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Abstract

We introduce a novel heterogeneous multi-scale method for the consolidation

analysis of two-dimensional porous domains with a complex micro-structure. A

two-scale strategy is implemented wherein an arbitrary polygonal domain can

be discretised into clusters of polygonal elements, each with its own set of fine

scale discretization. The method harnesses the advantages of the Virtual El-

ement Method into accurately capturing fine scale heterogeneities of arbitrary

polygonal shapes. The upscaling is performed through a set of numerically

evaluated multi-scale basis functions. The solution of the coupled governing

equations is performed at the coarse-scale at a reduced computational cost. We

discuss the computation of the multi-scale basis functions and corresponding

virtual projection operators. The performance of the method in terms of ac-

curacy and computational efficiency is evaluated through a set of numerical

examples for poro-elastic materials with heterogeneities of various shapes.
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1. Introduction

It is often in nature that physics evolve across highly heterogeneous, geo-

metrically complex, and multiscale deformable domains; examples pertain to

sound absorption and transmission in foams and fibrous materials [1, 2, 3, 4]

and fracture analysis of composite components [5]. Focal point of this work is5

the mechanical response of highly heterogeneous saturated poro-elastic domains

where material variability spans several length scales, within the context of the

Biot consolidation theory [6]. Pertinent applications involve large scale geome-

chanics [7, 8], reservoir modelling and subsurface flows [9], and tissue modelling

[10].10

Achieving numerical solutions for the Biot consolidation problem in highly

heterogeneous domains with standard discretization methods, .e.g, the FEM,

BEM [11], etc. necessitates the explicit resolution of all underlying hetero-

geneities so that i) material distributions are accurately accounted for and ii)

geometrical interfaces are accurately resolved. In computational terms, this can15

be prohibitively expensive. Multiscale modelling methods have been developed

over the years to accurately treat heterogeneous material distributions across

scales while reducing computational costs using the robust mathematical frame-

work of homogenisation [12]. These include volume averaging [see, e.g., 13],

analytical homogenization [14] and computational homogenization approaches20

[see, e.g., 15, 16], see, also, FE2 methods [17].

Homogenization theory relies on the assumptions of scale separation and

periodicity. However such assumptions do not necessarily hold for the case of

highly heterogeneous domains. Hence, alternative methods that do not rely

on this assumption have been developed, such as multiscale finite volume [18]25

and multiscale finite element methods (MsFEM) [19, 20]. A comparison between

different multiscale approaches in the context of elliptic problems was performed

in [21].

The MsFEM relies on the notion of nested computational domains and the

evaluation of a numerical basis that maps quantities, i.e., displacements, from30
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the one to the other. Contrary to FE2 (see, e.g., in [17]) methods where a micro-

scale finite element mesh is attached to each coarse scale integration point, in

the MsFEM the coarse scale is fully spanned by the fine scale. Hence, the

MsFEM is more suited to highly heterogeneous domains where scales cannot be

fully separated. The MsFEM was based on the pioneering work of [22] and was35

further developed by, e.g., [23] to resolve flows in highly heterogeneous media.

The Coupling Multiscale Finite Element Method (CMsFEM) [24] was de-

veloped to resolve the coupled field fully saturated porous media consolidation

problem using a two-scale (meso-macro) approach. Meso-scale heterogeneities

are mapped to the macroscopic scale using numerically computed multiscale ba-40

sis functions. A thorough discussion on the computational gains of the MsFEM

and the CMsFEM is provided in [23, 24, 25]. A more specific comparison of

different multiscale finite element approaches for composites and porous media

flows was done in [26].

In all the aforementioned multiscale finite element methods, scales are meshed45

with classical quadrilateral elements. Unfortunately, accounting for complex

meso-scale morphologies using such elements necessitates quite fine discretiza-

tions, rendering the computation of these multiscale basis functions expensive.

Optimization of the meshes involved could significantly improve the performance

of the method. To do this, one requires numerical methods that can handle more50

flexible element geometries.

Polygonal finite elements (PFEM) [see, e.g., 27, 28, 29] are used in fluid

mechanics [30], contact mechanics [31], computational fracture and damage

modelling [32, 33, 34] and topology optimization [35, 35], where one encoun-

ters complex inclusion and interface geometries. Analytical basis functions [36]55

are employed over simplex polyhedra. Numerical approaches are necessary for

computing basis functions for non-convex domains such as maximum-entropy

[37] and harmonic [38] shape functions. This can significantly drive up compu-

tational costs especially in the case of non-linear problems [39, 40]. The Virtual

Element Method (VEM) [41, 42, 43, 44, 45, 46, 47] is a recently developed60

numerical method that specifically addresses these limitations.
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The VEM has found extensive application in linear elasticity [48, 49, 50, 51],

topology optimization [52], modelling of plates and shells [53, 54, 55], linear

and ductile fracture mechanics [56, 57, 58], contact mechanics [59], homogeniza-

tion of fiber reinforced composites [60], geomechanics and porous media flows65

[61, 62] and mixed VEM finite-volume discretization of Biot poromechanics

[63]. The scheme has recently been extended to account for curved geometries

[64, 65, 66]. The method naturally emerged from advances in Mimetic Finite

Difference (MFD) methods [see, e.g., 67, 68, 69, 70, 71, 72]. MFDs, when used

in conjunction with the Finite Element Method, seek to model trial and test70

functions spaces without resorting to explicit representations of basis functions

over the element interior. When extended to non-standard element geometries,

the accuracy of the method is improved by enriching the function spaces with

possibly non-polynomial expressions. The basis functions, which are allowed

to assumed complex non-polynomial forms, are implicitly defined through care-75

fully chosen degrees of freedom. This implicit representation does away with

the problem of analytically or numerically deriving basis functions over complex

element domains. A significant point of departure of the VEM from MFDs lies

in VEM’s attempt to preserve polynomial accuracy over element boundaries

[41]. This allows for extension to more generalized inter-element continuity and80

conformity requirements [73]. The authors have introduced a multiscale VEM

formulation for elasto-statics, where the VEM has been introduced within a

multiscale setting considering the case of regular coarse element domains only

[74]. Very recently, the VEM has been employed within a mixed-formulation

setting to address elliptic problems [43, 75, 76]. Furthermore, a three field VEM85

formulation for the Biot consolidation equations has been presented in [77].

In this work, we harness the merits of the VEM in accurately resolving com-

plex material interfaces and develop a novel Coupled Multiscale Virtual Element

Method (CMsVEM) for the consolidation analysis of highly heterogeneous de-

formable domains across multiple length scales. To achieve this, we recast the90

three field VEM formulation for the Biot consolidation equations [77] within an

engineering context and originally employ it to compute fine scale Representa-
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tive Volume Element (RVE) state matrices. Contrary to the work of [63], we

employ the VEM to resolve both the solid and pore-pressure governing equa-

tions. Further to the methodology provided in [74], the proposed CMsVEM95

is specifically designed to treat the generic case of arbitrary polygonal coarse

element geometries. Using this novel approach, we derive multiscale basis func-

tions to upscale highly heteregoneous porous domains and perform the solution

procedure in the time domain at the macroscopic scale at a reduced computa-

tional cost. We investigate the potential merits and bottlenecks of the proposed100

scheme in terms of solution accuracy and computational merits. The influence

of the type of boundary conditions used to evaluate the multiscale basis is also

examined.

The rest of this manuscript is structured as follows. In Section 2, the gov-

erning equations and the VEM formulation for the Biot consolidation problem105

for fully saturated poroelastic media is presented. The upscaling procedure and

associated kinematical constraints used in deriving a CMsVEM is discussed in

Section 3. Numerical examples are provided in Section 4 to verify the method

and assess its efficiency when comparted to the standard FEM, VEM, and the

CMsFEM. Concluding remarks and future outlooks are provided in Section 5.110

2. Preliminaries

2.1. Problem Statement

The case of an arbitrary continuous two-dimensional porous domain Ω ⊂ R2

with a domain boundary Γ is considered as shown in Fig. 1a. The domain is

subjected to a set of prescribed displacements ū on Γu, enforced pressures p̄115

on Γp, applied tractions t̄ on Γt and applied volume fluxes q̄ on Γq such that

Γu ∩ Γt = ∅ and Γp ∩ Γq = ∅. The domain is also subjected to body forces b

and a source/sink term Q.

Considering the case of a linear elastic material, small strains, isothermal

conditions, and neglecting inertial effects, the governing equations of the con-
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Figure 1: Schematic representation of a two dimensional domain Ω with boundary ∂Ω. (a)

Essential and natural boundaries for the solid phase ū and t̄ are prescribed on Γu and Γt

respectively. Similarly, the relevant boundaries for the fluid phase p̄ and q̄ are applied on Γp

and Γq respectively. (b) The discretized domain Th is decomposed into polygonal elements.

solidation problem assume the following form [24]

div(D ε(u)) = div(αBmp)− b (1a)

αB ε̇vol + Sεṗ = div
( k

γf
∇p +Q

)
, (1b)

where u and p are the vectors of the solid skeleton displacements and the

pore-fluid pressures, respectively.120

In Eq. (1a), ε(·) is the strain operator that under the assumption of small

strains assumes the following form

ε(u) =
1

2
(∇u + (∇u)T ), (2)

and m is the identity tensor in Voigt notation, i.e., m =
[
1 1 0

]T
. The

quantity ε̇vol represents the rate of volumetric strain, i.e., ε̇vol = mTε(u). Fur-

thermore, D is the 2-D elastic constitutive matrix and αB is the Biot’s coefficient.

In Eq. (1b), Sε is the storage coefficient and k, γf are the specific permeabil-

ity and pore-fluid specific viscosity, respectively. Finally, div(·) and ∇(·) denote

the divergence and gradient operators, respectively and ˙(·) denotes differentia-

tion with respect to time. The storage coefficient Sε is evaluated through the
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following expression,

Sε = nβ + (αB − n)Cs, (3)

where β, Cs are the pore-fluid and solid-grain compressibility, respectively.

The linear elastic constitutive equations for the solid phase are expressed as

σ = Dε, (4)

where σ denotes the Cauchy stress tensor. The constitutive relation for the fluid

phase is expressed through the static Darcy law for a single phase flow through

a porous medium

q =
k

γf
∇p, (5)

where q denotes the specific discharge, i.e., the specific volume of pore-fluid

exiting a control volume; this is expressed as

q = n(vf − vs), (6)

with vf and vs being the velocities of the pore-fluid and the solid-skeleton,125

respectively.

The coupled system of Eqs. (1) is supplemented by the following set of initial

and boundary conditions

u = u0, p = p0, in Ω − initial conditions (7a)

u = ū on Γu, p = p̄, on Γp − enforced boundary conditions (7b)

t = t̄ on Γt, q = q̄, on Γq − natural boundary conditions, (7c)

where u0 and p0 denote the initial displacement and pressure distributions over

the domain at time t = 0. The Dirichlet boundary values for solid and fluid

phases are represented by ū and p̄, respectively. The Neumann traction and

flux boundary values are contained in t̄ and q̄, respectively.130
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2.2. Virtual Element discretization

The weak form of the governing Eqs. (1) is derived accordingly as:
Find (u,p) ∈ V1 × V2 := [H1(Ω)]2 × [H1(Ω)] such that :

aε(u,v)D − a(ε,0)(p,v)αBm = fu(v) ∀v ∈ V1

a(ε,0)(u̇,w)αBmT + a0(ṗ,w)Sε + a∇(p,w)k/γf = fp(w) ∀w ∈ V2 ,

(8)

where a(·), f(·) are bilinear and linear functional operators and v and w are

appropriate test functions such that u,v ∈ V1 and p,w ∈ V2. The spaces V1

and V2 denote the spaces of admissible displacements and pressures, respectively.

These assume standard two-dimensional [H1(Ω)]2 and one-dimensional H1(Ω)135

Hilbert Spaces, respectively.

In this work, the coupled weak form of Eq. (8) is discretized using the Virtual

Element Method to account for non-simplex and non-convex element domains.

Within this setting, the displacement field is approximated through the following

finite dimensional approximation, i.e.,

uh, vh ∈ Vh1 ⊂ V1, (9)

where uh and vh are the discretized trial and test functions, respectively; these

are defined over a finite-dimensional subspace Vh1.

Similarly, the discretized pressure field trial ph and test wh functions are

defined accordingly as

ph, wh ∈ Vh2 ⊂ V2, (10)

over the finite-dimensional subspace Vh2.

Using the discrete approximations introduced in Eqs. (9) and (10), the ab-

stract formulation of the discretized weak form is expressed
Find (uh,ph) ∈ Vh1 × Vh2 such that :

aε(uh,vh)D − a(ε,0)(ph,vh)αBm = fu(vh) ∀vh ∈ Vh1

a(ε,0)(u̇h,wh)αBmT + a0(ṗh,wh)Sε + a∇(ph,wh)k/γf = fp(wh) ∀wh ∈ Vh2 ,

(11)
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where a(·), f(·) are bilinear and linear functional operators. The individual op-

erators are defined as follows:

aε(uh,vh)D =

∫
Ω

ε(uh)D ε(vh) dΩ (12a)

aε,0(ph,vh)αBm =

∫
Ω

ε(vh)αBm ph dΩ (12b)

aε,0(u̇h,wh)αBmT =
d

dt

∫
Ω

ε(uh)αBmT wh dΩ (12c)

a0(ṗh,wh)Sε =
d

dt

∫
Ω

ph Sε wh dΩ (12d)

a∇(ph,wh)k/γf =

∫
Ω

∇(ph)
k

γf
∇(wh) dΩ (12e)

fu(vh) =

∫
Γt

t̄ · vh dΓ +

∫
Ω

b · vh dΩ, (12f)

fp(wh) = −
∫
Γq

q̄ · wh dΓ +

∫
Ω

Qwh dΩ. (12g)

The nature of the finite-dimensional subspaces Vh1 and Vh2 chosen for the140

discrete problem varies slightly between the classical FEM and VEM. The FEM

approach allows for solutions over simplex elements where the basis functions

are explicitly expressed. To extend this approach to account for non-simplex,

non-convex element domains, certain conditions on the approximating subspace

need to be relaxed. In particular, one allows for a more flexible discretization of145

Ω into nel non-intersecting polygonal elements Ki, i = 1, . . . ,nel with arbitrarily

defined edges and convexities. The same condition on completeness is required,

i.e. Ω ≈ Th
1 =

⋃
Ki∈Th

Ki as illustrated in Fig. 1b.

To accommodate for such arbitrary elements, the necessary finite-dimensional

space needs to be enlarged, i.e., a weaker definition that allows for non-polynomial

function definitions over the element interior, is required. The global virtual

1The parameter h is interpreted as the maximum diameter of all elements contained in Th.
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space of kth-order V VEM
h is defined as

V VEM
h = {v ∈ [H1(Ω) ∩ C0(Th)] : v|K ∈ VKh (K), ∀K ∈ Th}, (13)

where the local virtual space VKh is defined over an element K as

VKh (K) = {v ∈ [H1(K) ∩ C0(K)] : v,i|e ∈ Pk(e) ∀ e ∈ ∂K ;

∆v,i|K ∈ Pk−2(K), for i = 1, 2}. (14)

The virtual element spaces Vh1 and Vh2 now assume the following form:

Vh1 = [V VEM
h ]2; Vh2 = V VEM

h . (15)

Based on the aforementioned, we consider a polygonal element K of Nv

number of edges and vertices, and area |K|, with arbitrarily chosen polynomial150

order k ≥ 1, as shown in Fig. 2; the corner nodes are represented by νj, j =

1, . . . ,Nv. Each edge ej, j = 1, . . . ,Nv connects nodes νj and νj+1 and contains

k− 1 internal nodes per edge, which are denoted by νe.

Figure 2: Conventions adopted for computing barycentric coordinates over a polygonal ele-

ment. The nodes are shown for a k = 2 pentagonal virtual element

The bilinear and linear functional forms used in Eq. (11) can now be com-

puted through assembling local element-wise operators as shown in Eqs. (16).
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aε(·, ·) =
∑
K∈Th

aεK(·, ·), (16a)

a∇(·, ·) =
∑
K∈Th

a∇K(·, ·), (16b)

a0(·, ·) =
∑
K∈Th

a0
K(·, ·), (16c)

a(ε,0)(·, ·) =
∑
K∈Th

a
(ε,0)
K (·, ·), (16d)

fu(·) =
∑
K∈Th

fuK(·), (16e)

fp(·) =
∑
K∈Th

fpK(·). (16f)

The arguments of these functionals belong to either VKh1(K) ⊂ Vh1(Th) or

VKh2(K) ⊂ Vh2(Th). The functions belonging to VKh1(K) and VKh2(K) are not155

explicitly defined, They are defined implicitly through carefully chosen degrees

of freedom (DoFs)2. These DoFs are defined in Table 1, where Mk−2(K) and

[Mk−2(K)]2 denote spaces containing scalar and vector valued monomials of

order k − 2, respectively.

There are three primary operations performed on the discrete functions as160

detailed in Eq. (11), i.e., ε(·) contained in aε(·, ·), ∇(·) contained in a∇(·, ·), and

(·) contained in a0(·, ·).

The operators ε(·) and ∇(·) cannot directly act upon functions belonging

to the virtual spaces VKh1 and VKh2 as they are not explicitly defined. Further,

performing numerical integration for all three cases can be computationally165

expensive. This is because high order quadrature rules are necessary to obtain

accurate results for non polynomial integrands.

To avoid this, three operation specific projectors, i.e., Πεk , Π∇k and Π0
k are in-

troduced to replace the ε(·), ∇(·) and (·) operators respectively. These operators

2The member functions of the virtual element spaces VKh1 and VKh2 are often referred to

in VEM literature as a canonical basis Φ. These basis functions are defined implicitly in a

barycentric fashion, i.e., Φi(xj) = δij where δij is the Kronecker Delta function.
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DoF Type Location Vh1 Vh2

Number

of DoFs
Description

Number

of DoFs
Description

Corner vertices of K 2Nv

uh(νj),

j = 1, . . . ,Nv

Nv

ph(νj),

j = 1, . . . ,Nv

Edge

internal boundary

points on each

edge of K

2Nv(k− 1)

uh(νe
j ),

j = 1, . . . , k− 1

for each edge

Nv(k− 1)

ph(νe
j ),

j = 1, . . . , k− 1

for each edge

Area

Moment

point lying in

interior of

domain K

2k(k−1)
2

1
|K|
∫
K

uh ·m dK

∀m ∈ [Mk−2(K)]2

k(k−1)
2

1
|K|
∫
K

ph ·m dK

∀m ∈Mk−2(K)

Table 1: Degrees of Freedom for VKh1 and VKh2. For Area moment, the monomials belong to

[Mk−2]2 and Mk−2 spaces, respectively.

project the virtual functions onto an appropriate scalar, or vector polynomial170

space, denoted by [Pk(K)]d, d = 1, 2, respectively .

This approximation induces additional error into the formalism. Minimiz-

ing the influence of this error is critical to the performance of the VEM. The

projectors are defined to this end using the following optimality criteria:

Πεk : VKh1(K)→ [Pk(K)]2 := aεK(uh −Πεk uh,m) = 0, ∀uh ∈ VKh1(K), m ∈ [Pk(K)]2,

(17a)

Π∇k : VKh2(K)→ Pk(K) := a∇K(ph −Π∇k ph,m) = 0, ∀ph ∈ VKh2(K), m ∈ Pk(K),

(17b)

Π0
k : VKh2(K)→ Pk(K) := a0

K(ph −Π0
kph,m) = 0, ∀ph ∈ VKh2(K), m ∈ Pk(K).

(17c)

The criteria enforced in these definitions ensure that the errors arising from

these projections, i.e.,
(
uh−Πεk uh

)
,
(

ph−Π∇k ph

)
and

(
ph−Π0

kph

)
are energet-

ically orthogonal to the approximating subspaces, [Pk(K)]2 and Pk(K), respec-
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tively. It follows that the energies associate with these bilinear functionals are175

computed exactly, despite the simplifying assumptions introduced by the poly-

nomial approximations. This property is referred to in standard VEM literature

as polynomial k-consistency [41].

The approximating subspaces, [Pk(K)]2 and Pk(K) are spanned by scaled

monomials belonging to [Mk(K)]2 and Mk(K), respectively. These monomial180

spaces also contain members that contribute zero energy to aεK(·, ·) and a∇K(·, ·),

e.g., ε([1, 0]T ) = [0, 0, 0]T , ∇(1) = [0, 0]T . These zero energy modes are specific

to the operator considered and are called the kernel of the operator. To avoid ill

conditioned matrices and consequent spurious results, these are excluded when

computing the projectors. The a0
K(·, ·) has no zero energy modes.185

Following this reasoning, Eq. (17) can finally be established as follows:

Πεk := aεK(uh −Πεk uh,mj) = 0, ∀uh ∈ VKh1(K), mj ∈ [Mk(K)]2 \Kε(K),

(18a)

Π∇k := a∇K(ph −Π∇k ph,mj) = 0, ∀wh ∈ VKh2(K), mj ∈Mk(K) \K∇(K),

(18b)

Π0
k := a0

K(ph −Π0
kph,mj) = 0, ∀ph ∈ VKh2(K), mj ∈Mk(K), (18c)

where Kε(K) and K∇(K) belong to the kernels of zero energy modes of aεK(·, ·)

and a∇K(·, ·), respectively. The contents of these spaces can be derived using

kinematical decomposition relations mentioned in [76]. The monomials spaces

used for the VEM formulation are detailed in Appendix A. The procedure fol-

lowed in deriving the necessary virtual projectors Πεk , Π∇k , Π0
k is provided in190

Appendix B. Consequently the associated bilinear functionals aεK(·, ·), a∇K(·, ·)

and a0
K(·, ·) are discussed within a multiscale context in the following section.
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(a)

(b)

Figure 3: (a) Multiscale mesh with nM = 16 coarse nodes and nMel
= 9 quadrilateral coarse

elements, each clustering its own fine quadrilateral mesh. (b) Multiscale mesh with nM = 22

coarse nodes and nMel
= 9 polygonal coarse elements, each clustering its own fine polygonal

mesh.

3. Coupled Multiscale Virtual Element Methods for polygonal do-

mains

3.1. Overview195

The standard CMsFEM accounts for rectangular elements in the coarse scale

and quadrilaterals in the fine scale as shown in Fig. 3a; this limits the applica-

bility of the method especially for the case of inclusions or voids of an arbitrary

and typically non-convex geometry. In principle, one would be able to account

for such heterogeneities via a very fine finite element discretization; this would200

considerably increase the number of elements to be resolved at the micro-scale
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Coarse Fine

Nodes Elements Nodes Elements

Fig. 3a nM = 16 nMel
= 9 nm = 100 nmel

= 81

Fig. 3b nM = 22 nMel
= 9 nm = 100 nmel

= 81

Table 2: Total number of coarse and fine-scale nodes and elements in the multiscale domains

illustrated in Fig. 3

hence countering the computational advantages of the multiscale procedure.

Our objective is to treat the most general case of arbitrarily shaped domains

at both the macro- and the micro-scale, see, also, Fig. 3b. To achieve this we

harness the flexibility of the the VEM to efficiently resolve non-simplex and205

non-convex geometries. The discretizations used at both scales in Fig. 3 are

summarized in Table 2.

In the proposed CMsVEM, each polygonal coarse-element KM(α), α =

1 . . . nMel
, clusters its own underlying fine-scale virtual element mesh comprising

micro-elements Km(i), i = 1 . . . nαmel
, where nMel

and nαmel
denote the number of210

coarse-elements and micro-elements clustered in KM(α), respectively . This is

illustrated for the case of the coarse element M2M3M9M8M7M6 in Fig. 4.

The resolved parameters at the fine scale are mapped to the coarse scale

where the solution of the governing equations is performed. The CMsVEM pro-

cedure is schematically depicted in Fig. 4. The upscaling procedure is achieved215

by numerically deriving appropriate multiscale basis functions to perform this

mapping. It is critical that these basis functions sufficiently capture all signifi-

cant static modes of the coarse element under consideration. In coupled porous

consolidation problems, this is equivalent to capturing deformation modes of

the solid skeleton and pressure gradient modes of the pore-fluid.220

Within this setting, two sets of multiscale basis functions are computed. One

set describes the solid skeleton displacements and the other captures the pore-

fluid pressure. For these evaluations, both phases are assumed to be decoupled

from each other. The basis functions for the displacement field are evaluated

15



through the solutions of the following homogeneous sub-problemsFind uh ∈ Vh1(KM(α)) such that

aε(uh,vh)D = 0 ∀ vh ∈ Vh1(KM(α)).

(19)

Similarly, the fluid phase multiscale basis functions are evaluated asFind ph ∈ Vh2(KM(α)) such that

a∇(ph,wh)k/γf = 0 ∀ wh ∈ Vh2(KM(α)).

(20)

These equations are subjected to Dirichlet constraints, which are imposed

at the coarse element boundary. In CMsFEM the constraints are either linear

or periodic in character. Periodic boundaries are not possible in polygonal

RVEs. Alternately, a reduced version of the cell problems Eqs. (19) and (20)

are solved at the boundary called oscillatory boundary conditions [78]. The225

implementation of linear and oscillatory boundary conditions is discussed in

Section 3.3. The accuracy of the method depends heavily on the ability of

the constraints to satisfactorily reflect the physical behaviour of the problem.

When encountering comparable coarse and fine length scales in heterogeneous

problems, one can artificially enlarge the sampling domain to control resonance230

errors through oversampling methodologies [25] .

3.2. Virtual fine-scale state matrices

The bilinear forms defined over the coarse-element domainKM(α) in Eqs. (19)

and (20), respectively can be assembled from individual fine element contribu-

tions as shown in Eq. (16):

aε(uh,vh) =

nαmel∑
i=1

aεKm
(uh,vh), ∀(uh,vh) ∈ VKh1(Km(i)) ⊂ Vh1(KM(α)) (21a)

a∇(ph,wh) =

nαmel∑
i=1

aεKm
(ph, vh), ∀(ph,wh) ∈ VKh2(Km(i)) ⊂ Vh2(KM(α)) (21b)

Employing the VEM, the solid phase bilinear form at the micro-scale is ex-

pressed as

aεKm
(uh,vh) = aεKm

(
(uh −Πεm

k uh) + Πεm

K uh), (vh −Πεm

k vh) + Πεm

k vh)
)

(22)
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Figure 4: Schematic representation of the CMsVEM upscaling procedure.

and the fluid-phase bilinear form becomes

a∇Km
(ph,wh) = a∇Km

(
(ph−Π∇m

k ph)+Π∇m

K ph), (wh−Π∇m

K wh)+Π∇m

k wh)
)
, (23)

where Πεm

k and Π∇m

k represent the projectors discussed in Section 2.2.

Expanding Eqs. (22) and (23), exploiting the symmetry properties of bilinear

functionals and the orthogonality conditions laid out in Eq. (18), one obtains

the following relations for the solid phase

aεKm
(uh,vh) = aεKm

(Πεm

k uh,Π
εm

k vh)︸ ︷︷ ︸
solid phase consistency term

+ aεKm
(uh −Πεm

k uh,vh −Πεm

k vh)︸ ︷︷ ︸
solid phase stability term

, (24)

and the fluid-phase

a∇Km
(ph,wh) = a∇Km

(Π∇m

K ph,Π
∇m

K wh)︸ ︷︷ ︸
fluid phase consistency term

+ a∇Km
(ph −Π∇m

K ph,wh −Π∇m

K wh)︸ ︷︷ ︸
fluid phase stability term

,

(25)

respectively. The corresponding fine scale VEM expressions for a0(ph,wh) and

a(ε,0)(uh,wh) are derived in a similar manner and are omitted for brevity.235

Remark 1. The consistency terms comprise entirely polynomial terms and hence

can be computed analytically. However, this is not coercive. The stability term is
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introduced to overcome this rank-deficiency. Any bilinear form satisfying basic

coercivity and stability properties can be taken up as the stability term. It is de-

signed to reduce to zero over polynomial subspaces. The stability terms contain240

non-polynomial integrands uh, vh, ph and wh that have no explicit expression

over the element domain, therefore an exact computation is impossible. Ob-

taining close numerical approximations require higher order numerical quadra-

ture rules, rendering the procedure computationally expensive. Conversely, the

stability terms can be estimated with easy to compute forms that approximate245

the energy contributed by higher order modes. The additional error introduced

through this approximation is chosen such that optimal error convergence rates

are still achieved.

Based on the approximation of the stability term, the expression of the solid-

phase element-wise bilinear operator at the micro-scale assumes the following

form

aεKm
(uh,vh) ≈ aεKm

(Πεm

k uh,Π
εm

k vh) + SεKm
(uh −Πεm

k uh,vh −Πεm

k vh), (26)

where SεKm
(·, ·) denotes the stability term approximation.

The corresponding element-wise approximations for the fluid phases are ex-

pressed as

a∇Km
(ph,wh) ≈ a∇Km

(Π∇m

K ph,Π
∇m

K wh) + S∇Km
(ph −Π∇m

K ph,wh −Π∇m

K wh)

(27a)

a0
Km

(ph,wh) ≈ a0
Km

(Πεm

k ph,Π
εm

k wh) + S0
Km

(ph −Πεm

k ph,wh −Πεm

k wh), (27b)

where S∇Km
(·, ·) and S0

Km
(·, ·) denote the stability term approximations for250

a∇Km
(·, ·) and a0

Km
(·, ·), respectively.

Finally, the VEM approximation for the coupling term is expressed as

a
(ε,0)
Km

(uh,wh) ≈ a
(ε,0)
Km

(Π∇m

K uh,Π
∇m

K wh) + S(ε,0)
Km

(uh −Π∇m

K uh,wh −Π∇m

K wh),

(28)

where S(ε,0)
Km

is the corresponding stability term. The choice of these stability

terms are not unique. One is referred to [79, 80, 81] for an extensive discussion

on the properties of stability terms.
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Expanding Eqs. (26)-(28) and re-writing in matrix form following Eq. (12),

the following set of state-matrices is eventually defined at the micro-scale, i.e.,

Kel,α
m(i) ≈ aεKm

(uh,vh)D =

∫
Km(i)

ε
(

Πεk (uh)
)T

D ε
(

Πεk (vh)
)

dK + SK
Km

(uh,vh)

(29a)

Qel,α
m(i) ≈ a

(ε,0)
Km

(uh,wh)αBm =

∫
Km(i)

ε
(

Πεk (uh)
)T
αm

(
Π0

k(wh)
)

dK + SQ
Km

(uh,wh),

(29b)

Hel,α
m(i) ≈ a∇Km

(ph,wh)k/γf =

∫
Km(i)

∇
(

Π∇k (ph)
)T k

γf
∇
(

Π∇k (wh)
)

dK + SH
Km

(ph,wh)

(29c)

Sel,α
m(i) ≈ a0

Km
(ph,wh)Sε =

∫
Km(i)

(
Π0

k(ph)
)T

Sε

(
Π0

k(wh)
)

dK

︸ ︷︷ ︸
consistency

+ SS
Km

(ph,wh)︸ ︷︷ ︸
stability

.

(29d)

where the expressions for the consistency and stability state matrices are pro-255

vided in Appendix C and Appendix D, respectively.

These fine scale matrices can be assembled over the coarse element domain

to provide the RVE state matrices using a direct approach:

Kα
m =

nmel

A
i=1

Kel,α
m(i), Qα

m =
nmel

A
i=1

Qel,α
m(i), Hα

m =
nmel

A
i=1

Hel,α
m(i), Sαm =

nmel

A
i=1

Sel,α
m(i).

(30)

The state-matrices defined in (30) are used to evaluate the multiscale basis

functions as discussed in Section 3.3.

Remark 2. A virtual element formulation is not necessary for the load vectors

for our upscaling purposes. This is so because while the state matrices are evalu-260

ated at the fine scale for an RVE, the load vectors, in the absence of source/sink

terms and body forces, can directly be evaluated over the boundary at the coarse

scale thus rendering a virtual element approach unnecessary.
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3.3. Constructing multiscale basis functions

The micro-nodal field variables uαm and pαm are mapped to the associated

coarse-nodes using the following relations:

uαmx,i =

nM∑
J=1

Nu
iJxxuMx,J +

nM∑
J=1

Nu
iJxyuMy,J

uαmy,i =

nM∑
J=1

Nu
iJyxuMx,J +

nM∑
J=1

Nu
iJyyuMy,J

pαm,i =

nM∑
J=1

Np
iJpM,J,

(31)

where umx,i, umx,i and pm,i, i = 1 . . . nαm are the displacement and pressure

components of the ith micro-node, nαm is the number of micro-nodes within the

coarse-element α and nM is the number of coarse-nodes belonging to the αth

coarse-element. The terms uMx,J, uMy,J and pM,J denote the displacement and

pressure components at the Jth macro-node of the αth coarse-element. The

multiscale basis functions Nu
iJxx, Nu

iJxy, Nu
iJyx, Nu

iJyy and Np
iJ interpolate the

fine-scale displacements and pressures, respectively. The relations in Eq. (31)

hold only if:

nM∑
J=1

Nu
IJxx = 1

nM∑
J=1

Nu
IJxy = 0

, I = 1 . . . nM,
nM∑
J=1

Nu
IJyx = 0

nM∑
J=1

Nu
IJyy = 1

nM∑
J=1

Np
IJ = 1

(32)

The RVE specific fine-element nodal displacements uαm = [umx, umy]T , and

pressures pαm are associated with the corresponding coarse-element field variables

through the following equations, i.e.,

uαm(i) = Nu
m(i)uM(α) (33a)

pαm(i) = Np
m(i)pM(α), (33b)

where uαm(i) and pαm(i) denote the displacement and pressure vectors for the265

ith fine-element in the αth element. The arrays Nu
m(i) and Np

m(i) represent the

multiscale basis functions mapping the αth coarse-element nodal displacements

uM(α) and pressures pM(α) to the fine-scale.
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Collecting the contributions from each fine-element, Eq. (33) can be ex-

pressed over the entire RVE:

uαm = Nu
muM(α) (34a)

pαm = Np
mpM(α), (34b)

where Nu
m and Np

m correspond to the coarse element multi-scale basis functions

for the displacement and pressure field, respectively. Each column of these

arrays corresponds to a possible static displacement or pressure mode of the

RVE. To compute these snapshots of the system in a manner consistent with

Eqs. (31) and (32), the discretized matrix forms of the boundary value sub-

problems in Eqs. (19) and (20) are solved over the RVE domain:Kα
muαm = {∅} , on KM(α)

uS = ūIJ , on ∂KM(α)

, I = 1 . . . nM, J = 1, 2 (35)

Hα
mpαm = {∅} , on KM(α)

pS = p̄IJ , on ∂KM(α)

, I = 1 . . . nM, J = 1 (36)

where Kα
m and Hα

m are the RVE specific state matrices, which are assembled

from fine-element contributions using Eq. (29) and (30), respectively.270

In the CMsFEM, the prescribed displacements uS and pressures pS at the

RVE boundary are assigned linear or periodic kinematical constraints ū and p̄.

For generalized polygonal RVEs (Fig. 5b), assigning periodic constraints is not

possible. Alternatively, oscillatory boundaries are used, i.e., reduced versions of

Eq. (35) and Eq. (36) are solved over the required edges of the RVE.275

In comparison to prescribing linear constraints (Fig. 5a), oscillatory condi-

tions allow for a less rigid enforcement of displacement and pressure profiles

along the RVE boundaries (Fig. 5b). Furthermore, the effect of material het-

erogeneities along the boundaries naturally emerges in the evaluation of the of

the corresponding displacement profiles hence providing a physically rigorous280

approach to the evaluation of the multiscale basis functions. The procedure

followed in assigning these kinematical constraints is provided in Appendix E

for the sake of completeness.
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(a) (b)

Figure 5: An example 6-noded coarse element (α = 2) clustering nmel=9 fine elements and

nm = 21 fine nodes. (a) Linear kinematical constraints are prescribed over edges ΓM2M3 and

ΓM3M9
, (b) Oscillatory kinematical constraints are prescribed over edges ΓM7M6

and ΓM6M2
.

Remark 3. The terminologies ”Coarse-Element” and ”Representative Volume

Element (RVE)” are used interchangeably here. This is to remain consistent285

with the literature. A coarse-element, as employed in this work, is not truly

representative of the entire domain, and should therefore not be confused with

the classical notion of the RVE found in homogenization theory with scale sep-

aration.

3.4. Governing multiscale equilibrium equations290

The element-wise governing equations introduced in Eq. (11) are expressed

in matrix form asKel,α
m(i) −Qel,α

m(i)

0 Hel,α
m(i)

uαm(i)

pαm(i)

+

 0 0

Qel,α T
m(i) Sel,α

m(i)

u̇αm(i)

ṗαm(i)

 =

fu el,α
m(i)

fp el,α
m(i)

 . (37)

where the state matrices Kel,α
m(i), Qel,α

m(i), Hel,α
m(i), Sel,α

m(i) are evaluated using the

VEM according to Eq. (29). The vectors fu el,α
m(i) and fp el,α

m(i) correspond to the

nodal forces and outflows, respectively at the ith micro-element.

Substituting the micro to macro mapping Eqs. (33) into Eq. (37) and pre-

multiplying the first row-set of equations by Nu T
m and the second row-set by
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Np T
m the following equation is obtainedKel

M(α),m(i) −Qel
M(α),m(i)

0 Hel
M(α),m(i)

uM(α)

pM(α)

+

 0 0

Qel T
M(α),m(i) Sel

M(α),m(i)

u̇M(α)

ṗM(α)

 =

fu el
M(α),m(i)

fp el
M(α),m(i)

 ,
(38)

where the stiffness and coupling matrices of the ith micro-element mapped at

the coarse element nodes are expressed as

Kel
M(α),m(i) = Nu T

m(i)K
el,α
m(i)N

u
m(i) (39)

Qel
M(α),m(i) = Nu T

m(i)Q
el,α
m(i)N

p
m(i). (40)

Furthermore, permeability and compressibility matrices are expressed as

Hel
M(α),m(i) = Np T

m(i)H
el,α
m(i)N

p
m(i) (41)

Sel
M(α),m(i) = Np T

m(i)S
el,α
m(i)N

p
m(i). (42)

Finally, the forcing terms assume the following form

fu el
M(α),m(i) = Nu T

m(i)f
u el,α
m(i) (43)

fp el
M(α),m(i) = Np T

m(i)f
p el,α
m(i) (44)

for the nodal forces and outflows, respectively.

In principle, the coarse-element equilibrium equations could be expressed in

a form analogous to Eq. (37), i.e.,Kel
M(α) −Qel

M(α)

0 Hel
M(α)

uM(α)

pM(α)

+

 0 0

Qel,T
M(α) Sel

M(α)

u̇M(α)

ṗM(α)

 =

fu el
M(α)

fp el
M(α)

 , (45)

where Kel
M(α), Qel

M(α), Hel
M(α), Sel

M(α) denote the coarse-element state matrices295

and fu el
M(α), fp el

M(α) denote the coarse-element load vectors, respectively. Due to

the heterogeneous material distribution at the fine scale, explicit expressions for

these matrices do not exist. Yet, these can be evaluated on the basis of energy

equivalence between the coarse element domain Eqs. (45) and the upscaled fine-

element components Eqs. (39)-(44).300
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Considering Eq. (45), the internal energy associated with each operator is

defined as

EK
int =

∫
KM(α)

εTM D εM dK = uTM(α)K
el
M(α)uM(α) (46a)

EQ
int =

∫
KM(α)

pTM αBm εM dK = pTM(α)Q
el
M(α)uM(α) (46b)

EH
int =

∫
KM(α)

∇pTM
k

γf
∇pM dK = pTM(α)H

el
M(α)pM(α) (46c)

ES
int =

∫
KM(α)

pTM Sε pM dK = pTM(α)S
el
M(α)pM(α) (46d)

where εM and pM correspond to the strain and pressure fields defined over the

coarse element domain.

The internal energy of the RVE is also additively decomposed into the con-

tributions of its underlying fine-elements, i.e.,

EK
int =

nmel∑
i=1

∫
Km(i)

εTm(i) D εm(i) dK =

nmel∑
i=1

uα Tm(i)K
el,α
m(i)u

α
m(i) (47a)

EQ
int =

nmel∑
i=1

∫
Km(i)

pTm(i) αBm εm(i) dK =

nmel∑
i=1

pα Tm(i)Q
el,α
m(i)u

α
m(i) (47b)

EH
int =

nmel∑
i=1

∫
Km(i)

∇pTm(i)

k

γf
∇pm(i) dK =

nmel∑
i=1

pα Tm(i)H
el,α
m(i)p

α
m(i) (47c)

ES
int =

nmel∑
i=1

∫
Km(i)

pTm(i) Sε pm(i) dK =

nmel∑
i=1

pα Tm(i)S
el,α
m(i)p

α
m(i) (47d)

Equating Eqs. (46a) and (47a) the following expression is derived

uTM(α)K
el
M(α)uM(α) = uTM(α)

nmel∑
i=1

(
NuT

m(i)K
el,α
m(i)N

u
m(i)

)
uM(α), (48)

that holds if and only if

Kel
M(α) =

nmel∑
i=1

Kel
M(α),m(i) (49)
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Hence, Eq. (49) provides the reduced order stiffness matrix of the coarse ele-

ment that however comprises stiffness contributions from the underlying micro-305

elements.

The upscaled expressions for the coupling, permeability, and compressibility

matrices are derived in a similar manner as

Qel
M(α) =

nmel∑
i=1

Qel
M(α),m(i), (50)

Hel
M(α) =

nmel∑
i=1

Hel
M(α),m(i), (51)

and

Sel
M(α) =

nmel∑
i=1

Sel
M(α),m(i), (52)

respectively.

Finally, the upscaled load and outflow vectors are

fu el
M(α) =

nmel∑
i=1

fu el
M(α),m(i) (53)

and

fp el
M(α) =

nmel∑
i=1

fp el
M(α),m(i), (54)

respectively (see, also, [24]).

The coarse element state and load matrices defined in Eqs. (49)-54 can then

be assembled using a direct assembly approach to derive the reduced order

structure matrices and corresponding forcing vectors

KM =
nMel

A
α=1

Kel
M(α), QM =

nMel

A
α=1

Qel
M(α), fu

M =
nMel

A
α=1

fu,el
M(α), (55a)

HM =
nMel

A
α=1

Hel
M(α), SM =

nMel

A
α=1

Sel
M(α), fp

M =
nMel

A
α=1

fp,el
M(α). (55b)

Hence, the upscaled governing equations assume the following formKM −QM

0 HM

uM

pM

+

 0 0

QT
M SM

u̇M

ṗM

 =

fuM

fpM

 , (56)
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The unknown field variables uM and pM represent the global coarse-nodal dis-

placements and vectors, respectively.310

The algorithmic implementation of the multiscale virtual element method

vis-a-vis the assembly of the discretized governing equations at the coarse scale

is summarized in Algorithm 1.

Algorithm 1 Upscaling procedure performed for solid and fluid phases

Result: Global coarse scale stiffness matrices KM, HM and load vectors fuM, fp
M

for ΩM(α), 1 ≤ α ≤ nMel
do

1. Compute RVE stiffnesses,

(a) Solid phase: Kα
m with Kα

m =
nmel∑
i=1

Kel,α
m(i),

(b) Fluid phase: Hα
m with Hα

m =
nmel∑
i=1

Hel,α
m(i)

2. Compute multiscale basis functions using kinematic constraints with

(a) Solid phase: Nu
m : Kα

muαm = 0, where uαm ≡ Nu
m,

(b) Fluid phase: Np
m : Hα

mpαm = 0, where pαm ≡ Np
m

3. Compute multiscale contributions with

(a) Solid phase: Kel
M(α),m(i) = Nu T

m(i)K
el,α
m(i)N

u
m(i) and fu,el

M(α),m(i) =

Nu T
m(i)f

u el,α
m(i) ,

(b) Fluid phase: Hel
M(α),m(i) = Np T

m(i)H
el,α
m(i)N

p
m(i) and fp,el

M(α),m(i) =

Np,T
m(i)f

p el,α
m(i)

4. Assemble coarse-element stiffnesses with

(a) Solid phase: Kel
M(α) =

nmel∑
i=1

Kel
M(α),m(i), and fu,el

M(α) =
nmel∑
i=1

fu,el
M(α),m(i),

(b) Fluid phase: Hel
M(α) =

nmel∑
i=1

Hel
M(α),m(i), and fp,el

M(α) =
nmel∑
i=1

fp,el
M(α),m(i),

end

Assemble global coarse stiffness matrix and load vector with

(a) Solid phase: KM = A
nMel
α=1 Kel

M(α) and fuM = A
nMel
α=1 fu,el

M(α)

(b) Fluid phase: HM = A
nMel
α=1 Hel

M(α) and fp
M = A

nMel
α=1 fp,el

M(α)
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3.5. Solution procedure at the coarse scale

Eq. (56) is a system of first order differential/ algebraic equations with re-

spect to time of the following generic form

A Ẋ + B X = F, (57)

where X =
{

uM, pM

}T
. The quantities A, B and F can be obtained from315

Eq. (56) by inspection.

In this work, a theta rule time discretization scheme is employed to obtain

solution states at each time step. Assuming that the time domain is discretized

into a finite number of Nt + 1 points, i.e., t0 < t1 · · · < tn < tn+1 < · · · < tNt

the solution vector X and it’s time derivative Ẋ are defined as

Xn+θ = (1− θ)Xn + θXn+1 (58)

and

Ẋn+θ =
Xn+1 −Xn

∆t
, (59)

respectively, where ∆t is the time increment and θ is the implicitness parameter

0 ≤ θ ≤ 1. The vectors Xn and Xn+1 denote the state vectors at time tn and

tn+1, respectively.

Substituting Eqs. (58) and (59) into Eq. (57) gives rise to the following time

marching scheme

ÃXn+1 = B̃Xn + ∆tFn+θ, (60)

where Ã and B̃ are the effective state matrices, which after the necessary alge-

braic manipulation assume the following form, i.e.,

Ã =

θKM −θQM

QT
M SM + ∆tθHM


n+θ

(61)

and

B̃ =

(θ − 1)KM (1− θ)QM

QT
M SM − (1− θ)∆tHM


n+θ

, (62)

respectively and the discretized forcing vector Fn+θ =
{

fuM fpM

}T
320
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A central difference scheme, θ = 1
2 is adopted in this work. Since such a

scheme is conditionally stable, one should exercise caution in choosing appro-

priate spatial and temporal time discretization steps.

3.6. Downscaling

The fine-scale displacements and pressures at each time-step can be eval-

uated from the solution of Eq. (60) by employing the following down-scaling

procedure. The coarse element-wise displacements and pressures are first ex-

tracted at the desired time steps from {uM}n and {pM}n, respectively. These

values are now stored in the vectors of coarse-nodal displacements uM(α) and

pressures pM(α), α = 1 . . . nMel
, respectively. The displacements and pressures

associated with the ith fine-element in the αth coarse-element / RVE can be eval-

uated using Eq. (33). Derivative quantities, like strains and stresses associated

with the fine-scale elements can now be computed:

εαm(i) = Bεuαm(i), σαm(i) = D εαm(i), (63)

Similarly, the derivative quantities for the fluid phase, i.e., the pressure flux and

specific discharge, can be evaluated

∇pαm(i) = B∇pαm(i), qαm(i) = − k

γw
∇pαm(i). (64)

The terms Bε and B∇ are VEM based strain and gradient matrices, respec-325

tively. They are described fully in Appendix B.

The process flow of the CMsVEM is graphically shown in Fig. 6.

4. Numerical Examples

In the following, we examine the performance of the CMsVEM in terms

of accuracy and computational efficiency, through three numerical examples.330

A first-order VEM (k = 1) is used in all cases. The element-types used are

illustrated in Fig. 7. The centroidal Voronoi tesselations (CVT) shown in Fig. 7b

are generated using Polymesher [82].
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Figure 6: Process flow of the Coupled Multiscale Virtual Element procedure.

The accuracy of the displacement and stress/strain approximations is quanti-

fied through the relative L2 norm and the H1 semi-norm, respectively as follows:
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(a) 100 QUAD elements (b) 100 CVT elements

Figure 7: Mesh types used

||uQh − uQref ||L2
=

√√√√ 1

nQel

nQel∑
i=1

〈uQh(i) − uQref(i),u
Q
h(i) − uQref(i)〉

〈uQref(i),u
Q
ref(i)〉

(65a)

||uQh − uQref ||H1 =

√√√√ 1

nQel

nQel∑
i=1

〈ε(uQh(i))− ε(u
Q
ref(i)),σ(uQh(i))− σ(uQref(i))〉

〈ε(uQref(i)),σ(uQref(i))〉

(65b)

Similarly, the accuracy of the pressure and the pressure flux/specific discharge

approximations is quantified as

||pQh − pQref ||L2 =

√√√√ 1

nQel

nQel∑
i=1

〈pQh(i) − pQref(i),p
Q
h(i) − pQref(i)〉

〈pQref(i),p
Q
ref(i)〉

(66a)

||pQh − pQref ||H1
=

√√√√ 1

nQel

nQel∑
i=1

〈∇pQh(i) −∇pQref(i),q(pQh(i))− q(pQref(i))〉
〈∇pQref(i),q(pQref(i))〉

.

(66b)

To enable fair comparisons the relative L2 and H1 error norms are computed

over a query mesh with nQel elements unless stated otherwise. The terms uQh ,335

pQh , uQref and pQref denote the numerically evaluated and reference displacements

and pressures, interpolated at the nodes of the query mesh Q, respectively. The

operator 〈·, ·〉 represents the scalar product. All reference solutions uh and

ph are obtained through finely discretized VEM solutions. All solutions were

performed using our in-house source codes developed in Matlab.340
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4.1. Porous domain with cavity

Figure 8: Geometry and boundary conditions of a porous domain with circular cavity

A rectangular porous domain with dimensions 10m×4m is considered, with

a cavity of radius R = 1m as shown in Fig. 8. Only half the domain is analysed

due to symmetry. The boundary conditions are also shown in Fig. 8. The right

edge is exposed to air and maintains a pressure p = 0. Null flow conditions345

are imposed at all boundaries, i.e., ∇p · n = 0. A compressive load denoted by

t =
[
tx, 0

]T
, where tx = 75 kN/m is incrementally applied on the right edge of

the domain. The loading history is shown in Fig. 9. A homogeneous material

Figure 9: Compressive loading history

is assumed over the entire domain and the corresponding material parameters

used are summarized in Table 3.350

Three discretization schemes are used as shown in Fig. 10 and summarized in

Table 4. Mesh 1 (Fig. 10a) is a pure VEM mesh of CVT elements with an average

31



Parameter E ν γf Ks Kf g ρs ρf n αB

[MPa] [/] [Pa · s] [Pa] [Pa] [m · s−2] kg ·m−3 kg ·m−3 [/] [/]

Value 5 0.2 10−3 3× 104 104 0 103 103 0.2 1

Table 3: Homogeneous material parameters used

Label Full Mesh Multiscale Mesh

[-] Macro Micro

Mesh 1 nel = 2500 - -

Mesh 2 nel = 2500 nMel
= 50 nmel

= 50

Mesh 3 nel = 2500 nMel
= 250 nmel

= 10

Table 4: Discretization scheme specifications

diameter h = 0.1076m. Mesh 2 (Fig. 10b) is a multiscale mesh comprising 50

coarse CVT elements of average diameter h = 0.7880m. Each coarse element

clusters 50 fine CVT elements. Mesh 3 (Fig. 10c) is also a multiscale mesh355

consisting of 250 coarse CVT elements of average diameter h = 0.5543m. Here,

each coarse element clusters 10 fine CVT elements.

(a) (b) (c)

Figure 10: (a) Mesh 1, (b) Mesh 2, (c) Mesh 3.

4.1.1. Field contours

In all cases, the maximum pore-fluid pressures occur at ti = 6.83 hours,

i = 42; these are shown in Fig. 11. The corresponding displacement contours360
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 11: p: pressures of pore fluid at ti = 6.83 hours, i = 42

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 12: ux: x-Displacements of solid skeleton at ti = 6.83 hours, i = 42

ux and uy are shown in Figs. 12 and 13, respectively. The pressures computed

by the method over Mesh 2 and Mesh 3 are nearly identical to the reference

VEM solution, as illustrated in Fig. 11. Similarly, the displacements ux and

uy evaluated over Meshes 2 and 3 are found to be equivalent to the associated

Mesh 1 contours. This can be seen from Figs. 12 and 13, respectively. It365

can be concluded from this that the CMsVEM procedure over Mesh 2 proves

sufficient for computing primary quantities, while offering stark reductions in

computational complexity.

The stress contours σxx, σyy, σxy are illustrated in Figs. 14 , 15 , and 16,

respectively. The Darcy velocities vx and vy are shown in Figs. 17 and 18,

respectively. The Darcy velocity is evaluated through the following expression:

v = q/n, (67)

where n denotes the porosity and q is the Darcy flux computed using Eq. (64).
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 13: uy : y-Displacements of solid skeleton at ti = 6.83 hours, i = 42

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 14: σxx: Stresses of solid skeleton at ti = 6.83 hours, i = 42

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 15: σyy : Stresses of solid skeleton at ti = 6.83 hours, i = 42
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 16: σxy : Stresses of solid skeleton at ti = 6.83 hours, i = 42

(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 17: vx: Darcy velocity of pore fluid at ti = 6.83 hours, i = 42

The stresses σxx, σyy, σxy and the Darcy velocities vx, vy computed over370

Mesh 2 show significant deviations from the reference solution i.e., Mesh 1.

Conversely, Mesh 3 offers practically equivalent results. Hence, Mesh 2 is insuf-

ficient in capturing local variations in secondary or derived fields. A finer coarse

discretization, i.e., Mesh 3 is required in such cases. Despite proving more ex-

pensive than Mesh 2, it still offers significant reduction in computational effort375

compared to Mesh 1. This trade-off between accuracy and computational effort

is studied more rigorously in Section 4.1.2 and 4.1.3, respectively.

4.1.2. Convergence behaviour

To investigate the convergence behaviour of the proposed CMsVEM, six

different discretization schemes are considered at the coarse scale, i.e., with 25,380

50, 100, 250, 500 and 1000 polygonal elements. For each case, the five different

micro-structure discretizations shown in Fig. 19 are employed and the relative
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(a) Mesh 1 (b) Mesh 2 (c) Mesh 3

Figure 18: vy : Darcy velocity of pore fluid at ti = 6.83 hours, i = 42

L2 and H1 error norms are evaluated. A standard VEM solution with 5000

CVT elements is used as the reference solution.

Figs. 20a and 20b summarize the convergence analysis results for the solid385

skeleton displacements and stresses, respectively. The error in the solid skeleton

quantities reduces for finer coarse and micro-element discretizations. The case of

250 coarse elements and 25 micro-elements per coarse element is an upper bound

below which all solutions seems to provide identical and well-behaved results.

This is not the case for the fluid phase, where the error is primarily controlled390

by the coarse element size rather than the micro-structure resolution as shown

in Figs. 20c and 20d for the pressures and fluxes, respectively. Although this

observation hints at the idea of resolving the two governing equations at different

meshes hence further reducing computational costs, it is important to mention

that this example involves a homogeneous domain where such a convergence395

response is to be expected.

The error convergence rates for both phases are summarized in Table 5.

These are found to nearly coincide with the theoretical convergence rates of 2

in the L2 and 1 in the H1 relative error norms, respectively. The theoretical

convergence rates are provided in [83] for elasto-static problems. Hence, all400

microstructural configurations result in near optimal error convergence rates.

This establishes the CMsVEM as an alternative to the CMsFEM when flexible

mesh generation is required.
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(a) CVT1

(b) CVT10 (c) CVT25

(d) CVT50 (e) CVT100

Figure 19: 5 microstructures illustrated for an arbitrarily chosen polygonal coarse element

||uh − uex||L2
||ph − pex||L2

||uh − uex||H1
||ph − pex||H1

CVT1 1.6901 1.8265 0.8993 1.0316

CVT10 2.0504 2.0008 0.9279 1.0121

CVT25 1.8949 2.0470 0.9265 1.0141

CVT50 1.7623 1.6956 0.8926 1.0049

CVT100 2.0117 1.7914 1.1331 0.9780

Table 5: Rates of error convergence

4.1.3. Discussion on computational effort

To examine the computational toll of the CMsVEM, the time required for405

pre-processing, analysis, and downscaling is recorded. These times are averaged

over five runs and are illustrated as a function of the coarse and fine discretiza-

tions used in 4.1.2.

The time required to create the coarse elements is displayed in Fig. 21a.

This includes the evaluation of the multiscale basis functions and the upscaling410

procedure used to create coarse element state matrices. A linear front is ob-

served, indicating that the number of operations required depends on both, the

number of coarse and fine elements. This is expected as in this case the RVEs
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(a) Relative error in displacement u (b) Relative error in stress σ

(c) Relative error in pressure p (d) Relative error in flux q

Figure 20: Convergence results for 5 microstructure configurations at ti = 6.83 hours, i = 42

are non-periodic and the basis-functions are evaluated for each coarse element

individually. In the case of periodically repeated RVEs, basis functions would415

be evaluated once for each periodic group and the computational time would be

independent of the number of coarse elements involved.

The time required for the assembly of the global coarse state matrices KM ,

QM , HM , SM , and the solution of global system of linear equations at the coarse

scale through finite-differences are shown in Figs. 21b and 21c, respectively. It420

is evident that these times depend exclusively on the number of coarse elements.

The assembly procedure is of the order of magnitude 1E−02 seconds and can be

considered negligible in comparison to the solve times. This can be accounted

for by the fact that the global state matrices are assembled only once.

The time required for downscaling is provided in Fig. 21d. This includes the425
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(a) (b)

(c) (d)

(e)

Figure 21: Computational time (in seconds) for (a) Coarse elements creation (b) Global coarse

element state matrices assembly (c) Solution at the coarse scale (d) Down-scaling (e) Total

time
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procedure described in Section 3.6. The computational effort here is a function

of the coarse and fine scale discretizations. Finally, to account for possible

overheads in the computation, the total time taken for the entire CMsVEM is

provided in Fig. 21e.

4.2. Heterogeneous Soil Domain430

A fully saturated soil domain of 40 m ×25 m shown in Fig. 22 is considered.

Two discretizations are examined, which are summarized in Table 6. In the first

(see also, Fig. 22a) a coarse structured grid containing 40 (8× 5) quadrilateral

elements is considered. Each coarse element comprises a micro-mesh of 5 × 5

quadrilateral micro-elements. The total number of micro-elements is 1000. The435

second discretization, shown in Fig. 22b involves an unstructured coarse mesh

containing 40 uniform CVT elements. In this case, each coarse element clusters

25 CVT fine elements and the total number of micro-elements is again 1000.

A reference discretization of 40 × 25 quadrilateral elements is considered to

facilitate comparisons. The domain is subjected to a compressive load at the440

top boundary with the loading history shown in Fig. 23. The domain is fully

supported at its bottom edge. Sliding conditions are considered in the left and

right-most edges.

(a) (b)

Figure 22: Saturated 40 m × 25 m soil domain with (a) 8× 5 coarse structured quadrilateral

mesh and 40× 25 fine structured quadrilateral mesh, (b) coarse unstructured CVT polygonal

mesh with 40 elements and fine unstructured CVT polygonal mesh with 1000 elements
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Label Full Mesh Multiscale Mesh

[-] Macro Micro

QUAD 40 x 25 8 x 5 5 x 5

CVT 1000 40 25

Table 6: Discretization schemes

Figure 23: Loading history.

To investigate the fidelity of the phase-decoupling hypothesis used in deriving

the multiscale basis functions in Section 3.3, two heterogeneous descriptions of445

the domain are examined. To investigate the influence of the assumed boundary

conditions at the coarse element boundary for the evaluation of the micro-basis

functions two cases are run for each heterogeneous description, i.e, the case of

linear and oscillatory boundary conditions. The methods used are summarized

in Table 8.450

4.2.1. Case 1 - Heterogeneous permeability k

In this case, isotropic heterogeneous random permeability fields are con-

sidered, sampled from a lognormal distribution of mean µ(log(k)) = −12 and

Parameter ν γf Ks Kf g ρs ρf n

[Pa · s] [Pa] [Pa] [m · s−2] [kg ·m−3] [kg ·m−3]

Value 0.2 10−3 1012 2× 109 0 2.8× 103 103 0.2

Table 7: Homogeneous material parameters of the soil domain

41



(a) (b)

Figure 24: (a) Randomly sampled heterogeneous isotropic permeability field, (b) Randomly

sampled heterogeneous Young’s modulus

Abbreviation Method Mesh-Type Boundary Conditions

VEM Virtual Element Method Quadrilateral -

MS-QUAD LIN Multiscale Virtual Element Method Quadrilateral Linear

MS-CVT LIN Multiscale Virtual Element Method Polygonal Linear

MS-QUAD OSC Multiscale Virtual Element Method Quadrilateral Oscillatory

MS-CVT OSC Multiscale Virtual Element Method Polygonal Oscillatory

Table 8: Methods investigated

standard deviation σ(log(k)) = 1.0. The field has a maximum and minimum

value of k = 5×10−9 m2 and k = 7×10−16 m2, respectively. A snapshot is pro-455

vided in Fig. 24a. For the solid phase, a homogeneous modulus E = 5× 109 Pa

is employed. The remaining material parameters are uniformly distributed over

the entire domain and are summarized in Table 7. Due to the random distri-

bution of the permeability, multiscale basis functions are evaluated all coarse

elements individually.460

Three points of interest, i.e., points A(20, 25), B(10,15), and C(20,10) are

considered as shown in Fig. 22. The time evolution of the expectation values of

displacements ux, uy, and pressures p obtained over ns = 5000 samples at these

points are illustrated in Fig. 25.

Due to symmetry the horizontal displacement component ux at Points A465

and C is practically zero as illustrated in Figs. 25a and 25c, respectively. Minor

42



(a) ux at A (b) ux at B (c) ux at C

(d) uy at A (e) uy at B (f) uy at C

(g) p at A (h) p at B (i) p at C

Figure 25: Time evolution t = 40h of expectation values of horizontal displacement E[ux],

vertical displacement E[uy], and pore-fluid pressure E[p] at points A, B, and C, obtained for

ns = 5000 samples
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(a) VEM

(b) MS-QUAD LIN (c) MS-CVT LIN

(d) MS-QUAD OSC (e) MS-CVT OSC

Figure 26: E[uy] displacement contours (in [mm]) at t = 40h obtained for ns = 5000 samples.

deviations from zero are attributed to asymmetric permeability fields sampled

from the lognormal distribution. As shown in Figs. 25 regardless of the boundary

conditions employed, all CMsVEM runs match perfectly the standard VEM

solutions.470

Snapshots of the expectation values of the results obtained at t = 40 hours

are shown in Figs. 26 and 27 for the vertical displacement component and the

pressures, respectively.
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(a) VEM

(b) MS-QUAD LIN (c) MS-CVT LIN

(d) MS-QUAD OSC (e) MS-CVT OSC

Figure 27: E[p] pressure contours (in [Pa]) at t = 40h obtained for ns = 5000 samples.

4.2.2. Case 2 - Heterogeneous permeability k and heterogeneous Young’s mod-

ulus E475

Here, the heterogeneous permeability k field employed in the previous case

is considered together with a heterogeneous Young’s Modulus E distribution.

The heterogeneous random Young’s modulus fields are defined with maximum

and minimum values of E = 1 × 1010 Pa and E = 7 × 108 Pa, respectively.

A snapshot is provided in Fig. 24b. The remaining material parameters are480

uniformly distributed over the entire domain and are summarized in Table 7.

As in the previous case, the multiscale basis functions are evaluated for all coarse

elements individually.

The resulting time evolution of the expectation values of ux, uy, and p at

points A, B and C as obtained over ns = 5000 samples are shown in Fig. 28.485

Contrary to Case 1, the heterogeneities in the solid domain increase the granu-

larity between the different methods considered. Although the accuracy of the

predicted displacements is acceptable, the methods using oscillatory boundary

conditions, i.e., MS-QUAD OSC and MS-CVT OSC provide the best match

to the standard VEM solution. The differences are more pronounced in the490

predicted pressure fields Figs. 28, where MS-QUAD LIN and MS-CVT LIN
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(a) ux at A (b) ux at B (c) ux at C

(d) uy at A (e) uy at B (f) uy at C

(g) p at A (h) p at B (i) p at C

Figure 28: Time evolution t = 40h of expectation values of horizontal displacement E[ux],

vertical displacement E[uy], and pore-fluid pressure E[p] at points A, B, and C, obtained for

ns = 5000 samples

consistently under-predict pressures at the three points.

The contours of expectation values for the horizontal and the vertical com-

ponent of the displacement fields at t = 40 hours are shown in Figs. 29 and 30,

respectively. The corresponding pressure field is shown in Fig. 31.495

The linear boundary conditions impose a strict constraint on the deforma-

bility of the heterogeneous micro-structure. This is consistent with the physics

of the problem where a nonlinear displacement profile is to be expected due to

the joined permeability and Young’s modulus heterogeneity. The choice on the
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(a) VEM

(b) MS-QUAD LIN (c) MS-CVT LIN

(d) MS-QUAD OSC (e) MS-CVT OSC

Figure 29: E[ux] displacement contours (in [m]) at t = 40h obtained for ns = 5000 samples.

(a) VEM

(b) MS-QUAD LIN (c) MS-CVT LIN

(d) MS-QUAD OSC (e) MS-CVT OSC

Figure 30: E[uy] displacement contours (in [mm]) at t = 40h obtained for ns = 5000 samples.
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(a) VEM

(b) MS-QUAD LIN (c) MS-CVT LIN

(d) MS-QUAD OSC (e) MS-CVT OSC

Figure 31: E[p] pressure contours (in [Pa]) at t = 40h obtained for ns = 5000 samples.

boundary conditions to be employed for the evaluation of the basis-functions500

should be driven by the physics. Using a decoupled scheme for the evaluation of

the basis-functions on the other hand does not significantly affect the accuracy

of the CMsVEM while imposing minimum costs on the evaluation of the basis

vector. This observation could prove particularly beneficial in the case of non-

linear problems where a re-evaluation of the basis would be required. However505

such aspects are beyond the scope of this work.

To examine whether the oscillatory boundary conditions ensure compatibil-

ity of the fine scale solution across boundaries, contour plots of the total dis-

placement, pressure, strain component εyy, and stress component σyy obtained

at t = 40 hours for a single realization of the heterogeneous Young’s modu-510

lus and permeability fields using oscillatory boundary conditions are shown in

Figs. 32. In all cases, the downscaled quantities vary smoothly across the coarse

element boundaries, despite the prevalence of significant heterogeneities.

Consistency and continuity properties are investigated in more detail by con-

sidering two neighbouring coarse elements, i.e. 16 and 31, as shown in Fig. 33.515

The interface encountered is non-conforming in nature. These elements are cho-

sen as the underlying material description here is highly heterogeneous. Conse-
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(a) (b)

(c) (d)

Figure 32: (a) ||u|| (in [m]), (b) p (in [Pa]), (c) −σyy (in [Pa]) and (d) −εyy contours at

t = 40 hours for a single realization of the heterogeneous E and k field.

quently, continuity of field variables at this interface should provide satisfactory

guarantees for similar continuous behaviour across other coarse element inter-

faces as well. The total displacements ||u|| and strain εyy evaluated at the520

fine-scale interface nodes belonging to each coarse element are provided in Ta-

bles 9 and 10.

It can be seen from Tables 9 and 10 that ||u|| and εyy evaluated at the fine

nodes corresponding to coarse node M47, i.e., 1 and 29, and M50, i.e., 15 and 5

are practically identical. Despite non-conformity of intermediate edge interface525

nodes, the quantities appear continuous here as well.
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Figure 33: Microstructures of adjacent coarse elements 16 and 31. The interface joins coarse

nodes M47 and M50.

4.2.3. Discussion on computational gains

The computational efficiency of the CMsVEM is assessed by recording times

for critical procedures for all methods. All times displayed are averaged over

five runs.530

The time taken for assembling global coarse scale state matrices KM , QM ,

HM and SM is shown in Fig. 34a. This includes the computation of multiscale

basis functions and upscaling procedures used to create coarse element state

matrices. All multiscale methods practically perform equally in this regard and

offer a speedup of approximately a factor eight (≈ 8×) when compared to the535

VEM. As using oscillatory boundary conditions when computing multiscale ba-

sis functions does not require more computational effort than the simpler case

of linear boundaries, one should always prefer MS-QUAD OSC and MS-CVT

OSC over MS-QUAD LIN and MS-CVT LIN in the event of highly heteroge-
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Fine

Node
15 14 13 5 2 1

||u|| 3.19442 3.05568 2.98009 2.83392 2.70283 2.65383

εyy -0.1645 -0.1645 -0.1646 -0.1647 -0.1647 -0.1648

Table 9: Fine-scale ||u|| (in [mm]) and εyy(×10−3) along interface for coarse element 16

Fine

Node
5 14 15 28 29

||u|| 3.19442 2.90025 2.82015 2.71886 2.65383

εyy -0.165 -0.1649 -0.1648 -0.1649 -0.1649

Table 10: Fine-scale ||u|| (in [mm]) and εyy(×10−3) along interface for coarse element 31

neous material definitions.540

The time taken for the solution procedure is illustrated in Fig. 34b. All

multiscale methods again perform equally efficiently and offer a speedup of

≈ 200× when compared to the VEM. This enormous reduction in computational

effort is to be expected as the number of nodes in the multiscale procedures is

significantly reduced in comparison to it’s VEM counterparts. Repeated matrix545

inversions in the case of finite-difference time domain solutions further establish

the effectiveness of the CMsVEM.

The postprocessing times are displayed in Fig. 35a. This involves the down-

scaling procedure used to recover fine scale information and evaluating deriva-

tive quantities like stresses, strains and fluxes over fine element domains. Once550

again, all multiscale methods perform equivalently and offer a speedup of ≈ 2×

in comparison to the VEM. This is attributed to the fact that in the multi-

scale methods, the downscaling procedure is performed for each coarse element.

This implicitly vectorizes the associated stress and flux computation loops. It

is of interest to note that since the consolidation problem examined is linear,555

the multiscale basis functions are computed offline. As a result, no significant
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(a) (b)

Figure 34: (a) Time taken to assemble global coarse element state matrices, (b) Time taken

to solve system of linear equations at coarse scale

overheads are incurred to the overall solution procedure.

(a) (b)

Figure 35: (a) Time taken to postprocess the solution , (b) Total time taken

It can be seen from Fig. 35b that all multiscale methods offer an appre-

ciable total speedup of ≈ 4× when compared with the VEM. Such speedups

prove extremely valuable when obtaining statistical moments for random field560

simulations using for e.g. classical Monte-Carlo approaches. In this example,

expectation values for 5000 samples were computed, thus generating an over-

all speed up of ≈ 20000× when compared to the VEM. A similar comparison

between FEM, VEM, MsFEM and MsVEM is provided in Figs. 36 and 37.

The VEM and MsVEM are found to offer quicker assembly and postprocessing565
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computational times than their FEM and MsFEM counterparts.

(a) (b)

Figure 36: (a) Time taken to assemble global coarse element state matrices, (b) Time taken

to solve system of linear equations at coarse scale

(a) (b)

Figure 37: (a) Time taken to postprocess the solution , (b) Total time taken

4.3. Honeycomb structure

The honeycomb structure shown in Fig. 38 is considered herein. The overall

dimensions of the domain are 5m× 5m. This domain consists of 25 periodically

repeated heterogeneous unit cells. Each unit cell comprises a matrix with a570

Young’s modulus E = 5 MPa and a stiffer inclusion with E = 500 MPa. The

structure is clamped at its bottom. The deflections along the horizontal are
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E ν γf Ks Kf ρs ρf n αB

[MPa] [/] [Pa · s] [Pa] [Pa] [kg ·m−3] [kg ·m−3] [/] [/]

Matrix 5
0.2 10−3 3× 104 104 103 103 0.2 1

Inclusion 500

Table 11: Material parameters used

restricted on the left and right edges. No-flow conditions are imposed across all

boundaries. The top maintains a pressure p = 0 and is subject to a progressively

applied compressive load t =
[
0, ty

]
. The loading history is shown in Fig. 9.575

The material parameters used are provided in Table 11.

Figure 38: Schematic of a honeycomb structure

A multiscale discretization is considered wherein each of the 25 periodically

repeating unit cells comprises 500 CVT elements. This is compared against a

reference VEM solution evaluated over 12,500 CVT elements. All multiscale

solutions are evaluated using oscillatory boundary conditions. Four multi-node580

coarse-element configurations, MS1 to MS4, are designed to examine the trade-

off between accuracy and speedup. These are illustrated in Fig. 39.

All CMsVEM models involve the solution of a significantly reduced system of

governing equations when compared to the reference VEM solution. In Fig. 40,

the order reduction achieved per coarse element is provided as the ratio of the585

54



(a) MS1: 24 coarse

nodes

(b) MS2: 31 coarse

nodes

(c) MS3: 44 coarse

nodes

(d) MS4: 81 coarse

nodes

Figure 39: The multi-node coarse element configurations

total number of degrees of freedom of the multiscale formulation to the degrees

of freedom of the standard VEM implementation. Even in the case of the high-

fidelity MS4 coarse element, the order of the problem is practically halved.

Figure 40: Percentage reduction in DoFs offered by each coarse element configuration, in

relation to the complete VEM discretization.

The maximum pore-fluid pressures are found to occur at ti = 6.83 hours,

i = 42. Displacement, pressure, stress and flux contours are provided at this590

instant for the VEM and multiscale solutions. The total displacement contours

||u|| are shown in Fig. 41. Pressure contours p are provided in Fig. 42.

It can be seen from the Figs. 41 and 42 that the total displacement ||u||

and pressure p contours are practically the same for all cases. Von-Mises stress

contours σVM are illustrated in Fig. 43. Total Darcy flux contours ||q|| are595

displayed in Fig. 44.
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(a) VEM

(b) MS1 (c) MS2

(d) MS3 (e) MS4

Figure 41: ||u|| total displacement contours at ti = 6.83h, i = 42.

(a) VEM

(b) MS1 (c) MS2

(d) MS3 (e) MS4

Figure 42: p pressure contours at ti = 6.83h, i = 42.

Fig. 44 reveals that the total flux ||q|| contours is also practically equivalent

for all cases. However, significant variations can be observed in the case of the
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(a) VEM

(b) MS1 (c) MS2

(d) MS3 (e) MS4

Figure 43: σV M Von-Mises stress contours at ti = 6.83h, i = 42.

(a) VEM

(b) MS1 (c) MS2

(d) MS3 (e) MS4

Figure 44: ||q|| total flux contours at ti = 6.83h, i = 42.
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Von-Mises stresses as shown in Fig. 43. The contours obtained are increasingly

accurate moving from MS1 to MS4 when compared against the reference VEM600

solution. This is to be expected as the coarse element described by MS4 pro-

vides a high-fidelity representation of the original curved boundary. This in

turn ensures more accurate upscale and downscale mappings performed by the

multiscale basis functions.

The time evolution of the relative L2 and H1 error norms in u and p are605

provided in Fig. 45. An appreciable reduction in errors is observed in Figs. 45a,

45b, 45c and 45d as the number of coarse nodes is increasing. This is to be

expected as a more detailed account of the RVE geometry and underlying het-

erogeneities can prove critical to the fidelity of the upscaling and downscaling

procedures.610

(a) Relative errors in displace-

ments u

(b) Relative errors in pressures p

(c) Relative errors in stresses σ (d) Relative errors in flux q

Figure 45: Evolution of errors in displacements and pressures for the four coarse-element

configurations MS1, MS2, MS3 and MS4.
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4.3.1. Discussion on computational gains

The computational cost associated with the MS1, MS2, MS3 and MS4 is

studied here in terms of the speedup offered. The speedup metric is defined as

follows

speedup(operation) =
tVEM(operation)

tMSi(operation)
, i = 1, . . . 4, (68)

where tVEM(operation) and tMSi(operation) denote the times taken to complete

a certain operation, using the VEM and CMsVEM discretizations, respectively.

The speedup offered by MS1 through MS4 for (a) assembly of global coarse

element state matrices, (b) solving system of linear equations at the coarse615

scale, (c) post-processing the solution to obtain fine-scale information, and (d)

the complete CMsVEM procedure, are shown in Figs. 46a, 46b, 46c and 46d,

respectively. These operations are as defined in Section 4.2.

Near-linear trends in the speedup reduction is observed in Figs. 46a, 46c and

46d. A near-exponential decreasing trend is observed in the case of the solution620

procedure at the coarse-scale, as shown in Fig. 46b. The decreasing trends

exhibited at all operations is further evidenced by the decrease in percentage

reduction of coarse-scale DoFs, as shown in Fig. 40.

5. Conclusions

A novel CMsVEM has been developed for analysing consolidation phenom-625

ena in highly heterogeneous poroelastic media. The novelty of the method lies

in using the VEM at the fine scale to enable flexible meshing capabilities to

efficiently capture all types of heterogeneities. The solution procedure is per-

formed at the coarse scale to reduce computational cost. Fine scale information

is mapped onto the coarse scale through a set of numerically computed multi-630

scale basis functions. Subsequently, the solution is downscaled using the same

basis functions to describe local fine scale variations. The ability of the method

to handle flexible coarse element geometries enables more versatile meshing of

non-standard domains.
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(a) (b)

(c) (d)

Figure 46: Speedup offered during (a) assembly of global coarse element state matrices, (b)

solving system of linear equations at the coarse scale, (c) postprocessing the solution, (d)

complete CMsVEM procedure

These extended meshing capabilities offered by the method allows for effi-635

cient modelling of complex geometries at the coarse and fine scale while retaining

the accuracy of the standard FEM and its CMsFEM counterpart. The accuracy

of the proposed method is validated against standard FEM and VEM solutions.

Our convergence studies demonstrated that the CMsVEM is well behaved even

in the case of highly oscillating heterogeneities at the fine scale.640

The boundary conditions used in computing the multiscale basis functions

are known to play a critical role in the accuracy of the method. Oscillating

boundary conditions are shown to offer a better account of the behaviour of the

system when significant heterogeneities are present.
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The computational upscaling procedure performed offline, is shown to sig-645

nificantly drive down computational costs compared to the standard FEM or

VEM, by reducing computational complexity. Consequently, overhead memory

requirements are also appreciably lowered.

A limitation of the proposed method lies in it being confined to 2-D do-

mains only. Extending the method to allow for more general 3-D polyhedral650

discretizations at both scales is currently under development.
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Appendix A Monomial Spaces

The contents of the scalar and vector valued monomial spaces, i.e., Mk(K)

and [Mk(K)]2 are provided in Table 12.

where ξ = x−xK
hK

and η = y−yK
hK

denote the scaled scalar valued monomials

in each parametric direction, respectively. The diameter and the centroid of

the element K are denoted by hK and (xK, yK)T , respectively. The number

of members of each of these spaces is generalizable to n
(1)
k = (k+1)(k+2)

2 and

n
(2)
k = (k + 1)(k + 2), respectively. The contents of the kernels Kε and K∇ are

expressed as:

Kε([M(K)]2) ≡ Kε(K) =


1

0

 ,

0

1

 ,

 η

−ξ


 (69a)

K∇(M(K)) ≡ K∇(K) =
{

1
}
. (69b)
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Polynomial

order
Mk(K) [Mk(K)]2

k = 0 M0(K) =
{

1
}

[M0(K)]2 =


1

0

 ,

0

1




arbitrary

order k

Mk(K) =
{
Mk−1(K), ξk,

ξk−1η, . . . ηk
}

[Mk(K)]2 =

{
[Mk−1(K)]2,

ξk0
 , 0

ξk

 ,

ξk−1η

0

 ,

 0

ξk−1η

 ,

. . .

ηk0
 ,

 0

ηk


}

Table 12: Generalized scalar and vector valued monomials for Mk(K) and [Mk(K)]2, respec-

tively

The zero-energy modes of Kε(K) can be endowed with a rigid-body mechanics905

interpretation. In a 2D physical space, these correspond to two translations and

a rotation, respectively.

Appendix B Virtual Projectors

Following Eq. (18), the projected quantities are expanded through the rele-

vant monomial bases:

Πεkuh =

n
(2)
k −3∑
i=1

ζεi mi, ∀mi ∈ [Mk(K)]2 \Kε(K) (70a)

Π∇k ph =

n
(1)
k −1∑
i=1

ζ∇i mi, ∀mi ∈Mk(K) \K∇(K) (70b)

Π0
kph =

n
(1)
k∑
i=1

ζ0
i mi, ∀mi ∈Mk(K), (70c)

where the unknown quantities ζεi , ζ∇i and ζ0
i are to be understood as dis-

cretized forms of the corresponding projection operators. These are collected
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and stored in vector form in ζε, ζ∇ and ζ0, respectively. Inserting the expres-

sions in Eq. (70) into the orthogonality conditions in Eq. (18) and simplifying,

the following relations are obtained:

n
(2)
k −3∑
i=1

ζεi aεK(mi,mj) = aεK(uh,mj) (71a)

n
(1)
k −1∑
i=1

ζ∇i a∇K(mi,mj) = a∇K(ph,mj) (71b)

n
(1)
k∑
i=1

ζ0
i a0
K(mi,mj) = a0

K(ph,mj). (71c)

The discretized projectors are solved for as follows

ζε = [Gε]−1Bε, (72a)

ζ∇ = [G∇]−1B∇, (72b)

ζ0 = [G0]−1B0, (72c)

For a more detailed discussion on the evaluation of L2 operator, please refer910

to [73, 76].
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Appendix C Consistency Terms

The consistency terms as shown in Eq. (29) are defined as:

KC = ζε
T

∫
Km

ε(mi)σ(mj) dK


︸ ︷︷ ︸

Gε

ζε, i, j = 1, . . . , n2
k − 3, (73a)

QC = ζε
T

∫
Km

ε(mi) {αm} mj dK

 ζ0, i = 1, . . . , n2
k − 3, j = 1, . . . , n1

k,

(73b)

HC = ζ∇
T

∫
Km

∇(mi)

{
k

γf

}
∇(mj) dK


︸ ︷︷ ︸

G∇

ζ∇, i, j = 1, . . . , n1
k − 1, (73c)

SC = ζ0T

∫
Km

∇(mi) {Sε} ∇(mj) dK


︸ ︷︷ ︸

G0

ζ0, i, j = 1, . . . , n1
k, (73d)

where only the integral term in Eq. (73b) needs to be freshly computed. The

other integrals Gε, G∇ and G0 have already been computed to derive the

necessary projection operators in Section B.915

Appendix D Stability Terms

The stability terms as shown in Eq. (29) are defined as:

SKK (uh,vh) ≡ KS = (I2 −Πεtot)βK (I2 −Πεtot) (74a)

SQK (uh,wh) ≡ QS = (I2 −Πεtot)βQ (I1 −Π0
tot) (74b)

SHK (ph,wh) ≡ HS = (I1 −Π∇tot)βH (I1 −Π∇tot) (74c)

SSK(ph,wh) ≡ SS = (I1 −Π0
tot)βS (I1 −Π0

tot), (74d)

where I1 and I2 denote appropriately sized identity matrices and βK , βQ, βH

and βS denote stabilization parameters. The classical choice for these parame-

ters, as originally defined only for βK in [41, 73] is given:

β
(1)
K = |K|, (75)
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where the area of the element under consideration has been included to ensure

scaling of the stabilization energy with element-size. However, non-optimal error

convergence rates in the case of three-dimensional higher order methods have

been reported with this choice in [83].920

An alternate strategy for defining βS , the D-recipe stabilization, (originally

proposed in [81] and adapted into an engineering context in [48]) is used here

for defining all stability parameters:

β
(2)
K = γK |K|

tr(D)

tr(DεTDε)
, (76a)

β
(2)
Q = γQ |K|

tr(αm)

tr(D0TD0)
, (76b)

β
(2)
H = γH |K|

k/γf
tr(D∇TD∇)

, (76c)

β
(2)
S = γS |K|

tr(Sε)

tr(D0TD0)
, (76d)

where the scaling parameters γK = γQ = γH = γS = 1. The D-recipe approach

ensures correct scaling in relation to the associated consistency terms by taking

into account the material parameters involved in the formulation. The terms

Dε, D∇ and D0 contain the relevant monomials evaluated at each DoF:

Dε =


dof1(m1) . . . dof1(m

n
(2)
k −3

)

...
. . .

...

dofn(2)(m1) . . . dofn(2)(m
n
(2)
k −3

)

 , ∀m ∈ [Mk(K)]2 \Kε(K)

(77a)

D∇ =


dof1(m1) . . . dof1(m

n
(1)
k −1

)

...
. . .

...

dofn(1)(m1) . . . dofn(1)(m
n
(1)
k −1

)

 , ∀m ∈Mk(K) \K∇(K) (77b)

D0 =


dof1(m1) . . . dof1(m

n
(1)
k

)

...
. . .

...

dofn(1)(m1) . . . dofn(1)(m
n
(1)
k

)

 , ∀m ∈Mk(K), (77c)

where n(1) = kNv + k(k+1)
2 and n(2) = 2kNv + k(k+ 1) are the number of DoFs

of the Vh2 and Vh1, respectively, as shown in Table 1.
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The projection operators in Eq. (74) are defined as follows:

Πεtot = Dεζε + DεSζ
ε
S (78a)

Π∇tot = D∇ζ∇ + D∇S ζ
∇
S (78b)

Π0
tot = D0ζ0, (78c)

where DεS and D∇S contain monomials from the relevant kernel spaces, evaluated

at each DoF.

DεS =


dof1(m1) . . . dof1(m3)

...
. . .

...

dofn(2)(m1) . . . dofn(2)(m3)

 , ∀m ∈ Kε(K) (79a)

D∇S =


dof1(m1)

...

dofn(1)(m1)

 , ∀m ∈ K∇(K). (79b)

The stability projection operators ζεS and ζ∇S can be computed:

ζεS = [GεS ]−1BεS (80a)

ζ∇S = [G∇S ]−1B∇S , (80b)

where GεS = BεSDεS and G∇S = B∇S D∇S . The terms BεS and B∇S are specially

defined:

BεS =


1/Nv 0 1/Nv 0 . . .

0 1/Nv 0 1/Nv . . .

η(x1) −ξ(x1) η(x2) −ξ(x2) . . .

 (81a)

B∇S =
[
1/Nv 1/Nv . . .

]
. (81b)

For a more detailed discussion on defining stability matrices, please refer to [73].

75



Appendix E Computing oscillatory kinematical constraints

For the RVE (α = 2) shown in Fig. 5b and the micro-element i = 9, Eq. (33)

assumes the following form:

u2
m(9) = Nu

m(9)︸ ︷︷ ︸
12×12

uM(2) (82a)

p2
m(9) = Np

m(9)︸ ︷︷ ︸
6×6

pM(2), (82b)

where the fine nodal displacement u2
m(9) and pressure p2

m(9) vectors are

u2
m(9) =

[
umx,6 umy,6 umx,7 umy,7 umx,13 umy,13

umx,12 umy,12 umx,11 umy,11 umx,10 umy,10,
]T

(83)

and

p2
m(9) =

[
pm,6 pm,7 pm,13 pm,12 pm,11 pm,10

]T
, (84)

respectively. Similarly, the corresponding nodal vectors at the coarse scale are

uM(2) =
[
uMx,2 uMy,2 uMx,3 uMy,3 uMx,9 uMy,9

uMx,8 uMy,8 umx,7 umy,7 umx,6 umy,6,
]T
, (85)

and

pM(2) =
[
pM,2 pM,3 pM,9 pM,8 pM,7 pM,6

]T
, (86)

for the displacements and pressures, respectively.925

For the RVE (α = 2) shown in Fig. 5b, the arrays of multiscale basis function

arrays Nu
m and Np

m are 42× 12 and 21× 6 matrices, respectively. To compute

the kinematical constraints for Nu
M,6 and Np

M,6 as illustrated in Fig. 5b, the edge

boundaries are grouped into opposite and adjacent edges as shown in Table 13.

Kinematical constraints are then assigned to the RVE as follows:930

• To compute Nu
Mx,6:
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1. Solve reduced version of Eq. (35) for ūx over ΓAdj:

− ∂

∂ξ
·
(

E
∂ūx

∂ξ

)
= 0 on ΓM7M6

, ūx(ξM6
) = 1, ūx(ξM7

) = 0 (87a)

− ∂

∂ξ
·
(

E
∂ūx

∂ξ

)
= 0 on ΓM6M2

, ūx(ξM6
) = 1, ūx(ξM2

) = 0. (87b)

2. Assign ūx to x−DoFs on adjacent edges: ūx|Γadj
= ūx.

3. Assign sliding conditions to y−DoFs on adjacent edges: ūy|Γadj
= 0.

4. Assign fully clamped conditions on opposite edges: ū|Γopp = 0.

• To compute Nu
My,6:935

1. Solve reduced version of Eq. (35) for ūy over ΓAdj:

− ∂

∂ξ
·
(

E
∂ūy

∂ξ

)
= 0 on ΓM7M6 , ūy(ξM6) = 1, ūy(ξM7) = 0 (88a)

− ∂

∂ξ
·
(

E
∂ūy

∂ξ

)
= 0 on ΓM6M2

, ūy(ξM6
) = 1, ūy(ξM2

) = 0. (88b)

2. Assign ūy to y−DoFs on adjacent edges: ūy|Γadj
= ūy.

3. Assign sliding conditions to x−DoFs on adjacent edges: ūx|Γadj
= 0.

4. Assign fully clamped conditions on opposite edges: ū|Γopp
= 0.

• To compute Np
M,6:

1. Solve reduced version of Eq. (36) for p̄ over ΓAdj:

− ∂

∂ξ
·
( k

γf

∂p̄

∂ξ

)
= 0 on ΓM7M6

, p̄(ξM6
) = 1, p̄(ξM7

) = 0 (89a)

− ∂

∂ξ
·
( k

γf

∂p̄

∂ξ

)
= 0 on ΓM6M2 , p̄(ξM6) = 1, p̄(ξM2) = 0 (89b)

2. Assign p̄ on adjacent edges: p̄|Γadj
= p̄.940

3. Assign zero conditions on opposite edges: p̄|Γopp
= 0.

77



Edges Nodes

Opposite

(Opp)

(
ΓM2M3 , ΓM3M9 , ΓM9M8 , ΓM8M7

) (
1, 2, 3, 8, 15, 18, 21, 20, 19

)
Adjacent

(Adj)

(
ΓM7M6

, ΓM6M2

) (
19, 17, 16, 9, 4, 1

)

Table 13: Opposite and adjacent boundary edges and nodes used for computing multiscale

basis functions
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