎦ = f ′′(�z)

⎡
⎣ y2 −xy 0

−xy x2 0
0 0 0

⎤
⎦
(17)

whose rank is still 1 if f ′′(�z) �= 0. The CBE on the other hand is(
������x�y − �y�x + ∂�

∂x
y − ∂�

∂y
x

)
f ′(�z) = 0 (18a)

and so, unless f ′(�z) = 0, we have a homogeneous first-order linear
partial differential equation on �(x, y, z),

∂�

∂x
y − ∂�

∂y
x = 0. (18b)

Utilizing standard techniques such as the method of characteristics,
its general solution is found to be � = �(x2 + y2, z), which is again
an arbitrary axisymmetric function.

Similarly if a stationary DF (or rather an integral of motion) of the
form F = f(�2) is available, the CBE in the canonical phase-space
coordinate (pr, pθ , pφ ; r, θ , φ) inherited from the spherical polar
coordinate (r, θ , φ) is reducible to
[

pθ

r2

∂�2

∂θ
+

(
p2

φ cos θ

r2 sin3 θ
− ∂�

∂θ

)
∂�2

∂pθ

− ∂�

∂φ

∂�2

∂pφ

]
f ′(�2)

= 2

[
− pθ

r2

p2
φ cos θ

sin3 θ
+

(
p2

φ cos θ

r2 sin3 θ
− ∂�

∂θ

)
pθ − ∂�

∂φ

pφ

sin2 θ

]
f ′(�2)

= −2

(
pθ

∂�

∂θ
+ pφ

sin2 θ

∂�

∂φ

)
f ′(�2), (19a)

which follows as �2 = r2(�2θ + �2φ) = p2
θ + p2

φ/(sin2 θ ) and
(pθ , pφ) = (r�θ , r�φ sin θ ). Assuming f ′(�2) �= 0, this is equivalent
to

pθ

∂�

∂θ
+ pφ

sin2 θ

∂�

∂φ
= r

(
�θ
∂�

∂θ
+ �φ

sin θ

∂�

∂φ

)
= 0. (19b)

If f(�2) is a non-constant integral of motion, equation (19b) should
hold everywhere in phase space (i.e. for any pθ and pφ) and so

∂�

∂θ
= ∂�

∂φ
= 0 ⇒ � = �(r). (20)

Hence the general solution is any spherically symmetric potential. As
for the rank of the corresponding Hessian, we observe that the rank
of the matrix [∂pi

∂pj
�2] is 2 (independent of the coordinate system)

with the radial vector being the eigenvector associated with a null
eigenvalue (note ∂�2/∂pr = 0 in the spherical polar coordinate). In
addition the radial vector is also in the null space of the matrix
[(∂pi

�2)(∂pj
�2)], thanks again to ∂�2/∂pr = 0. Hence, for any f(�2),

the radial vector is in the null space of the Hessian matrix;[
∂2F

∂pi∂pj

]
= f ′(�2)

[
∂2�2

∂pi∂pj

]
+ f ′′(�2)

[(
∂�2

∂pi

)(
∂�2

∂pj

)]
.

(21)

In other words, the Hessian is singular and its rank is at most 2.
Since any axisymmetric or spherical potential admits the integral

of motion �z or �2, it is not an unexpected result that F = f(�z) or
f(�2) only constrains the associated symmetry of the potential and
cannot specify the unique potential. The above examples, however,
demonstrate that such integrals of motion also fail the necessary
condition of having a non-singular Hessian in momentum space.
Furthermore, we also observe that f(�z) and f(�2) are not actually
integrable in momentum space. That is to say, f(�z) is independent of
pR and pz, but both components are unbounded, and so the integral
of any non-negative f(�z) over the whole momentum space is infinite
(unless it is identically zero). A similar argument can also be made
for f(�2) and the component pr. We have argued in Section 2.2 that
this is not an accident, but that there is a logical connection between
the singular Hessian and the non-integrability.

4 A L G O R I T H M S F O R EX T R AC T I N G TH E
G R AV I TAT I O NA L AC C E L E R AT I O N

Suppose that stationary DF F is known. How then can we extract the
gravitational accelerations? First consider the CBE in an arbitrary
curvilinear orthogonal coordinate (in which the line element is ds2 =
h2

1dx2
1 + h2

2dx2
2 + h2

3dx2
3 ) rearranged to be

∂F

∂�1

∂�

h1∂x1
+ ∂F

∂�2

∂�

h2∂x2
+ ∂F

∂�3

∂�

h3∂x3
= S; (22a)
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S =
3∑

i=1

�i
∂F

hi∂xi

+
3∑

i,j=1

�j

(
�j
∂ ln |hj |
hi∂xi

− �i ∂ ln |hi |
hj∂xj

)
∂F

∂�i
,

(22b)

where �i = hi ẋi is the velocity component projected on the or-
thonormal frame. Next let us observe that ∇� is constant at all
the velocity-space points, given a fixed real-space position. Hence
the subset of equations (22a) sampled over the range of velocity
space at a fixed position results in an overdetermined (assuming
there are more than three sampling points) system of linear equations
on (∂�/∂x1,∂�/∂x2,∂�/∂x3). Technically, we only need samples
at three different velocity-space points so as to uniquely determine
the local gravitational acceleration, provided that the three vectors
∇� F at the three sampled points – where ∇� = (∂�1 ,∂�2 ,∂�3 )
is the gradient operator in velocity space – are mutually linearly
independent. In fact, the non-singular Hessian of F as discussed in
Section 2 guarantees the existence of such three points in velocity
space (and so is a sufficient condition for the unique determination
of the potential).

On physical grounds, the overdetermined system of equa-
tions (22a) resulting from more than three velocity-space points at
a single spatial location should be consistent and must possess a
unique solution. However, due to the uncertainties in the data, the
exact solution may not be necessarily found with the actual set of
equations in practice. Instead, the problem should be approached by
methods such as least-square, that is, minimizing

∑
sample

1

ς2

(
∂F

∂�1

∂�

h1∂x1
+ ∂F

∂�2

∂�

h2∂x2
+ ∂F

∂�3

∂�

h3∂x3
− S

)2

, (23)

where S is as defined in equation (22b), and the summation is over a
suitably chosen sample of velocities with the weights ς−2. Finding
the extrema with respect to ∇� = (∂�/∂x1,∂�/∂x2,∂�/∂x3) is
then equivalent to solving the set of linear equations

3∑
i=1

Aij

∂�

hi∂xi

=
∑

sample

S

ς2

∂F

∂�j
(where j = 1, 2, 3), (24a)

where Aij =
∑

sample

1

ς2

∂F

∂�i

∂F

∂�j
, (24b)

which is basically the set of standard normal equations. Therefore,
provided the matrix [Aij] defined as in equation (24b) is invertible,
∇� that minimizes equation (23) at the same position can be found
through a matrix inversion.

Alternatively one may also attempt to minimize equation (23)
summed over data points ranging in a region of space, in order to
get the potential as an optimizing functional solution. In principle,
this can be done with a suitably chosen parametric function for the
potential or non-parametrically (pixelized or otherwise), which is
closer to the implementation proposed by Green & Ting (2020)
to recover the potential. After reconstructing the DF from the
discrete data set via normalizing flows, Green & Ting (2020)
characterized the potential as an optimized feed-forward neural
network minimizing the cost function, which is defined similarly to
equation (23) but with the absolute value instead of the square and
also includes the penalty for the negative density. This procedure
combines the determination of the local accelerations and their
integration into the potential as one single optimization problem.
None the less, the actual physical constraints due to the CBE are
in the form of an algebraic relation on the local acceleration and so

the measurements of the accelerations at different spatial locations
should in principle be independent (except for possible systematic
correlations relating to the determination of the DF).

5 EFFECTS O F D ISEQUILIBRIUM

If the stellar system is not in equilibrium, its DF F ( p; x; t) by defini-
tion, is no longer an integral of motion. Provided that the collisional
effects are negligible, the evolution of the DF is still governed by
the CBE, but the CBE now must include explicit time dependence;
DtF = ∂tF + {F,H } = 0, where DtF is the (Lagrangian) phase-
space convective derivative and ∂tF = ∂F/∂t is the (Eulerian) time
rate of change of F at a fixed phase-space coordinate, whilst {F,
H} is the same as equation (1). We observe that the argument in
Section 2.1 still holds for the time-dependent CBE as long as ∂tF

is also a known quantity. In particular, equation (22a) maintains the
same form but the right-hand side additionally includes the ∂tF

term (S → S + ∂tF ), and so the determination of the acceleration is
still possible if ∂tF ’s are known throughout phase space. However
∂tF is impossible to measure directly within a practical time-scale
barring few exceptional situations – by contrast, if ∇� is known
independently, ∂tF may instead be determined using the CBE. If ∂tF

is considered as unknown, the system of equations in equation (22a)
becomes under-constrained and the problem is technically insoluble
without some additional restrictive assumptions on the behaviours of
∇� or ∂tF .

Nevertheless, we may still infer effects due to the system not
being in equilibrium. If the time derivatives are neglected when not
warranted, that will introduce a systematic bias. Notably, the linear
system of equations in equation (22a) would then not necessarily
be consistent even if all the phase-space derivatives of F are known
exactly. Whilst equation (24a) still has a unique solution despite the
system of equations in equation (22a) being inconsistent, the resulting
solution is actually offset by the ‘sample average’ of ∂tF .That is to
say, if ∂�s/∂xi is the solution of inverting equation (24) with ∂tF =
0 (whereas ∂�/∂xi is the true gravitational acceleration component),
then

∂�s

hi∂xi

= ∂�

hi∂xi

−
3∑

j=1

A−1
ij Tj , where Tj =

∑
sample

1

ς2

∂F

∂�j

∂F

∂t
(25)

and A−1
ij is the matrix element of the inverse matrix of [Aij] in

equation (24b). This follows from the fact that ∂�/∂xi is actually
the solution of equation (24) with S → S + ∂tF . If we insert
back the solution (equation 25) into equation (22a) and consider
the departure from the equality at each sample point, then (with
Bi = ∑3

j=1 A−1
ij Tj )

3∑
i=1

∂�s

hi∂xi

∂F

∂�i
− S = ∂F

∂t
−

3∑
i=1

Bi

∂F

∂�i
. (26)

In other words, the residuals consist of the time derivative ∂tF and
the projection of the bias (i.e. Bi) on to ∇�F . We note that Bi’s are
unknown but fixed constants and so the last term is also considered
as ∇�F projected on to a fixed (albeit unknown) direction, which
behaves in a predictable systematic pattern. Consequently it would be
a smoking gun for a system in disequilibria if the observed residual
on each sample point exhibits a systematic behaviour over velocity
space not consistent with a projection of ∇�F on to a fixed direction.
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6 IMPLEMENTATION

Given a known DF, equation (24) furnishes us with a way to calculate
gravitational accelerations, under the assumption of equilibrium. We
now wish to test this technique on a mock data set.

Here, we demonstrate a complete pipeline from a 6D stellar
kinematics data set to a map of accelerations. This will necessitate an
additional step in the procedure, that is, obtaining the underlying DF
of the data. Whereas a conventional approach might have involved
fitting the data with a well-motivated analytic DF (e.g. Binney &
Piffl 2015; Williams & Evans 2015; Posti & Helmi 2019), we instead
follow the philosophy of Green & Ting (2020) and construct a non-
parametric DF directly from the data.

Our method can thus be summarized as follows:

(i) Employing a normalizing flow technique, we reconstruct a non-
parametric DF from the mock data.

(ii) With this reconstructed DF in hand, we exploit equation (24)
to calculate accelerations.

This exercise serves mainly as a proof of concept. In a subsequent
paper (Naik et al., in preparation), we shall apply the same method-
ology to local stellar kinematics, with a view towards mapping the
acceleration field (and thence the distribution of matter) in the solar
neighbourhood.

It is worth noting that an acceleration field calculated with our
method is not guaranteed to be physical, in the sense that it might
show negative divergences (i.e. negative mass densities) or non-
zero curls (i.e. non-conservative force). We view this feature as an
advantage: the existence of such non-Newtonian accelerations can
serve as a valuable post hoc test of our method. If they are found to be
robust, they might hint at disequilibrium features or non-gravitational
force (even modified gravity). On the other hand, the requirements
for non-negative divergences and vanishing curls can be imposed a
priori if so desired, by adding penalty terms to the loss function used
to train the normalizing flow. These non-Newtonian accelerations are
then still possible in principle, but heavily suppressed.

6.1 Ergodic models

We consider a simple galaxy halo model in which the DF self-
consistently generates both the potential and the density. We generate
a mock 6D data set using this DF, and then attempt to derive the
underlying acceleration field from the mock data. For this model,
we adopt the spherical Hernquist (1990) profile, specified by the
potential-density pair

�(r) = − GM

r + a
; ρ(r) = M

2π

a

r(r + a)3
, (27)

where M and a are respectively the galaxy mass and scale radius.
The isotropic (ergodic) DF for this model is given by2

F = f (E) = 1

8
√

2π3(GMa)3/2

×
[

3 sin−1√ε

(1 − ε)5/2
+

√
ε (1 − 2ε)(8ε2 − 8ε − 3)

(1 − ε)2

]
,

(28)

2Here the normalization uses
∫

d3x d3v F = 1 (cf. Binney & Tremaine
2008, equation 4.1), whereas equation (17) of Hernquist (1990) follows∫

d3x d3v F = M .

where ε = −Ea/GM ≥ 0 (here, −E is the specific binding energy of
a star). In this case, the phase-space gradients of F are determined
solely by the gradients of the energy E.

A visualization of the isotropic DF, for M = 1010 M� and a =
5 kpc, is given in the left-hand panel of Fig. 1. There is a clear curve
above which the DF is everywhere zero: viz. the escape velocity
�esc = √

2GM/(r + a). With this DF, we employ a Markov Chain
Monte Carlo (MCMC) technique to sample a mock 6D data set
with 106 stars. For this, we use the affine-invariant ensemble sampler
implemented in the software package EMCEE (Foreman-Mackey et al.
2013). A density plot of this mock data set is shown in the second
panel of Fig. 1.

From this mock data set, we now want to learn the underlying DF
by means of a normalizing flow technique (Rezende & Mohamed
2015). Normalizing flows are a relatively new probability density
estimation technique, and the basic principle behind them is rather
straightforward: a simple base distribution such as a Gaussian is
subject to a series (or ‘flow’) of complex (but bijective and invertible)
transformations into a target distribution. The parameters of these
transformations are then optimized so as to give a target distribution
that closely resembles the data. More detailed descriptions of the
technique are given in the article by Rezende & Mohamed (2015)
first describing normalizing flows, and the recent review articles by
Kobyzev, Prince & Brubaker (2020) or Papamakarios et al. (2021).

Despite taking a single Gaussian as the starting point, a flow with
sufficiently flexible transformations (and sufficiently many of them)
is able to mimic arbitrarily complex multimodal data distributions.
In practice, even rather minimalist flow architectures are capable of
achieving great complexity (see e.g. Kingma & Dhariwal 2018 for
an impressive application of flows in image generation).

Another class of density estimation technique capable of emulating
arbitrarily complex data sets is kernel density estimation. The
advantages of flow-based techniques over kernel-based techniques
are two-fold. First, flows are less susceptible to over/under-fitting
data (Both & Kusters 2019). The second advantage is more context-
dependent. Kernel-based techniques typically require no training
beyond simply loading the kernels into memory, and perhaps some
tuning of the kernel-width parameter. However, given a data set of
size N, evaluating the kernel density then essentially requires the
computation of N kernel functions, which can be costly as N grows
large. Flows do require a training procedure, the cost and duration of
which depend on the flow architecture and the size and complexity
of the data set in question. However, given a trained flow, evaluating
the probability density function is then a mere matter of computing
a single Gaussian and a small number of transformations, regardless
of N. In summary, kernel densities are cheap to train but expensive
to evaluate, while flow densities are expensive to train but cheap to
evaluate. In our context, we need to train a density estimator only
once to learn the DF, but would then like to evaluate it many times,
e.g. for the sums in equation (24). This would therefore suggest flows
over kernels.

Another notable aspect of normalizing flows is that the target
distribution is guaranteed to be a well-behaved probability distribu-
tion, i.e. positive everywhere and normalized to unity. The positivity
requirement is met straightforwardly by working in log-space, but
the normalization requirement is more exacting: it restricts the space
of usable transformations to bijective and invertible functions. This
space is then restricted further by the desire for computational
efficiency. Different normalizing flow techniques differ primarily in
the details of these transformations, as well as the base distributions
and flow architectures.
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Figure 1. The isotropic Hernquist DF (M = 1010 M�, a = 5 kpc), projected into r-� space. Note that the absolute values of the DF are not of immediate interest,
so in each case we have divided by a reference value, given by the exact DF evaluated at r = a, � = 0.5�esc(r = a). Left: The exact DF given by equation (28).
Second panel: A histogram of our mock data set. Third panel: The normalizing flow reconstruction of the DF. Right: Fractional residuals comparing the
reconstructed and exact DFs. This figure illustrates that the normalizing flow technique successfully learns the isotropic Hernquist DF.

We differ from Green & Ting (2020) in that we employ ‘masked
autoregressive flows’ (MAFs; Papamakarios, Pavlakou & Murray
2017). This choice is motivated by the benchmarking of a number
of normalizing flow algorithms. We train an ensemble of 30 MAFs,
each with eight transformations along the flow, each transformation
being a neural network with one hidden layer of 64 units. We use the
implementation of MAFs in the publicly available software package
NFLOWS.3

The MAFs are trained on the mock data, and thus learn a non-
parametric DF that closely resembles the data. This learned DF is
shown in the third panel of Fig. 1. It is worth emphasizing that, whilst
this plot is in two dimensions, the MAFs are trained using 6D data
and learn a 6D DF. The plotted values here are taken from a 2D
slice through this 6D DF, with y = z = �y = �z = 0 (so that x = r,
�x = �). The rightmost panel of Fig. 1 shows fractional residuals, i.e.
Fmodel/Fexact − 1. Encouragingly, the residuals are less than 5 per cent
throughout most of phase space. In other words, our algorithm is
successfully able to reproduce the isotropic Hernquist DF.

One apparent qualification to this success is the region near the
�esc-curve, where the DF is consistently overestimated. The �esc-
curve represents a hard edge in the Hernquist DF, and even very
flexible non-parametric density estimation schemes can struggle to
reproduce such a hard edge. However, this need not be a cause for
concern, for the following reason: if we progress to step (ii) of our
method and attempt to derive acceleration at a given spatial location
using this learned DF, the right-hand side of equation (24) requires us
to choose a number of points in velocity space. At this stage, we are
free to choose whichever velocities we like, and we can thus choose
to steer well clear of this region near �esc, which we term a ‘zone
of avoidance’. Of course, in real-world applications, one might not
know the exact value of �esc, but one can always make an educated
guess (e.g. Williams et al. 2017; Deason et al. 2019).

3NFLOWS: normalizing flows in PYTORCH, doi:10.5281/zenodo.4296287

Equation (24) requires the spatial and velocity derivatives of the
DF to calculate accelerations. We therefore check if our technique
accurately recovers not just the DF, but also its derivatives. Here,
a compelling benefit of the normalizing flow technique is that the
learned DF is everywhere exactly differentiable, irrespective of the
complexity of the flow architecture. Thus, we can efficiently calculate
exact derivatives, obviating the need for potentially noisy finite
difference schemes.

Fig. 2 compares the first derivatives ∂F/∂x and ∂F/∂�x of the
exact and reconstructed DFs, evaluated on a 2D (x, �x) plane in
phase space. Inspecting the residuals in the lower panels of Fig. 2, it is
apparent that the MAFs are rather successful at accurately recovering
the gradients of the DF; the residuals are less than 10 per cent
throughout most of phase space.

As seen in Fig. 1, there is a problematic region of larger residuals
near �esc. In addition to this, two more such regions are apparent.
First, the ∂F/∂�x residuals grow rather large in the immediate
vicinity of �x = 0. This is the peak of the 1D �x-distribution, and
so the nearby gradients are small and susceptible to mis-estimation.
Secondly, the ∂F/∂x residuals show similar issues around x = 0.
The same arguments hold here, perhaps exacerbated by the power-
law cusp in the Hernquist model. For calculating accelerations, the
first problem can be avoided as in the �esc case, i.e. by sampling
velocities that avoid the region around �x = 0 (likewise �y, �z).
However, in the second region around x = 0, the residuals appear to
be consistently large throughout velocity space, suggesting that our
calculated accelerations at these small very radii will be biased.

With these points in mind, we now progress to step (ii) of
our method, and derive accelerations from our learned DF using
equation (24). Here, we take 50 points along the x-axis, and at each
of these points we sample 103 velocities for the sums on the right-
hand side of equation (24). We perform this sampling by calculating
the escape speed �esc at each spatial point, then uniformly sampling
104 speeds between 0 and 0.9 �esc. Random directions are then chosen
from the unit sphere. Finally, we randomly subsample 103 velocities
from this set, avoiding the region around �i = 0.
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Figure 2. First derivatives of the isotropic Hernquist DF. The left column
of three panels shows the spatial derivative ∂F/∂x, whilst the right column
gives the velocity derivatives∂F/∂�x . The derivatives are everywhere divided
by a reference value, evaluated as in Fig. 1. Top row: Exact derivatives
computed by differentiating equation (28). Middle row: Derivatives of
the flow-reconstructed DF. Bottom row: Fractional residuals. This figure
demonstrates that the normalizing flow technique not only recovers the DF
but also its gradients, which are required for measuring accelerations, cf.
equation (24).

After performing this sampling, we have 103 points in phase space
at which we evaluate equation (24) for each spatial location. The
results of this are shown as the ‘Isotropic, σ = 0’ curve in Fig. 3.
It is clear that the method derives the accelerations in the isotropic
Hernquist model very well. The fractional residuals shown in the
lower panel indicate an accuracy everywhere at the level of 3 per
cent or better.

6.2 Anisotropic models

We repeat this exercise using a simple anisotropic DF for the
Hernquist model (Baes & Dejonghe 2002; Evans & An 2005, 2006)

F = f (E, �) = 3

4π3GMa

ε2

�
. (29)

Now, the DF depends on the magnitude of the angular momentum
� = r�t (here �2t = �2θ + �2φ) as well as the (dimensionless) binding
energy ε. As before, we sample one million positions and velocities
from this DF, then feed this data to an ensemble of MAFs.

Fig. 4 is the anisotropic analogue of Fig. 1, and shows the exact
DF, a density plot of the mock data, the learned DF, and the fractional
residuals. As the DF is not isotropic, we do not show the DFs
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Figure 3. Accelerations in the Hernquist model. The solid black line in
the upper panel shows the exact accelerations along the x-axis, whilst the
points show the accelerations derived by applying equation (24) to the non-
parametric DF learned by the normalizing flows. The different colours show
results for flows trained on different data sets, as labelled in the legend. The
lower panel shows fractional residuals. This figure illustrates that our method
successfully derives accelerations from a 6D snapshot of kinematic data.

projected into (r, �) space, but rather into (�r , �t) or radial versus
tangential velocity space at fixed position (r = a). Consequently, the
‘Data’ panel does not show the full data set as in Fig. 1, but only the
stars within a small radial slice around r = a.

The residuals in the anisotropic DF are generally larger than in the
isotropic case, but none the less reasonably small, ∼5–10 per cent.
Moreover, there seems to a be an additional zone of avoidance here
beyond those already discussed in the isotropic case, around �t = 0.
The source of the large errors here can be seen directly from the form
of the DF (equation 29): �t = 0 means � = 0, so the DF diverges. The
probability distribution remains well-behaved, but the MAFs none
the less struggle to reproduce the sharp rise in probability density at
small �t.

Despite these foibles, the accelerations are still well recovered
in the anisotropic case. These are shown as the points labelled
‘Anisotropic, σ = 0’ in Fig. 3. Indeed, the residuals here are
comparable to the isotropic case.

One aspect of our procedure worth emphasizing is that successful
calculation of accelerations relies on the judicious choice of velocity
samples, steering clear of the ‘zones of avoidance’ in which the DF
and its gradients are poorly estimated. We have seen above that the
existence and locations of zones can vary from context to context,
and so it might be difficult to know a priori where they are for any
given real stellar population. This is a potential drawback to our
method, but it can be readily circumvented by performing tests on
mock data sets.

6.3 Effect of errors

As a final test, we assess the potential impact of observational errors
by adding Gaussian noise to the isotropic data set, at the 1 per cent
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Figure 4. The anisotropic Hernquist DF, projected into �r -�t space at fixed position (r = a). The four panels carry the same meanings as in their isotropic
analogues in Fig. 1, although some differences are discussed in the text. The normalizing flow technique is also successful at recovering the anisotropic Hernquist
DF, albeit with larger residuals than in the isotropic case.

and 10 per cent level. The results of this trial are also shown in Fig. 3,
alongside the original results for the noiseless data set. Based on
this test, it appears that random errors of this magnitude have no
appreciable adverse impact on the calculation of accelerations, with
residuals still at the per cent level. The application of our method to
real data is therefore unlikely to be limited by statistical error.

Going beyond our simple test, there is a natural way to propagate
observational errors in our method: when training an ensemble of
MAFs on the data, each MAF could be provided with a slightly
different data set from which to learn, generated from a different
realization of the error distribution. Each member of the ensemble
will then have a different learned opinion about the acceleration at a
given spatial location, and the spread of these values will incorporate
observational errors.

7 C O N C L U S I O N S

The phase-space distribution (DF) for the stars in the Milky Way
is an obvious way to organize the new data sets comprising of
nearby stars in the full 6D phase-space coordinates. One question
that follows is what information the DF actually contains about the
overall properties of the Galaxy. We have proved that, if the stationary
DF of a population is known locally in the neighbourhood of a fixed
real-space position, then the gravitational acceleration at that location
can be uniquely determined from the phase-space gradients of the
DF, using the collisionless Boltzmann equation (CBE) under the
assumption of dynamical equilibrium. A sufficient condition for this
to be true is that the Hessian of the DF with respect to the momenta
does not vanish (see equation 5).

In practice, once the CBEs are set up locally at more than three
independent phase-space points sharing the real-space coordinates,
we have an over-determined system of linear equations on the
potential gradients, which can be solved via techniques, such as
the least square and normal equations. A practical prescription of
how to do this is provided in equation (24).

In light of this finding, we address the question as to how to
empirically reconstruct the DF suitable for the local measurements

of the gravitational acceleration. Recent developments in machine
learning techniques offer great promise in this regard. In partic-
ular, Green & Ting (2020) proposed that the DF of stars can be
reconstructed from samples of discrete positions and velocities via
the method of normalizing flows and the underlying potential can
be recovered from this empirical DF. We examine this suggestion
by devising tests derived from isotropic and anisotropic Hernquist
models using masked autoregressive flows to build the DF. Once
built, direct solution of the overconstrained linear equations for the
accelerations (equation 24) is highly efficient, and preferable to use
of a neural network (cf. Green & Ting 2020). The accelerations are
everywhere well reproduced with samplings of ∼1000 velocities at
any given position. One caveat here is the existence of regions of
velocity space in which the DF is poorly estimated, which need to be
avoided in the sampling. Tests with the addition of Gaussian noise
at the 1 per cent or 10 per cent level suggest that the method is stable
against errors of this magnitude.

There are a number of evident applications of this method, some
of which we are actively pursuing. For example, if we reconstruct
the velocity distributions of a homogeneous (in equilibrium) stellar
population in the solar neighbourhood from the sample of the nearby
stars (e.g. Gaia Collaboration 2021), it is possible to measure the
local gravity at the sun’s position due to the Galactic potential (Naik
et al., in preparation). This has implications both for the measurement
of the local dark matter density and for tests of alternative theories
of gravity. Equally, the method is potentially applicable to the data
sets of Milky Way halo stars to measure the mass of the Milky Way
and its escape speed.

One assumption underlying the implementation of our method
is that of dynamical equilibrium. Incorrectly assuming ∂F/∂t = 0
leads to an additive bias in the derived accelerations that is linear
in ∂F/∂t . In addition, disequilibrium can manifest itself through
the system of equations (22a) sampled at many different velocity
space positions being inconsistent with a single value of ∂�/∂xi

(after accounting for observational uncertainties), or equation (24)
resulting in different values of the acceleration for distinct choices
of samples.
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There is now a significant body of evidence suggesting the
existence of disequilibria in the Milky Way disc (e.g. Antoja et al.
2018; Schönrich & Dehnen 2018; Salomon et al. 2020), which will
need to be carefully considered in future applications of our technique
to local stellar kinematics. Banik, Widrow & Dodelson (2017) find
the bias in inferred accelerations to be at the 10 per cent level if such
systematic perturbations are ignored. So, it is interesting to explore
whether the pattern of residuals at a sampling point has a systematic
behaviour over velocity space that may be a tell-tale signature of
departures from equilibrium (cf. Li & Widrow 2021 for a somewhat
similar idea).

It is also worth remarking that the first step of our outlined
procedure, i.e. learning the DF with normalizing flows, is entirely
assumption-free. Given this learned DF, one could then study the non-
equilibrium structures themselves. These non-equilbrium structures
imprinted in the stellar kinematics are much more than merely
sources of systematic error: perturbations to a system can reveal
insights about the system itself. For example, Widmark et al. (2021)
has shown that the shape of the Gaia phase spiral can be used to
constrain the local gravitational potential.

To summarize, our method bypasses many of the assumptions that
have been traditionally adopted in studies of galactic dynamics, and
represents an efficient, flexible, and data-driven means of extracting
underlying gravitational accelerations from snapshots of stellar
kinematics.
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