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Abstract: We study the chaos and hyperchaos of Rydberg-dressed Bose-Einstein condensates (BECs)
in a one-dimensional optical lattice. Due to the long-range, soft-core interaction between the dressed
atoms, the dynamics of the BECs are described by the extended Bose-Hubbard model. In the mean-
field regime, we analyze the dynamical stability of the BEC by focusing on the ground state and
localized state configurations. Lyapunov exponents of the two configurations are calculated by
varying the soft-core interaction strength, potential bias, and length of the lattice. Both configurations
can have multiple positive Lyapunov exponents, exhibiting hyperchaotic dynamics. We show the
dependence of the number of the positive Lyapunov exponents and the largest Lyapunov exponent
on the length of the optical lattice. The largest Lyapunov exponent is directly proportional to areas
of phase space encompassed by the associated Poincaré sections. We demonstrate that linear and
hysteresis quenches of the lattice potential and the dressed interaction lead to distinct dynamics due
to the chaos and hyperchaos. Our work is relevant to current research on chaos as well as collective
and emergent nonlinear dynamics of BECs with long-range interactions.

Keywords: hyperchaos; Bose-Einstein condensation; Rydberg dressing; Lyapunov exponents;
dynamical stability

1. Introduction

Over the past two decades, Bose-Einstein condensates (BECs) of ultracold atomic
gases have become an ideal system for studying both quantum and nonlinear dynamics
due to the high controllability of the two-body interactions [1], trapping potentials [2],
and spatial dimensions [3,4], along with long coherence times. The emerging nonlinear
phenomena depend strongly on the two-body interactions between atoms. In the presence
of s-wave interactions, BECs can form dark and bright soliton [5-12] and exhibit Newton’s
cradle behavior [13], which are paradigmatic examples in nonlinear physics. In trap array
and optical lattice settings, the self-trapping of the BEC emerges due to strong repulsive
interactions [14-23], where the BEC is localized within a single site. This is in contrast to
the homogeneous, superfluid state, which form the ground state of an infinite lattice when
the interaction is weak [24-26]. Both the homogeneous and self-trapped states correspond
to solutions, i.e., fixed points, of the discrete Gross—Pitaevskii (GP) equation [27], which is
a nonlinear Schrodinger equation that governs the mean-field dynamics. The stability of
these fixed points depend on various parameters such as the s-wave interaction. It has been
shown that the self-trapped state in a double-well potential can only be stable when the
onsite interaction strength is much stronger than the tunneling strength [20]. Nonetheless,
the homogeneous state can be disturbed by the s-wave interaction and external potentials,
giving rise to chaotic dynamics [28,29]. Under strong periodic modulation of the hopping,
extended chaotic regions are found in phase space [30].
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On the other hand, long-range interactions play important roles in determining the
dynamical stability of BECs. Solitons may occur in BECs in the presence of dipolar inter-
actions [31-35]. The competition between s-wave and dipolar interactions [36-38] leads
to bifurcations of the eigenspectra and chaotic dynamics when confined in a harmonic
trap [39,40]. The self-trapping of dipolar BECs in double-well [41-44] and triple-well
potentials [45,46] have been examined theoretically. Besides the dipolar interaction, one
can laser couple ground state atoms to high-lying Rydberg states [47-54], which induces
a long-range, soft-core interaction between two dressed atoms (with a distance r). The
soft-core interaction is constant when r is within the soft-core radius R, typically of the
order of several micrometers [48]. For r > R, the interaction decreases rapidly as r°,
shown in Figure 1a. Various theoretical studies on the static and dynamical properties of
Rydberg-dressed atoms confined in harmonic traps [55-58] and optical lattices [59-65] have
been conducted in the past decade. Rydberg-dressed interactions have been experimentally
demonstrated in optical tweezers [66], optical lattices [67-69], and harmonic traps [70],
using various atomic species such as Rb [67,68], Cs [66,70], and Li [69] atoms. In Ref. [71],
we showed that the self-trapping dynamics of Rydberg-dressed BECs can be controlled in
a triple-well potential through mean-field and quantum mechanical analyses.
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Figure 1. (Color online) The extended Bose-Hubbard chain and quenching schemes. (a) Nearest-
neighbor (U) and next-nearest-neighbor (V) interactions between atoms in a one-dimensional optical
lattice (lattice constant d). The tilting of the lattice is denoted by the parameter . We consider a linear
quench in (b) v and (c) U towards a non-zero value (solid). When y (U) returns to the initial value
(both solid and dashed), this is a hysteresis quench. The rate to quench -y (U) is « (B) . See text for
details of the soft-core interaction and quenching protocols.

In this work, we investigate chaotic properties of Rydberg-dressed BECs in a one-
dimensional (1D) optical lattice in which the dressed interaction leads to a multi-site
density—density interaction. In the semiclassical regime, the nonlinear dynamics of the Bose-
Hubbard model is captured by a discrete, coupled GP equation. Nonlinear eigenenergies,
Bogoliubov spectra as well as Lyapunov exponents of the dressed BEC in the lattice are
investigated. We then explore the dynamical stability of the ground state and localized
state, where the dependence of the largest and the total number of positive Lyapunov
exponents [72,73] on the dressed interaction and system size are explored. We show that at
least two positive Lyapunov exponents can be found when the interaction is strong and
when the number of sites is equal to or larger than four. This leads to the emergence of
hyperchaos in the dynamics. We probe the chaotic dynamics by employing both a linear and
a hysteresis quench of the potential bias and dressed interaction [74-76].

The paper is organized as follows. In Section 2, the Hamiltonian of the Bose-Hubbard
chain is introduced. The corresponding mean-field approximation and GP equations
are given. Methods on calculating the eigenenergy, Bogoliubov spectra, and Lyapunov
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exponents are briefly introduced. Quench schemes of the potential bias and nonlinear
interaction are explained. We explore the static (eigenenergies and Bogoliubov spectra)
and dynamical properties (Lyapunov exponents) of the ground state and localized state
configurations in Sections 3 and 4, respectively. Dynamics driven by both the linear and
hysteresis quenching parameters are explored with different initial states. In Section 5, we
examine the scaling of the Lyapunov exponents with the system size for the two different
configurations. We demonstrate, through numerical calculations, that areas of the Poincaré
sections are almost linearly proportional to the largest Lyapunov exponent. We conclude
our work in Section 6.

2. Model and Method
2.1. Extended Bose-Hubbard Model in the Semiclassical Limit

Our setting consists of a gas of N bosonic atoms at zero temperature confined in a
one-dimensional lattice, with the lattice constant d, as depicted in Figure 1a. The Rydberg
dressing induces long-range interactions between atoms at different sites. Taking into
account the hopping between nearest-neighbor sites, we obtain an extended Bose-Hubbard
Hamiltonian of L sites [52] (i = 1):

. . 1
A = —]Zajaj+2rjnj+§Him, (1)

where 4 j(ﬁ;f) is the bosonic annihilation (creation) operator at site j. The tunneling strength

] acts only on nearest-neighbor sites, denoted by (:) in the summation. Here, 71; = ata i

is the number operator, while I is the local tilting potential. The titling is given ]by
[; = —y(j—1-[L/2]), where |- | and 7 are the floor function and level bias between
neighboring sites, respectively. The onsite and long-range interactions are described by
Hiy = ngL aj(a;—1) + 25]‘ Ajjfifj. The onsite interaction g = 47tas/m [2] depends on
the s-wave scattering length a5 and mass m, where the former can be adjusted by Feshbach
resonances [2]. The soft-core shaped long-range interaction is given by A;; = Ce/[|i —
j|6d® + R®], with Cg being the dispersion coefficient (Figure 1a). Both the soft-core radius R
and Cg can be tuned by laser parameters [48]. In this work, we will restrict our investigation
to the onsite, nearest-neighbor (A; ;1) and next-nearest-neighbor (A, j+») interactions only,
where R ~ d. This approximation is valid as the soft-core interaction decays rapidly when
the separation between sites is larger than the soft-core radius.

In the semiclassical limit N > 1, we employ the mean-field approximation where
the bosonic operator is described by a classical field y;, i.e., 4; ~ %«/N and ﬁ}r R 1;;]’.‘ VN,

with the normalization condition }; ;i 2 = 1. This yields the semiclassical Hamiltonian

H ~ H/N:
L 2 L * * N L 2 2 2
Ho= LR =T (v viaw) + 5 LIl e (le2—1) + Ay lwl]. @
] ] L]

The dynamics of the classical field ; is obtained via the canonical equation idy;/dt =
0H /dy;, yielding the coupled GP equations:

i = —J(ji1+ 1)+ [T+ Wlp* + €)
U(|¢j+1 2+ i) + V(Igjl* + |1Pj—2|2>]¢’j/

where we have defined W = N(A;; +g), U = NAj 11, and V = NA; ;1 to be the onsite,
nearest-neighbor, and next-nearest-neighbor interaction strengths. The onsite interaction
W takes into account contributions from both the s-wave and soft-core interactions. We
will assume a vanishing onsite interaction, i.e., W = 0, which allows us to focus on effects
induced by the long-range interaction part. To be concrete, we will fix the nearest-neighbor
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and next-nearest-neighbor interactions at U = 2V in the following discussion. Time and
energy will be scaled with respect to 1/] and | in what follows.
It is convenient to examine the real (R; = Re[(;]) and imaginary components (Z; =

Im[y;]) of ¥;:
Rj = —](Ij+1+zjf1)+[r]‘+W|l/J]’|2+ 4)
U(IIP]'H\Z + i1 ) + V(192 + |1Pj—2|2)}zj/
Ii = J(Rjp1+Rjm1) — [T+ Wig* + ®)

U (191 + 19512) + V(1952 + 19521 | R;,

with [¢p; |> = R]2 + I]Z. Both R; and Z; are real-valued functions of time. We will calculate
Lyapunov exponents and the Poincaré sections based on these real functions. Note that R
and Z; represent mean values of the quadrature of the operator 4;. The quadrature fulfills
the commutation relation similar to the position and momentum operator [77]. Hence, the
mean values of the quadrature allow us to obtain useful information on the dynamics of
the system in phase space. For small systems, L = 2 or 3, one can also describe the classical
field with the canonical phase and particle number decomposition [15,78].

2.2. Nonlinear Eigenenergies and Bogoliubov Spectra

Though the Hamiltonian (2) is Hermitian, the density-dependent nonlinearity prevents
us from calculating the eigenenergy through conventional diagonalization. To overcome
this, a shooting method will be employed to numerically evaluate the eigenstate ¥; =
(1,92, - -, ¥L] and the corresponding eigenenergy e; self-consistently [71]. A trial solution
is seeded into the semiclassical Hamiltonian. It is then diagonalized, leading to a new
eigenstate and eigenenergy. This process is iterated until the resulting eigenstate and
eigenenergy are obtained self-consistently.

For interacting systems, one can analyze the Bogoliubov spectra e€p to understand the
stability of the eigenstate. This is achieved by linearizing around a given state ¥ (e.g., a fixed
point of the semiclassical system), where each component is given by ¢; = ; + u je_ieB b
v]’f eest, with u j and v; being the probability amplitudes of the Bogoliubov quasiparticles [2].
The dynamics of u; and v; are described by the Bogoliubov equations [79,80]:

(& 2)6) = «() ©

where £ = Hy+2UP —pand N = —UP. Hy and P are L x L block matrices. From
Equation (3), we obtain the matrix elements (y;|Ho|y;) = Tj, (¢j|Hol¢jr1) = —J,
Wi|Ply;) = 11> + 1§ + (P2 + (9212 /2, (@jIP¢jz1) = 2¢ju1%; and
($j|PlYj+2) = $j+29;, while other matrix elements are zero. If the Bogoliubov spec-
tra are complex numbers, the state is then dynamically unstable as Bogoliubov quasiparticles
grow (decay) exponentially with time, the rate of which is determined by the imaginary
part of the spectra.

2.3. Poincaré Sections and Lyapunov Exponents

The emergence of chaos in the dynamics can be characterized by the Poincaré sections
and Lyapunov exponents. For L sites, the possible trajectories are the complete set of
{R1, - ,Ry,1h,--,Z.}. Due to the normalization condition, we need to solve a 2L — 1
dimensional system to obtain the dynamics. It is difficult to comprehend the stability of the
trajectories in such a high-dimensional phase space. Instead, we project the dynamics to a
two-dimensional (2D) Poincaré section to identify the dynamical properties. To calculate
the 2D Poincaré section, we record trajectories of selected variables (R, Z;) as they cut
through the Uy plane (j # k), provided that U, > 0. These intersecting points form the 2D
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Poincaré section. To be specific, we will evaluate the Poincaré section of the variable (R,
1) on the U plane.

The strength of the chaos can be measured by the Lyapunov exponents associated
with the equations of motion [72,73]. The Lyapunov exponents give the rate of separation
between trajectories for a given initial state. As the Lyapunov exponents depend on the
initial state, we initially consider both the ground state and a localized state. In a localized
state, nearly all the condensate sits in a single site, which can be stable (i.e., the self-trapping
state) when the nonlinear interaction is strong. In this work, the Lyapunov exponents
Aj(j=1,---,2L) are calculated via DynamicalSystems.jl, a fast and reliable Julia library,
to determine the dynamics of nonlinear systems [81]. We confirmed with the method in
Ref. [72] that it gives consistent data. When there exists at least one positive Lyapunov
exponent, the trajectories will separate exponentially, leading to chaotic dynamics. The
dynamics is hyperchaotic when there are more than two positive Lyapunov exponents [73].

2.4. Quenching Schemes

In Sections 3 and 4 we will explore the dynamics of the system with time-dependent
parameters via the following quenching schemes:
Scheme I: First, we consider a linear quench of the potential bias [71]. The bias
between two neighboring sites is given by the following function:

TL=Titat, %
where 7; and « are the initial value and quench rate, respectively. With «; < 0, the quench
takes place from t = 0 tot = 2v¢/a with ¢ = —7;, depicted by the solid curve in
Figure 1b.

Scheme I : Alternatively, we consider a hysteresis quench [74-76] where the system
begins at ; and then evolves to 7y¢. At time T = y¢/a, the potential bias is quenched back
towards ;. The function describing this scheme is as follows:

[T~

TH =05+ () ®)

The corresponding scheme is shown by the solid and dashed curves in Figure 1b.
Scheme III : In addition to quenching the level bias, we also change the two-body
interaction strength through a linear ramp:

Up =U; + pt )

where U is the initial interaction strength and f is the quench rate. This is shown by the
solid curve in Figure 1c. Note that the next-nearest-neighbor interaction V' also depends on
time due to the relation U = 2V.
Scheme IV : The hysteresis counterpart of the interaction quench is given by the
following equation:
[ -

Uy = Uf +(U; — Uf)f, (10)

where Uy is the final interaction strength, with T/ = U/ .

3. Stability of the Ground State
3.1. Eigenenergies, Bogoliubov Spectra, and Lyapunov Exponents

Without the nonlinearity, the number of eigenenergies N is identical to L, the dimen-
sion of the semiclassical system. The number of eigenenergies can be larger than L when the
interaction is strong. As an example, eigenenergies for L = 3 as a function of the bias y are
shown in Figure 2a. We find that Ne > L when |y| < U, where the nonlinearity dominates.
Loops and crossings appear in the eigenenergies, except the highest energy level.
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Figure 2. Eigenenergies, Bogoliubov spectra, and Lyapunov exponents when varying the tilt -y.
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We show (a) the nonlinear eigenenergy, the Bogoliubov spectra of (b) the ground state and (c) the first
excited state , and (d) the Lyapunov exponents of the ground state. The nonlinearity dominates when
|v| is small, leading to loops in the eigenenergy. The Bogoliubov spectra are all real when the system
is in the ground state (b). The Bogoliubov spectra have complex components (red region) when the
system is in the first-excited state. Positive Lyapunov exponents indicate the system exhibits chaos
dynamically, which appear mostly in the loop region of the eigenenergy. Parameters are L = 3 and
U=2v=>=.

For a given state of the nonlinear system, one obtains 2L Bogoliubov spectra, whose
values depend on the specific eigenstate and nonlinear interaction strength. The Bogoliubov
modes are stable for all 7 when the system is in the ground state, i.e., the Bogoliubov
spectra ep are real, as shown in Figure 2b. This is in contrast to excited eigenstates, whose
Bogoliubov spectra have imaginary components. As an example, the Bogoliubov spectra
of the first excited state are shown in Figure 2c. The corresponding Bogoliubov mode will
decay (grow) exponentially, when the imaginary part is negative (positive).

The chaotic dynamics of the system is characterized by positive Lyapunov exponents.
In Figure 2d, Lyapunov exponents are shown for the ground state of the system. When
increasing -y, negative and positive Lyapunov exponents are found in regions where the
eigenenergies show loops. The negative and positive Lyapunov exponents appear in pairs
with the same absolute values as our system is conservative. In this example, one positive
Lyapunov exponent can be found when |y| < 1, indicating the presence of chaos. This
means that small fluctuations on the ground state could gain exponential growth, and
hence drives the system away from the ground state.

To further understand the roles played by the nonlinearity, we calculate eigenenergies
as a function of the interaction strength U shown in Figure 3a,b for L = 3and L = 5,
respectively. It can be seen that new branches are generated when the nonlinear interaction
U is large enough. Lyapunov exponents of the ground state of the nonlinear system are
shown in Figure 3c,d. Positive Lyapunov exponents are found in the strongly interacting
region, whose values increase with increasing U. Larger Lyapunov exponents mean that the
exponential growth of the instability can be even faster. More importantly, the number of
Lyapunov exponents now depends on L. For L = 3, one obtains a single positive Lyapunov
exponent when U 2 4. When L = 5, there are three positive Lyapunov exponents. This
indicates that the system enters the so-called hyperchaos regime [82-84], where more than



Photonics 2021, 8, 554

7 of 17

one positive Lyapunov exponents can be found in the dynamics. In the two examples, we
obtain maximally L — 2 positive Lyapunov exponents as the energy and particle number
are conserved in the Bose-Hubbard chain.

0.1
(a) (c)
5.0
w55 ~< 0.0
0.0
-0.1
(b) 0514
5.0
W 5. ~< 0.0
0.0
_05_
0 5 10 0 5 10

U U

Figure 3. Eigenenergies and Lyapunov exponents as a function of U. We show eigenenergy for
(a) L = 3 and (b) L = 5 when the trap is balanced (y = 0). Level crossings are found when the
interaction is strong. Starting from the ground state, we calculate Lyapunov exponents for (c) L = 3
and (d) L = 5. For a given U, Lyapunov exponents of same value but opposite signs appear in pairs.

3.2. Quench Dynamics

In the linear regime, dynamics of the system will follow the eigenstate adiabatically
when slowly quenching the tilt potential. However, the dynamics may deviate from the
adiabatic eigenstate in the nonlinear regime, especially when positive Lyapunov exponents
are found. This will be illustrated through the quenching of the tilt potential and interaction
strength given by Equations (7)—(10). To trigger the instability in the dynamics, we consider
a thermal mixed state ‘T’]’ = [1e’®1,¢ppe®2, ... €] around a given state ¥; (the ground
state), where 6; is a random phase distributed uniformly between 0 and 27 [76]. In
numerical simulations, we typically consider an ensemble of M = 100 realizations with a
given set of parameters.

We first examine a linear quench of the bias v when the system is prepared in the
ground state at ¢; = —10 and L = 3. The majority of the condensate is located on the
first (leftmost) site [111(0) = |y1|> ~ 1] initially (Figure 4a). In the adiabatic limit and
without the nonlinear interaction, the condensate will move to the third well, n3(7) ~ 1,
after the quench [71]. The population at this adiabatic limit is shown with a black dot in
each panel. The quench dynamics, however, depend on the finite quench rate and the
interaction strength. When the interaction is weak, the condensate can be in any of the
three sites since the tunneling strength between neighboring sites plays the dominant role.
The distribution of the final population is affected by the noise on the initial state and also
depends on the final time in the simulations. By increasing U, the population is distributed
into a larger region of the phase space, i.e., it occupies larger areas in the n3—n; plane. By
fixing the interaction U, our numerical simulation shows that the smaller « is, the closer
the population distribution is to the adiabatic limit.

For the hysteresis quench given by Equation (8), we see that even for U = 5 (meaning
the eigenstate exhibits complicated level crossings) the density mostly returns to their
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initial state, at least when « < 1 (Figure 4b). Here, the hysteresis quench has allowed
for a large level of reversibility in the dynamics [76] as the chaotic regions have not been
triggered. By increasing the quench rate &, the population distributions cluster around
much smaller regions in the phase space than the one shown in panel (a).

Figure 4. (Color online) Final population distribution of the ground state. The population by
quenching -y with (a) scheme I and (b) scheme II is shown for L = 3. In the numerical simulation,
i = —7y = —10 and the interaction strength is U = 5. The interaction U is quenched with (c)
scheme III and (d) scheme IV, where U; = 0, Uf = 10and y = 0, respectively. In all the figures,
the quench rates (a or p) are 1 (blue), 0.1 (green), and 0.01 (red). The total number of trajectories is
M = 100. The target final state is shown as the large black circle.

In Figure 4c we quench the interaction according to Equation (9). The initial states
depend on the value of . For example, the ground state is Y = [0.5, 1//2, 0.5} for v = 0.
The final states are highly dependent on the initial conditions due to the chaos in the
dynamics (see the crossing energy levels in Figure 3a and Lyapunov exponent in Figure 3c).
We have verified that by increasing <, the associated randomness with the final states
decreases since the number of crossings in the eigenenergy also decreases.

In case of the hysteresis quench of U, we find that the results (Figure 4d) are similar to
the linear quench. When looking at 7y = 0, the final states do not return to the initial value.
As shown in Figure 3c, the Lyapunov exponent of the ground state becomes positive when
U 2 4, which causes the final state to be more random, i.e., to have a broader distribution
of the densities. As the tilt 7y increases, we have verified that chaos is gradually suppressed
as the population that localizes in the trap corresponds to the lowest energy state. In order
to trigger chaotic dynamics in the tilted case, stronger interactions are generally needed.

4. Stability of the Localized State
4.1. Bogoliubov Spectra and Lyapunov Exponents

In this section, we will explore stability of a situation where the condensate is trapped
in a single site. When localized at one end of the lattice, it corresponds to the ground state if
the lattice potential is strongly tilted |y| > 1. We will examine dynamics of localized states
even in the balanced case (y = 0), partially motivated by the fact that the self-trapped state
can be stabilized by strong nonlinear interactions. We will show that dynamical instabilities
of localized states will depend strongly on the long-range interaction. To be concrete, we
will consider a scenario where the condensate is confined in the second trap from the
left of the lattice, i.e., ¥ = [0,1,---,0]. In the numerical simulations of the dynamics,
uniform density fluctuations are applied to the lattice to trigger the hopping dynamics.
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This modifies the initial state into ¥ = [/e/Le?1, /1 —ee?2,- - ,\/e/Le?.] with € < 1 and
¢ being a random phase. Furthermore, this choice insures that the energy of different
initial states are almost identical.

In Figure 5a,b, dynamical unstable regions in the Bogoliubov spectra for L = 3 and
L =5 are shown (highlighted with a dark red color). In the unstable region, ez develops
imaginary components, which depend on U, v and L. In the case of L = 3, the condensate
is localized in the middle site initially, meaning the Bogoliubov spectra are symmetric
with respect to . Figure 5a shows that the system is dynamically unstable when U is
small, in particular when the lattice is balanced (|y| is small). This is not surprising since
the localized state is not the ground state, nor does the system support the self-trapped
state. By increasing the interaction strength, we note that the localized state returns to a
stable configuration when ]'y| is small. This means that the localized state becomes a stable,
self-trapped state [71]. When L = 5, the dynamical stability now depends heavily on tilt .
When 7 > 0, there is a much broader range of unstable regions. This feature is largely due
to the fact that the nonsymmetric initial state has higher energies. Therefore, we expect to
see qualitatively different dynamics from the various quenching schemes.

10

~10
0.6
0.3
~< 0.0
-0.3
By
e | (f)
i ik
0.4 I T
: 2 i
< '.::‘\. S ’ .Fi
0.2 §§5,\‘ - :;;?- :. ”d
LEGE EX
0-05 ' 100 5 10

5

U U

Figure 5. (Color online) Bogoliubov spectra and Lyapunov exponents of the localized state. Dy-
namically unstable regions (dark red) for (a) L = 3 and (b) L = 5 are shown as a function of U and 1.
Panels (c,d) give the Lyapunov exponents as a function of U. Random perturbation to the initial state
are examined for (e) L = 3 and (f) L = 5. The red lines show the maximal Lyapunov exponents in
(c,d), correspondingly. Here, v = 0 in panels (c,d).
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The Lyapunov exponents exhibit sensitive dependence on the system size. As shown
in Figure 5c¢, the Lyapunov exponents for L = 3 show an unusually symmetric shape when
U = 4. The exponents are a smooth function of U and reach maximal value around U = 5.
By further increasing U, the positive Lyapunov exponents decrease. This indicates that
the localized configuration could exhibit chaotic dynamics for a large U. For L = 5 we
notice that positive Lyapunov exponents can be found when U is relatively small. A key
difference is that there are multiple positive Lyapunov exponents (Figure 5d) where the
nonlinear dynamics enters the hyperchaotic regime.

To understand the maximal Lyapunov exponents, we slightly alter the initial state

so that we have ¥ = [8, V1—2e,¢e,---, O] , where ¢ is a small perturbation to the wave

function of the traps on either side of the localized site, with 0 < & < 0.01. In Figure 5e,f
(corresponding to L = 3 and 5), the largest Lyapunov exponent A, (red) and Lyapunov ex-
ponents obtained with modified initial states (black) are shown (only the positive branch). It
shows that a minor change to the initial state will change Lyapunov exponents significantly.
However, A;; gives an approximate upper bound for all the Lyapunov exponents.

4.2. Quench Dynamics

For U = 5and L = 3, a linear quench (Figure 6a) from 7; = —10 to 7y = 10 shows
strong, self-trapping behavior in the rightmost potential. Ideally, we would expect that
by performing a hysteresis quench back towards «;, the population would localize in
the leftmost site again. However, from Figure 6b, we see that the final state is rather
chaotic. Due to the dynamical instability and chaos near |y| < 1, the final state deviates
from the initial state. In panels (c) and (d), we quench according to Equations (9) and (10),
respectively. The dynamics shows that in both cases, the localized initial state loses
population to the outer potential wells in an approximately equal manner for both the
linear and hysteresis quenches. The strong, nonlinear interactions in the initial localized
trap repel the condensate symmetrically between the two neighboring traps. Additionally,
we notice that in panel (d), the population could be 11 = n3 ~ 0, meaning that the final
state is exactly equal to the initial state. We have achieved full reversibility with the
hysteresis dynamics in these simulations. As shown in panel (c), this is not the case where
the populations are always n; ~ ny > 0, implying that the strong, two-body interactions
prevent the complete localization of the condensate in a single site.

We now move on to examine the dynamics for the five-site system. Without two-body
interactions, linearly quenching from 1; to y¢ will force the atoms towards the rightmost
trap. However, from Figure 6e, we see that the occupation is never very much greater than
ns ~ 0.5, even for the slowest quenching rates considered in the simulation. When the
quench rate is fast (« ~ 1), we find less occupation in both the first and last sites, implying
that the occupation has been spread amongst the remaining sites. In panel (f), the hysteresis
counterpart is shown. Now the population should tend towards n; ~ 1. However, this
is not what is found in the numerical simulations. The populations distribute randomly
in all sites. In panels (g) and (h), the dynamics is qualitatively different from the L = 3
scenario. The symmetry between the densities of the two outermost sites is completely lost
and is replaced with a chaotic distribution, largely due to the presence of hyperchaos (see
Figure 5d).
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Figure 6. (Color online) Final population distribution of the localized state. The first and sec-
ond row show the linear and hysteresis quench of . Here, U = 5, 7; = —7y = 10. The third
and fourth row show the linear and hysteresis quench of U, with U; = 0, Uf = 10, and v = 0.
In (a—d), we consider three sites and the initial thermal state is ¥ = [0.1¢/%,1/0.98¢/%2,0.1¢%],
with ®; (j = 1, 2, 3) being a random number in [0,27]. In (e-h), L = 5 and the initial state is
¥ = [1/0.005¢/%1,1/0.98¢2, /0.005¢/#3, 1/0.005¢'9*, ml%], with ¢; (j = 1,- - - ,5) being randomly
distributed in [0, 27t]. The small fraction in sites other than the localized state is used to trigger the
hopping dynamics. The other parameters are the same as the ones in Figure 4.

5. Discussion

In the following, we will discuss how the maximal and total number of Lyapunov
exponents depend on the system size and initial state, focusing on parameter regimes where
the nonlinear interaction cannot be neglected, i.e., chaos and hyperchaos are expected in the
dynamics. In general, Lyapunov exponents depend on the input state of the calculation [72].
Two different initial states, i.e., the ground state and the localized state, will be examined
in detail.

In Figure 7a the largest Lyapunov exponent A, for the ground state configuration is
shown. When 2 < L < 4, the values of A, are generally small. This is due to the fact that
chaos has not been triggered (see Figure 5b,c). When L > 4, the situation changes as chaos
is already found with the given U. We find that A, decreases gradually when U = 3 and
U = 5 for larger L. On the other hand, the total number of positive Lyapunov exponents
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is seen to increase almost linearly with L when U = 3 and U = 5, depicted in Figure 7b.
More importantly, # > 2 when L > 4 for both U = 3 and U = 5, i.e,, the dynamics is
hyperchaotic. On the other hand, 1 decreases and deviates from the linear dependence
on L when L is large, e.g., at L = 10 when U = 3 and L = 14 when U = 5. In general,
the linear relation holds up to a larger L for larger U. It has recently been shown that the
largest Lyapunov exponents in the BH model can be obtained from the echo dynamics of
the condensate [85]. A similar technique could be applied to extract the largest Lyapunov
exponents studied here.
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Figure 7. (Color online) Lyapunov Exponents vs. System Size. The maximum Lyapunov exponent
and total number of positive Lyapunov exponents are shown in (a,b) for the ground state configu-
ration. Panels (c¢,d) show the same quantity for the localized state. The larger the value of U is, the
larger the maximal Lyapunov exponent. The maximal Lyapunov exponent decreases with increasing
L. The number of Lyapunov exponents increases and then decreases with increasing L. For the
localized state, 77 increases almost linearly with increasing L. In each panel, U = 1 (square), 3 (circle),
and 5 (triangle).

Figure 7c,d show both A;; and 7 for the the localized state. In this case, A, is largest
when L = 5 and decreases with increasing L for U = 3 and U = 5. Compared to the
ground state, a visible difference is that A, # 0 when U = 1 for the localized state. Their
values, however, are smaller than the one for U = 3 and U = 5. This implies that it will
be difficult to observe chaotic dynamics with this level of nonlinear interactions. On the
other hand, # increases with increasing U. When L > 10, 7 still increases with L, slightly
deviating from the linear scaling with L. A similar dependence is also found for stronger
nonlinear interactions, as demonstrated with U = 5 in panel (d). For such states, 7 > 1 can
be seen even with a relatively weak interaction (e.g., U = 1), leading to more pronounced
hyperchaotic dynamics.

The total number of nonlinear differential equations is 2L (the real and imaginary
parts of ;). For conservative systems, the number of positive and negative Lyapunov
exponents are the same, and the sum of the Lyapunov exponents is zero. These features can
be seen, e.g., in Figure 2d. Our numerical simulations show that the maximal number of
positive Lyapunov exponents is L — 2 (see Figure 7b when U = 5 and L < 11 and Figure 7d
when U = 5and L < 14). As the extended Bose-Hubbard model is a Hamiltonian system,
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not only does the sum of the Lyapunov exponents vanish, but conservative quantities such
as the energy and particle number are also found in the dynamics. This indicates that the
maximal number of the Lyapunov exponents is L — 2 and not L. For a sufficiently large L,
the total number of positive Lyapunov exponents is smaller than L — 2 as the nonlinear
interaction becomes smaller. For the ground state, one can estimate the interaction energy
for a given site to be approximately 2(U + V)/L?, i.e., the mean local interaction energy
decreases with increasing L.

The chaotic dynamics depends strongly on the largest Lyapunov exponents A,,, which
is considered to be an indication of chaos in the dynamics. To illustrate this, the Poincaré
section on the I/; plane for different system sizes is shown in Figure 8, showing that profiles
of the Poincaré section depend on the system size and the initial state. The area is largest
when L = 5 (Figure 8a) and decreases with increasing L in the case of the ground state
(Figure 8b,c). For different L, the profile of the Poincaré section is largely symmetric with
respect to Ry = 0 and Z, = 0. In the case of the localized state, similar dependence on L is
found, as depicted in Figure 8d—f. We note two differences when compared to the ground
state. First, the profile of the Poincaré section displays symmetry with respect to Z, = 0
but not R, = 0. Second, the areas of the Poincaré section in the localized state are slightly
larger as the corresponding A, is larger (see Figure 7a,c).

1
(a) (b) (c)
S
-1
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Figure 8. (Color online) Poincaré Sections of the ground state and localized state on the {;-plane.
The Poincaré sections are shown for the ground state (a—c) and the localized state (d—f). Each point
represents a numerical realization. We consider L = 5 (a,d), L = 10 (b,e), and L = 20 (c,f). Other
parameters are U = 3 and y = 0.

The area is largely determined by the largest Lyapunov exponent. To verify this, we
find the area of the Poincaré section approximately by numerically fitting the Poincaré
section, as shown in Figure 9. For the ground state, the dependence of the fitted area and
Am on L agrees well when U = 5. For U = 3, a good agreement is also found when L > 8.
When L = 5 and L = 7, the fitted areas differ largely from the corresponding A,,. This
discrepancy might be caused by the fact that the relatively weak nonlinear interaction
leads to uncertainties in calculating the Lyapunov exponent. For the localized state, the
agreement is improved in general for both U = 3 and U = 5. This suggests that the
discrepancy in the ground state could be a boundary effect when L is small, as the localized
state suffers less from the boundary effect.
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Figure 9. (Color online) Areas of the Poincaré Sections. We compare the fitted area (open shapes)
of the Poincaré section with A, (solid) for both the ground state (a) and the localized state (b),
respectively. The blue circles are for U = 3, and red triangles for U = 5. In both situations, y = 0.

6. Conclusions and Outlook

We investigated the chaotic and hyperchaotic dynamics of a one-dimensional Bose-
Hubbard chain of Rydberg-dressed BECs in the semiclassical regime. We showed that both
the ground state and localized state could have positive Lyapunov exponents even though
the corresponding Bogoliubov spectra were real-valued. As a result, small perturbations to
these states led to large fluctuations, which were captured by the quench dynamics. The
vastly different population distribution after the quench provided evidence of chaos where
the former could be measured experimentally. We found that hyperchaos emerges in both
the ground and localized states when the nonlinear interaction is strong and L is large. The
total number of positive Lyapunov exponents, 7, is bound by L — 2 (L > 3). We showed
that # grows with the system size L when U is large. So far, our investigations have been
focused on the semiclassical regime. There has been exploration into the relationships
between chaos and quantum entanglement [86]. Moreover, quantum chaos can be seen by
analyzing the statistics of the eigenspectra on the Bose-Hubbard model with onsite [87] and
long-range interactions [88,89]. It is therefore worthwhile to explore chaos and hyperchaos
as well as the thermalization of the Rydberg atoms in the quantum regime.
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