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fromarriving students. Consideringoutbreaks at oneuniversity, larger halls of residence posedhigher risks
for transmission. The dynamics of transmission from university outbreaks to wider communities is
complex, and while sometimes spillover does occur, occasionally even large outbreaks do not give any
detectable signal of spillover to the local population. Secondly, we explored proposed control measures
for reopening and keeping open universities. We found the proposal of staggering the return of students
to university residence is of limited value in terms of reducing transmission. We show that student
adherence to testing and self-isolation is likely to be much more important for reducing transmission
during term time. Finally, we explored strategies for testing students in the context of a more
transmissible variant and found that frequent testing would be necessary to prevent a major outbreak.
rnal/rsos
R.Soc.Open

Sci.8:210310
1. Introduction
The global spread of SARS-CoV-2 has resulted in widespread usage of social distancing measures and
non-pharmaceutical interventions (NPIs) to inhibit the spread of infection. Enactment of nationwide
lockdowns has resulted in the closure of workplaces, pubs and restaurants, restricted leisure activities
and impacted the education sector.

Measures brought in when entering the first nationwide lockdown in the UK in March 2020 included
closure of higher education establishments, such as universities, to most in-person activities. Face-to-face
teaching was mostly suspended, with delivery of the remainder of the 2019/2020 academic year taking
place via online delivery.

Higher education in the UK comprises a large population of students, with over 2.3 million higher
education students enrolled in the 2018/2019 academic year across over 160 higher education
providers [1] (universities, essentially). This results in a sizeable movement of students nationwide at
the beginning and end of academic terms (in addition to international student travel). In the context
of an ongoing disease outbreak, the migration of students can contribute to increased population
mobility, with an associated need for careful management in order to minimize the risk of seeding
outbreaks both in universities and in the wider community.

Ahead of the 2020/2021 academic year, there was significant uncertainty around whether students
would be able to return to face-to-face teaching and what policies would be put in place in order to
mitigate risk. This prompted action to build a foundation of knowledge such that appropriate policies
could be put in place to facilitate students returning safely to universities. From 15 to 17 June 2020,
a Virtual Study Group on ‘Unlocking Higher Education Spaces’ was hosted by the Virtual Forum for
Knowledge Exchange in the Mathematical Sciences (V-KEMS), looking at how mathematical
approaches could inform the reopening of higher education spaces to students while minimizing risk.
A working paper was subsequently released in July 2020 [2].

Building on the discussion that took place at the June 2020 Study Group, two virtual events (taking
place on 28 July 2020 and 4 August 2020, respectively) investigated the application of mathematical tools
and models to various issues linked to the challenges of reopening higher education. These events were
run as part of the Isaac Newton Institute Infectious Dynamics of Pandemics Research Programme [3].
After these events, a working group continued to meet virtually on a weekly basis, consisting of
participants from several institutions.

Mathematical modelling approaches informed by data, have been a valuable tool used to inform
policy decisions linked to the subsequent operation of higher education in the midst of a pandemic. In
order to guide these decisions, in this paper, we have investigated contributing factors to within-
institution spread and how transmission interplays with the wider community. This study starts with
a set of observational analyses based on data from the first term of the 2020/2021 academic year. This
is followed by prospective modelling of control measures that were under consideration for the full
return of UK higher education students in January 2021.

The work presented in this paper is the outcome of bringing together the expertise from these
multiple research groups, and pooling our analyses using both statistical and modelling methods.
Several conclusions emerge from this work both in understanding the observations from Autumn
2020, and also making recommendations for future actions:

(1) The overall distribution of outbreaks in universities in autumn term 2020 were consistent with
expected importations from taking a student intake from the wider community, so that
universities reflect the community disease prevalence at the start of term.



§2.1: Can predicted case imports from local prevalences of students' non-term
time addresses estimate the probability of an university outbreak?
§2.2: What factors influence infection risk in student halls of residence?

To what extent do university outbreaks impact nearby communities?
§2.3: analysis of local age groups
§2.4: spatial analysis

Simple models to explore the effects of staggered returns on:
§3.1: the number of students having to isolate upon return
§3.2: the number of students infected over time

§3.3: more complex partly parametrized models exploring the influence of
staggered returns.

Models exploring testing regimes:
§3.4: strategies for testing on return
§3.5: strategies for regular testing throughout the academic term. As well as
further analysis of the potential implications of a SARS-CoV-2 variant with
increased transmissibility.
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Figure 1. Overview of the structure of the article.
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(2) Larger halls of residence pose higher risks for larger attack rates, and segmentation into smaller
households within halls is unlikely to be able to mitigate this.

(3) The picture of transmission from universities to their local communities is complex. While spillover
inevitably can occur, sometimes even large outbreaks in universities do not give any corresponding
signal in their wider neighbouring communities.

(4) The proposed strategy of staggering future returns appears to be of somewhat mixed and limited
value. While it could reduce the need for self-isolation on return under low prevalence, these
benefits could be diminished or even reversed in the context of high background prevalence.

(5) While a staggered return could reduce the peak of any outbreak during term, staggering on its own
will not substantially reduce the total attack rate over a whole term: staggering may act mainly to
delay the outbreak to later in the term.

(6) The level of student adherence to testing and isolation is likely to have a far larger effect than any
subtleties between different staggered return regimes.

(7) While it is likely that asymptomatic testing programmes did help to prevent large outbreaks in university
settings in autumn 2020, extremely frequent testing (every 3 days) would be needed to prevent a major
outbreak under plausible parameters for the B.1.1.7 variant (WHO variant label ’Alpha’).

The structure of the remainder of this paper is as follows. In §2, we summarize the understanding and
learning from the observed patterns of SARS-CoV-2 from autumn term 2020, looking at the dynamics of
wider community transmission including the importation of cases to universities at the start of term, and
the spillover of transmissions from universities to the wider community during the course of the term.
This section also looks at the dependence on the infection dynamics within universities of the
structures of halls of residence and student households. In §3, we look at several exploratory models
for the future return of students, in particular looking at the impact of different strategies for
staggering this return, and of asymptomatic testing on return. In §4, we draw some further
conclusions from this work and make some policy recommendations. For a more detailed overview,
see figure 1.

2. Observations from autumn term 2020
Higher education institutions in the UK largely reopened to students for the 2020/2021 academic year.
This led to an influx of students from across the UK and world, brought together in residential, academic
and social settings. In the first term, under the government advice at the time [4], most higher education
establishments offered blended online and face-to-face learning. Prior to the beginning of the academic
year, students resident in housing of multiple occupancy—and in particular students in residential
halls—were identified as being at high risk of transmitting SARS-CoV-2 infection [5,6].

The return of students to universities in the autumn term occurred at a time when SARS-CoV-2 cases
were growing in the UK. Local lockdowns came into force in areas with greatest risk leading to an
increase in restrictions on travel, business openings and between-household socializing. In addition,



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210310
4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 S

ep
te

m
be

r 
20

21
 

countrywide lockdowns were imposed in Wales from 23 October 2020 to 9 November 2020 and in
England from 5 November 2020 to 2 December 2020. Many universities offered testing regimes in an
attempt to further control outbreaks. In an attempt to segment interactions and reduce transmission
risk within halls, many universities assigned students in residential halls to households based on the
use of shared facilities such as kitchens and bathrooms under government guidance [4]. These
households were intended to function similarly to households in the community; with many
restrictions on socializing beyond these household members, and requirements for the entire
household to isolate for up to 14 days if a member displayed symptoms of COVID-19 or received a
positive SARS-CoV-2 test. Despite the control measures taken, outbreaks of varying sizes were seen in
many UK higher education institutions in the first term, prompting concern about the possibility of
spillover into the community.

In this section, we use data from the first term of the 2020/2021 academic year to investigate the
factors that may have contributed to the observed outbreaks within higher education institutions and
to examine any evidence of further transmission between higher education institutions and the wider
community. Firstly, we consider the mass migration of students from across the UK at the beginning
of term and how well this may explain the occurrence of outbreaks seen across universities (§2.1). We
then use data available from a particular university and investigate the role of accommodation
structure upon transmission, by considering the relationship of residential hall sizes and household
sizes within halls to attack rates (§2.2). To investigate spillover from higher education to the
community, we investigate case data by age (henceforth ‘age-stratified’) from areas very close to
English universities to determine whether there is any evidence of spillover from student age groups
to other age groups (§2.3). We also consider total case data stratified across a wider spatial scale to
search for signs of spillover from areas with a high concentration of student residents to
geographically nearby areas without high concentrations of students (§2.4).
2.1. Start of term: transmission from the community
Although many universities experienced outbreaks at the beginning of the 2020/2021 academic year,
there was significant variation in the number of confirmed SARS-CoV-2 cases between institutions.
We explore the extent to which the estimated incoming numbers of infected students could explain
the observed distribution of outbreaks in the early weeks of the autumn term across UK universities.
2.1.1. Data and methods

To estimate the number of incoming infected students for each university at the beginning of the 2020/2021
academic year, we combined Office for National Statistics (ONS) infection survey data on the proportion
of the community testing positive (prevalence) via polymerase chain reaction (PCR) to SARS-CoV-2
by region with data from the higher education Statistics Agency (HESA) on home and term-time
postcodes for the 2018/2019 cohort of students [7]. The prevalence (via PCR) on 25 September 2020 was
used to estimate the number of students from each home postcode that were infected at the start of term
(rounded to the nearest integer). It was assumed that international students from countries with high
case numbers would be placed in effective quarantine and were thus discounted for the purpose of this
analysis. Outbreak data were drawn from the University and College Union (UCU) dashboard in
November 2020 [8]. After omitting data with obvious quality issues, data for 72 universities were
available. We defined a large outbreak as 200 or more cumulative cases reported on the UCU
dashboard by 18 or 19 November 2020 (these case numbers obtained relate to various dates in
November since updates were not daily or uniform).

To estimate the probability of a large outbreak, universities were binned by the estimated number of
PCR-positive students in bin widths of 10, and the fraction of universities in each bin that experienced an
outbreak was calculated based on the observed data.

We also considered a simple probabilistic model for the outbreak probability P based only on
incoming PCR-positive students, P ¼ 1� pn, where n corresponds to the initial number of PCR-
positive students, and the extinction probability, p, is the probability that an incoming infection fails to
seed an outbreak. The probabilities of each incoming infection seeding an outbreak are assumed to be
independent of each other. The extinction probability, p, was inferred via maximum likelihood from
the observed outbreak data (see appendix A).
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Figure 2. Observed fraction of institutions having an outbreak (*), binned by expected number of incoming cases, and theoretical
outbreak probability P (solid line): for a threshold of 200 cases (a) and 400 cases (b).
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2.1.2. Results

The observed fraction of universities experiencing an outbreak appeared to be broadly consistent with
the simple probabilistic model (figure 2), with a fitted extinction probability of p = 0.958 (95%
confidence interval [0.945, 0.972]). Repeating the analysis and fitting the simple model using a more
stringent threshold of 400 cases returned an extinction probability estimate of p = 0.979 (95%
confidence interval [0.971, 0.987]), with the model estimations following the trend of the observed
data. These results lend cautious support to the hypothesis that the observed pattern of outbreaks at
universities was consistent with that expected from importation of infection from the student intake.

This would imply that outbreaks are more likely when case numbers in the incoming student
population are higher (higher n leads to higher outbreak probability P). Similarly, if the extinction
probability, p, i.e. the probability of the chain of infection originating from a single introduction dying
out, were lower then the overall outbreak probability P would be higher. Less effective infection
control measures or a more transmissible variant might lead to a lower p, but this needs to be
investigated further.

2.1.3. Limitations

Factors that we did not take into account in this simple initial analysis and that could be explored further
include: the detailed timeline of importations and onward transmissions, the likelihood that an outbreak
might be the sum of smaller outbreaks caused by independent introductions, the rate of assimilation
of local prevalence in newly arrived students, the impact of heterogeneous university characteristics
(such as the number of commuting students), and the impact of heterogeneity in university infection
control measures.

In addition, we were limited by the availability of data; ideally the analysis should be repeated
with contemporary student numbers and home regions, and with more consistent data on university
case numbers.

In light of these limitations, the precise numerical value of the fitted extinction probability should not
be interpreted literally. However, the fact that the extinction probability appears to be high suggests
that the majority of infection chains die out before sparking an outbreak. This may be partly because
COVID-19 is highly overdispersed [9] so that only a small proportion of infections lead to further
cases, while many people with the disease do not infect anyone else. It may also reflect effective
infection control measures in universities, or that there were fewer incoming infections than assumed
in the model, perhaps because students who were unwell may have delayed their return to university,
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or because estimates of the prevalence via PCR-testing includes people who are in the late stages of
infection and no longer infectious.

2.2. Infection risk in residential student halls
Prior to the resumption of the 2020/2021 academic year there was limited data to relate transmission risk
within halls and their households to that estimated for community households. Here, we examine factors
predicting risk of infection among students in halls of residence at a single university. We refer to the
secondary attack rate (SAR) in a subpopulation (e.g. household, hall of residence) as the probability
that a member of the subpopulation is infected following infection of one subpopulation member.

2.2.1. Data

Data on hall capacity for 19 halls managed by the university, and the assignment of rooms within these
into households of up to 16 members, were collected prior to the start of term. Stock data on room types
for each hall was used to estimate the fraction of students sharing bathroom facilities with at least one
other student for each hall and in each household. During term, students were encouraged to report
confirmed SARS-CoV-2 infection via a web form, including information about their place of residence,
date of test result and subject. Preliminary enrolment data for 2020/2021 by subject and term-time
residence were used to estimate the fraction of students in each hall enrolled in the Medical Faculty
(as a proxy for students who may be at higher risk of infection due to placements). Approximately
half of students reported a room number in addition to identifying their hall of residence, which
enabled these reported infections to be grouped into pre-assigned households of known size.

2.2.2. Methods

We tested for predictors of the SAR in a hall using multivariate logistic regression. We included median
household size, proportion of students in medical courses, hall size and the proportion of students
sharing a bathroom with one or more students as covariates.

We used binomial logistic regression on the binary data indicating the presence of at least one
infection in each household to estimate the probability that infection is reported by household size.
We estimated the binomial probability of secondary infections in a household. We also considered
multivariate logistic regression performed with covariates of household size, time between start of
term and date of first reported test in the household, and proportion in the household sharing a
bathroom. We aggregated household data across halls and only included reports that were associated
with symptomatic SARS-CoV-2 infection, to avoid bias in time between start of term and date of first
reported test in the household from asymptomatic testing programmes.

We repeated each multivariate regression while at least one predictor was not significant, dropping
the predictor with the lowest t-value. We performed the statistical analyses using the general purpose
mathematical programming language Matlab [10] (logistical analysis) or statistical data analysis
software Genstat [11] (binary logistical analysis).

2.2.3. Results

2.2.3.1. Reported confirmed attack rate by hall
While all covariates listed in table 7 were significant in a univariate analysis (appendix B), only hall size
and proportion of students sharing a bathroom were associated with SAR in the final multivariate
regression (table 1). We provide the predicted impact of hall capacity and the proportion sharing
bathrooms in table 2. This indicated that students in halls where they all share a bathroom with at
least one other (shared = 100%) are approximately 50% more likely to become infected than students
in halls with all en-suite rooms (shared = 0%). Increasing the hall capacity from 100 to 400 students
increased each student’s probability of becoming infected by approximately 167%.

Our results—with the caveat that they are subject to any bias in confirming and reporting infection—
suggest that infection risk in large residential settings is difficult to mitigate by segmenting students into
households, and the risk of living in large residential settings is exacerbated by the use of shared
bathrooms. It is possible that our covariates are proxies for other properties of the setting that
influence student mixing (e.g. other types of shared spaces, ventilation, etc.). Furthermore, it is likely
that effect sizes will vary between settings depending on importation of cases, characteristics of the



Table 1. Coefficients, and associated p-value and standard error for the final logistic regression models for the hall SAR.

covariate coefficient p-value s.e.

hall size 0.0037 <0.0001 0.00006

proportion shared bathroom 0.4738 <0.0001 0.1166

constant −3.1466 <0.0001 0.2235

Table 2. Expected impact of increasing hall capacity (size) and proportion of students sharing a bathroom (shared) on the hall
SAR (95% CI) from the final multivariate logistic regression in table 1.

size 0% 50% 100%

100 0.06 (0.04–0.08) 0.07 (0.06–0.09) 0.09 (0.07–0.11)

200 0.08 (0.07–0.10) 0.10 (0.09–0.12) 0.13 (0.11–0.14)

400 0.16 (0.13–0.19) 0.19 (0.17–0.22) 0.23 (0.20–0.27)
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local epidemic and local testing facilities, and propensity to adhere to guidance on isolation and mixing
restrictions. However, interpreted at face value, our results suggest that only partially filling student
residential halls could significantly reduce transmission risk, especially if this is coordinated to reduce
shared spaces.
2.2.3.2. Infection risk within hall households
Unsurprisingly, the probability of at least one reported symptomatic infection in a household was
significantly correlated with household size (table 3); the expected probability of importation into a
household of size 16 was 0.68, approximately double the probability for a household of size 8. Thirty-
eight per cent of households reported at least one infection.

Household size does not reach significance in the regressionmodel for household SAR in the univariate
or multivariate analysis, consistent with estimates of community household SAR for households from
population level data [12]. For the multivariate regression we find that SAR was higher for households
with the first reported case earlier in the term (table 3). This has many possible drivers such as changes
in local background prevalence, shifts in contact or reporting behaviour, or the impact of local depletion
of susceptible individuals owing to immunity or students vacating term-time residences. Our analysis of
this dataset does not allow us to distinguish between these possibilities. Multivariate regression also
indicated the SAR was positively correlated with the proportion of shared bathrooms in the household.
The first reported infection in a hall household occurred six days after the start of term. At this stage of
the term our predicted household SAR is 0.09 (95% CI: 0.05–0.16) and 0.21 (95% CI: 0.14–0.30) in
households with all en-suite rooms and all rooms with shared bathrooms, respectively.

Although the vast majority of test results within a household were dated within 14 days of the first
reported positive, and therefore plausibly epidemiologically linked, we did not have any contact tracing
or situational data that could be used to investigate this. We have not estimated overdispersion in the
number of secondary household cases which may be relevant [13]. While our estimates of the SAR
early in the term are broadly consistent with community household SAR (e.g. [12,14]), the binomial
probability of reporting a symptomatic infection given a previously reported symptomatic infection
in a household over the entire term is lower: 0.058 (95% CI: 0.043–0.070) or 0.076 (95% CI: 0.064–
0.090) considering all reported positive tests. However our data on secondary household infections is
incomplete due to missing data on household membership and uncertain propensity to report test
results (including any time and household dependence of this). Follow-up testing of household
members for markers of historic infection in serum samples is probably required to estimate the full
extent of household transmission.

It is highly plausible that not all infections in a household arise from a single imported case. In
appendix B, we consider the role of infection within the hall on the household SAR using a simple
transmission model that allows for infectious contact between household members and between hall



Table 3. Coefficients, and associated p-value and standard error for final regression models for the probability of introduction of
SARS-CoV-2 into a household and household SAR.

covariate coefficient p-value s.e.

binary logistic regression: probability of infection in household

household size 0.1623 <0.001 0.0269

constant 1.847 <0.001 0.2510

logistic regression: household SAR

date of first infection −0.1485 <0.0001 0.0298

proportion shared bathroom 0.9500 0.0021 0.3091

constant −1.4028 0.0019 0.4524
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members. Results indicate the extent extra-household contacts in the hall may inflate estimates of the
SAR; in this model the mean probability of infection due to random contact within the hall is 0.047,
whereas the probability of infection from an individual in the same household is 0.091 (see appendix
B). In reality, students will also mix with students in other residential settings and with the wider
community—we explore evidence for the latter in §2.3.

2.3. Transmission to/from the community: comparison with local age groups
Following a series of large outbreaks among the university student population in the 2020/2021
academic year, a question of interest to both policymakers and the general public was the extent to
which these outbreaks affected the wider local communities. This question remains of importance for
any future large-scale returns of students to their campuses, and provides insight into the extent to
which cluster outbreaks impact nearby populations.

In this section, we examine spillover, the impact of outbreaks in student populations on the surrounding
communities, by analysing patterns of cases among the student population and the local community. In
practice, as student populations are interlinked with the wider community, transmission can be in either
direction. In addition to any NPIs in place, and adherence thereto, the existence and strength of any
spillover signal will probably depend on factors such as: the magnitude of the student outbreak, the
levels of newly reported cases (incidence) in the community at the time of the outbreak, and the
proportion of students who originally resided in close geographical proximity to the university.

2.3.1. Data and methods

We used age-stratified positive case data at the lower tier local authority (LTLA) level from a Public
Health England (PHE) line list to describe the trends in student-aged case numbers. Our analysis also
used cumulative incidence data as reported by the respective universities, or via the University and
College Union (UCU) COVID-19 dashboard [8]. Cumulative case counts from both data sources were
used as measures of the outbreak sizes. Calculations of these sizes were limited to 10 days past the
peak in student-aged cases in order to facilitate comparisons across all LTLAs.

The age-stratified line list data for those aged 18–24 was used as a proxy for ‘student cases’, with cases
among all other age groups being classified as ‘community cases’. To facilitate comparison across age
groups, we rescaled all quantities by the known populations of each LTLA using data from ONS [15].

We include a sample of LTLAs with a notable proportion of students in table 4 as an illustration of the
variability across England. For each LTLA, we examined if, following an outbreak in the student
population, (a) there was an appreciable increase in the growth rate of community cases, and (b) if
more community cases than expected were recorded in the subsequent 10 days.

The time-varying growth rate in cases was estimated by taking the derivative of a smoother applied
to the daily case data. This method, while accounting for overdispersion in the data, also estimated a
mean daily incidence (see appendix C for more details).

Upon infection, a host triggers progeny infections following a period termed the generation time.
Changes to the community growth rate (a) were regarded as temporally linked with a student
outbreak if such significant changes occurred within two generation times (approx. 10 days [17]).
Cases in excess of the expected daily incidence were used as a proxy for (b).



Table 4. Properties of each of the considered LTLAs. Local students refers to those students domiciled in the same English
region, as obtained from the Higher Education Statistics Agency. The community prevalence was obtained at the regional level
from the ONS [16], looking at the transition from 15 September 2020 to 15 October 2020. Multiple return dates arise from those
LTLAs which host multiple universities.

LTLA region of England local students ONS prevalence (%) return dates

Birmingham West Midlands 52.8% 0.08→ 0.79 21 Sep

Bristol South West 23.3% 0.08→ 0.30 21 Sep & 5 Oct

Durham North East 15.4% 0.34→ 1.24 5 Oct

Exeter South West 32.0% 0.08→ 0.30 14 Sep

Leeds Yorkshire & The Humber 38.7% 0.25→ 1.51 28 Sep

Manchester North West 50.0% 0.44→ 1.83 14 Sep & 21 Sep

Newcastle North East 45.7% 0.34→ 1.24 28 Sep

Nottingham East Midlands 32.1% 0.13→ 0.69 21 Sep

Oxford South East 37.1% 0.09→ 0.43 5 Oct

Salford North West 76.6% 0.44→ 1.83 14 Sep

Sheffield Yorkshire & The Humber 39.3% 0.25→ 1.51 28 Sep

York Yorkshire & The Humber 33.3% 0.25→ 1.51 28 Sep
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2.3.2. Results

The degree to which the growth rate of community cases changed following a student-aged outbreak
varied significantly across the studied LTLAs. A selection of the different observed patterns are
included in appendix C.

Figure 3 shows a diverse pattern of spillover, and lack thereof, across different English LTLAs.
Unsurprisingly, some of the universities with the largest outbreaks were situated in LTLAs which
simultaneously had higher levels of incidence in the community.

Larger outbreaks correlate with a greater degree of spillover, although this effect is more strongly seen
when considering cases among 18–24-year-olds in figure 3b compared with using reported student
outbreak sizes in figure 3a. However, there are exceptions to this pattern, and there is not a clear
formal relationship between spillover and outbreak size.

Although we consider two separate data sources to gauge campus outbreaks (self-reported or age-
stratified), the discussion below uses outbreak sizes from figure 3a. At lower levels of community
incidence, we observe two scenarios: in the first, a small outbreak with little apparent impact on the
community. In the second, an outbreak in excess of 1200 cases with the largest observed impact on
the community. In this latter case, the impact was larger in relative terms, but not necessarily in
absolute terms (net increase in community cases).

No clear relationship is apparent between the proportion of local students and excess community cases.
Some large outbreaks (in excess of 1750) took place with relatively low levels of excess community

cases. It is hypothesized that the asymptomatic testing strategy in place at the university in question
may have played a role in this outcome.
2.3.3. Limitations

Student populations are interlinked with the wider community, whereby transmission can occur in either
direction. For a given outbreak then, purely from case data it may not be possible to determine whether
or not a student population caused or exacerbated an outbreak in the community. Our findings on
spillover here are therefore limited to correlations between the growth in positive cases among the
student-aged population and the community.

Particular care should be taken when interpreting the relative timings of increased growth rates as
done in appendix C, as community cases rose in England during the autumn. In general, our results
are limited by the available data, the sample of studied LTLAs, and our chosen indicators of spillover.
While the chosen age groups represent those most likely to be students (ages 18–24) and members of
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sizes of the plot markers scale with the proportion of students attending a university in the same region as their home address. The
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the wider community (ages 0–17 and 25+), these age ranges fail to account for older students and those
aged 18–24 who are not in higher education (HE).

Since the analysis is based on confirmed cases, our findings are predicated on consistent testing
availability and uptake. Significant changes to these over the studied time period may have impacted our
conclusions. The values in figure 3 should not be taken as predictive of the impact a student outbreak will
have on the wider community. Overall, signals of spillover are not consistent in type (growth rate or
excess) or strength across the studied LTLAs. As such, there does not from the data appear to be a simple
set of criteria which can be established to determine the risk to the community from a university outbreak.

While our observations suggest that spillover of cases from the university-aged population to the
wider community probably does occur, this analysis does not consider transmission settings, e.g.
residential, social or educational.

2.4. Transmission to/from the community: spatial patterns
To complement the previous section’s spillover analysis based on age-bands, we investigated
relationships between the number of cases in areas (middle super output areas, or MSOAs, which are
statistical reporting regions in England and Wales typically containing 5000–10 000 people) with a
large concentration of students, and areas that are near or far from those student areas.

2.4.1. Data and methods

To estimate the proportion of the population within any given MSOA composed of HE students, we used
information on the number of people reporting being students in each MSOA from the 2011 UK census
[18], and 2019 mid-year population estimates from the Office for National Statistics [15]. For weekly new
case counts by MSOA, we used the public UK government coronavirus data portal [19]. We derived
MSOA centroids from the Office for National Statistics geographical data [20].

We defined an MSOA as high student concentration if the number of students reported in 2011 was at
least 15% of the 2019 population estimate, and low student concentration if this figure was below 5%. We
classified an MSOA as near a high student concentration MSOA if it was not itself a high student
concentration MSOA but its centroid was within 2 km of the centroid of such an MSOA, and far
otherwise. We plotted time series of test-positive cases per population by week for these categories of
MSOA in several local authorities.

2.4.2. Results

We find a very mixed picture across different local authorities hosting HE providers across England, and
show several examples in figure 4. In particular, we see some signal of spillover in the case of Manchester
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cover the 95% confidence intervals of these estimates (details in appendix C).
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(figure 4a), where the MSOAs near high-concentration student areas experienced a rise and peak in cases
following a rise and peak in high-concentration student areas that is visibly distinct from the pattern for
areas that are far from student areas. By contrast, in Birmingham (figure 4b) we see a rise and peak in
cases in high-concentration student areas, but no distinction between the visible patterns for MSOAs
near high-concentration student areas or those further away. In the case of Hull (figure 4c), we see no
obvious distinction between any of the categories of MSOA. When we combine our age-stratified
analyses and these geographical-spread analyses we continue to see a mixed picture: some local
authorities have signal of spillover, but some do not. We do not see a consistent pattern across
England, probably due to wide variations both in the course of the coronavirus pandemic and the
nature of university–community interaction in different local authorities. Considerations such as the
severity of imposed NPIs, magnitude of student body, and uptake and efficacy of testing, tracing and
quarantining measures probably all influence the overall results, but their individual contributions are
not identifiable in this analysis. There is agreement between the age-stratified and geographical-spread
analyses of spillover in e.g. Manchester and Birmingham. This supports the robustness of the spillover
signals (where observed), and the utility of both methods.
3. Exploratory modelling for future return
During the autumn term in the 2020/2021 academic year, one of the recurring problems that universities
encountered was the large number of students that needed to isolate in halls of residence. The isolation
was seen as detrimental to the mental health of students, but also the sheer number of isolated students
posed logistical problems to the universities. For instance, making sure that students received adequate
food packages was a problem at the beginning of the term. It was an ongoing discussion how to reduce
the number of students in isolation and to ‘flatten’ spikes in the number of isolated students to help
universities to better deal with these logistical challenges.

The large outbreaks in universities during the first term in the 2020/2021 academic year led to
consideration of methods to safely manage the return of students for the second term of the academic
year in January 2021. Two constituent components of the initial guidance (published on 2 December
2020) were the staggered return of students and increased usage of rapid tests [21]. Universities were
asked to stagger their students returning over a five-week period according to course type. Students in
subjects that most required face-to-face interactions, such as medical and veterinary students, were
identified to be the first ones to return to campuses. Guidance also stipulated that all students should be
offered a SARS-CoV-2 test when they returned to university, helping identify and isolate those who were
asymptomatic. The protocol involved two lateral flow tests (LFTs), 3 days apart. In practice, however,
this staggered return did not occur as planned in January 2021. Following the imposition of a new
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nationwide lockdown on 4 January 2021, there was a prioritization of return of students to face-to-face
teaching enrolled on courses that were most important to be delivered in-person in order to support the
pipeline of future key workers. All other courses were to continue being delivered online [22].

In this section, we bring together insights from multiple independent models assessing the impact of
staggering the return of students to university and mass testing on infection and isolation. The intention
of our modelling work was to focus purely on unpicking the epidemiological consequences of staggering
student return on SARS-CoV-2 transmission and isolation. We acknowledge there are multiple factors
that administrators must consider and there may be operational and/or resource reasons why a
staggered return at higher education institutions is desired. These include ensuring that testing
capacity is sufficient to meet demand, the monetary costs associated with the intervention (e.g. testing
and staffing) and the educational needs of the students. Though the inclusion of these considerations
is beyond the scope of our study, they are important constituents of a multi-faceted decision-making
process and we provide an expanded discussion in the Conclusions section.

We present work from four independent models that implement a staggered student return, with the
view of having multiple approaches (with distinct modelling assumptions) to enhance result robustness
and to determine whether consensus findings emerged. We open with two parsimonious model
frameworks. The first is used to highlight potential surges in the number of students in isolation upon
student return (§3.1). The second presents a transmission model that considers the impact of staggered
student return over time (§3.2). The final two models continue the exploration of the dependency of
epidemiological outcomes on staggered return policies, with both models incorporating heterogeneity
in contact structure and being partly parametrized using data on (different) individual higher
education institutions (§3.3).

With respect to mass testing, we consider insights from two network transmission models, each with
a differing area of focus. In one analysis we vary the return testing strategy, in conjunction with staggered
student return (§3.4). The other considers regular rounds of testing throughout the academic term and
the potential implications of a SARS-CoV-2 variant with increased transmissibility, in light of the
emergence of the B.1.1.7 SARS-CoV-2 lineage that proliferated rapidly in the UK in late 2020 and
early 2021 [23–26] (§3.5).
3.1. Impact of staggering on isolation
To investigate the viability of a staggered return approach, we built a basic discrete event simulation for
the return of students to their halls of residence. This individual-based model was designed to investigate
the necessary capacity that would be required on campus to isolate incoming students and to establish
whether staggering could reduce the overall time that individuals would spend in isolation upon return.
In this section, we purely focus upon isolation as a result of a positive test upon return and do not
consider spread of infection within the university after students return.
3.1.1. Methods

In the model, each student arrives in their household and is tested immediately. If their test is positive,
their household is put into isolation for 10 days. If a particular student is due to arrive in a household that
is already isolating, that student is required to wait until the relevant household comes out of isolation
before they are allowed to return and have their test.

We investigated four different scenarios: (i) all students return on the same day, (ii) each student
returns on a random day in a 14-day interval, (iii) each student returns on a random day in a 28-day
interval, and (iv) the students return in three weekend ‘pulses’. In these pulses, we assume that 10%
of students are in halls already and 40% arrive on the first weekend. The next 30% arrive on the
weekend three weeks later and the final 20% arrive on the weekend after that. For the purposes of
testing, we treat students that are already in halls the same as the first arrival group. In all cases, we
assume that the students that come back at a certain point in time are uniformly distributed over the
different households. So, we do not consider effects that appear when, for instance, student housing is
organized by programme or year. We note that a fully random distribution of returns over a longer
period might be practically infeasible, and assuming that returns are concentrated on, for instance,
weekends, is a more plausible assumption.

We simulated these scenarios for cohorts of 1000 students. We varied the household size and the
probability of receiving a positive test. The results of these simulations are summarized in table 5,



Table 5. Summary of the staggering simulations. The table shows the average over 100 runs for each combination of household
size and fraction of positive tests (3WP: three week pulsed return, p: probability of positive test result, W + I: combined total for
either waiting to return or isolating).

household size p arrival isolating waiting W + I peak isolating

10 0.01 3WP 621 99 720 102

at start 931 0 931 170

random14 594 218 812 94

random28 577 129 706 89

0.02 3WP 1183 186 1369 170

at start 1812 0 1812 320

random14 1152 401 1553 178

random28 1171 255 1426 116

0.05 3WP 2908 438 3346 303

at start 4049 0 4049 510

random14 2868 951 3819 307

random28 2793 595 3387 256

20 0.01 3WP 1190 187 1378 184

at start 1806 0 1806 320

random14 1151 435 1586 183

random28 1048 250 1299 167

0.02 3WP 2328 383 2712 279

at start 3224 0 3224 500

random14 2275 815 3090 302

random28 2103 494 2597 228

0.05 3WP 5512 875 6387 520

at start 6352 0 6352 780

random14 5408 1757 7165 552

random28 5198 1214 6412 512
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where we give the total number of days that students need to spend in isolation, need to wait before
arriving in their term-time accommodation, and the peak number of students that were in isolation.

We note that, from an organizational perspective for student accommodation, not only the total days
spent in isolation is relevant, but also the number of students that are isolated at any given time.
3.1.2. Results

To show the impact we have plotted the average numbers for the different simulations in figures 5–7 for
the random return within 14 days, 28 days and the three-pulse return.

We observed that staggering the return of students can have organizational advantages. Under a
regime where the fraction of positive tests in the student population is low and household sizes are
small (figures 5–7, top left panels), spreading out the return of students can reduce the total number
of days that students spend in isolation and also reduce the peak number of students that are isolated
on a given day. These advantages diminish or are even reversed if the proportion of positive tests is
high (figures 5–7, bottom rows); in that case households are repeatedly put in isolation, which leads
to higher peaks and total days in isolation. As can be seen in the case of household sizes of 20
students and positive test probability of 0.05, spreading the return of students over a longer period of
time mainly reduces the peak number of isolations and does not contribute significantly to a
reduction in the total number of days that students are isolated in these scenarios. We note that for
positive test probabilities of p = 0.02 and p = 0.05, one can expect that a significant number of students
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will be impacted by isolation measures in the first weeks after return. Hence, these results suggest that it
is important to take this lead time into account when planning in-person teaching activities.

3.2. A simple model for the impact of a staggered student return on incidence
We provide an analysis of the impact of a staggered return of students in three stages, on the transmission
dynamics during an academic term.
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interval computed from 100 simulation runs.
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3.2.1. Methods

We implement staggered return of students in a simple compartmental transmission model that
segments hosts into susceptible (S), infectious (I) and recovered (R) classes, and examine the mean
field solutions of this SIR model. We assume that the students return to university in three stages over
three weeks. On return, they mix freely with the existing student body and with each other. At each
return point, we assume that a fixed proportion of the returnees are infected.
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In our simulation, we took a student body of N students. These returned in groups of N/3 in weeks
one, two and three, so that the respective student populations in the first three weeks were N/3, 2N/3
and N. Once all of the students return they remain at university for a further eight weeks until the
end of an 11-week term.

At each return point, we assume that a fixed proportion, p, of the returnees were infected. In full,
when each group of N/3 students returned they were assumed to contribute p N/3 students to the
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number of infected students, and (1− p)N/3 students to the susceptibles. The resulting SIR model is then
given by the following three-level piece-wise model, where t = [0… 77] was measured in days, i = 1 gave
the infection dynamics in week 1, i = 2 the infection dynamics in week 2, and i = 3 the infection dynamics
in weeks 3–11:

dSi
dt

¼ �b
IS
Ni

,

dIi
dt

¼ b
IS
Ni

� gI

and
dRi

dt
¼ gI:

In each of the three stages, the population values were: N1 =N/3, N2 = 2N/3 and N3 =N.
To simulate the staggered returns, we took the values of S and I at the start of the first, second and

third weeks to be the following, noting that the values of S and I then jump at the start of each week (as
can be seen in the figures):

S1(0) ¼ (1� p)N=3, I1(0) ¼ pN
3

,

S2(7) ¼ S1(7)þ (1� p)N=3, I2(7) ¼ I1(7)þ pN
3

and S3(14) ¼ S2(14)þ (1� p)N=3, I3(14) ¼ I2(14)þ pN
3

:

For simulation examples, we used a population size of N = 1000 and considered three scenarios with
different values of the prevalence (p) and transmissibility (β): (i) p = 0.10, β = 0.18; (ii) p = 0.02, β = 0.18;
(iii) p = 0.02, β = 0.30. In all scenarios, we fixed the recovery rate γ = 0.072. We also compared the
results of the ‘staggering’ model with that of an unstaggered model (with the same parameter values)
in which all of the N students returned at the start of term.
3.2.2. Results

The corresponding reproduction numbers R for the three scenarios are initially: (i) R = 2.5, (ii) R = 2.45
and (iii) R = 4.08.

In the absence of all other controls, and across all three considered scenarios, we observed that
staggering can slightly reduce and slightly delay the size of the infection peak in the short term
(figures 8–10). However, over the course of the 11-week term the reductions in the overall attack rate
were minor, particularly for infections with high transmissibility (figure 10).

While based on relatively simple assumptions, these results are intuitive. In conclusion (i) a staggered
return could delay and reduce the outbreak peak, however, (ii) without other controls, staggering will not
much reduce the overall attack rate over the course of an academic term.
3.3. Structured models assessing the impact of a staggered student return
The formerly presented parsimonious models provide guiding principles on the potential impact of
staggering on infection throughout the course of an academic term and isolation upon return. In this
section, we build on the prior work by investigating the role of staggered student return on
epidemiological outcomes using models incorporating additional layers of complexity. In contrast to
the compartmental model in §3.2, these models are simulated probabilistically to explore the random/
stochastic variation in outcomes. Specifically, we used two models of transmission dynamics for
SARS-CoV-2 in a university setting, each using a different model conceptualization: (i) a stochastic
compartmental model [6] and (ii) a network-based model [27]. Both transmission models assume that
upon exposure hosts enter a period of latent infection during which they are not infectious, then hosts
may remain asymptomatic throughout their infection (asymptomatic cases) or transition through
presymptomatic and symptomatic stages of infection. Mass asymptomatic testing may detect both
presymptomatically infected hosts and asymptomatic cases. Note that both models assumed that
individuals did not ‘compensate’ by replacing contacts that were unable to occur (due to the expected
contact being in isolation or not having yet returned to the university setting).
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3.3.1. Methods

3.3.1.1. Stochastic compartmental model summary
The stochastic compartmental model included realistic mixing patterns for students based on student
responses to the Social Contact Survey conducted in 2010 [28,29]. These contact matrices entailed 160
groups based on school (department) and year of study, with contacts stratified into household, study
and random contacts. We calibrated the disease compartments to estimations made at the start of the
2020/2021 academic year in the absence of controls, returning an R of approximately 3 (for calibration
we assumed asymptomatic cases were 50% less infectious than symptomatic cases). Further model
details, including descriptions of the remaining assumptions underpinning the model, may be found in [6].
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For our analysis here, we fixed the mean probability of a case being asymptomatic at 75% and the
relative infectiousness of an asymptomatic we varied between 0 and 1. It was assumed that the
university would operate within Public Health England guidelines and therefore that symptomatic
cases would be tested and self-isolate within 48 h. Students in large halls of residence were assumed
to be restricted to households of 24 individuals, reflecting actions taken by universities in the 2020/
2021 academic year. We did not include the impact of contact tracing, social distancing or the use of
face coverings. We used a student population size of 28 000. The number of infected students at the
start of term was estimated using home location and incidence as of July 2020 as described in [6]
using an anonymized extract of student data for a specific university relating to the 2019/2020
academic year. The study complied with the University data protection policy for research studies
[30]. Each scenario was run for a simulated 300 days, with 10 replicates per scenario.

The model is coded in R and C++ and available at https://github.com/ellen-is/unimodel.

3.3.1.2. Network model summary
Our network model framework represents interactions between students within a university population
in different settings (household, study cohort, organized societies and sports clubs, other social). We ran
an epidemic process on this network, for the virus SARS-CoV-2. The model includes isolation and
contact tracing. We adopted a pessimistic approach by assuming a comparable amount of mixing to
pre-pandemic circumstances, and did not include any reduction in the risk of transmission occurring
over contacts due to social distancing and/or the use of face coverings.

Specifically, we assumed students had contact with all household members each day. We sampled the
number of non-household contacts from distributions fit to data informed by student responses to the
Social Contact Survey conducted in 2010 [28,29], with stratification according to the level of study
(undergraduate or postgraduate). For this analysis, we then applied the following two contact pattern
changes to all but the baseline (no intervention) scenario: (i) society contacts did not occur
(transmission risk therefore zero), assuming that all meetings would take place online; (ii) for on-
campus resident students, we assumed no contacts within the broader accommodation unit of the
same floor or block of residence (thus outside the immediate household).

In all simulations, we had an overall student population of 25 000, with 7155 students resident on-
campus and the remainder off-campus. Each simulation run had a duration of 11 weeks, encompassing
both a 10-week academic term and the week prior to its commencement.

We initialized latent, infectious (asymptomatic, presymptomatic and symptomatic) and recovered
individuals using estimates for 2 January 2021 from the University of Warwick SARS-CoV-2 transmission
model [31], based on fits from 29 November 2020 and assuming no change to adherence in NPIs.

For each parameter configuration, we ran 1000 simulations, amalgamating 50 batches of 20 replicates;
each batch of 20 replicates was obtained using a distinct network realization. We performed the model
simulations in Julia v. 1.4–1.5. The data and science surrounding the SARS-CoV-2 infection is fast
moving. This piece of sub-analysis was originally undertaken in December 2020, with our intent being
for this work to provide a record of the state of our modelling at that time. For a full description of
the network model and noted limitations of the methodology, see [27]. We summarize in appendix D
other changes made from the base model to carry out this analysis. Distributions of outcome
measures are visualized using violin plots which capture the smoothed probability density of a set of
numeric values [32].

3.3.1.3. Staggered return strategies
We assessed four strategies for the return of students for the academic term (figure 11) using the stochastic
compartmental model and the network-based model. Note that, across all considered strategies, a
proportion of the student population was considered to be resident in university accommodation
between academic terms.

The four strategies were as follows: (i) no stagger—for students not resident in university
accommodation over the vacation, they return on day 1; all students entered the return test procedure on
day 1 (we acknowledge that in practice there would be logistic difficulties associated with such a
strategy); (ii) 14-day spread—each student is allocated their day to return to university (if applicable) and
they begin the return testing procedure between days 1 and 14 (sampled according to a uniform
distribution); (iii) 28-day spread—similar to the 14-day spread strategy, except the applicable range spans
days 1 to 28; and (iv) three-weekend pulse (by course)—fractions of the student population return on
designated weekends based on level and course of study. In the stochastic compartmental model, for the

https://github.com/ellen-is/unimodel
https://github.com/ellen-is/unimodel
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three-weekend pulse, on day 1 of the simulation we assumed that all vital medical, dental and veterinary
students enrolled in courses (as provided by the University of Bristol [33]) were present, as well as 20%
of students in all other schools, giving 31% of students present at university in total. This first group of
students was chosen because they were studying on the courses that were allowed to return when
universities were closed in January 2021 and at this time it was estimated that 20% of students who were
not enrolled on these courses still chose to return. On day 22 of the simulation, all other courses with
important practical elements return to university, giving a total of 51% of students present at university.
On day 29, all remaining students return to university. For the network model, we set the groupings
(and the associated proportion of students returned) for the three-weekend pulse as a variation on the
University of Warwick plan for staggering student return [34].

3.3.1.4. Testing protocols
We also included a testing protocol that adherent students engaged with upon return to university. In the
stochastic compartmental model, we considered two scenarios: (i) no testing on student return, and (ii)
testing of all non-symptomatics. We assumed the tests detect half of true positives (50% sensitivity) and
do not generate false-positive results (100% specificity).

In the networkmodel, we assumed adherent students underwent two LFTs, 3 days apart, with isolation
between tests (for details on test sensitivity and specificity, see appendix D). For each strategy for student
return, we sampled the proportion of students that were adherent to isolation from zero compliance
(value 0) to full compliance (value 1) in increments of 0.1. We assumed an identical adherence to
isolation restrictions independent of the cause (presence of symptoms, household member displaying
symptoms, or identified as a close contact of an infected by contact tracing). Additionally, we assumed
those that would engage with isolation measures would also engage with contact tracing.

3.3.2. Results

3.3.2.1. Stochastic compartmental model results
We first present our findings from simulations carried out with the stochastic compartmental model. The
collection of simulations that we present here give an indication of what the impact of staggering and
testing might have been at the start of the 2020/2021 academic year, if this had taken place. The
model parameters do not change based on events that have happened since this time, including
vacation periods, and consequently the results are to be interpreted qualitatively if used to make
predictions about future scenarios.
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Figure 13. Epidemiological outcomes among a student population given differing staggered return strategies to university compared
with a strategy where staggering is not used, using a stochastic compartmental model. Outputs are summarized from 10
simulations, with the continuous lines representing the median number of symptomatic and asymptomatic students and the
dashed lines corresponding to the 2.5th and 97.5th percentiles. We display distributions corresponding to: (a) no testing of
asymptomatics upon student return, (b) all asymptomatics are tested.
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We observed a similar overall case burden across all considered staggering strategies. Given high
adherence to control, similar temporal trends were observed regardless of the testing strategy used
(figure 12). Relative to an unstaggered return, there was lower prevalence in the early phase paired
with higher prevalence in the late phase for the 14-day and 28-day strategies, with these relationships
being consistent across the collection of test upon student return protocols (figure 13).
3.3.2.2. Network model results
For the independent analysis performed using the network model, on account of the inherent uncertainty
in several parameters of the model and assumptions made regarding contact patterns, we once more
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Figure 14. Epidemiological outcomes among a student population given differing staggered return strategies to university. Outputs
summarized from 1000 simulations (with 20 runs per network, for 50 network realizations) for various levels of adherence to NPIs.
We considered four strategies: no stagger (blue violin plots); return spread over 14 days (orange violin plots); return spread over 28
days (yellow violin plots); three-weekend pulsed return ( purple violin plots). We assumed 100% of adherents engage with return
testing. We display distributions corresponding to: (a) relative attack rate, compared with the baseline scenario; (b) time spent in
isolation per student; (c) time spent in isolation per adherent student. The white markers denote medians and solid black lines span
the 25th to 75th percentiles.
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focus on qualitative comparisons across the simulated scenarios (as done with the stochastic
compartmental model). We first note that, compared with the baseline scenario, the scenario with
reductions in contacts via organized societies and dynamic on-campus accommodation contacts
(represented by adherence probability 0.0 in figure 14) produced a shift downwards in the obtained
distributions of relative attack rate (medians of 0.93–0.96 across the four staggering strategies).

Comparing attack rate across staggering strategies for a fixed adherence level, in concordance with the
stochastic compartment model we found a minimal impact on the attack rate over the course of the
academic term. Furthermore, we determined adherence to isolation guidance and following test and
trace procedures as crucial in reducing the overall case burden within the student population (figure 14a).

Assessing the potential impact of staggered return strategies on the amount of time students may be
required to isolate, for a fixed adherence level there were no substantial differences between the strategies
we considered (figure 14b,c). Inspecting a measure of time spent in isolation for any given student, we
observe an initial increase with adherence level, peaking when roughly 70–80% of students are
adherent, before declining as it approaches all students being adherent (figure 14b). A collective
response (high adherence) reduced the time each adherent student was estimated to spend in
isolation, compared with a scenario of moderate adherence among the student population (figure 14c).

In the absence of other interventions, staggering slightly reduces and delays the size of the peak,
though the long-term impact is minimal (figure 15a). For strong adherence to interventions, temporal
trends were found to be broadly similar regardless of the staggering strategy used (figure 15b), in
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Figure 15. Temporal profiles of epidemiological measures over the academic term under differing return patterns. Outputs produced
from 1000 simulations (with 20 runs per network, for 50 network realizations) for four return patterns: no stagger (blue); return
spread over 14 days (orange); return spread over 28 days (yellow); three-weekend pulsed return (purple). Solid lines depict the
median profile and shaded regions the 95% prediction interval. Panels from left to right display infection prevalence,
cumulative proportion of initial susceptibles infected, and 7-day averaged R, respectively. (a) No return testing; (b) return
testing with all adherents participating.
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agreement with the temporal trends observed from the stochastic compartmental model projections
(figure 12).

3.4. Testing on return
Using the network model described in §3.3, we modelled implementation of a testing protocol that
students would be advised to complete before attending face-to-face teaching.

3.4.1. Methods

To investigate the sensitivity of staggered returns to alternative test-on-return strategies, using a fixed
high level of adherence (90%), we investigated four protocols (table 6). Test protocol A: two LFTs,
3 days apart, with isolation between tests (the default assumption); test protocol B: single LFT; test
protocol C: two LFTs, 3 days apart, with no isolation between tests; test protocol D: single PCR with
isolation until test result received (2-day delay), leaving isolation upon a negative test result.

3.4.2. Results

Given high adherence to interventions and engagement with rapid testing, the inclusion of a second LFT
and isolation between the LFTs gives minor reductions in attack rate (comparing A–D in figure 16). We
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Figure 16. Relative attack rate distributions under different test before return to study procedures, in combination with strategies for
staggered student return. Assumed 90% adhere to isolation, test and trace guidance. For test strategies using two LFTs, the two
tests were spaced 3 days apart. We considered four student return patterns: no stagger (blue violin plots); return spread over 14 days
(orange violin plots); return spread over 28 days (yellow violin plots); three-weekend pulsed return ( purple violin plots). The white
markers denote medians and solid black lines span the 25th to 75th percentiles.

Table 6. Overview of the return test protocols. Cells containing an ‘X’ denote the element being a part of the return test
protocol. LFT 1 and LFT 2 correspond to a first and second LFT respectively. Conditioned on the plan including individuals
undergoing two LFTs, ‘isolate between tests’ reflects whether isolation should occur between the two LFTs.

testing strategy LFT 1 LFT 2 isolate between tests

A X X X

B X

C X X

D single PCR test
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found comparable attack rate distributions across our four (previously introduced) staggering strategies
for student return to university (comparing between colours in figure 16).
3.5. Testing during term
To build on our investigation of testing on arrival, we simulated the impact of an asymptomatic testing
system in use throughout the term, assuming the presence of a more transmissible SARS-CoV-2 variant.
This scenario was considered in response to the emergence of the B.1.1.7 variant in the UK, which began
to become widespread from November 2020.
3.5.1. Methods

We used a layered network model of contact between 15 000 simulated students, with one layer of
household contacts and one of other-group contacts intended to simulate all out-of-household
contact. Individuals could be infected by either household or non-household contacts. Infected
individuals progressed through disease states via a stochastic compartmental model including a latent
period, various infectious states (presymptomatic, asymptomatic or symptomatic) and recovery resulting
in immunity (which we assumed did not wane).

We investigated five during-term asymptomatic testing scenarios, in which individuals were tested at
random with probability 1/3, 1/7, 1/10 or 1/14 per day (to simulate testing every 3, 7, 10 or 14 days,
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Figure 17. Temporal profiles of cumulative case counts for a simulated population of 15 000 students under differing during-term
asymptomatic screening scenarios. We present two scenarios for variant transmissibility: (a) lower-transmissibility variant; (b) higher-
transmissibility variant (1.5 times more transmissible than the lower-transmissibility variant). Output produced from 100 runs of
each scenario, with a new network generated for each replicate; envelopes show 95% of model runs and solid lines show
mean values. Asymptomatic screening scenarios considered are: no asymptomatic testing (red), each person randomly tested
with probability 1/14 (yellow), 1/10 ( purple), 1/7 (blue), or 1/3 (green) per day, to simulate testing approximately every 14,
10, 7 or 3 days, respectively. Note that this model has many limitations and should be interpreted mainly qualitatively. See main
text for a listing of some limitations.
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respectively), or not at all. In all scenarios, symptomatic individuals are assumed to be tested
immediately upon developing symptoms. Upon a positive test, the entire household isolates for 14
days. Simplifying assumptions included perfect and rapid testing and perfect adherence to testing and
isolation. We assumed 50% of non-household contacts to be traced and isolated.

We first ran these scenarios with a lower-transmissibility variant intended to plausibly simulate the
variant of SARS-CoV-2 circulating in universities in the UK in autumn 2020. We then considered a 1.5
times more transmissible variant, intended to simulate a potentially more transmissible variant such
as B.1.1.7.

We initialized each simulation with 100 infectious individuals, and ran the model for 100 timesteps
(notionally days). For each scenario, we performed 100 replicates, each run on a newly generated
network. Importantly, we chose the particular parameters for this model for a combination of
plausibility and simplicity, and some are not well-founded in any particular dataset. Details of the
model, parameter choices and limitations are available in appendix E.
3.5.2. Results

We plot the number of cumulative cases as a time series under the differing testing scenarios for the
two variants in figure 17. In general, more frequent asymptomatic screening better controls cases,
with the scenario with no asymptomatic screening seeing the largest number of cases. While cases
were contained to a mean of fewer than 1200 in all scenarios with asymptomatic screening in the less
transmissible setting, this was only achieved by the most frequent testing scenario in the more
transmissible setting.
3.5.3. Limitations

This model has many simplifying assumptions and the absolute numbers it produces should not be
considered in isolation or as an absolute prediction. Some of these limitations include: perfect
adherence to testing and isolation, no vaccination nor prior immunity, no reactive interventions during
the course of the simulation, and a speculative network contact structure that has not been trained from
data but is instead simply a plausible simple structure. In addition, the model did not include a
reduction in the risk of transmission occurring over contacts due to face covering use or social
distancing; however, other work [35] suggests that if such measures are in place in a university setting
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and/or if there are moderate levels of immunity, the impact of testing is less prominent, highlighting the
importance of considering testing in the context of other measures.
oyalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210310
4. Conclusion
The mass migration of students at the beginning and end of academic terms, their unique living
arrangements during term time and unique patterns of social mixing, make them an important
population for the spread of infectious respiratory illnesses. Despite this, prior to the COVID-19
pandemic, there was little data collected on outbreaks of infectious disease at universities (although
one such dataset collected between October 2007 and mid-February 2008 has now been analysed in
2021 [36]) and university students were an understudied population. Therefore, at the start of the
pandemic, there was a limited evidence base to support policy decisions around universities. Our
study brings together expertise from multiple research groups and presents results from multiple
statistical and modelling analyses and provides new understanding on infectious disease outbreaks at
universities and how these could be mitigated.

An important finding of our study is that adherence to NPIs is likely to have more impact than
staggering the return of students to university. Survey data suggest that in the autumn term of 2020,
students generally did have high adherence to NPIs; an Office for National Statistics (ONS) survey
found high adherence (90%) to social distancing across multiple universities [37]. In addition, a survey
of University of Bristol students found that 99% of students self-isolated after testing positive for
COVID-19 and the majority of survey participants reported low contact numbers [38]. However, there
was heterogeneity in adherence, with some students reporting many contacts and with only 61% of
students with cardinal COVID-19 symptoms self-isolating [38]. In future, it will be important that
students maintain their high levels of adherence and to ensure they have sufficient resources to allow
them to do so.

Several of the scenarios presented here have considered the frequency of asymptomatic screening at
universities. This has been explored in other modelling studies, for example [39] found that monthly
screening can reduce cumulative incidence by 59% and weekly screening by 87%. We found that
increasing the frequency of asymptomatic screening is likely to be important in the presence of a more
transmissible SARS-CoV-2 variant, with cases only being able to be maintained below 1200 (mean
cumulative over 100 days) when testing occurs every 3 days (in a population of 25 000). This finding
corroborates a study that used an agent-based model to simulate COVID-19 transmission at the
University of California San Diego, where larger outbreaks resulted in a maximum outbreak size of
158 when asymptomatic screening occurred monthly and 7 when it occurred twice weekly [40], but
with a much lower impact seen on the average outbreak size when increasing from monthly to twice
weekly testing, ranging from 1.9 to 1.1, respectively. Brooks Pollock et al. [6] also found that mass
testing was more effective for higher values of the reproduction number. This highlights the
importance of reassessing control measures under different variants.

We have focused here on COVID-19 risks and mitigation strategies for when students return to
university and during the university term itself; however, we have covered little on the risk of
transmission from infected students to private homes at the end of term. Previous modelling work
suggests that in an unvaccinated population, an infectious student would on average generate just less
than one secondary within-household infection, but this is dependent on the prevalence in the student
population at the time of departure [41]. Although it is expected that vaccination will reduce the
impact of students returning to private homes at the end of term, the UK vaccination programme is
ongoing, and there are particular spatial areas and demographic groups where low uptake is expected
[42], suggesting that this still may be an important question to consider in future.

Our analyses and discussions have highlighted several areas that we recommend for further attention.
These include building a better understanding of determinants of adherence, including attributes that
may place subpopulations at higher risk (e.g. students in part-time employment). Given the need for
rapid turnaround of our analyses, a persistent challenge is the ability to access data in a timely
manner and ensuring any barriers to data access have a purpose and are necessary. One mechanism
for addressing this data availability issue may be a centralized nationwide student testing data
resource, which could serve as a hub for anonymized student testing data that documents institution
and attributes such as type of accommodation.

We recognize there are prominent factors that we have not addressed here, as we have focused directly
on transmission dynamics, yet should be considered while viewing our results in a broader context. One
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important future research direction is to consider the non-COVID impact of intervention measures. The
majority of work to date on COVID-19 has focused upon developing intervention policies that seek to
minimize the overall number of cases, hospital admissions or deaths. However, it is important to
acknowledge that any control policy that may reduce transmission also has an impact in terms of
monetary cost, non-COVID health, mental health and well-being. An extension to this work could focus
upon assessing the direct monetary cost of intervention policies as well as the logistical and operational
constraints associated with such policies [43,44]. For example, to sustain a regular testing regime at
universities under financial, logistical, or structural constraints, mathematical modelling suggests that
pooling RT-qPCR testing may be a cost-effective method, although this may come with additional
caveats resulting from the associated reduction in sensitivity (when cases are not detected) and
specificity (when students self-isolate but are not infected) [45]. Additionally, in higher educational
settings, it is important to consider any impact on teaching and examination schedules as well as mental
health and well-being of students. The models considered here allow for an estimate of the different
resources used by the different control strategies. In order to determine an optimal intervention, it is
crucial to establish the objective of any control policy, noting that the objective may not be generalizable
across all higher education establishments. Once an objective is appropriately defined, any modelling
can be specifically tailored to maximize the robustness of any advice offered.

Furthermore, a growing picture is just beginning to emerge on the prevalence of, and risk factors for,
‘long COVID’ symptoms and health complications following coronavirus (COVID-19) infection. An
initial set of early experimental results collected by the ONS indicates around one in five respondents
testing positive for COVID-19 exhibit symptoms for a period of five weeks or longer, and around one in
10 respondents testing positive for COVID-19 exhibit symptoms for a period of 12 weeks or more [46,47].
We recognize that the current university closures may have significant impact upon student mental
health and well-being—across multiple surveys collecting information on how the COVID-19 pandemic
has affected the mental health of students, a consistent outcome was above 50% of respondents
expressing that their well-being and mental health had become worse [48]. In addition, we hope that the
ongoing vaccine roll-out will provide a level of protection for those most vulnerable to severe outcomes,
which in turn may alleviate risks associated with possible student to community spread.

In conclusion, our findings are comprised of three overarching points. Firstly, we observed evidence
of spillover transmission between higher education populations and the wider community in some, but
not all, settings. Secondly, we would expect reductions in adherence to NPIs (including case and
household isolation) to have more impact than any marginal benefits generated from a staggered
return of students to university. Thirdly, the emergence of more transmissible new variants results in
impaired effectiveness of mass asymptomatic testing. Ultimately, we hope that the work presented
here can be used by universities and policymakers to assist in the long-term strategy of ensuring that
students can return safely to their studies at universities in the UK. And while we have focused on
the national picture in the UK, we also hope our results can offer insights relevant to higher education
in other countries.
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Appendix A. A simple outbreak model for university COVID-19 outbreaks
We postulate in §2.1 that the probability, P, that a university experiences a SARS-CoV-2 outbreak is
given by

P ¼ 1� pn, (A 1)

where n is the number of imported cases and p is the probability that an imported case fails to seed an
outbreak.

We tested this hypothesis by using estimates for the number of imported student cases [7] and
COVID-19 case number data for a number of universities for which cumulative case number data was
available on the UCU COVID dashboard [8].

For a university i with cumulative case number ci, we defined an outbreak if ci > Tu, where Tu is a
threshold number of cases. We set xi = 1 if a university had experienced an outbreak, and xi = 0 if not.

The probability mass function for the distribution of outbreaks is given by

f(xjp) ¼ pn(1�x)(1� pn)x:

Thus, the likelihood of the data for all N universities, given p, is

L(p) ¼
YN
i¼1

pni(1�xi)(1� pni )xi

and the log likelihood is

LL(p) ¼
XN
i¼1

{ni(1� xi) log pþ xi log (1� pni )}:

Maximizing the log likelihood gives the maximum-likelihood estimate p̂ for p. The 100(1� a)%
confidence interval for p is given by

p̂+ z(a=2)
1ffiffiffiffiffiffiffiffiffiffiffi
NI(p̂)

p
" #

,

where z(α/2) is defined by P(Z > z(α/2)) = α/2 for Z∼N(0, 1) and

I(p) ¼ �E
d2

d p2
LL(p)

� �
(A 2)

¼ E
XN
i¼1

ni
p2(1� pni )2

{(1� pni )2 � xi(1� pni )þ xinipni }

 !
(A 3)

¼
XN
i¼1

n2i p
ni

p2(1� pni )
, (A 4)

using E(xi) ¼ 1� pni .



Table 7. Coefficients, and associated p-value and standard error, for the univariate and intermediate multivariate logistic
regression models for hall SAR.

covariate coefficient p-value s.e.

univariate logistic regression: SAR

hall size 0.0037 <0.0001 0.00006

constant −2.8388 0.0001 0.1722

median household size −0.0539 0.0029 0.0181

constant −1.3218 <0.0001 0.01590

proportion shared bathroom 0.3541 0.0017 0.1097

constant −1.9836 <0.0001 0.0822

proportion medical faculty 0.3511 0.0004 1.7973

constant −2.5257 <0.0001 0.2238

multivariate logistic regression: SAR

hall size 0.0030 <0.0001 0.0007

median household size 0.0300 0.2458 0.0258

proportion shared bathroom 0.4141 0.0010 0.1253

proportion medical faculty 4.0628 0.0712 2.2521

constant −3.6647 <0.0001 0.4690

hall size 0.0030 <0.0001 0.0007

proportion shared bathroom 0.3977 0.0013 0.1233

proportion medical faculty 2.7342 0.1588 1.9402

constant −3.2354 <0.0001 0.2795
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Appendix B. Additional analyses for student hall infection data

B.1. Additional regression results

Univariate and intermediate multivariate regression results for the household and hall SAR (§2.2) are
summarized in tables 7 and 8.

B.2. Stochastic transmission model for hall and household infection

An alternative method for exploring the role of household and hall size, discussed briefly in §2.2, is to fit
a stochastic transmission model that allows for infection between hall members in addition to household
members.

B.2.1. Methods
We first calculated the household size distribution for each hall. We ignore the temporal dynamics
(setting the infectious period to unity) and simulated the final size of the outbreak using the Sellke
construction [49] in a population with two levels of mixing, defined by the household infectious
contact rate, λH, and the global (or hall) infectious contact rate, λG. Motivated by the lack of
dependence of household SAR on household size (table 1), we assumed density-dependent mixing in
households. Contacts at each level were assumed to be made at the points of a homogeneous Poisson
process. We calculated the probability of a student being infected given a single introduction in the
hall. Inference was performed for each hall using the approximate Bayesian computation tutorial in
Kypraios et al. [50], assuming Exp(1) priors for λH and λG.

B.2.2. Results
In figure 18a, we plot the probability that a student was infected by another within their hall including
their household (phall ¼ 1� e�lGAR) (where AR is the hall attack rate, in this case the number of reported
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Figure 18. Results of fitting the model with two levels of mixing to each hall individually, plotted against hall capacity. Circles
indicate expected mean and lines 95% confidence intervals. (a) Probability of infection due to global infectious contact. (b)
Probability of infection due to household infectious contact. (c) Comparison of the total probability of infection after
introduction accounting for household and global infectious contacts compared with the estimated binomial probability of
infection given introduction into a household (black dashed line). (d ) Comparison of the probability of infection in a household
by household size for each hall (blue lines) and the output from the binary regression analysis (black line).

Table 8. Coefficients, and associated p-value and standard error, for the univariate and intermediate multivariate logistic
regression models for household SAR.

covariate coefficient p-value s.e.

univariate logistic regression: SAR

household size −0.0543 0.1442 0.0372

constant −2.2885 <0.0001 0.3679

date of first infection −0.1354 <0.0001 0.0291

constant −0.8816 0.0272 0.3996

proportion shared bathroom 0.7472 0.0151 0.3074

constant −3.3660 <0.0001 0.2730

multivariate logistic regression: SAR

household size −0.0743 0.0558 0.0388

date of first infection −0.1547 <0.0001 0.0305

proportion shared bathroom 0.9911 0.0015 0.3115

constant −0.6350 0.2966 0.6084
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confirmed infections with known household). The additional probability of infection from within their
household is shown as phousehold ¼ 1� e�lH in figure 18b. In figure 18c, we plot the probability of
infection (ptotal) accounting for both household and global infectious contacts within an infected
household. This is compared with the binomial probability of reporting an infection given a
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previously reported infection in a household (which does not distinguish between halls). Figure 18d
compares the estimated probability of a household reporting an infection for each hall to the
estimation from the binomial logistic analysis (table 3). There is some indication that global infectious
contacts may play a relatively greater role in overall infection risk in the largest halls. However,
choices for distributing missing household data, which is ignored for here, will probably influence the
relative size of phall and phousehold, as will choices about scaling of mixing intensity with household size.

The maximum hall size in this data is approximately 400 students and findings may not generalize to
other hall settings or future periods of student return. Other limitations of this approach are the lack of
differentiation between symptomatic and asymptomatic infections, pre-existing immunity, or the impact
of isolation, so that parameters are interpreted as averages across students in a hall in addition to the
caveats arising from the missing data. Furthermore, we assume a single introduction and a closed
system of fixed occupancy, so that any imported cases are attributed to infection within the hall.
Dedicated household-based studies in student residential halls would be valuable for untangling the
role of mixing within households, halls and with the community on infection risk in these settings.
Soc.Open
Sci.8:210310
Appendix C. Additional information on age-stratified observations

C.1. Additional observations: age-stratified analysis

C.1.1. Methodological details
The numerical interpolation method, and the subsequent calculation of the growth rate of positive cases,
is applied to the positive case counts in each LTLA, rescaled by the number of people (falling within the
considered age range) estimated to live there. This quantity, c(t), shows a consistent day-of-week effect
due to e.g. varying test availability and test seeking behaviour. To account for overdispersion in the
data, we assume a quasi-Poisson distribution in the fitting.

A smoother ϱ(t) is applied using thin-plate splines, such that c(t)/ e@(t)þvi , where vi 8 i [ [1, 7] is
used to apply a fixed effect for each day of the week. The instantaneous growth rate of the cases is
simply given by ϱ0(t). This was implemented using a general additive model from the R package
mgcv with a canonical link [51]. Past examples of this method can be found in [52] (see figure 19).

C.1.2. Growth rates
Despite the clear spikes in cases among 18–24-year-olds across all LTLAs in figure 20, the growth rates for
community cases are qualitatively very different. In figure 20c, the community growth rate mirrors the
national trend. In figure 20a, the growth rate of community cases is higher, and appears to lag after
the growth in student-aged cases.

In figure 20d, a qualitatively different scenario emerges, with a marked rise in the growth of
community cases following an outbreak among the student-aged population. Finally, in figure 20b, the
outbreak among 18–24-year-olds has no perceptible impact on the growth rate of community cases.

C.1.3. Limitations
The estimated growth rates of confirmed cases, and the estimated excess community cases following a
large student-aged outbreak, are sensitive to the choice of the spline in the smoother. Changing the
spline does not qualitatively alter our conclusions.
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Figure 20. Examples of the different types of growth rate patterns observed among student-aged (grey) and community cases
(red). The shaded regions are the 95% confidence intervals for the relevant quantity. (a) Bristol, (b) Durham, (c) Leeds and
(d ) Salford.
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Figure 21. Probabilities of testing positive through time for symptomatic and asymptomatic individuals. We assumed that the
probability of positive test results being returned in symptomatic and asymptomatic individuals were equal during the
proliferation stage of the virus, but that the probability of asymptomatic individuals testing positive decayed faster in the
clearance stage, owing to a shorter mean clearance duration of 6.7 days [53] (a) PCR test; (b) LFT.
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Appendix D. Additional information on the network-based structured
model

D.1. Test sensitivity

The probability of testing positive is probably a function of viral load; while symptomatic and
asymptomatic individuals have similar average peak viral loads and proliferation stage durations,
their average duration of clearance stages has been observed to differ [53,54]. Therefore, we used
distinct test sensitivity profiles for symptomatic and asymptomatic cases (figure 21). However, we
highlight that this is an area of considerable uncertainty. Future studies detailing the testing
probability of asymptomatic individuals, and the specific relationship between viral load and testing
probability, would be a valuable contribution to this area.

For symptomatic cases, we used posterior median profiles reported by Hellewell et al. [55] of the
probability of detecting infection against time since infection, with separate estimates for PCR and
lateral flow tests (LFTs). The analysis used cycle threshold (Ct) data from repeat PCR testing of
healthcare workers in the SAFER study [56], with infections confirmed by paired serology. The
probability of detection by LFT was estimated given an assumption that an LFT would detect
infections with a Ct≤ 27.

For asymptomatic cases, we assumed that the probability of asymptomatic individuals testing
positive is equal to that of symptomatic individuals until the peak of infection, but then decays more
rapidly, such that the probability of an asymptomatic individual testing positive at 6.7 days after the
peak should equal the probability of a symptomatic individual testing positive at 10.5 days after the
peak (corresponding with findings from Kissler et al. [53] who estimated an average duration of
clearance of 10.5 days in symptomatic cases versus 6.7 days in asymptomatic cases) (figure 21).

The sensitivity of PCR tests when conditioned on having received a positive LFT result may differ
from the sensitivity estimates of an independent PCR test. We assumed that individuals receiving a
positive LFT result would be certain to return a positive result from the confirmatory PCR test.
D.2. Test specificity

We assumed the specificity of PCR tests to be 100%, in line with the ONS UK COVID-19 Infection Survey
indicating the specificity of the used PCR tests being in excess of 99.9% [57,58]). We assumed LFT
specificity to be 99.68% [59]. Using LFTs to test entire year groups, false positives would be expected
to occur relatively frequently.
D.3. Model change log

We detail here notable parameter changes and additions to the previously presented network model [27].
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D.3.1. Isolation length
From 14 December 2020, the guidance from the UK government on the period of isolation for contacts of
confirmed cases was reduced from 14 days to 10 days. The corresponding periods of isolation have been
revised in the model.

D.3.2. Infection risk for students awaiting return to university
For susceptibles not yet returned to the university, we computed a daily probability of infection to give a
background prevalence of between 0.5% and 2% (with an infection duration of 16 days, across latent and
infectious periods). We sampled the background prevalence in each simulation replicate from a Uniform
(0.005, 0.02) distribution.

D.3.3. Proportion of individuals who stayed in university accommodation between terms
Student surveys indicated that of the order of 10% of students intended to stay in their university
accommodation after the end of the first academic term [48].

In each simulation replicate, we sampled the proportion independently for on-campus and off-
campus residents from a Uniform (0.05,0.15) distribution, thus ensuring we included uncertainty
associated with this quantity across our collection of simulations.

D.3.4. Contact patterns
We applied the following two contact pattern changes to all but the baseline (no intervention) scenario:
(i) society contacts did not occur (transmission risk therefore zero), with it assumed that all meetings
would take place online; (ii) for on-campus resident students, we set a zero probability of a contact
being made with an individual within the broader accommodation unit of the same floor or block of
residence (thus outside the immediate household).

D.3.5. Fraction of previous infecteds with PCR positive test result in the previous 90 days
In each simulation replicate, we sampled the fraction of previous infecteds who had returned a PCR
positive test result in the previous 90 days from a uniform distribution, Uniform(0.02,0.05).

Individuals set as being present in accommodation prior to the start of the simulation entered the
return testing procedure in an equivalent way to individuals with later arrival dates, with entry time
determined by the relevant staggered student return strategy. For individuals from this group that
became symptomatic and received a positive test result in the gap before their envisaged time to
begin the return test process, they satisfied the condition of having had a positive PCR result within
the previous 90 days and, as a consequence, no longer underwent the return test process.

D.3.6. Assumptions for scenarios related to isolation status under staggered return and leaving return testing

process
Returning students that have symptoms are by definition non-adherent to guidance. In this situation, for
the household the returning student is joining, other adhering household members may enter household
isolation. We assumed any such individuals entered isolation for the full 10-day period, irrespective of
the date of symptom onset of the symptomatic individual.

In the scenario of a student completing the return testing procedure with negative results, and who
would be entering a household that had household members in isolation due to the presence of a recently
confirmed case, the student leaving the return test process would immediately enter household isolation.
Appendix E. Additional information on the asymptomatic screening model
For this analysis, we used a layered network model of contacts between 15 000 simulated students, with
one layer of household contacts and one of other-group contacts intended to simulate all out-of-
household contact. We start the simulation with 100 infectious individuals, and run the model for 100
timesteps (notionally days). For each scenario, we plot the results of 100 replicates, each run on a
newly generated network. Importantly: the particular parameters for this model have been chosen for
a combination of plausibility and simplicity, and some are not well-founded in any particular dataset
(we attempt to highlight these).
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Half of the households were of 10 people, and half of 5 people (to simulate a cluster-flat arrangement
in large halls, e.g. [60]). Other-group contacts are added in 3000 groups, with 5% of groups of size 40,
30% of size 10, 50% of size 5 and 15% of size 3—these values were chosen to simulate a range of
activities, but are not well-founded in data. Results are not sensitive to small perturbations in these
group sizes, but are sensitive to large changes in the overall amount of group contact. Within either
household or other groups all individuals are assumed to have pairwise contact at all timesteps when
the individuals are not isolating.

Disease progression and isolation are governed by a stochastic rate-based compartmental model in
which individuals can be susceptible, exposed but not yet infectious, presymptomatically infectious,
asymptotically infectious, symptomatically infectious, or recovered (and presumed immune). They can
also be in these various states and self-isolating with their household. Individuals become exposed
when one of their network contacts infects them—here household contacts have a 2.5% day−1

probability of infecting each of their susceptible household members (note that this is independent of
household size), and non-household contacts transmit with 1/10th this probability. These probabilities
are increased by a factor of 1.5 when simulating a more-transmissible variant. These transmission
figures have been chosen for simplicity and to plausibly reflect reasonable within-household attack
rates. Where no other citation is given, rates of progression between disease states are round-number
versions of the fitted parameters from [61]. Exposed individuals become presymptomatically or
asymptomatically infectious at a rate of 0.33 day−1 to give a mean 3-day latent period.
Presymptomatically infectious individuals become symptomatic at a rate of 0.5 day−1 to give a mean
2-day presymptomatic period. Symptomatically infectious people recover at a rate of 0.1 day−1 to give
a mean symptomatic infectious period of 10 days, a round-number version of the 9.5 days reported in
[62]. We do not include hospitalization or death, as these events are very rare in the young-adult
population. Half of infected individuals are assumed to develop symptoms, and half to remain
asymptomatic (or non-test-seeking for some other reason). Asymptomatic individuals are infectious
for the same mean total period of time as symptomatic individuals, and are equally infectious—
predictably the effectiveness of asymptomatic screening is sensitive to this assumption.

Both symptomatic and asymptomatic testing are assumed to be perfect and rapid, returning results
on the day of testing and giving neither false positives nor false negatives. Symptomatic individuals are
assumed to immediately seek testing on the day symptoms develop. When an individual receives a
positive test, they and their entire household are assumed to isolate perfectly from all non-household
contacts, but continue to interact with household contacts as before. Non-household contacts of
test-positives are traced and isolated with probability 0.5.

This model is an adaptation of a model originally written to model COVID-19 in Caribbean
communities, available at https://github.com/SaraJakubiak/covid19-caribbean-educational-model—
the majority of features within that model (including dynamically changing network, age-structure,
etc.) are not used here. The adaptation of this code to the HE setting used to produce these results can be
found at: https://github.com/magicicada/covid19-caribbean-educational-model/tree/manuscript-INI-
HE-group.
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