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Abstract: The role of distributor system operators is experiencing a gradual but relevant change to
include enhanced ancillary and energy dispatch services needed to manage the increased power
provided by intermittent distributed generations in medium voltage networks. In this context, the
paper proposes the insertion, in strategic points of the network, of specific power electronic systems,
denoted as active nodes, which permit the remote controllability of the active and reactive power flow.
Such capabilities, as a further benefit, enable the distributor system operators to provide ancillary
network services without requiring any procurement with distributed generation systems owners.
In particular, the paper highlights the benefits of active nodes, demonstrating their capabilities in
reducing the inverse power flow issues from medium to high voltage lines focusing on a network
cluster including renewable energy resources. As a further novelty, this study has accounted for a
real cluster operated by the Italian distributor system operator Areti. A specific simulation model of
the electrical lines has been implemented in DigSilent PowerFactory (DIgSILENT GmbH–Germany)
software using real operating data obtained during a 1-year measurement campaign. A detailed
cost-benefit analysis has been provided, accounting for different load flow scenarios. The results
have demonstrated that the inclusion of active nodes can significantly reduce the drawbacks related
to the reverse power flow.

Keywords: internet of energy; smart grid; active node; solid-state transformer; power flow control

1. Introduction

The increasing proliferation of distributed generation systems (DGSs), mostly based
on renewable energy resources connected through power electronic interfaces to medium
voltage (MV) distribution networks, is going to create control, operation, protection and
planning issues if they are not effectively addressed [1]. In such a scenario, the role of
distributor system operators (DSOs) has been gradually grown to include enhanced ancil-
lary and energy dispatch services by interacting with both DGSs and transmission system
operators (TSOs) [2,3]. The recent Directive (EU) 2019/944 of the European Parliament, in
Article 32 Incentives for the use of flexibility in distribution networks, promotes the use of
ancillary services provided by DGSs for networks management, unless the procurement of
such services is not economically efficient [4]. The ancillary services procurement certainly
requires additional effort for DSOs that have to negotiate with multiple DGS owners [5].
Furthermore, as the interaction between DSO and TSO is currently still limited, the devel-
opment of a more consolidated regulatory model is needed to enable interoperability [6,7].
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Figure 1 illustrates an example of interactions between DSO and DGSs, even highlight-
ing the connections of distributed energy storage systems (DESS) for which widespread
diffusion is expected in the near future.
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Figure 1. Example of interactions between DSO and DGSs in a dispatching service scenario. (Own 
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functionalities, integrate multiple energy sources and services, increase the local energy 
production and reduce energy transmission losses. This requires remote controlled 
actuators that will enable the management of available energy production and 
distribution on the local level. In this scenario, due to the recent availability of High-
Voltage SiC devices [11] as well as the development of modern power converters and 
control structures, the replacement of MV/LV passive transformers with solid-state 
transformers (SSTs) is becoming more feasible [12–14]. Such systems can provide remote 
power flow control and ancillary services at a secondary substations level. However, the 
power electronic converters of an SST have to be sized for the entire power level of a 
substation, resulting in a more complex design and costly construction, in addition to a 
more demanding maintenance. As an example, it is sufficient to consider that the current 
ratings required at the low voltage (LV) side can be produced only with parallel 
connections of multiple power converters. A different solution to implement the IoE relies 
on active networks based on the usage of several power active nodes: specific and reliable 
power electronic interfaces, installed by the DSO in strategic sites, which enable the direct 
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In order to provide wider flexibility to distribution networks, it is necessary to move
gradually toward an intelligent grid type (Smart Grid) with enhanced services capabilities
that will enable the Internet of Energy (IoE) [8–10]. New challenges include not only the
balancing of volatile and distributed energy production and consumption but also the
development of smart and integrated networks, which work as components of a holis-
tic energy system. Such an evolution needs active networks able to provide interactive
functionalities, integrate multiple energy sources and services, increase the local energy
production and reduce energy transmission losses. This requires remote controlled actu-
ators that will enable the management of available energy production and distribution
on the local level. In this scenario, due to the recent availability of High-Voltage SiC de-
vices [11] as well as the development of modern power converters and control structures,
the replacement of MV/LV passive transformers with solid-state transformers (SSTs) is
becoming more feasible [12–14]. Such systems can provide remote power flow control
and ancillary services at a secondary substations level. However, the power electronic
converters of an SST have to be sized for the entire power level of a substation, resulting in
a more complex design and costly construction, in addition to a more demanding mainte-
nance. As an example, it is sufficient to consider that the current ratings required at the
low voltage (LV) side can be produced only with parallel connections of multiple power
converters. A different solution to implement the IoE relies on active networks based on
the usage of several power active nodes: specific and reliable power electronic interfaces,
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installed by the DSO in strategic sites, which enable the direct routing of electricity through
the link of different MV lines. Figure 2 schematically shows, through an example, the
concept of active nodes employed for the management of the IoE; in addition, the figure
illustrates the possibility to interface DESS to the grid through an active node providing
an AC or a DC link. The inclusion of DC sub-networks is becoming attractive in recent
years due to the possibility to integrate, at a different power level, RES and energy storage,
enabling a meshed hybrid AC/DC distribution grid [15]. The DC sub-networks can be
operated in LV [16], MV [17,18] or both [19,20] and can be connected to the AC network
via multi-port power electronics converters [21,22]. A hybrid configuration can further
improve the flexibility of the entire system in terms of active and reactive power flow
controllability [20]. However, at present, regulations and standards for MVDC grids have
been developed only with reference to ship [23] or railway (IEC 60850) power systems. An
overview of the main issues, in particular related to safety operation and protection of DC
grids, which have to be still addressed, can be found in [24]. Until standards are defined,
the release of new commercial products enabling MVDC will be quite difficult. On the
other hand, it is worth noticing that the use of active nodes, based on AC interfaces, does
not require the definition of new standards and permits a straightforward interconnection
between existing electrical infrastructures.
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In comparison to SST-based solutions, active nodes can be sized with a power level
significantly lower than required for electronic transformers in secondary substations.
Furthermore, in contrast to SSTs, the energy routing permits mitigating the negative effects,
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e.g., increased losses and reduced energy available for selling, produced by the current
injection in high voltage (HV) networks due to reverse power flow [25].

Different topologies of power converters, such as modular multilevel converters [26]
and matrix-based converters [27–29], have been developed over the last few years to
permit the direct connection to two MV lines. On the other hand, active nodes based
on multiport converters [30,31] integrate different power interfaces in both AC and DC,
allowing, as shown in Figure 2, easier integration of DESS and introducing additional
flexibility for DSOs.

In the context of the European project “UNIversal and FLEXible Power Management”
(UNIFLEX-PM), a promising structure to manage the energy exchanges between three
different electricity networks with a high-power quality has been developed [32,33]. The
main objective of the UNIFLEX-PM system is to provide a flexible and modular power
electronic interface able to connect different kinds of sources and loads, including MV
electrical networks and energy storage systems. The main benefit of such a structure
consists of the capability to enable network services traditionally provided with the usage
of different FACTS devices [34,35].

Most of the studies have been focused on the converter control techniques. In par-
ticular, basic control structures in stationary [36] and rotating [37] reference frames have
been initially proposed, but due to their limited tracking current capabilities, model-based
strategies have been preferred. Amongst them, dead-beat controllers [38] provide a current
control with a wide dynamic but, due to the cascaded control loops, they present worse
performance on DC voltage tracking. Recent studies have demonstrated the superior
dynamic performance, amongst the other strategies, of the modulated model predictive
controller [39,40].

However, a fundamental aspect for DSOs is related to the real-time regulation of
the active and reactive power flow. In [41], the control of power flow profiles has been
studied in different network conditions, but the UNIFLEX converter has been allowed to
operate with only two ports. In [42], the active and reactive power control capabilities of
the three-port UNIFLEX configuration have been investigated, highlighting the conditions
that permit to operate at a unitary power factor.

The aim of the paper is to demonstrate the benefits for DSOs obtained by the usage of
active nodes on MV networks. For the first time in literature, a detailed case study, which
considers a significant network cluster operated by the local DSO Areti under real operating
conditions, is illustrated. An in-depth cost-benefit evaluation has been reported to prove
the effectiveness of the proposed solution in terms of power flow real-time controllability.
Additional benefits for DSOs include the possibility to provide ancillary network services
without requiring any procurement with DGSs owners. The paper is structured as follows:
Section 2 describes the UNIFLEX converter structure configured as an active node while, in
Sections 3 and 4, the Areti network cluster with the related model and the UNIFLEX model
have been respectively illustrated; Section 5 reports significant simulation results based on
real operating conditions; finally, in Section 6, conclusions are drawn.

2. UNIFLEX Converter

The UNIFLEX converter structure is able to connect to a variety of loads and/or
sources, including renewable energy sources or energy storage systems, and interconnect
multiple utilities in AC. The UNIFLEX three-port configuration concept is illustrated in
Figure 3, while a more detailed structure is shown in Figure 4. For example, one of the
possibilities is to connect Port 1 and Port 2 at a medium voltage and Port 3 at low voltage.
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The nominal parameters of the UNIFLEX-PM converter are shown in Table 1. As men-
tioned above, the UNIFLEX-PM converter is expected to control the power flow between
the three ports at any power factor. A detailed analysis has shown some boundaries on
the power flow capability [41]. However, such constraints can be overcome by employing
specific strategies to control the reactive power flow [30,42].
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Table 1. UNIFLEX-PM converter rated parameters.

Name Description Value Unit

C DC-Link capacitor 3100 (µF)
rL Inductor parasitic resistance 0.5 (Ω)
L AC filter inductance 11 (mH)

P NOM Rated power 5 (MVA)

V1
NOM Rated peak value of the AC supply on port 1

(line-to-line) 3300 (V)

V2
NOM Rated peak value of the AC supply on port 2

(line-to-line) 3300 (V)

V3
NOM Rated peak value of the AC supply on port 3

(line-to-line) 415 (V)

VDC
NOM Rated capacitor voltage 1100 (V)

3. Network Clusters Description

The electrical network operated by Areti has been subdivided into 329 subnetworks,
indicated hereafter as clusters; about 58% of the clusters include at least one DGS. The
first part of this work has been devoted to the selection of the most critical clusters to be
considered in the study. The excess power generation on a cluster has been evaluated by
the ratio S.

S = PDGS/PU

between the power PDGS generated by DGSs and the power demand PU of the cluster users.
As a result, clusters belonging to seven different primary substations (PS) have shown
values of S larger than 38%; however, only for the PS denoted as RFF, the excess of power
generation produces a significant inverse power flow on the HV line. This phenomenon is
mainly due to the high penetration of DGS in RFF, as shown in Table 2, where a list of the
main generators connected to RFF is presented.

Table 2. Distributed generation tied to RFF substation.

Generator Type Rated Power (MW) Line Name

Incinerator 9 REG
Biogas 19.4 ASC
Biogas 10 GIO

Thermoelectric 2.3 COT
Photovoltaic 1 PER
Photovoltaic 8.5 COT

Seventy-six secondary substations (SS) are connected to RFF and to the adjacent PS
denoted as PNG; 29 of them are operated at 20 kV while the remaining 47 at 8.4 kV. RFF
feeds seven lines denoted as Smart, equipped with real-time automatic monitoring systems
as well as remote control. To these clusters are connected different DGS with about 49 MW
total rated power.

Therefore, this study will consider the possibility to mitigate the inverse power flow
that affects RFF by the usage of an active node permitting the link between one SS belonging
to RFF and another SS of the adjacent PS denoted as PNG, characterized by a high density
of passive loads. The equivalent schematic diagram of the considered network cluster is
illustrated in Figure 5, where the two busbars at 20 and 8.4 kV to be interconnected via an
active node have been, respectively, indicated with A and B.
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4. Simulation Model

An accurate simulation model of the clusters has been implemented in DigSILENT
PowerFactory, based on real data measurements provided by Italian DSO Areti. As the
considered lines are equipped with real-time monitoring systems, the generators and load
profiles of MV and LV users have been modeled based on real measurements performed
every 15 min throughout a 1-year campaign. The data have been aggregated per hour;
therefore, the simulations have been performed on 8760 operating points covering all the
activity throughout the year. A total amount of 115 MV users (38 active and 77 passive)
and 11,515 LV users (542 active and 10.973 passive) have been included in the study.

Figure 6 shows an example of the typical energy annual profile for a single passive
and active user. In order to reduce the simulation complexity, the LV active and passive
users have been aggregated into a single equivalent load accounted in the PowerFactory by
editing the characteristics of generators and loads. The two-port UNIFLEX-PM equivalent
model, shown in Figure 7, has been considered to permit an easy but effective integration
in PowerFactory.

Such a structure is composed of the average models of the two power converter
stages [33], based on current-controlled and voltage-controlled generators, and a control
system that calculates the instantaneous values of the modulation index signals m1x and
m2x, both in range (−1, +1).

The input signals VDC *, Q1 *, Q2 * and P * of the controller are, respectively, the
references of the DC-link voltage, the reactive power exchanged in Port 1 and Port 2 and
the active power flowing through the two ports. The reference VDC * is set as a constant
based on the rated DC-link voltage VDC

NOM, while P *, Q1 *, Q2 * are the reference profiles
set by the DSO in order to impose the desired active and reactive power flow necessary to
enable the direct routing of electricity as well as ancillary services.
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The instantaneous relations between the control signals and the controlled generators
are defined as: {

v1x = m1x ∗ VDC
IDC1 = m1x ∗ i1x{
v2x = m2x ∗ VDC
IDC2 = m2x ∗ i2x

(1)

where v1x and v2x the AC voltages applied by the converter, respectively, in Port 1 and Port
2, and IDC1, IDC2 are the DC currents acting on the DC-link voltage VDC. The active power
flow between Port 1 and Port 2 is provided through the DC-link capacitor by the VDC
controller [33]. The UNIFLEX-PM model has been implemented in PowerFactory by means
of two AC/DC PWM converters coupled on the DC side including a filter capacitance;
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such a model has been integrated in the simulation diagram of the cluster to realize the
link between the 20 kV RFF(A) and the 8.4 kV PNG (B) busbars, as shown in Figure 8.
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This solution allows the regulation of both the active and reactive power flow between
the two MV lines even if their phases are not synchronized to each other. In the simulation
model, Port 2 of the converter has been set in PQ control mode to impose the desired active
power demand, while Port 1 has been set in VDC-Q control mode to regulate the DC-link
voltage to the nominal value and, thus, compensate for the required active power. The
active power rating has been imposed to 1 MW, while the conversion efficiency has been
set to 95%. It is worth noticing that efficiency only affects the maximum power managed
by the converter.

5. Discussion and Evaluation

A cost-benefit evaluation of active nodes usage in MV networks has been performed
considering two different scenarios, indicated hereafter as Scenario A and Scenario B, for
the implementation of the link amongst 20 kV SS belonging to RFF and 8.4 kV SS belonging
to PNG. Table 3 illustrates the physical link options considered for the two adjacent
substations’ connection, highlighting the distances using overhead or underground power
lines. Scenario A is related to the implementation of Physical link 1, while Scenario
B is related to the usage of all the three links as defined in positions 1–3. In the next
subsections, the base scenario, representing the actual state of the cluster, as well as the
modified scenarios including active nodes have been described in detail, including the
most significant results.

Table 3. Physical link options.

Physical Links RFF Substation
20 kV

PNG Substation
8.4 kV

Air Distance
(km)

Ground Distance
(km) No. Active Nodes

1 RFF-A PNG-A 2.25 5.7 1
2 RFF-B PNG-B 1.35 9.5 1
3 RFF-C PNG-C 2.15 5.1 1

1 + 2 + 3 all of the above all of the above 5.75 20.3 3
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5.1. Base Scenario

The base scenario is described to define the actual state of the considered network
cluster and, thus, permits to perform a comparison with the other scenarios. As mentioned,
the results shown in this section are based on the data measured over the entire MV
network operated by Areti during a 1-year measurement campaign. In the following
figures, the x-axis has been set with a range from 1 to 8760 representing the hours of the
year, starting from 1 January till 31 December. In particular, Figure 9a illustrates the power
flow generated into the HV-MV transformer belonging to the PS in RFF; in the figure, the
blue lines indicate a positive power flow, whilst the red lines indicate a reverse power flow.
In this scenario, an inverse power flow has been verified for 1836 h throughout the year,
producing a reverse energy flow of around 3234 MWh. Figure 9b shows the voltage profile
at the 150 kV busbar of the PS, while in Figure 9c, the energy losses per hour estimation is
provided.
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5.2. Scenario A

This scenario is related to the evaluation of the power flow obtained after the con-
nection of a single UNIFLEX-PM converter between the substations as defined in the
first row of Table 3. Figure 10 illustrates, for Scenario A, the shapes of the same physical
variables used in Figure 9 for the base scenario. In this case, an inverse power flow has
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been verified for 1173 h throughout the year, producing an amount of energy injected in
the HV line around 1631 MWh. The results, summarized in Table 4, have highlighted that
the UNIFLEX-PM usage has permitted a 49.6% reduction of the reverse energy flow. In
order to perform a deeper analysis, the costs evaluation related to the line improvement
has been performed considering two cases, as illustrated in Table 5. The best case refers
to an implementation using overhead cables, while the worst case refers to underground
cables.
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Table 4. Base vs. Scenario A.

TR 150–20 kV RFF UNIFLEX-PM

Energy EHV
(MWh)

Time Interval
(h)

Energy EUNI
(MWh)

Time Interval
(h)

Base Scenario −3234 1836 NA NA
Scenario A −1631 1173 1603 1836
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Table 5. Scenario A costs evaluation.

ITEM
Best Case

(Overhead Cables)
(k€)

Worst Case
(Underground Cables)

(k€)

UNIFLEX-PM 200 260
Power Lines 60 570

Secondary Substation 10 16
Electrical Devices 15 20

Total 285 866

Furthermore, an evaluation of the return on investment (ROI) has been performed
accounting for the following voices of income:

• The amount of energy EUNI, otherwise injected on the HV side through the RFF PS, is
transferred through the UNIFLEX to the PNG line and sold to the users;

• Cost reduction due to the amount of energy EUNI no longer sink from the HV PNG
line;

• Loss reduction due to the lower energy flow on the RFF and PNG HV/MV transformers.

Additional benefits are related to the increased hosting capability of the lines, the
increase in resiliency for the PNG line and the possibility for the DSO to include remote
energy management capabilities. It is to be noticed that the economic evaluation of those
benefits cannot be easily determined, as they have not been considered as incomes. As
shown in Figure 11, in the best case, the ROI is 2.4 years, while in the worst case, the ROI is
equal to 7.3 years.
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Figure 11. Cash flow for Scenario A. (Own elaboration).

5.3. Scenario B

This scenario is related to the evaluation of the power flow obtained after the connec-
tion of three UNIFLEX-PM converters between the substations defined in Table 3. For a
more straightforward comparison, Figure 12a illustrates the power flow generated into the
HV-MV transformer belonging to both the base and Scenario B. In this case, an inverse
power flow has been verified for 280 h throughout the year, producing an amount of
energy injected in the HV line around 254 MWh. The results, summarized in Table 6, have
highlighted that the UNIFLEX-PM usage has permitted a 92% reduction of the reverse
energy and about 85% reduction in the duration of reverse energy transfer.
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Figure 12. Power flow of the Base Scenario (blue line) vs. Scenario B (red line) in the Primary
Substation RFF 150–20 kV transformer: (a) active power; (b) reactive power. (Own elaboration).

Table 6. Base vs. Scenario B.

TR 150–20 kV RFF UNIFLEX-PM

Energy EHV
(MWh)

Time Interval
(h)

Energy EUNI
(MWh)

Time Interval
(h)

Base Scenario −3234 1836 NA NA
Scenario B −254 280 2980 1836

As a further benefit, a significant reduction of reactive power circulating in the consid-
ered line can be observed in Figure 12b, which shows the reactive power profile achieved
in Scenario B in comparison with the Base Scenario.

As for Scenario A, the costs evaluation, shown in Table 7, has been pointed out
considering the best case referred to an implementation using overhead cables and the
worst case employing underground cables. As shown in Figure 13, in the best case, the ROI
is 4.5 years while in the worst case, about 11 years.

It is worth noticing that the prediction of cash flows, as shown in Figures 11 and 13, has
been evaluated with the strong assumption that the corresponding energy flow scenarios
remain constant every year without considering that those can change each year. Actually,
the main source of uncertainty affecting the ROI prediction is the energy EUNI transferred
through the UNIFLEX-PM nodes; in turn, the principal causes of variability for EUNI,
supposing to retain the same generators as defined in Table 2, can be considered as mainly
due to the fluctuation of the annual RES energy production and load demand variability.
However, as an increase in the number of DG generators is expected in the next few years,
even if the load demand grows at the same rate, it is reasonable (and conservative) to
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assume an almost constant inverse power flow and, consequently, a constant value of the
energy EUNI.

Table 7. Scenario B costs evaluation.

ITEM
Best Case

(Overhead Cables)
(k€)

Worst Case
(Underground Cables)

(k€)

UNIFLEX-PM 600 780
Power Lines 152 1170

Secondary Substation 30 48
Electrical Devices 45 60

Total 827 2058
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6. Conclusions

A feasibility study has been performed to evaluate the usage of active nodes to link two
asynchronous MV lines and, thus, permit a real-time active and reactive power flow control
by the DSO. The power electronics interfaces, installed in strategic positions of the grid,
can enable the direct routing of electricity, avoiding its worthless injection in HV networks,
as well as provide ancillary services without requiring any procurement with distributed
generation owners. To prove its effectiveness, a specific simulation model of a real network
cluster operated by Areti has been implemented in DigSilent PowerFactory software using
real data achieved on a 1-year measurement campaign. A detailed cost-benefit analysis has
been provided, accounting for different load flow scenarios. The analysis has demonstrated
that the inclusion of power flow capability can produce significant benefits, such as the loss
reduction on the HV/MV transformers, the increase of the energy sold to the users and
the reduction of the reverse energy flow (49.6% and 92% in the two presented scenarios,
respectively) amongst the others. Additional improvements are related to the hosting
capability and the resiliency of the lines, as well as to introduce remote energy management
capabilities for the DSO. Such benefits can be obtained with an ROI in the range from 2.4 to
11 years, depending on the amount of installed power for the active node and the selected
way for the electrical connections amongst the substations.
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