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Abstract: General Relativity can be reformulated as a diffeomorphism invariant gauge theory of the

Lorentz group, with Lagrangian of the type f(F ∧ F ), where F is the curvature 2-form of the spin

connection. A theory from this class with a generic f is known to propagate eight degrees of freedom:

a massless graviton, a massive graviton and a scalar. General Relativity in this formalism avoids extra

degrees of freedom because the function f is special and leads to the appearance of six extra primary

constraints on the phase space variables. Our main new result is that there are other theories of the

type f(F∧F ) that lead to six extra primary constraints. However, only in the case of GR the dynamics

is such that these six primary constraints get supplemented by six secondary constraints, which gives

the end result of two propagating degrees of freedom. This is how uniqueness of GR manifests itself in

this “pure spin connection” formalism. The other theories we discover are shown to give examples of

irregular dynamical systems. At the linear level around (anti-)de Sitter space they have two degrees

of freedom, as General Relativity, with the extra ones manifesting themselves only non-linearly.
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1 Introduction

Lorentzian 4-dimensional vacuum General Relativity (GR) with a non-zero cosmological constant can

be expressed in terms of the following pure spin connection action [1]

SGR :=
M2

Λ

∫ [
Tr
√
zXz

]2
, (1.1)

where

Xabcd :=
1

2
F ab ∧ F cd , zabcd :=

1

2
[(1 + β) (ηacηbd − ηadηbc) + (1− β) εabcd] , (1.2)

are to be interpreted as 6 × 6 matrices in antisymmetric pairs of Lorentz indices [ab], and F ab :=

dAab + Aac ∧ Acb are the curvature 2-forms of the spin connection 1-forms Aab ≡ −Aba. The object

εabcd is the Levi-Civita symbol and the indices are displaced with the Minkowski metric ηab. As for

the parameters, M := (8πG)
−1/2

is the reduced Planck mass, Λ is the cosmological constant and β−1

is the Immirzi parameter.1 In (1.1) we make a slight abuse of notation by considering functions of

1The trace of a matrix square root still has the cyclic property if these matrices are invertible [1], which is the case

in (1.1) for real β, so one can also express the function entering the trace as
√
z2X.
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4-forms, but these are to be understood as functions of the corresponding scalar densities, which will

always be denoted with a tilde

φ ≡ φ̃ d4x , φ̃ :=
1

4!
εµνρσφµνρσ , d4x :=

1

4!
εµνρσ dxµ ∧ dxν ∧ dxρ ∧ dxσ , (1.3)

so that SGR ∼
∫

d4x
[
Tr
√
zX̃z

]2
.

The action (1.1) is a member of the class of theories first considered in [2] and further studied in

[3] in the context of the idea of gravity/Yang-Mills unification. This class is given by the actions of

the form

S =

∫
f (X) , (1.4)

where f is a gauge-invariant function of the g⊗ g valued matrix X, where g is the Lie algebra of some

gauge group G, and X is the product of the two copies of the Lie algebra valued curvature 2-form

X ∼ F ∧ F . The Lagrangian is a 4-form when the function f is homogeneous of degree one in X

f (αX) ≡ αf (X) . (1.5)

This is necessary for the action (1.4) to be invariant under the full diffeomorphism group. It is natural

to refer to theories of this type as diffeomorphism invariant gauge theories.

In [4] it was shown that GR can be formulated as such a diffeomorphism invariant gauge theory

with G = SO(3) for Euclidean signature and G = SO(3,C) for Lorentzian signature, with the latter

case requiring extra reality constraints. Remarkably, for these 3-dimensional groups all the members

of the class (1.4) share the same degree of freedom (DoF) count as GR, as shown perturbatively in

[5] and fully non-linearly in their preceding canonical/BF formulations [6–10]. In the Lorentzian case,

where reality constraints are needed to obtain two real DoF (instead of complex), it was recently

shown that compatible reality constraints only seem to exist for the case of GR [11], thus excluding

the existence of viable physical modified gravity theories of that kind.

Theories of the type (1.4), but for the real Lorentz group G = SO(1, 3), were first considered in

the context of gravity/Yang-Mills unification in [12] in their BF formulation. In [13] they were shown

to generically propagate eight DoF. In [14] these DoF were interpreted as those of a massless graviton,

a massive graviton and a scalar, i.e. the typical spectrum of a bi-gravity theory. Works [15, 16]

considered special members of this class of theories (but in the Euclidean signature corresponding to

G = SO(4)) that describe only the massless graviton and a scalar.

The work [1] (see Section 8) established that in the case of G = SO(1, 3) the Lorentzian signature

forces one of the two gravitons to be a ghost, i.e. a particle of negative kinetic energy, meaning that

the generic theory of the class (1.4) is not physical. One must therefore restrict their attention to

the cases where the second graviton is absent, such as the scalar-tensor theories discussed in [16].

Although [16] works with Euclidean signature, the analysis can be translated straightforwardly to the

Lorentzian case, which makes it clear that there is enough parameter freedom to obtain ghost-free

scalar-tensor theories.

General Relativity in this formalism (1.1) corresponds to a theory for which the “defining” function

f is very special. Thus, a more detailed analysis shows that for this choice of f there appear extra

primary constraints on the phase space variables of the theory. There are six constraints of this

sort, known in the literature as the “simplicity” or “metricity” constraints. It is then a very natural

question to ask if there are any other members from the same theory class that also have extra primary

constraints. Indeed, there could be other interesting (and viable) theories in the class (1.4) with
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G = SO(1, 3) apart from GR, and the first step in uncovering such theories would be to establish the

appearance of the primary constraints. The main new observation in this paper is that, indeed, other

such theories do exist: a one-parameter deformation of GR (5.21) and a disconnected one-parameter

family (5.27). The presence of these constraints means that these theories too propagate less degrees

of freedom than the generic member of the class (1.4). Moreover, we find that their linearisation

around the maximally symmetric background, that is (anti-)de Sitter space ((A)dS), has the same

DoF count as GR. One could therefore hope that these theories have the same spectrum as GR also

non-linearly, thus invalidating the GR uniqueness results and giving new examples of diffeomorphism

invariant theories describing interacting gravitons.

This does not happen, and the underlying reasons are very instructive. It turns out that only in

the case of GR the dynamics is such that the evolution of the primary constraints leads to six secondary

constraints. These together then form a second-class pair which provides the required reduction in the

number of DoF. For the theories that have primary constraints, but are distinct from GR, we find that

no secondary constraints arise for generic field configurations, meaning they have more DoF than GR.

However, since these theories have two DoF at the linear level around (A)dS, the obstruction to six

secondary constraints arises only through interactions around that background. This is an example

of irregular dynamical systems and, in particular, the phenomenon of “(non-linear) field activation”

[17, 18], i.e. linearly absent DoF that are “activated” by interactions. It is also worth noting that the

theories we present here constitute qualitatively new examples of irregularity. Indeed, typically field

activation is due to gauge symmetries at the linear level that are broken when including interactions,

i.e. less first-class constraints non-linearly (and also possibly second-class).2 In contrast, here we have

primary constraints that are the half of a second-class pair in the linear theory, but fail to produce

the other (secondary) half non-linearly, becoming self-conjugate instead. Interestingly, the particular

scenario that is the subject of this paper is only possible in a specific dimension. Our results thus

show that the point describing GR has quite exotic neighbours in the theory space. This offers a novel

perspective on the uniqueness of the theory.

This situation is ultimately due to the fact that the obstruction to secondary constraints depends

on field values that can vanish in some limits (e.g. linearisation) or at special, yet accessible points

of the phase space. As a result, the Dirac algorithm becomes ambiguous, as it can bifurcate into

different constraint chains depending on the points of phase space, a phenomenon known as “constraint

bifurcation” [17, 18]. In our case, we will see that the obstructing field combination is non-zero and

non-degenerate generically, meaning that there are no secondary constraints in general. At the end of

the Dirac algorithm, one is therefore left with five DoF, i.e. three more than in GR. Since the special

theories we identify here are the most general set with six extra primary constraints, our results allow

us to characterise GR as the only theory from the class (1.4) with strictly two DoF.

The mismatch between the DoF of a theory and the ones of its linearisation is generally considered

a disqualifying pathology, at least for the background solution around which one linearizes. Indeed,

it implies that the concerned modes are infinitely strongly coupled around that background, since the

absence of linear terms in the action makes finite interactions infinitely more intense. In particular,

2For a recent example see the theories studied in [19], where a linearised conformal symmetry is broken by non-

linearities, thus leading to the activation of one DoF. Poincaré gauge theory also exhibits this phenomenon quite

generically [17]. Another popular example are partially massless graviton theories, where the linear theory on (A)dS

propagates only the {±1,±2} helicities of a massive graviton thanks to an Abelian U(1) gauge symmetry [20, 21], but this

symmetry cannot survive non-linearly [22, 23] unless the theory includes ghosts [24, 25]. In that case the prime example

is conformal gravity, where the spectrum around (A)dS is a massless graviton and a partially-massless ghost graviton

[26–28] and the aforementioned U(1) symmetry is the combination of a conformal transformation and a diffeomorphism.
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this invalidates any perturbative/effective field theory approach. Another potential issue in our case

is that part of the extra DoF with respect to GR are associated to the ghost graviton in the generic

theory. In the absence of a linear kinetic term around (A)dS, the impact of such an excitation on

stability is ambiguous, but it will be present linearly around more general backgrounds, so it seems

hard to avoid a ghost issue in general. Finally, the fact that the DoF count depends on regions of

phase space might imply that the Cauchy problem is generically not well-defined. Still, the ultimate

utility of the new theories described in this paper can only be decided by further dedicated study.

Our results are of relevance for the spin foam approach to quantum gravity [29, 30]. This approach

proceeds starting with the state sum models of SO(1, 3) topological BF theory, and then modifying

these by adding constraints on configurations to be summed over that are designed to mimic the

primary “simplicity” constraints on the B field. The two most popular models that arise this way are

[31, 32]. The secondary constraints that are also present in the continuous version of the theory are

often ignored in the discrete spin foam model setting. It has been long argued by Alexandrov, see in

particular [33], that the secondary constraints should also be dealt with explicitly in the path integral.

The new examples of gravitational theories that we discover in this paper, which have the primary

constraints but not the secondary ones, add an interesting new dimension to this discussion. Indeed,

our results imply that GR is the only theory (in a certain large class) that possesses both primary

and secondary constraints, but there are other theories if the requirement of having the secondary

constraints is dropped. This makes it clear that one needs both primary and secondary constraints to

pinpoint GR, which adds additional support to the arguments of [33].

The paper is organized as follows. In section 2 we briefly introduce some notation and conventions,

especially for the case of most interest that is the group SO(1,3). In section 3 we lay out the tools

required for our purposes. Most of the discussion here is valid for any gauge group G. In section 4

we describe the linearised theory around the (A)dS solution in detail. In section 5 we identify the

aforementioned special theories and perform a fully non-linear canonical analysis that demonstrates

their irregular dynamics. Finally, in section 6 we provide some concluding remarks.

2 Notation & conventions

Consider a semi-simple Lie group G, a set of connection 1-forms Aa and the associated curvature

2-forms

F a := dAa +
1

2
fabcA

b ∧Ac , (2.1)

where the fabc are the structure coefficients of the associated Lie algebra g. The algebra indices

a, b, c, . . . are then displaced using the killing form κab ∝ f cdafdcb and, since the group is semi-simple,

one can choose the generator basis such that κab is diagonal with ±1 entries.

Many of the computations in this paper will hold for arbitrary gauge group G, but the case of

direct interest will be the Lorentz group SO(1,3). In that case the algebra indices can be expressed

as antisymmetric pairs of Lorentz indices [ab], the latter being always contracted with a combinatoric

1/2 factor to avoid counting each independent component twice, as is assumed in (1.1) for instance.

The Killing form and structure coefficients are

κ[ab][cd] ≡ ηacηbd − ηadηbc , (2.2)

f[ab][cd][ef ] ≡ ηacκ[bd][ef ] − ηadκ[bc][ef ] − ηbcκ[ad][ef ] + ηbdκ[ac][ef ] , (2.3)

and we choose the sign conventions

η ≡ diag(−1, 1, 1, 1) , ε0123 ≡ 1 , (2.4)
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so, in particular,

κ ≡ diag(−1,−1,−1, 1, 1, 1) , (2.5)

We can then define the invariant identity 1 and dual ? operators on the algebra

1
[ab]

[cd] := κ
[ab]

[cd] , ?
[ab]

[cd] := εabcd , (2.6)

where the latter acts as an imaginary unit since

?2 ≡ −1 . (2.7)

Then the following invariant combinations

z := α1 + β? , α, β ∈ R , (2.8)

such as the one appearing in (1.2), satisfy the algebraic relations of the complex numbers. In particular,

they are invertible and we can decompose them into a “modulus” and “phase” z ≡ reθ?. In what

follows the bold letters z and w will always denote such invariant operators with real coefficients.

Finally, the interested reader can look at section 2 of [1] for how the operators 1 and ? can be used to

decompose any matrix M into its irreducible parts under the Lorentz group.

3 Diffeomorphism invariant gauge theories

This section reproduces and extends results contained in [2], [3].

3.1 Lagrangian formulation

Consider the type of action (1.4), but now for an arbitrary gauge group

Xab :=
1

2
F a ∧ F b . (3.1)

The equations of motion read

Dψab ∧ F b = 0 , (3.2)

where we have defined the 0-forms

ψab :=
∂f

∂Xab
, (3.3)

D is the exterior covariant derivative and we have used the Bianchi identity DF ab ≡ 0. As we shall

see, this ψab matrix is the generalization to arbitrary group of the ψij matrix considered in [11] for the

case of G = SO(3,C). To maintain a consistent notation, here too we will denote the inverse matrix

components by Xab and ψab, respectively, i.e.

XacX
cb ≡ δab , ψacψcb ≡ δab , (3.4)

therefore paying attention to index positions. Note that Xab (and therefore ψab) is invertible only if

the group dimension D is at most six, because it is made of six D-vectors (see [1] or (3.21)). Since

D = 6 is the case of most interest here, we will assume invertibility to simplify some derivations and

expressions, meaning that not all of them presented here generalize as such to D > 6. Following again

[11], when using a compact matrix notation, X and ψ will denote the upper index matrices Xab

and ψab, respectively, so that X−1 and ψ−1 denote the lower index ones Xab and ψab, respectively.
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Contraction between indices of the same type are then understood to be performed using the Killing

form κab and κab.

We can now note that the addition of a topological term to the Lagrangian

f → f + zabX
ab , (3.5)

where zab is some invariant matrix under the group action, does not change the classical physics and

corresponds to shifting ψab

ψab → ψab + zab . (3.6)

Next, by differentiating (1.5) with respect to Xab, we find that the ψab are homogeneous functions of

X of degree zero

ψab (αX) ≡ ψab (X) , (3.7)

and therefore a set of scalars under diffeomorphisms. On the other hand, taking the derivative with

respect to α in (1.5) and then setting α = 1 we get

ψabX
ab ≡ f , (3.8)

which says that the Legendre transform of f with respect to Xab is zero. Further differentiating (3.8)

with respect to Xab we find

Hab,cdX
cd ≡ 0 , Hab,cd :=

∂2f

∂Xab∂Xcd
, (3.9)

so the Hessian matrix Hab,cd is not invertible, since it has an eigenvector Xab with zero eigenvalue.

Thus, the relation between Legendre-conjugate variables ψ = ψ(X) cannot be uniquely inverted. The

ambiguity lies in an arbitrary multiplicative factor, because if X = X(ψ) is some solution, then so is

αX(ψ), thanks to (3.7). The inversion is therefore unique only up to an arbitrary 4-form φ

X = φX̂(ψ) , (3.10)

and the normalization of X̂ is free to choose, as any modification can be reabsorbed in φ. The presence

of φ can also be understood by the fact that one cannot produce 4-forms Xab out of the 0-forms ψab

alone. Now if we insert (3.10) inside (3.8) and use (1.5) and (3.7), we get

ψabX
ab(ψ)− f(X(ψ)) ≡ φH(ψ) , (3.11)

for the following function H of ψab

H(ψ) := ψabX̂
ab(ψ)− f(X̂(ψ)) , (3.12)

and thus (3.8) becomes a scalar identity for ψab

H(ψ) ≡ 0 . (3.13)

This can be understood by the fact that the number of independent components on both sides of (3.10)

must match, i.e. if we have a free function φ on the right-hand side, then ψ must obey a constraint.

Taking the general variation of (3.12) we also verify the standard properties of the Legendre transform

that are H ≡ H(ψ) and

X̂ab =
∂H
∂ψab

. (3.14)
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One can then note that, given (3.13), equations (3.2), (3.10), and (3.14) are nothing but the equations

of motion of the action

S =

∫ [
1

2
ψabF

a ∧ F b − φH(ψ)

]
, (3.15)

where φ and ψ are independent auxiliary fields. This is the Legendre transform of (1.4) with respect

to X. We see that φ appears as a Lagrange multiplier imposing H = 0, which now appears as an

equation of motion, rather than an identity. The form (3.15) is the generalization of equation (2.11)

of [11] to arbitrary group G. Here we have reached this form by starting from the pure-connection

action, whereas in [11] it was derived by integrating out the B field in the BF formulation.

As a concrete example, consider Lorentzian GR (1.1). We have

fGR(X) = M2Λ−1
[
Tr
√
Xz

]2
, Xz := zXz , z :=

1

2
[(1 + β) 1 + (1− β) ?] , (3.16)

so that (3.3) gives

ψ−1
GR(X) = M2Λ−1

[
Tr
√
Xz

]
z (Xz)

−1/2
z . (3.17)

One possible inversion (3.10) is

X̂GR(ψ) = Λ
ψz2ψ

Tr (zψz)
, (3.18)

so that, inserting this inside (3.12), we obtain

HGR(ψ) := Λ−M2 Tr (zψz) , (3.19)

which is indeed zero when one uses (3.17). We also verify that (3.14) holds when HGR = 0 is taken

into account.

3.2 Canonical formulation

Let us now foliate the manifold xµ = {t, xα}, i.e. using Greek letters from the beginning of the

alphabet α, β, γ, . . . to denote spatial diffeomorphism indices and denoting by Σt the t = constant

hypersurfaces. We define the “kinetic” and “magnetic” fields

Ka
α := F a

tα , Baα :=
1

2
εαβγF a

βγ , (3.20)

so that

Xab ≡ K(a
α B

b)α d4x , d4x :=
1

4!
εµνρσ dxµ ∧ dxν ∧ dxρ ∧ dxσ . (3.21)

To derive the canonical action, we can either Legendre-transform the original action (1.4), or we

can manipulate its alternative formulation (3.15) which is already linear in time-derivatives. In the

latter case the independent ψab field contains the conjugate momentum information, but for a gauge

group with D > 3 it also contains extra independent components. These must therefore be properly

disentangled and integrated out, which is more complicated than the approach we will use here. So

we start by computing the conjugate momenta of (1.4), or “electric” fields,

Eαa :=
∂f

∂Ȧa
α

=
∂f

∂Ka
α

= ψabB
bα , (3.22)

where ψab is given by (3.3). As we will see, at least for the groups of interest here, ψ will always be

expressible in terms of the electric and magnetic fields

ψ ≡ ψ(E,B) , (3.23)
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and therefore in terms of the canonical variables. Next, if we define

θa := −Aa
t , (3.24)

then the Legendre transform of the action with respect to Ȧaα reads

Eαa Ȧ
a
α − f̃ ≡ EαaKa

α − f̃ − Eαa∇αθa = ψabK
a
αB

bα − f̃ − Eαa∇αθa ≡ ψabX̃
ab − f̃ − Eαa∇αθa , (3.25)

where ∇α is the covariant derivative with respect to gauge transformations on Σt

∇αθa := ∂αθ
a + fabcA

b
αθ

c . (3.26)

Note that we have not imposed (3.8), because that equation holds only when the momenta are on-shell

(3.22), which is no longer the case in the canonical formalism, i.e. they are independent variables.

Instead, one must now use (3.11) to finish the computation (3.25)

Eαa Ȧ
a
α − f̃ = φ̃H(ψ)− Eαa∇αθa . (3.27)

We now see that φ plays the role of a Lagrange multiplier imposing the Hamiltonian phase space

constraint H(ψ) = 0, thus recovering the condition (3.8) on-shell. As for the θa, they impose as usual

the Gauss constraint associated with gauge invariance

Ga := ∇αEαa = 0 . (3.28)

Finally, we also have the primary constraint from (3.22)

D′α := εαβγE
β
aB

aγ = 0 , (3.29)

which we will refer to as the “Poynting” constraint, since it is the generalization of the Poynting

vector to the non-abelian group case. Once combined with the Gauss constraint, it leads to the usual

“diffeomorphism” constraint associated with 3-diffeomorphisms on Σt

Dα := D′α −Aa
αGa ≡ Eβa

(
∂αA

a
β − ∂βAa

α

)
−Aa

α∂βE
β
a = 0 . (3.30)

Thus, the generic canonical action reads

S =

∫
d4x

[
Eαa Ȧ

a
α − φ̃H(ψ)−NαDα − θaGa

]
, (3.31)

whereNα is introduced in order to impose the diffeomorphism constraint. We thus see thatH(ψ(E,B))

is the (de-densitized) Hamiltonian constraint, while φ̃ plays the role of a densitized lapse function.

Given (3.22), the shift (3.6) discussed in the previous section amounts to a redefinition of the conju-

gate momenta

Eαa → Eαa + zabB
bα . (3.32)

In the action (3.31) the corresponding variation of Eαa Ȧ
a
α is the total time-derivative of the Chern-

Simons 3-form of Aa
α, so this is a canonical transformation. Moreover, D′α and Ga are invariant, so we

simply obtain a different Hamiltonian constraint leading to equivalent classical physics, as was already

noticed at the Lagrangian level.

As one could expect, in the generic case (3.31) contains the minimal amount of constraints that

are implied by the local symmetries of the theory. Because of this, they must form a first-class system

under the Poisson bracket

{O,O′} :=

∫
d3x

[
δO
δAa

α

δO′

δEαa
− δO′

δAa
α

δO
δEαa

]
. (3.33)
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Thus, for a gauge group of dimension D, the canonical action (3.31) leads to the following DoF count:

6D canonical fields, minus 4 + D combinations that are neutralized by the constraints, minus 4 + D

that are neutralized by the associated gauge transformations equal 4 (D − 2) reduced phase space

variables. In the case of SO(1,3) we have D = 6 and therefore 16 reduced phase space variables, or

eight propagating DoF, showing that the generic theory of the form (1.4) has indeed the spectrum

of a bigravity theory, as discussed in the Introduction. This described DoF count corresponds to the

generic case, because we already know of at least one case (GR) where extra constraints must appear

in order to reduce the number of DoF down to two.

On the other hand, when G = SO(3) or SO(1, 2) we have D = 3, and so we find 2 propagating

DoF, just as in GR. This is also the simplest case, studied in details in the series of works [34–36] and

[4, 5, 37–39]. We have

a→ i ∈ {1, 2, 3} κij = diag(±1, 1, 1) , f ijk = κilεljk , (3.34)

and the relation (3.22) completely determines ψij

ψij := E(i
αB

j)α , (3.35)

where Eiα is the inverse matrix of Eαi and one has to take into account the Poynting constraint (3.29)

to satisfy (3.22). Euclidean GR can be described in this formalism and corresponds to

HGR(ψ) = Λ−M2 Tr (ψ) , (3.36)

and with (3.35) we have

HGR = Λ−M2EiαB
α
i . (3.37)

One recognizes the (de-densitized) Hamiltonian constraint of Ashtekar Hamiltonian formulation [40]

of GR.

4 Vacuum solution and linearised theory

We now specialise to the case of Lorentz group G = SO(1, 3). The condition (1.5) implies that f

is not polynomial in X, except for the topological case f (X) = Tr [zX]. As a result, the action

functional will not be smooth around the configuration X = 0, meaning that one cannot use the latter

as a vacuum for perturbative computations. In the case of GR, X = 0 corresponds to flat space-

time and the unavailability of that configuration can directly be seen in the fact that the cosmological

constant appears in the denominator in (1.1). One does have access, however, to the other “maximally

symmetric” configurations Āab, i.e. the case where there exist vierbein 1-forms ēa and a constant C 6= 0

with curvature dimensions such that3

F̄ ab = Cēa ∧ ēb , D̄ēa := dēa + Āab ∧ ēb = 0 . (4.1)

To see that this Āab is a solution of all theories (1.4) for all C, we note that

X̄abcd ≡ −1

2
C2εabcdē , ē :=

1

4!
εabcd ē

a ∧ ēb ∧ ēc ∧ ēd , (4.2)

3Observe that only the first equation is actually needed, as the second one is obtained by acting with the exterior

covariant derivative and using the Bianchi identity DFab ≡ 0, along with some simple algebraic manipulations.
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or, in matrix notation,

X̄ ≡ −1

2
C2ē ? , (4.3)

so ψ̄ := ψ(X̄) is a constant invariant matrix and therefore (3.2) is satisfied. Thus, although the

action (1.4) only involves dimensionless parameters, the requirement X 6= 0 necessarily reintroduces a

reference scale through the solutions. Moreover, (4.1) also reintroduces a notion of space-time, through

the (A)dS vierbein ēa, which will then serve as a background geometry for the fluctuations. These are

defined by

Aab := Aab − Āab , F ab ≡ F̄ ab + Fab +Aac ∧ Acb , Fab := D̄Aab , (4.4)

and we are interested in the part of the Lagrangian that is second order in Aab, i.e. the linearised

theory. We find

f(2) :=
1

2
δ2f
∣∣
A=Ā

≡ 1

2

[
H̄ab,cd δX

abδXcd + Ḡabδ
2Xab

]
, (4.5)

where the Hessian Hab,cd is defined in (3.9). Note that the second term in this expression is the second

variation of topological terms

ḠabX
ab ∝ α εabcdF ab ∧ F cd + βFab ∧ F ab , (4.6)

so we can ignore it, meaning that we only need the first variation

δXab ≡ F̄ (a ∧ Fb) , δXabcd ≡ 1

2
C
[
ēa ∧ ēb ∧ Fcd + ēc ∧ ēd ∧ Fab

]
. (4.7)

As for H̄ab,cd, we note that (4.3) makes it a combination of tensor products of 1 and ? which must,

however, satisfy the background version of (3.9). Given (4.3), that is H̄ab,cd ?
cd = 0, which leaves us

with the four-parameter expression

H̄ab,cd ≡ C−2ē−1

[
c1 ?a(c ?d)b +

1

6
c2 ?ab ?cd + (c1 + c2) 1a(c1d)b +

1

3
c31ab1cd

+ c̃

(
?a(c1d)b + 1a(c ?d)b −

1

3
(?ab1cd + 1ab?cd)

)]
. (4.8)

It will be more convenient to express the final result using only indices of a given kind, and here we

will choose for definiteness diffeomorphism indices. We thus define

Aµνρ := ēaµē
b
νAabρ , Fµνρσ := ēaµē

b
νFabρσ ≡ ∇̄ρAµνσ − ∇̄σAµνρ , (4.9)

where ∇̄ denotes the torsion-free covariant derivative compatible with the background metric

ḡµν := ηabē
a
µē
b
ν . (4.10)

Using the latter to displace the corresponding indices, we will also need the traces of the field strength

Fµν := Fρµρν , F := Fµµ , (4.11)

its traceless part

Cµνρσ := Fµνρσ −
1

2
(ḡµρFνσ − ḡµσFνρ − ḡνρFµσ + ḡνσFµρ) +

1

6
(ḡµρḡνσ − ḡµσ ḡνρ)F , (4.12)
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the irreducible part thereof

Wµνρσ :=
1

3

[
Cµνρσ +

1

2
(Cµρνσ − Cµσνρ − Cνρµσ + Cνσµρ) + Cρσµν

]
, (4.13)

which has the symmetries of the Weyl tensor, and

C̃µνρσ :=
1

2
ε̄ κλ
µν Cκλρσ , ε̄µνρσ :=

√
−ḡ εµνρσ , (4.14)

which has the symmetries of the Riemann tensor [1]. In terms of these quantities, using (4.8), we

finally obtain the nontrivial part of (4.5)

f(2) =
1

8
ē
[
(c1 − c3) CµνρσCρσµν − (c1 + c2 + c3) CµνρσCµνρσ + 2c3WµνρσWµνρσ + 2c̃CµνρσC̃µνρσ

]
.

(4.15)

Thus, all pure spin connection theories depend exclusively on the traceless component Cµνρσ of the

field strength at the linear level. Note that this is contrary to what was conjectured in [1] as being

a unique property of GR. Rather, the case of GR is the restriction from four to two independent

parameters M2/C and β, i.e. including the overall normalization, [1, 41, 42]

cGR
1 = −

(
2 + β2

)
4

M2

C
, cGR

2 =
1

2

M2

C
, cGR

3 =
β2

4

M2

C
, c̃GR =

β

2

M2

C
, (4.16)

with C = Λ/3. There is clearly an infinite-parametric set of defining functions f that reproduce the

linearised action of GR, since this requirement only constrains the second-derivative of f , the Hessian

matrix, evaluated on the (A)dS background. To obtain the full spectrum of these theories, one must

therefore perform a canonical analysis at the fully non-linear level.

5 Canonical analysis and GR uniqueness

We now use the tools developed in section 3 to perform the canonical analysis of the theories (1.4)

with the gauge group SO(1, 3). In particular, we wish to identify the cases where extra constraints

emerge, thus leading to potentially viable theories that are not GR. We will use the algebra indexation

a, b, c, . . . introduced previously.

5.1 Hamiltonian in terms of phase space variables

Contrary to the case G = SO(3) considered at the end of subsection 3.2, here the momentum/velocity

relation (3.22) does not fully determine ψ in terms of the canonical variables, because the group

dimension is larger than three. More precisely, ψ is an invertible 6×6 matrix, so its effect on 3 vectors

determines half of its rows, but it is also symmetric, so this also determines half of its columns. The

undetermined information in (3.22) therefore amounts to a symmetric 3× 3 matrix. That information

is determined by the following identity in configuration space (remember that Xab is the inverse of

Xab)

XabB
aαBbβ ≡ 0 , (5.1)

which, through the inversion (3.10), leads to the following symmetric 3× 3 matrix equation for ψ

X̂ab(ψ)BaαBbβ = 0 . (5.2)

To show (5.1), write it as ∝ εa1...a6εb1...b6X
a1b1 . . . Xa5b5Ba6αBb6β , use (3.21) and then observe that

each term in the corresponding sum contains the antisymmetrization of at least four Baα or four Ka
α
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fields, which yields zero since α is a 3-dimensional index. Thus, in the generic case equations (3.22)

and (5.2) completely determine ψ in terms of the electric and magnetic fields, meaning the same for

the Hamiltonian constraint H(ψ) in (3.31). To construct an explicit expression for ψ, we define the

metric density Eαβ as the inverse matrix of

Eαβ := κabEαaE
β
b . (5.3)

We can then use this to define the electric fields with reversed index positions

Ea
α := κabEαβE

β
b , (5.4)

which behaves as an “inverse” of Eαa when contracting the algebra indices

EαaE
a
β ≡ δαβ . (5.5)

However, since this is a 3× 6 matrix, this relation does not hold when contracting the space indices

Eb
a := EαaE

b
α , (5.6)

and we find instead the projector onto the subspace spanned by the three Eαa

Ec
aE

b
c ≡ Eb

a , Eb
aE

α
b ≡ Eαa . (5.7)

One can then verify that

ψab = E(a
α

[
2δ

b)
c − Eb)

c

]
Bcα +Mab , MabEαb ≡ 0 , (5.8)

satisfies the desired relation Baα = ψabEαb (see (3.22)) if one uses the Poynting constraint (3.29).

Here the matrix M parametrizes the information that is left undetermined by (3.22). This is a

6 × 6 symmetric matrix that is normal to three independent vectors, so it carries the information of

a symmetric 3 × 3 matrix indeed. Thus, if we insert (5.8) inside (5.2), the matrix M is generically

fully determined, so is the desired relation ψ = ψ(E,B) and ultimately the Hamiltonian constraint

H = H(ψ(E,B)).

5.2 Extra primary constraints

We are now in a position to identify the set of “special” cases, i.e. the theories for which extra

constraints appear. As we already discussed, GR must be one of such theories. These are the theories

for which (5.2) does not fully determine M , thus turning part of the equations (5.2) into phase space

constraints. There are several possibilities for partially determining M , because the tensor Mabcd

is reducible under the local SO(1,3) symmetry. As we will see, the case of GR corresponds to a

completely undetermined M . This leads to six extra primary constraints, whose conservation then

implies another six secondary constraints, thus reducing the 16 canonical DoF of the generic theory

down to 4. In this paper we are primarily interested in theories with the same DoF count as GR, so

we look for theories for which all of M is undetermined.

We therefore look for matrix functions X̂(ψ) for which (5.2) is completely independent of M .

Such matrix functions generalise what one has in the case of GR (3.18). Indeed, consider

X̂−1(ψ) = ψ−1z−2
0 ψ−1 + z1ψ

−1 +ψ−1z1 − z2
2 , (5.9)
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where z0,1,2 are constant invariant matrices (2.8). Inserting this expression in (5.2), and then using

Baα = ψabEαb and (5.8), we observe that all M -dependent terms vanish, because they contain at least

one MabEαb contraction. What is left is the primary constraints[
z−2

0

]ab
EαaE

β
b + 2[z1]abE

(α
a Bbβ) −

[
z2

2

]
ab
BaαBbβ = 0 . (5.10)

Moreover, any extension of (5.9) will necessarily introduce M terms that are not contracted with

electric fields and thus remain, so (5.9) is the most general matrix function that leads to six primary

constraints. For this special subset of theories, one can simply set M = 0 in (5.8). Indeed, different

choices of M matrix lead to different ψ(E,B) relations, but they all satisfy both required equations

(3.22) and (5.2) on the constraint surface. Thus, here too the ψ matrix and the Hamiltonian H(ψ)

are determined in terms of E and B. Finally, as we will see, the parameters in z0,1,2 are not all

independent, but must satisfy some “integrability conditions”, since the relation (5.9) must derive

from a Hamiltonian function (3.14).

Comparing (5.9) with (3.18), and keeping in mind that the normalization of X̂ is irrelevant since

it can be reabsorbed inside φ, we recognize the case of GR when z0 is given by (3.16), and z1 = z2 = 0.

The corresponding extra constraints (5.10) are the simplicity constraints of the covariant canonical

formulation of vierbein GR [13, 43]. They reduce to the more familiar εabcdEαabE
β
cd = 0 in the parity-

even case β = 0. These constraints can then be solved Eαab ∝ εabcd ε
αβγecβe

d
γ , which is how the full

vierbein information {φ̃, Nα, eaα} reappears in this approach.

Now remember that shifting ψ−1 by a constant matrix (3.6) amounts to adding a topological

term in the action (3.5), meaning that not all of the different z0,1,2 choices lead to different classical

theories. We can therefore use this freedom to reduce the special cases (5.9) as follows.

5.2.1 The “deformed GR” theory

First, in the case where the theory is a deformation of GR, i.e. z−2
0 6= 0, we can perform the shift

ψ−1 → ψ−1 − z−2
0 z1 , (5.11)

to make (5.9) of the form (after redefining z2)

X̂−1(ψ) = ψ−1z−2
0 ψ−1 − z2

2 , (5.12)

and the corresponding constraint (5.10) is[
z−2

0

]ab
EαaE

β
b −

[
z2

2

]
ab
BaαBbβ = 0 . (5.13)

Next, the integrability condition (3.14) forces the z0,2 matrices to be proportional to each other

z2 = αz0 ≡ αz, in which case the constraint reads

Cαβ :=
[
z−2

]ab
EαaE

β
b − α

2
[
z2
]
ab
BaαBbβ = 0 . (5.14)

Indeed, only in that case can we express (5.12) as an algebraic relation between only two matrices

(apart from the identity)

X̂−1
z = ψ−2

z − α21 , Yz := zY z , (5.15)

which can therefore be integrated without the obstruction of matrix non-commutativity. We find

H(ψ) = Λ− M2

α
Tr arctanh (αψz) , (5.16)
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and one can readily verify that we consistently recover the GR result (3.19) in the α→ 0 limit. This

theory is therefore a 1-parameter deformation of GR, so we will refer to it as the “deformed GR

theory”. To obtain the corresponding f(F ∧ F ) form, we insert (5.16) inside (3.15) and integrate out

ψ. The solution to its equation of motion is

ψz = ±

√
Xz

M2φ1 + α2Xz
, (5.17)

so the resulting action reads

S =

∫ [
±Tr

√
Xz (M2φ1 + α2Xz)− φ

(
Λ∓ M2

α
Tr arctanh

√
α2Xz

M2φ1 + α2Xz

)]
. (5.18)

We must now further integrate out φ, but its equation of motion

± Tr arctanh

√
α2Xz

M2φ1 + α2Xz
=
αΛ

M2
, (5.19)

is not easy to solve. Nevertheless, this equation simplifies the action (it is the Hamiltonian constraint),

so one compact way of describing the theory is

S = ±
∫

Tr
√
Xz (M2φ(Xz) 1 + α2Xz) , (5.20)

with φ(Xz) given implicitly by (5.19). Alternatively, we can expand in powers of α and solve for φ

perturbatively, thus obtaining a peek at the theory close to GR

S =
M2

Λ

∫ [
Tr
√
Xz

]2 1 +
α2Λ2

3M4

TrX
3/2
z[

TrX
1/2
z

]3 +O(α4)

 . (5.21)

However, this is not very useful in practice, because Xz has a non-zero VEV, so that the higher orders

in α cannot be neglected. Finally, note that the opposite limit α → ∞ is singular, a fact which will

be relevant later.

5.2.2 The “determinant” theory

Now if z−2
0 = 0, but z1 6= 0, we can shift ψ−1 as follows

ψ−1 → ψ−1 +
1

2
z−1

1 z2
2 , (5.22)

to obtain

X̂−1(ψ) = z1ψ
−1 +ψ−1z1 , (5.23)

and therefore the constraint (5.10)

2[z1]abE
(α
a Bbβ) = 0 . (5.24)

The integrability condition (3.14) leads to z1 = α1, so that the extra constraint of this theory is

Cαβ := 2E
(α
a Baβ) = 0 , (5.25)
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and its Hamiltonian constraint is

H(ψ) = λ− 1

2α
Tr logψ . (5.26)

Proceeding as in the previous subsection for the corresponding pure-connection formulation, this time

there is no obstruction to integrating out both ψ and φ and we find

S = 6e−αλ/3
∫

[detX]
1/6

, (5.27)

so we dub this the “determinant” theory. Contrary to deformed GR, note that this theory is discon-

nected from GR in parameter space and has two interesting properties. First, the constraint (5.24)

combines with the Poynting one (3.29) to make the electric and magnetic fields orthogonal in their

internal indices

EαaB
aβ = 0 . (5.28)

Thanks to this, (5.8) simplifies to

ψab = 2E(a
α B

b)α , (5.29)

and (see appendix A)

Tr logψ ≡ log detψ = log
(
−E−1B

)
, (5.30)

where

E := detEαβ , B := detBαβ , Bαβ := κabB
aαBbβ . (5.31)

Thus, the Hamiltonian constraint is simply the proportionality of the determinants of the two 3-metric

densities E = −e2αλB. The second interesting property is that the linearised theory around (A)dS,

found using (5.27) and the procedure outlined in section 4, is the same as GR with vanishing Immirzi

parameter β = 0. This is quite remarkable given the fact that the action of this theory is clearly not

continuously connected to the one of GR.

5.2.3 Self-Dual Gravity

The last independent case of (5.9) is the one with z−2
0 = z1 = 0, i.e.

X̂(ψ) = −z−2
2 , (5.32)

so the corresponding constraints appear as the “dual” of the ones of GR[
z2

2

]
ab
BaαBbβ = 0 , (5.33)

and the Hamiltonian function is

H(ψ) = Λ−M2Tr
(
z−1

2 ψ−1z−1
2

)
. (5.34)

This looks similar to the GR case (3.19), only ψ is replaced by ψ−1, which then allows one to get

rid of the cosmological constant term ∼ Λ through the shift freedom (3.6). From the form of the

action (3.15) we then see that ψab enters linearly, so that it cannot be integrated out to reach a pure

connection formulation, but instead imposes the constraint

1

2
F a ∧ F b = −φ

[
z−2

2

]ab
. (5.35)

This theory was first studied in [44] for the 3-dimensional groups and is known as “Self-Dual Gravity”,

because of its analogy to self-dual Yang-Mills theory. Because of (5.32), for this theory to have the
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(A)dS configuration as a solution (4.3), we must have z2
2 ∝ ? and thus H(ψ) ∝ Tr

[
?ψ−1

]
. The reader

familiar with the real Plebanski (or “BF”) formulation of GR [45, 46] will then immediately notice

that (5.35) takes the form of the simplicity constraint for the B fields, meaning that we have one of

the following two options

F ab = Cea ∧ eb , or F ab =
1

2
Cεabcd ec ∧ ed , (5.36)

for a set of 1-forms ea, where C is a constant and φ ∝ εabcd e
a ∧ eb ∧ ec ∧ ed. As already noted

in footnote 3, taking the exterior derivative of (5.36) we find, after some algebraic manipulations,

Dea = 0, meaning that Aab is the torsion-free spin connection of the vierbein ea. On the other hand,

wedging (5.36) with eb and using 0 = D2ea ≡ F ab∧eb, we obtain zero on both sides of the first equation,

but not for the second equation, meaning that only the first option is possible. In conclusion, (5.35)

implies that this theory admits only the (A)dS solution for Aab, so there are no DoF in that field.

There are DoF in ψab, however, since this field satisfies a dynamical equation (3.2). Nevertheless, the

corresponding excitations cannot have an energy that is bounded from below, because ψab enters the

action linearly, so this theory is not physical.

Finally, note that the constraint (5.33) appears as the α → ∞ limit of the one of deformed GR

(5.14). This explains why the pure-connection action of deformed GR is singular in that limit, since ψ

can no longer be integrated out. Moreover, it shows that the α parameter of deformed GR continuously

connects GR and Self-Dual Gravity.

5.3 Dirac algorithm

We thus identified two potentially interesting theories with extra primary constraints in the canonical

action (3.31), i.e. deformed GR (5.14), (5.16) and the determinant theory (5.25), (5.26). The canonical

action of these theories is then (3.31) supplemented by a term imposing the extra constraints through

a Lagrange multiplier λαβ

S =

∫
d4x

[
Eαa Ȧ

a
α − φ̃H−NαDα − θaGa − λαβCαβ

]
. (5.37)

We must now ensure that the constraint surface is conserved under the time-evolution, i.e. apply

Dirac’s algorithm for constrained Hamiltonian systems. In this procedure we can neglect the diffeomor-

phism and Gauss constraints Dα and Ga, respectively, since they commute with all other constraints

on-shell, thanks to the explicit covariance under the gauge symmetries they respectively generate.

We can therefore focus on the commutation relations of H and Cαβ , computed through the smeared

constraints

H[φ̃] :=

∫
d3x φ̃H , C[λ] :=

∫
d3xλαβCαβ . (5.38)

The conservation equation of Cαβ reads

Ċαβ = φ̃ C′αβ +Wαβ,γδλγδ = 0 , (5.39)

where, schematically (up to Dirac delta factors),

C′αβ := {H, Cαβ} , Wαβ,γδ := {Cαβ , Cγδ} . (5.40)

As for the one of H, we have

Ḣ = −λαβC′αβ = 0 , (5.41)
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where have used the fact that, for all f(F ∧ F ) theories,

{H[φ̃], H[φ̃′]} =

∫
d3x

(
φ̃∂αφ̃

′ − φ̃′∂αφ̃
)
εαβγ

∂H
∂Eβa

∂H
∂Baγ

∝
∫

d3x
(
φ̃∂αφ̃

′ − φ̃′∂αφ̃
)
qαβD′β = 0 ,

(5.42)

for some inverse 3-metric density qαβ(E,B). Indeed, for the generic theory (3.31) all constraints

correspond to gauge symmetries, so by diffeomorphism invariance we must have the closure {H,H} ∼
D′. By continuity in parameter space, this then also holds for the special theories considered here.

The seven equations (5.39) and (5.41) must therefore be satisfied for our constraints to be con-

served. If Wαβ,γδ = 0, then (5.39) leads to six secondary constraints C′αβ = 0, since φ̃ 6= 0 plays the

role of the (densitized) lapse function. Along with the six primary constraints Cαβ = 0, these reduce

the canonical DoF count from 16 down to 4, i.e. the amount corresponding to a massless graviton.

This is what happens in the case of GR and Self-Dual Gravity, because then Cαβ depends on only one

of the two canonical fields and therefore commutes trivially with itself. In the case of the two new

theories considered here, however, we have the same non-zero result

Wαβ,γδ = α2
[
εαγεS βδ

ε + εαδεS βγ
ε + εβγεS αδ

ε + εβδεS αγ
ε

]
, (5.43)

where

S αβ
γ := Ba(α∇γEβ)

a − E(α
a ∇γBaβ) = −EαaE

β
b∇γψ

ab . (5.44)

Note that this tensor density cannot be set to zero by lower-rank constraints, except for its trace

S αβ
β = −EαaE

β
b∇βψ

ab = −Eαa∇β
(
ψabEβb

)
= −Eαa∇βBaβ ≡ 0 . (5.45)

Because Wαβ,γδ 6= 0, (5.39) becomes a linear algebraic equation to solve for the 6-dimensional vector

λαβ . To analyse this equation we first express Wαβ,γδ as an operator by using the invertible metric

density Eαβ
W γδ
αβ := EαεEβζW

εζ,γδ , (5.46)

so that we can use the trace expression for W’s determinant. By explicit computation, we then note

the useful property

Tr
[
W2k+1<6

]
= 0 , (5.47)

which implies in particular the following form for the set of eigenvalues

spec(W) = {W1,W2,W3,−W1,−W2,−W3} . (5.48)

With this the determinant reads

detW =
1

8
Tr
[
W2
]

Tr
[
W4
]
− 1

48
Tr
[
W2
]3 − 1

6
Tr
[
W6
]
, (5.49)

and the explicit result is a combination of all possible contractions of six S αβ
γ tensor densities, where

the indices are displaced using Eαβ and its inverse. What matters here is that detW 6= 0 for generic

points of phase space. Thus, generically W is an invertible matrix that determines completely λαβ in

terms of the canonical fields

λαβ = −φ̃Qαβ,γδC′γδ , Qαβ,εζW
εζ,γδ ≡ δγ(αδ

δ
β) . (5.50)
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Inserting this solution inside the action (5.37) then leads back to the generic form (3.31), although

with a modified Hamiltonian constraint

S =

∫
d4x

[
Eαa Ȧ

a
α − φ̃H′ −NαDα − θaGa

]
, H′ := H−Qαβ,γδ CαβC′γδ . (5.51)

Note that, as constraints, H = 0 and H′ = 0 are equivalent, since Cαβ = 0, but their variations are

not and the modification H → H′ is precisely such that Cαβ = 0 is conserved (5.39). Also note that

now Cαβ = 0 has to be imposed by hand, since there is no longer an independent Lagrange multiplier

to impose it through the variational principle, as usual for second-class constraints.

Finally, we must also satisfy (5.41). Inserting (5.50) we find

Qαβ,γδ C′αβC′γδ = 0 , (5.52)

and note that, given Cαβ = 0 and (5.42), this is actually the self-commutator of the new Hamiltonian

constraint

{H ′[φ̃], H ′[φ̃′]} = 0 , H ′[φ̃] :=

∫
d3x φ̃H′ . (5.53)

But this commutator has to be zero because of the local symmetries of the action, so we conclude that

(5.52) must hold automatically and therefore does not constitute a secondary constraint.4 Having

satisfied the conservation of all constraints, the Dirac algorithm terminates. The resulting canonical

DoF freedom count is thus 16− 6 = 10, meaning that these theories generically have 5 DoF.

5.4 Irregularity

In the previous subsection we stressed that our conclusion holds for generic field values. In fact, it

turns out that W actually vanishes on the vacuum (A)dS solution (4.1). To see this, first note that

W is entirely determined by the tensor density of rank three (5.44). Given the spatial isometries of

(A)dS, a rank-3 spatial tensor can only be essentially εαβγ , i.e. up to metric factors to displace indices

and change the density weight. But (5.44) is symmetric in the two upper indices, so W̄ = 0. Next, we

note that since (A)dS is a solution of all pure-connection theories, equation (5.39) must trivially hold

on that solution, which further implies C̄′αβ = 0. The linear perturbation of (5.39) around (A)dS is

thus
¯̃
φ δC′αβ + δWαβ,γδλ̄γδ = 0 . (5.54)

This is independent of the Lagrange multiplier perturbations δφ̃ and δλαβ and therefore does not de-

termine any of them to the order under consideration. Instead, it amounts to six secondary constraints

for the linear fluctuations δAa
α and δEαa , thus leading to the degree of freedom count of GR, despite

the fact that W 6= 0 when perturbations are included. In the case of the determinant theory, this is

consistent with the fact we already mentioned that the linearisation of the action (5.27) around (A)dS

is the same as the one of GR with zero Immirzi parameter.

We have thus demonstrated the irregularity of our two candidate theories. On the one hand,

we have seen that the linearised theories around (A)dS have less DoF than their fully non-linear

counterparts, i.e. the phenomenon of field activation. On the other hand, the non-linear obstruction

to secondary constraints comes from a field-dependent matrix W that is generically non-degenerate,

but is zero on (A)dS, meaning that we are vulnerable to constraint bifurcation. Note also that the

field activation issue should also hold in the presence of matter, in which case the corresponding

4This is possible because the quadratic form Q has the same signature as its inverse W and thus W, whose signature

is split (5.48), so (5.52) admits indeed non-trivial C′αβ 6= 0 solutions.
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background solution would be the Friedmann-Lemâıtre-Robertson-Walker space-time, because all we

needed to show W̄ = 0 where the spatial isometries of (A)dS.

Finally, it is interesting to point out the special nature of the Cαβ = 0 constraints for these peculiar

theories. Usually one expects second-class primary constraints to generate secondary ones, so as to

form a conjugate second-class pair (e.g. GR), since the reduced phase space dimension must be even.

Instead, here we have that Cαβ becomes conjugate to itself, i.e. a conjugate pair of three second-class

constraints. But this is possible only because Cαβ has an even number of independent components,

which in turn is due to the number of spatial dimensions. In fact, even in phase space points where

W is degenerate detW = 0, the resulting secondary constraints can only be of even number because

of the spectrum form (5.48), so the reduced dimension is again even. We therefore conclude that the

present situation is specific to theories that can only be defined in certain dimensions. This is the case

here, since F ∧ F must be a form of maximal degree for the action (1.4) to make sense.

6 Conclusion

In this paper we have considered the broad class of diffeomorphism invariant gauge theories given by

(1.4), where X ∼ F ∧ F , and focused on the case where the gauge group is G = SO(1, 3). GR is

a member of that class, so this “pure spin connection” formulation offers an interesting alternative

starting point for exploring modified theories of gravity. In particular, since these theories do not

admit a perturbative expansion around Minkowski space-time, but only around (A)dS, they could in

principle circumvent the standard uniqueness theorems of GR.

The generic theory of the considered class has eight DoF: a massless graviton, a massive graviton

and a scalar, but one of the two gravitons is necessarily a ghost. Thus, only special theories with

less DoF have a chance of being physically viable, as is the case of GR. The novel aspect of our work

is the identification of a subset of theories, distinct from GR, which have less DoF than the generic

member of the class, thanks to six extra primary constraints on phase space. In the case of GR, the

conservation of these primary constraints leads to an equal number of secondary constraints, but this

does not happen for the new theories reported here. As a result, these theories have five DoF, which

lies exactly between the DoF count of GR and the generic theory.

On the other hand, the linearisation of these theories around (A)dS has the same DoF count

as GR, meaning that part of the DoF are activated only through interactions. This is a symptom

of irregular dynamical systems and is due to the fact that the obstruction to secondary constraints

depends on the phase space point. As argued in more detail in the Introduction, this situation is at

best inconvenient, as it precludes the use of perturbative techniques, and at worst pathological, as

it could still imply ghost-like instabilities or signal an ill-defined Cauchy problem. It would be very

interesting to understand the new theories discovered in this paper better. We leave this to future

work.
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A Determinant theory Hamiltonian constraint

Here we compute the determinant of ψ, given by (5.29), under the constraints (5.28)

detψ ≡ 1

6!
εa1...a6

εb1...b6
ψa1b1 . . . ψa6b6

≡ 1

6!
εa1...a6εb1...b6Eα1β1

. . . Eα6β6

(
Eα1

a1
Bβ1

b1
+ Eα1

b1
Bβ1

a1

)
. . .
(
Eα6

(a6
Bβ6

b6) + Eα6

b6
Bβ6

a6

)
∗≡ 1

3!2
εa1...a6εb1...b6Eα1β1

. . . Eα6β6

(
Eα1

a1
Bβ1

b1
. . . Eα3

a3
Bβ3

b3

) (
Eα4

b4
Bβ4

a4
. . . Eα6

b6
Bβ6

a6

)
≡ 1

3!6
εa1...a6εb1...b6εα1α2α3εα4α5α6εβ1β2β3εβ4β5β6Eα1β1

. . . Eα6β6

×
(
εγ1γ2γ3E

γ1
a1
Eγ2a2

Eγ3a3

) (
εγ4γ5γ6B

γ4
a4
Bγ5a5

Bγ6a6

) (
εδ1δ2δ3B

δ1
b1
Bδ2b2

Bδ3b3

)(
εδ4δ5δ6E

δ4
b4
Eδ5b5

Eδ6b6

)
≡ 1

3!4
εa1...a6εb1...b6E−2

×
(
εγ1γ2γ3E

γ1
a1
Eγ2a2

Eγ3a3

) (
εγ4γ5γ6B

γ4
a4
Bγ5a5

Bγ6a6

) (
εδ1δ2δ3B

δ1
b1
Bδ2b2

Bδ3b3

)(
εδ4δ5δ6E

δ4
b4
Eδ5b5

Eδ6b6

)
≡ 1

3!4
εa1...a6εb1...b6E−2

(
εγ1γ2γ3E

γ1
a1
Eγ2a2

Eγ3a3

) (
εδ1δ2δ3E

δ1
b1
Eδ2b2

Eδ3b3

)
×
(
εγ4γ5γ6B

γ4
a4
Bγ5a5

Bγ6a6

) (
εδ4δ5δ6B

δ4
b4
Bδ5b5

Bδ6b6

)
∗∗
= − 1

3!4
E−2

(
εγ1γ2γ3E

γ1
a1
Eγ2a2

Eγ3a3

) (
εδ1δ2δ3E

a1δ1Ea2δ2Ea3δ3
)

×
(
εγ4γ5γ6B

γ4
a4
Bγ5a5

Bγ6a6

) (
εδ4δ5δ6B

a4δ4Ba5δ5Ba6δ6
)

≡ − 1

3!4
E−2

(
εγ1γ2γ3εδ1δ2δ3E

γ1δ1Eγ2δ2Eγ3δ3
) (
εγ4γ5γ6εδ4δ5δ6B

γ4δ4Bγ5δ5Bγ6δ6
)

≡ −E−1B . (A.1)

In the ∗ step we have used the fact that only a maximum of three Eαa or Bαa can be antisymmetrized,

which thus leaves
(

6
3

)
repetitions of the only surviving combination. In the ∗∗ step we have expressed

the product of Levi-Civita tensors in terms of the antisymmetrized κab product, taking into account

that κab has determinant −1 and the orthogonality constraint (5.28), so that there is only one non-

trivial term in the sum.
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