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1 Introduction

The quantile regression method, originally pioneered by Koenker and Bassett (1978), has become a useful
part of the modern econometric toolbox because of its flexibility in permitting researchers to investigate the
relationship between economic variables over the entire conditional distribution of interest and particularly
at the tails. Recent years have witnessed the surge in applications of the method to time-series models,
either theoretically or empirically. Some representative papers include Koenker and Xiao (2006), Galvao
(2009), Xiao (2009), Galvao et al. (2009), Greenwood-Nimmo et al. (2013), Cho et al. (2015), and White
et al. (2015), which provide new insights that conventional mean-centered regression models would not
have revealed, such as, for example, a measure of the degree of tail interdependence in terms of value at
risk (VaR).

A number of recent papers have explored the use of quantile regressions for counterfactual analysis. For
example, White et al. (2015) trace the effects of shocks in impulse response functions in quantile regression
models, as opposed to the conventional mean-centered regressions. They derive a pseudo quantile impulse
response function tracing the effect of a shock on the conditional quantile function, but in a fairly restrictive
setting. The pseudo quantile impulse response function is set up under conditions where (i) White et al.
(2015) do not allow any dynamics in the first moment of variables in their quantile models; and (ii) they
consider only a special case in which a shock is given to the observable variables rather than to the structural
error. This paper presents a new and proper impulse response analysis in quantile models by solving the two
problems present in White et al. (2015). We allow dynamics in the first moment of structural variables by
employing the structural vector-autoregression (SVAR) model, and introduce a shock to structural errors
rather than to the observable structural variables.

Chavleishvili and Manganelli (2016) propose another way of deriving quantile impulse response func-
tions independently. Their setting is different from ours in that they consider only a bivariate system of
two variables and one of the two is assumed to evolve exogenously to the system. Such a setting may be
suitable for financial markets where the market portfolio can be assumed to be exogenous to individual
stock returns. The method used to define a structural shock is also different. They set the structural error
for the exogenous variable to zero in such way that the exogenous variable is equal to a specific quantile.
Hence, the shock is given de facto to the observable exogenous variable, similarly to White et al. (2015).
On the contrary, we will consider a general multivariate system where all the variables are endogenous
and a shock is given to the relevant structural error. Recently, other researchers such as Montes-Rojas
(2019) and Han et al. (2019) independently propose different ways of constructing and estimating quan-
tile impulse response functions. Unlike our proposed method, these two recent studies employ the local
projection (LP) method by Jorda (2005). These have some advantages due to being more robust to model
misspecification than VARs, although LP accuracy has been questioned by Kilian and Kim (2011) on the
basis of their effective coverage rate and the average length of the impulse response confidence bands.1 We
view our paper as a parallel development with these recent papers with the common objective to explore
the distributional implications of shocks.

We permit an intervention in the structural errors to affect the entire conditional distribution, and the
effect of an identified structural shock on the conditional quantile function is called the “quantile impulse
response function” (QIRF). This offers a method to observe the effect of shocks given to the structural
error on the entire conditional distribution of the observable structural variables, and not just the mean. It
also has two other advantages over conventional mean-based impulse responses. First, QIRF can measure
how the dispersion of a variable of interest is changing after a structural shock to the system; i.e., whether
the dispersion of the conditional distribution of the key variable after the shock will be larger or smaller,

1 We note that the impulse response functions produced by these two approaches are not necessarily differ-
ent in population. See Plagborg-Moller and Wolf (2020) “Local Projections and VARs estimate the same IRFs”,
https://www.christiankwolf.com/research.
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compared to what could have happened to the counterfactual conditional distribution of the same variable
if the shock had not occurred. In our framework, such a change in dispersion can be measured by comparing
QIRFs evaluated at different quantile indices. Second, QIRF can capture any changes in the degree of
skewness in the response variable under different circumstances, so that behavior of economic agents under
high risk does not need to be identical (symmetric) to behavior toward low risk. In a usual situation,
whether a distribution is symmetric or not can be measured by the difference between the mean and the
median. Similarly, any change in skewness in the conditional distribution in our framework can be measured
by the difference between conventional mean-based impulse responses and quantile impulse responses at
the median. These two effects in both dispersion and skewness, which will be termed “distributional
effects” cannot be measured in the conventional mean-based impulse response analysis, but they are easily
identified in our framework. Therefore, our method provides researchers and policy makers with a broader
perspective on the dynamics of macroeconomic and finance variables following a shock.2 For example, the
new methods are useful to central banks in setting policies under conditions that their key variables are
likely to be in the tails of their conditional distributions, rather than at the mean, that is, during deep
recessions, ultra low inflation and interest rates. In this sense, the proposed QIRF can allow researchers to
investigate the effects of a monetary shock to some key macroeconomic variables at the tails as required
without making the assumption (which may not be valid) that the effects are the same as those reported
at the conditional mean or symmetric around the mean.

In addition to the main contribution of proposing the QIRF, another contribution of this study to
the literature is to present a new way to jointly estimate a system of multiple quantile functions. Jun
and Pinkse (2009) developed a system estimation method for multiple conditional quantile functions, but
their method is not directly applicable to serially dependent variables such as ours. Hence, we extend the
system quantile estimator of Jun and Pinkse (2009) to the time series context. Specifically, we first suggest
a set of consistent estimators for all parameters in the system, based on some weighted quantile moment
conditions. Then, an efficient GMM type estimator is proposed where the moment weight follows the idea
of Jun and Pinkse (2009). The estimator is specialized to Koenker and Vuoung’s (2009) efficient estimator
in univariate cases and is equivalent to Jun and Pinkse (2009) if the variables are IID (independent
and identically distributed). Considering both the possibility of multiple local optima and the curse of
the dimensionality problem, we suggest using the Laplace type quantile estimation (LTE) technique of
Chernozhukov and Hong (2003). We provide conditions for the consistency of our estimator, and derive
its asymptotic distribution.

We apply the proposed method to assess the impact of monetary policy shocks on the US economy
using a standard three variable VAR, in employment growth, inflation, and the Romer and Romer (2004)
measure of monetary policy shocks. Other authors, such as Mumtaz and Surico (2015) have done something
similar, taking an instrumental variable quantile regression model to evaluate whether transmission of policy
(fiscal or monetary) is asymmetric depending on whether the economy is expanding or contracting. Their
estimates allow them to assess the extent of forward- or backward-lookingness and the effectiveness of
policy during expansions versus contractions. They conclude that a constant-parameter model such as a
standard VAR or DSGE model over (under) estimates the response in a model during low (high) activity.
Using our QIRF approach, we support this view. Our paper demonstrates the effects of contractionary
and expansionary monetary policy shocks on the whole conditional distributions for employment growth
and inflation using the responses of the distribution in each of the tails and measures the change in
the dispersion of the distribution after contractionary and expansionary monetary policy shocks. The
responses are asymmetric and these additional pieces of information provide the policy maker with a fuller

2 It is possible that a positive shock reduces either the conditional variance or the conditional inter-quantile ranges of
the whole conditional distribution of the variable of interest, while a negative shock can have the opposite effect. Similar
attempts to capture the asymmetric impulse responses have been introduced using Markov-switching or threshold models to
the conventional VAR (Ehrmann et al., 2003; Granger and Yoon, 2002; Hatemi, 2014).
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understanding of the effects of policy on the conditional distribution of variables of interest.
Recently Adrian et al. (2019) use multiple quantile models to analyze the asymmetric patterns in

the conditional distributions of US growth and inflation rates. They assume an asymmetric t-distribution
for the growth and inflation variables, and use the fitted values from multiple quantile regressions to
estimate the parameters of the conditional distributions. A similar method can be applied to our quantile
impulse response functions in such a way that multiple quantile impulse responses can be used to estimate
the changes in the shape of generalized parametric conditional distribution functions such as skewed t-
distribution (Fernandez and Steel, 1998), generalized t-distribution (Theodossiou, 1998), and asymmetric
power distribution (Fernandez et al., 1995; Komunjer, 2007) after an economic shock. Our VAR model
for QIRF can be also generalized to nonlinear quantile models such as CAViaR of Engle and Manganelli
(2004) and MQCAViaR of White et al. (2014, 2015) if we add lags of the quantile functions as exogenous
variables.

The rest of this paper is organized as follows. Section 2 introduces a linear conditional quantile model
in the SVAR framework and Section 3 proposes the quantile impulse response function. Section 4 provides
estimation methods. Section 5 shows an application of the quantile impulse response to US monetary
policy. Section 6 provides some concluding remarks.

2 The SVAR Model with Heteroscedastic Quantiles

Let us consider a sequence of random variables denoted by {zt} = {(y′t, x′t) : t = 1, 2, ..., T} where yt is a
n× 1 vector given by yt = (y1t, . . . , ynt)

′ and xt is a countably dimensioned m× 1 vector. We will assume
that zt has been demeaned. Note that yt is the set of variables of primary interest and xt is of secondary
interest used to explain yt. We consider a structural vector-autoregressive (SVAR) model for yt as follows:

A(L)yt = ǫt

A(L) = A0 +A1L+ . . .+ApL
p (1)

where ǫt = (ǫ1t, . . . , ǫnt)′ is the vector of mean zero disturbances with a diagonal variance-covariance matrix
and the diagonal elements of the contemporaneous coefficient matrix A0 are normalized to one. It is as-
sumed that a sufficient set of identification restrictions is imposed on the coefficient matrices A0, A1, ..., Ap.
In our simulation example in Section 3 and in the empirical example in Section 4, we employ the usual
Cholesky identification scheme; i.e., A0 is a lower triangular matrix following White et al. (2015). The
same identification method was used in Montes-Rojas (2019) and Han et al. (2019), who also investigate
quantile impulse response functions based on the local projection method by Jorda (2005). Although we
use the Cholesky identification procedure in our application, it is possible to employ other types of iden-
tification in our framework such as the long-run and sign restrictions, which are also well-known in the
literature. We do not attempt to propose a new identification scheme in this paper; our aim is rather to
trace the trajectory of the conditional quantile functions once a structural shock is given. In addition to a
given set of identification restrictions, we impose the following assumptions on the SVAR model in (1).

Assumption 1. (i) All values of w satisfying |A0 +A1w + . . .+Apwp| = 0 lie outside the unit circle.
(ii) A(L) satisfies the order condition for identifying the structural equation.

(iii) {ǫt} is φ−mixing of size −r/(r − 2) with r > 2, and suptE|ǫ2(r+ε)i,t | <∞ for some ε > 0 and for each
i = 1, . . . , n.

Assumptions 1(i) through 1(ii) are standard in the SVAR framework. Turning to Assumption 1(iii), we
note that φ−mixing is stronger than α−mixing. Nevertheless, we impose such a strong condition because
it is required to obtain an efficient weight function for the Laplace type quantile estimator, which will be
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explained in detail in Section 4. If we wish to obtain only a consistent quantile estimator (not necessarily
efficient), then the φ−mixing condition can be relaxed to the α−mixing condition. We also note that the
mixing condition on ǫt does not necessarily imply that yt is a mixing sequence as discussed in Andrews
(1983). Instead, Assumption 1(iii) together with (i) indicates that {yt} is near-epoch-dependent (NED)
which is sufficient to obtain the desired asymptotic properties of the efficient quantile estimator as discussed
in Section 4.

If the distribution of ǫt does not depend on the lags of yt, the SVAR model in (1) is the same as the
conventionally-used SVAR, where an intervention to one of the structural shocks will affect the future
dynamics of yt only through its conditional mean, which will produce the conventional impulse response
function. In such a case, the effect of the intervention on other parts (i.e., quantiles) of the conditional
distribution can be straightforwardly inferred from the mean effect because all the impulse response func-
tions at different quantiles will be parallel to the conventional mean impulse response function. However,
Assumption 1 does not eliminate the possibility that the structural error term ǫt can depend on lagged
yt. Such a possibility implies that an economic shock can affect not only the conditional mean, but also
the whole distribution of yt in a non-trivial manner. Since the effect on the conditional mean function is
obviously captured by the conventional impulse response function, the objective of this paper is to develop
a new method that can capture the effect on the conditional quantile function of yt.

The relationship between the two effects mentioned above can be easily seen by decomposing yi,t into
two parts, the conditional mean and its deviation from the conditional mean, as follows:

yi,t = E(yi,t|Ft−s) + ui,t|t−s, (2)

where ui,t|t−s = yi,t−E(yi,t|Ft−s) and Ft−s is the σ-algebra generated by {z′t−s, z′t−s−1...}. Simply speaking,
Ft−s is the collection of information available at time t− s. As stated before, the conditional mean part in
(2) is dealt with by the conventional impulse response function and the remaining part (ui,t|t−s) has been
left largely unexplained in the literature.

Given that our main methodology is based on quantile models, we first define Fi,t|t−s(y) = P [yi,t ≤
y|Ft−s] which is the cumulative distribution function of yi,t conditional on Ft−s with the corresponding con-
ditional density function fi,t|t−s(y). Given a quantile index α ∈ (0, 1), the αth−quantile of the distribution
of yi,t conditional on the information set Ft−s, denoted qα∗i,t,s, is defined as

qα∗i,t,s := inf
v∈R

{v : Fi,t|t−s(v) ≥ α},

and if Fi,t|t−s is strictly increasing,

qα∗i,t,s = F−1i,t|t−s(α).

In other words, the conditional quantile qα∗i,t,s is such that the conditional probability that yi,t is smaller

than qα∗i,t,s is α.3

Whenever it is convenient, the αth−quantile of the distribution of yi,t conditional on the information set
Ft−s is also denoted by Qα(yi,t|Ft−s) because of its analogy with the corresponding conditional expectation
E(yi,t|Ft−s). If we restrict our attention to a linear quantile model such that qα∗i,t,s = z′t−sβi,α, the quantile
model can be rewritten in a more familiar formulation as:

yi,t = z′t−sβi,α + εαi,t, (3)

where εαi,t satisfies the quantile restriction P [εαi,t < 0|Ft−s] = α.

3 Rather than focusing on a specific quantile index α ∈ (0, 1), we can consider a set of multiple quantile indexes αk with
k = 1, 2, ...,m in which these m quantile indexes are ordered such that 0 < α1 < ..., < αm < 1. Our theory is sufficiently
general enough to accommodate such multiple quantile indexes jointly. However, we present the theory in the text using only
a specific quantile index α for clarity.

5



The source of heteroscedastic quantile effect (i.e., βi,α varying with α) can come from either het-
eroscedastic errors or non-separable errors. For example, if we start with yi,t = z′t−sβi + εαi,t where βi is
constant and εαi,t = (z′t−sγ)ηt where ηt is independent and identically distributed, then it can be shown that

βi,α = βi+ z′t−sγq
α
η,t,s where qαη,t,s is the αth−quantile of ηt conditional on Ft−s. The following assumption

imposes that the conditional quantile function qα∗i,t,s has a form of autoregression.

Assumption 2. (i) Fi,t|t−s(y), s = 1, 2, ..., h, i = 1, . . . , n is continuous and positive with the density
function fi,t|t−s(y) which is finite and continuous for all y ∈ R.
(ii) For a given finite integer p, there exist real n×1 vectors γα∗i,s,j and m×1 vectors φα∗i,s for s = 1, 2, ..., h, i =
1, 2, ..., n and t = 1, 2, ..., T such that we have the following

qα∗i,t,s =
p−1�

j=0

γα∗′i,s,jyt−s−j + φα∗′i,s xt−s. (4)

(iii) If xt is weakly exogenous, it is φ−mixing with the same size and moment condition as ǫt. Otherwise
xt is such that ∂mxt−s

∂γαi,s,j
m , m = 1, 2, exists and is NED on ǫt with E[� ∂mxt−s∂γαi,s,j

m�2] < ∞ and NED numbers

η(s) = O(s−η).

We note that the number of lagged terms in (4) is set to be the same as the number of lagged terms
in (1) to simplify the notation. Our theory is general enough to accommodate different numbers of lagged
terms in both specifications if desired. Defining qα∗t,s := (qα∗1,t,s, q

α∗
2,t,s, ..., q

α∗
n,t,s)

′, we note that the expression
in (4) can be expressed as a vector form:

qα∗t,s = Γα∗s (L)yt−s +Ψα∗s xt−s, (5)

where
Γα∗s (L) = Γα∗s,0 + Γα∗s,1L+ . . .+Γα∗s,p−1L

p−1

Γα∗s,j =




γα∗′1,s,j

:
γα∗′n,s,j


 ,

Ψα∗s =



φα∗′1,s

:
φα∗′n,s


 .

Note that Assumption 2 requires the quantile function to be linear for each prediction horizon s =
1, 2, ..., h. The reason why we need to impose this condition is that, unlike the conditional mean equation
in which the conditional expectation of yi,t+s given Ft (i.e., E(yi,t+s|Ft)) can be obtained from E(yi,t+1|Ft)
in a recursive manner, Qα(yi,t+s|Ft) cannot be obtained from Qα(yi,t+1|Ft) recursively.4 Thus, different
models are required for each prediction horizon s. This assumption may be considered rather restrictive
and we discuss how such an assumption can be relaxed in the next section to deal with this criticism. Our
assumption for xt is weak enough to cover a broad set of variables which includes the lags of qα∗t,s . In that
case, (5) is a generalization of CAViaR of Engle and Manganelli (2004) and MQCAViaR of White et al.
(2014, 2015), which are known to cover nonlinear structures including the ARCH effect.

4 Such a recursion for the expectation function is possible thanks to the linearity of the expectation operator, which does
not hold for the quantile operator.
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Consider, for example, the SVAR process in (1) with heteroscedastic errors where ǫt is given by

ǫt = Γtǫ
∗
t , (6)

Γt = ⊕ni=1γi,t,
γi,t = γi0 + γi1

′yt−1 + γi2
′yt−2 + . . .+ γip

′yt−p,

where ǫ∗t ∼ IID(0, In), ⊕ denotes the matrix direct sum, γi0 is a positive real number, γij is an n× 1 real
vector for j = 1, 2, ..., p,and In denotes the n×n identity matrix. To show that the example process in (6)
satisfies Assumption 2, we let p = 1 for the sake of simplicity. Then, one can easily show that

yt = βt,syt−s + u∗t,s, (7)

where

βt,s =
s−1�

i=0

(−A−10 A1 +A−10 Ξt−iγ1) for s = 1, 2, ..., h,

Ξt = ⊕ni=1ǫ∗i,t,

u∗t,s =
s−1�

i=0

βt,iΞt−iγ0,

βt,0 = In,

γ0 = (γ10, . . . , γ
n
0)
′,

γ1 = (γ11, . . . , γ
n
1)
′.

Note that Qα(yi,t|Ft−s) is the solution to the following equation:

P [yi,t ≤ Qα(yi,t|Ft−s)|Ft−s] = α. (8)

If E[ψα(u
∗
t,s,i)] = 0 where ψα(u

∗
t,s,i) = α− 1[u∗t,s,i≤0] and u∗t,s,i is the ith element of u∗t,s, there exists γα such

that
Qα(yt|Ft−1) = γαyt−1,

which implies that Assumption 2 is satisfied for the SVAR process with heteroscedastic errors in (6) for
s = 1. Alternatively, one can show that Assumption 2 is also satisfied if γ11 = γ21 and ǫ∗t is normally
distributed for s = 1. We note that we need some additional conditions for the existence of γα for s > 1.

The quantile function Qα(yi,t|Ft−s) can have some alternative representation which can be derived using
ui,t|t−s in (2). If we denote the conditional quantile of ui,t|t−s by either qα∗u,i,t,s or Qα(ui,t|t−s|Ft−s), there is
one-to-one correspondence between Qα(yi,t|Ft−s) and Qα(ui,t|t−s|Ft−s), which is given by Qα(yi,t|Ft−s) =
E(yi,t|Ft−s) +Qα(ui,t|t−s|Ft−s) so that the equation in (5) can be replaced by

qα∗u,t,s = Γα∗u,s(L)yt−s +Ψα∗s xt−s, (9)

where qα∗u,t,s = (qα∗u,1,t,s, q
α∗
u,2,t,s, ..., q

α∗
u,n,t,s)

′, Γα∗u,s(L) = Γα∗s (L)−As(L) and As(L) is such that E(yt|Ft−s) =
As(L)yt−s.

3 Quantile Impulse Response

One of the main strengths of using a VAR is that it allows us to examine the dynamic response of a variable
to an identified economic shock using impulse response functions, which are conventionally calculated using
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a moving average transformation of (1) as:

yt = C(L)ǫt,

C(L) = C0 +C1L+C2L
2 + . . . . (10)

If ǫt is independent and identically distributed, then the response of yi,t+s to a shock in ǫjt is simply
∂yi,t+s
∂ǫjt

= Cijs where Cijs is the (i, j) element of Cs. It is well known that the function
∂yi,t+s
∂ǫjt

= Cijs measures

the effect of a shock on the conditional mean function of yi,t+s so that it will be referred to as the canonical
mean impulse response function (MIRF). However, the dependency of the distribution of ǫt+i (i = 1, . . . , s)
on yt imposed by Assumption 2 implies that a shock can change not only the conditional mean, but also
the whole conditional distribution of yt+s in a non-trivial manner.

In the example in (6) where the structural shock ǫt is unexpected but the size of ǫt is related to the
past (Γt) , the change in ǫt+s with respect to a unit change in ǫt is given by ∂Γt+s

∂ǫ
′

t

ǫ∗t+s. Then the impulse

response function is obtained as

∂yt+s
∂ǫ′t

= C0
∂Γt+s
∂ǫ′t

ǫ∗t+s +C1
∂Γt+s−1
∂ǫ′t

ǫ∗t+s−1 + ...+Cs−1
∂Γt+1
∂ǫ′t

ǫ∗t+1 +Cs

which is due to the fact that Γt+s, ...,Γt+1 are functions of ǫt as specified in (6). We note that ∂yt+s∂ǫ′t
depends

on unknown future error terms ǫ∗t+j , j = 1, . . . , s. In other words, the entire future distribution of yt+s is
affected by a shock to ǫt. We capture such a response of the entire distribution using the changes in its
conditional quantiles.

To capture the non-trivial changes in conditional quantiles, we propose two concepts of quantile impulse
response functions denoted by QIRFα1 (s) and QIRFα2 (s), respectively. Analogous to the MIRF, the first
one QIRFα1 (s) is defined as

QIRFα1 (s) =
∂qα∗t+s,s
∂ǫ′t

,

where s is the response horizon; s = 1, 2, ..., h.
Using the quantile specification in (5), one can easily show that

QIRFα1 (s) = Γα∗s,0C0 +Ψα∗s
∂xt
∂ǫ′t

. (11)

Although QIRFα1 (s) is intuitively appealing due to its analogy to the MIRF, implementing QIRFα1 (s)
can be computationally demanding. Its computation is similar to the local projection method in that,
due to the nonexistence of the Wald representation in the quantile series, one needs a different quantile
equation for each response horizon s = 1, ..., h as defined in Assumption 2. Thus its implementation can
be computationally intensive for large values of n since quantile estimation must be carried out at each
horizon s = 1, ..., h and each variable i = 1, . . . , n. Moreover, QIRFα1 (s) requires a strong condition such
as Assumption 2(i) to hold for each response horizon s = 1, ..., h, which is often too restrictive. The second
concept of QIRF denoted by QIRFα2 (s) is designed to weaken such strong assumption and restrictions,
which is defined as follows:

QIRFα2 (s) = E

�
∂qα∗t+s,1
∂ǫ′t

|Ft
�
, (12)

=

p−1�

j=0

Γα∗1,jE

�
∂yt+s−j−1

∂ǫ′t
|Ft
�
+Ψα∗1 E

�
∂xt+s−1
∂ǫ′t

|Ft
�
,

where E
	
∂yt+s−j−1

∂ǫ′t
|Ft



is by definition the MIRF.
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As is evident in (12), QIRFα2 (s) is based on the quantile at t+ s conditional on the information set at
t+ s− 1. Intuitively speaking, at each s, QIRFα2 (s) captures the change in distribution occurring at t+ s
whereas QIRFα1 (s) tracks the aggregate change in distribution between t+1 and t+ s for each s. For this
reason, QIRFα2 (s) does not require strong conditions such as Assumption 2(i) required for QIRFα1 (s), and
does not need to be carried out for each response horizon s = 1, ..., h; that is, a single estimation of qα∗t,1 is
sufficient. The concept of QIRFα2 (s) is analogous to that of the generalized impulse response function of
Pesaran and Shin (1998) in that both methods compute the expectation of the change of a variable after
a shock.

The concept of QIRF can be understood from a slightly different perspective as follows. Suppose that
there is a shock or an intervention denoted by δ to ǫi,t only at time t so that ǫ̃i,t := ǫi,t + δ. In this
setting, the size of δ can be viewed as the magnitude of the one-time shock. If we denote the quan-
tile of yi,t+s conditional on {ǫt, ǫt−1, ...} or equivalently on {yt, yt−1, ...}, then QIRFα1 (s) is equivalent to
Qα(yi,t+s |̃ǫt, ǫt−1, ...) − Qα(yi,t+s|ǫt, ǫt−1, ...) where ǫ̃t is the same as ǫt except ǫi,t is replaced by ǫ̃i,t. Let
{ỹt+s, ỹt+s−1, ...ỹt+s, ỹt+s−1, ...} be the path of yt+s after the shock. Then, it can be shown that QIRFα2 (s)
is equivalent to Qα(yi,t+s|ỹt+s−1, ỹt+s−2, ...)−Qα(yi,t+s|yt+s−1, yt+s−2, ...).

As noted in the previous section, the concept of QIRF is able to capture the so-called asymmetric
response of a variable to economic shocks. For example, consider the quantile impulse response of yi,t+s
(s = 1, 2, ..., h) when an impulse is given to ǫjt. A positive monetary policy shock can make yi,t+s smaller
in dispersive order in the sense of Shaked and Shanthikumar (2006), while a negative shock can make it
larger. That is, a positive shock shrinks the distribution of yi,t+s given Ft or Ft+s−1, while a negative
shock can increase the dispersion of the whole conditional distribution possibly in an asymmetric manner.
Hence, the QIRF is not necessarily symmetric whereas the conventional MIRF is symmetric even in this
example.

For the sake of illustration, we display an example graphically in Figure 1. In each sub-figure, the
boundaries of different shades represent 0.2, 0.4, 0.6, and 0.8 quantiles from left to right, respectively.
The distributions show an initial state (on the left panel) and a state (on the right panel) after a positive
shock or a negative shock. The arrows in Figure 1 indicate the direction of the location shift in each
case. This illustrates that a positive shock shifts the mean to the left and reduces the dispersion of
the distribution, while a negative shock shifts the mean to the right and increases the dispersion of the
distribution. Therefore in this example the quantile range between 0.2th and 0.8th quantiles changes from
1.7 to 0.8 for a positive shock while the same quantile range increases to 2.6 for a negative shock.

To examine a possible asymmetric pattern in QIRF, we conduct Monte Carlo simulations using a
bivariate VAR(1) model with heteroscedastic errors as in (1) and (6) with yt = (y1,t, y2,t)′ and ǫt =
(ǫ1,t, ǫ2,t)′. The structural identification condition is such that A0 is a lower triangular matrix specified

as A0 =

�
1 0

−0.5 1

�
. The coefficient matrix A1 for the bivariate VAR(1) is set to A1 =

�
0.4 0.2
0.2 0.3

�
, and

the heteroscedastic parameters are set as follows: γ10 = γ20 = 0, γ11= (0.3,−0.2)′, γ21= (0.2, 0.3)′. The error
terms ǫ∗1,t and ǫ∗2,t are IID following the standard normal distribution. Once yt’s are generated through
these specifications, we compute QIRFα2 (s) for five quantile indexes (α = 0.1, 0.3, 0.5, 0.7, and 0.9). The
results are shown in Figure 2. In each figure, there are five lines for those selected quantile indexes and each
line traces how the corresponding quantile response changes after a shock. Just for easing the comparison
of the five lines, the initial starting points of the five lines are separated based on the corresponding
quantiles of the conditional distribution of yt. For example, QIRFα=0.12 (s) starts at the 0.1th quantile of
the conditional distribution of yt. It is also noted that each quantile line converges to its starting level
when the effect of the shocks disappears. If the distance between the five lines becomes wider after a shock,
it implies that the shock increases the dispersion of the conditional distribution, and vice versa. As shown
in Figure 2, the dispersion of the conditional distribution of y1,t decreases after a positive shock in ǫ2,t,
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while a negative shock in ǫ2,t increases the dispersion of the conditional distribution. The dispersion of the
conditional distribution of y2,t tends to move in the opposite direction.5

4 Estimation

To compute the quantile impulse response functions discussed in the previous section, we need to estimate
both the mean parameters in (1) and the quantile parameters in (4). Since the conditional mean coefficient
matrix A(L) can be estimated using any existing consistent estimation method under Assumption 1, this
section focuses on quantile estimation. For a particular quantile index α and a specific horizon s, the set
of coefficients to be estimated is θα∗s := (θα∗1,s

′, ..., θα∗n,s
′)′ where θα∗i,s = (γα∗i,s,0

′, . . . , γα∗i,s,p−1
′, φα∗i,s

′)′ and γα∗i,s,j ,
φα∗i,s are given in (4).6 We estimate θα∗s using a correctly specified model. Let Θ be the relevant compact
parameter space and we assume that there exists a sequence of n × 1 vector functions {qαt,s(θ) : θ ∈ Θ}
such that for each s and t, the function qαt,s(θ) for θ ∈ Θ is specified as follows:

qαt,s(θ) =

p−1�

j=0

Γαs,jyt−s−j +Ψαs xt−s, (13)

where θ is defined analogously with θα∗s but using Γαs,j and Ψαs which have the same dimensions as Γα∗s,j and
Ψα∗s in (5), respectively.

Next, we provide the correct specification condition; that is, the model in (13) is correctly specified
which means that the true parameter vector θα∗s belongs to the parameter space Θ.

Assumption 3. The true parameter vector θα∗s belongs to the interior of a compact parameter space Θ
such that for each s and t, we have the following:

qα∗t,s = qαt,s(θ
α∗
s ). (14)

As evident in (13), the simultaneous system of n quantile functions has to be jointly estimated in order
to produce an estimator for θα∗s . Jun and Pinkse (2009) develop a system estimation method for multiple
conditional quantile functions, but their method is not directly applicable to serially dependent variables
such as ours. Therefore, we extend the method of Jun and Pinkse (2009) to the time series context in
this section. Specifically, we first suggest a GMM estimator for all parameters (θα∗s ) in the system, based

on general weight functions. Then, an efficient GMM estimator (denoted by θ̂
E

) is achieved by selecting
a particular weight function following the idea of Jun and Pinkse (2009). The estimator is specialized
to the Koenker and Vuoung’s (2009) efficient estimator in univariate cases and is equivalent to Jun and
Pinkse (2009) if variables are IID. Considering both the possibility of multiple local optima and the curse
of the dimensionality problem, we suggest using the Laplace type quantile estimation (LTE) technique of

Chernozhukov and Hong (2003) when computing θ̂
E

.

5 As noted before, positive and negative monetary policy shocks may have asymmetric effects in our framework. Moreover,
the effect may depend asymmetrically on the size of the shock as opposed to the MIRF where the effect is proportional to the
size of the shock. It is possible to capture these asymmetric effects by employing some nonlinear time-series models such as
smooth transition VAR or regime-switching VAR models. However, such nonlinear models cannot describe the distributional
effects (i,e., changes in dispersion and skewness) that our quantile approach can easily identify.

6 Computing QIRFα2 (s) requires n equations to be estimated while QIRFα1 (s) needs nh equations. The latter can be
computationally intensive.
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Although we explain how to derive θ̂
E

only intuitively above, the complete and detailed derivations
along with all additional assumptions are provided in the Mathematical Appendix A. The following theorem

provides the asymptotic distribution of θ̂
E

together with its asymptotic variance-covariance matrix.

Theorem 1. Under Assumptions 1-3 and additional conditions explained in Appendix A, the asymptotic

distribution of θ̂
E

is given by √
T (θ̂

E − θα∗) =⇒ N(0,QE
−1

),

where QE = E[∇θqα∗′t FtT
−1
t Ft∇θqα∗t ] and the other terms ∇θqα∗t , Ft, and Tt are defined in Appendix A.

When one wishes to do inference on θα∗, it is necessary to obtain a consistent estimator for QE in Theorem
1. We discuss how such an estimator can be constructed in Appendix A.

5 Empirical Application

In this section, we apply the proposed method to demonstrate how we can explore the effects of a monetary
policy shock in greater detail using the QIRF . Although studying such an effect can provide significant
insights into the effects of monetary policy, most empirical work, inside and outside of central banks,
has focused on the average effect with the assumption that contractionary and expansionary monetary
policy shocks have the same magnitude with the opposite sign in standard VAR and DSGE models with
constant parameters. The exception is the work of Mumtaz and Surico (2015) who use an instrumental
variable quantile regression model to show that a constant-parameter model over (under) estimates the
response to policy actions in a standard VAR or DSGE model during periods of low (high) activity. They
illustrate the potential of using quantile regressions in time-series models using Treasury Bill rates and
a measure of monetary policy shocks proposed by Romer and Romer (2004) and offer support for time-
varying coefficient VAR and DSGE models to account for the differences in real effects of policy during
expansions and contractions. They also demonstrate that the quantile regression method produces out-of-
sample forecasts that are at least as good as those from other nonlinear methods such as Markov-Switching
VARs or threshold models.

The main purpose of our analysis is to demonstrate how the generalization of a traditional mean-based
analysis to include QIRF s can usefully trace the effects over the whole distribution using our proposed
method - illustrating the two distributional effects of a monetary policy shock on the entire distributions of
output and inflation; that is, we will attempt to identify (i) whether there is any change in the dispersion
of the distributions after contractionary or expansionary monetary policy shocks, and (ii) whether there is
any change in skewness in the relevant distributions after a shock.7 Our work supports the conclusions of
Mumtaz and Surico (2015) and applies it to a VAR framework, while their application referred to results
from a single equation (the consumption-interest rate Euler equation). We also use Romer and Romer
(2004) monetary policy shocks.

To keep the demonstration simple, the baseline VAR model is

A(L)yt = ǫt, (15)

A(L) = A0 +A1L+ . . .+ApL
p (16)

where yt = (xt, pt, Rt)
′

taking xt as total non-farm employment, pt as the consumer price index inflation
rate, and Rt as a narrative based monetary policy shock derived by Romer and Romer (2004). The identify-
ing assumption for the VAR model is that A0 is lower triangular, which implies that policy shocks respond

7 As a related issue, central banks have acknowledged the limitation of generating mean-based forecasting, and there has
been an increasing attention toward density-based forecasting which can be produced by multiple regression quantiles.
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to aggregate employment growth and inflation, but have no contemporaneous impact on them. That is,
any contemporaneous correlations between VAR disturbance to the policy variable and the indicator of
aggregate production is assumed to reflect causation from other variables to the policy variable, and not
the other way around.

The data used in estimation are quarterly observations and the sample period is from 1969 Q1 through
2008 Q4. The start date is set from the point that quarterly data are available, while the end date
is determined by the period when the Federal Reserve made paused using fed funds rates for monetary
policy purposes.8 We estimate the VAR model and provide quantile impulse response functions, QIRFα2
to illustrate our new methods in response to monetary policy shocks.

Although our model is simple in its structure, it is well known that a VAR model such as (15) may
still display a “price puzzle” - a rise in the aggregate price level in response to a contractionary monetary
policy shock that contradicts mainstream theory.9 Various approaches are suggested to deal with the price
puzzle, mainly focusing on isolating monetary policy shocks from the policy response to forecasts. These
approaches include using a new measure of monetary policy (Romer and Romer (2004), Keating et al.
(2014)), adding forecasts or a proxy of forecasts (Bernanke et al. (2005), Bhuiyan (2014)). This paper uses
the narrative measure of monetary policy shocks from Romer and Romer (2004), that is relatively free of
endogenous and anticipatory movements.

Our VAR model includes total non-farm employment growth, consumer price inflation, and the mon-
etary shock measure based on Romer and Romer (2004), which is illustrated in Figure 3. The shocks
implied by the narrative policy measure co-move very closely with changes in the actual federal funds rate
- for example both show negative shocks in periods of recession - but there are inevitably discrepancies
in some periods such as 1975, 1977-1978 and 1981-1982, which may indicate that the Federal Reserve
raised (decreased) the interest rate by a lesser (greater) amount than expected, given its forecast of rapid
expansion (recession). We use this model as a demonstration tool to show the usefulness of the quantile
impulse response functions, QIRFα2 .

Let us suppose, for the purpose of illustration, that the central bank would like to know the effect of a
contractionary monetary policy on employment growth and inflation. When we estimate the model we can
see in Figure 4 that it has similar responses to the original Romer and Romer (2004) model, based on the
plots of the mean impulse response functions (MIRFs) for employment growth (left panel), and inflation
(right panel). The effect of a monetary contraction (interest rates rise by 100 basis points) initially leads
to a slight increase in employment growth, but after a few quarters results in a negative response of
employment growth as expected, with the maximum effect occurring at about 3-4 quarters after the shock.
The effect of the shock on inflation is negative, and this effect takes longer to reach a maximum effect
between 4-7 quarters, as expected. This is the information that a regular (MIRF ) impulse response from
a simple VAR model of Romer and Romer (2004) type would generate, and based this information, the
central bank would infer the effect of tightening policy on employment growth and inflation.

We now compare these results with the quantile impulse response functions, QIRFα2 . To do this, we
will demonstrate the additional information that is available by reporting the deviations of the quantile
estimates around the mean, that is, QIRFα2 −MIRF . Because they are deviations we do not expect the
profiles to look similar in sign or shape to the MIRF; the deviations show whether the response at the

8 Between January 2009 and November 2015 the Federal Reserve did not make use of the fed funds rate for monetary policy
purposes. Romer and Romer monetary policy shocks are only available up to the end of 2014.

9 A traditional interpretation of the puzzle is that the federal reserve board has better inflation forecasts so that changes
in the interest rate partly reflect policy response to inflation pressures. In recent decades, there have been many attempts to
tackle the problem by eliminating the expected changes in the policy variable. A conventional way is to add a commodity price
as a measure of information variable; see Sims (1992), Christiano et al. (1996). In other efforts, Giordani (2004) propose to
use the output gap instead of output growth while Bernanke and Mihov (1998) suggest a linear combination of total reserves,
non-borrowed reserves, and the federal funds rate as policy shocks.

12



quantiles is greater or lesser than the MIRF at each horizon. We report these deviations because they
are convenient measures to identify any distributional changes in both dispersion and skewness mentioned
above. If there are no distributional changes in the distribution of either employment growth or inflation
after a policy shock, then all the QIRFs are identical to the MIRF so that QIRFα2 −MIRF will be zero
for any forecast horizon. Hence, any empirical evidence showing that QIRFα2 −MIRF is significantly
different from zero at some forecast horizons will indicate that a form of distributional change has occurred
after a shock. We show these deviations in two ways, which we explain in sequence below.

First, we show that the impulse response functions for different quantiles often differs significantly from
the MIRF , and not in a uniform way. Consider Figure 5 for employment growth under a contractionary
(100 basis point) monetary policy shock. The employment growth at the lower tail for α = 0.1 and 0.2
increases significantly more than MIRF , and then returns to the vicinity of zero after about 5 quarters.
At the upper tail, the quantile responses at α = 0.9 are significantly lower than the response of the MIRF
and then returning to zero; but this upper tail effect is only seen at the highest quantiles because for
α = 0.8 there is a deviation from the MIRF but it is not significantly different from zero. Therefore we
can identify that QIRFα2 −MIRF increases (taking positive values) for lower quantiles α = 0.1 and 0.2,
but decreases (taking negative values) only for the highest quantile α = 0.9. Not only does this indicate
that the response at the mean MIRF is not a good summary of the response of the whole distribution
but it shows the deviation at the lower tail is more extensive than at the upper tail.

Figure 5 clearly shows that there occurred some kind of distributional effect. We attempt to identify
what kind of distributional effect has occurred. The quantile impulse response function QIRF can be
interpreted as the change in the conditional quantile function caused by an external shock. Notationally,
QIRFα = QSα−QNSα where QSα is the conditional αth-quantile with a shock while QNSα is the conditional
αth-quantile with no shock. We have identified from Figure 5 that QIRFα=0.1 > QIRFα=0.9 when the
forecast horizon is small, which means that QSα=0.1−QNSα=0.1 > QSα=0.9−QNSα=0.9. Rearranging this inequality,
one can obtain that QNSα=0.9−QNSα=0.1 > QSα=0.9 − QSα=0.1. The first term QNSα=0.9−QNSα=0.1 is the quantile
range (or distance) between α = 0.1 and α = 0.9 of the conditional distribution before the shock, whereas
QSα=0.9 − QSα=0.1 is the corresponding quantile range of the conditional distribution after the shock.10

Quantile ranges are used to measure the dispersion of a given distribution. Hence, the quantile range after
the shock becomes smaller than the quantile range before the shock, implying that the dispersion of the
employment growth distribution becomes smaller after the shock.

In order to illustrate the shrinking dispersion effect visually, we attempt to estimate the conditional
probability density functions of employment growth with shock as well as without shock for some chosen
forecast horizons. Density estimation is carried out using the asymmetric power distribution in Komunjer
(2006) and all the parameters in the asymmetric power distribution are chosen in such way to make the
quantiles of the distribution as close as possible to the results of the quantile impulse responses shown in
Figure 5. The centre of each density is normalized to zero, and the density before shock is set to a normal
distribution with mean zero and standard deviation equal to the standard error of the regression. The
results are shown in Figure 6.

The two graphs in the left panel of Figure 6 shows how the distribution of employment (highlighted in
red) changes after a contractionary monetary policy shock (positive shock) for s = 1 and 2, respectively.
Under contractionary policy, our previous observations from Figure 5 can be easily re-confirmed in the
left panel of Figure 6 since the conditional quantile range of responses in employment growth shrinks in
a way that is fairly similar (in this case) with the contraction after a tightening of monetary policy. It
shows visually that the distribution becomes more concentrated around the centre and shrinks in terms of
dispersion. The impact of an expansionary monetary policy shock is shown in the right panel of Figure 6
and this shows broadly the opposite effect compared with a contractionary policy. The distribution of the

10 If α = 0.25, then Qα −Q1−α becomes the well-known interquartile range.
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employment growth distribution is more peaked and the tails become fatter after the shock, especially for
s = 2. Hence, we learn that tightening and expansionary monetary policy shocks not only cause opposite
location shifts of the whole employment growth distribution, but also opposite distributional effects in
terms of dispersion.

Figure 7 shows how the inflation distribution reacts to the same magnitude of contractionary monetary
policy shock. It can be easily seen QIRFα2 −MIRF is different from zero for some values of s. The
inflation response at the lower tail for α = 0.1 and 0.2 increases significantly more than MIRF after initial
fluctuations, and then settles just above zero after about 5 quarters. At the upper tail, the changes of
QIRFα2 at α = 0.9 are not significantly different from MIRF , while the quantile responses are slightly
smaller than the mean responses at α = 0.8 for small values of s. Therefore we can identify that QIRFα2 −
MIRF increases (taking positive values) for lower quantiles of the quantiles α = 0.1 and 0.2, but decreases
(taking negative values) for the quantile α = 0.8. It is the same kind of pattern shown in Figure 5, but
with a weaker degree of statistical significance. Hence, we can also conclude that the inflation distribution
also tends to shrink after the shock. Once again MIRF is not a good summary of the response of the
whole distribution because the deviation at the lower tail is greater than at the upper tail. As before,
estimated probability densities of inflation before and after shocks are obtained and shown in Figure 8.
The results confirm again that the inflation distribution initially shrinks after a contractionary shock and
then broadens out whereas the opposite happens after an expansionary shock.

So far, we have focused only one type of distributional effect i.e. shrinking dispersion. In order
to investigate the other type of distributional effect i.e., a change in skewness, we need to investigate
the difference between the median response and the mean response: QIRFα=0.52 −MIRF . The results
are reported in Figure 9. It shows that the response at the median differs from the standard impulse
response function at the mean, with the employment growth showing significantly lower responses initially
followed by significantly higher responses after 2-3 quarters, while for inflation the response at the median
is significantly higher than at the mean at short forecast horizons. Analogously to the QIRF , the mean
impulse response function MIRF can be interpreted as the change in the conditional expectation function
caused by an external shock; that is, MIRF = ES−ENS where ES is the conditional expectation with
shock, while ENS is the conditional expectation with no shock. Figure 9 shows that QIRFα=0.52 > MIRF
for both employment growth and inflation. Hence, we have QSα=0.5−QNSα=0.5 >ES−ENS which can be
rearranged as QSα=0.5−ES > QNSα=0.5 − ENS . A significant difference between median and mean can be
taken as evidence for skewness. Our results indicate that the degree of skewness becomes larger at short
horizons after a contractionary shock is given. Once again it demonstrates that the standard impulse
response at the mean is a poor guide to the behavior of the distribution even at the median value.

Based on the empirical evidence indicated in Figures 5-9, it would be misleading in this case for
the central bank to assume that the effects of contractionary monetary policy on employment growth or
inflation correspond at all points on the distribution to the MIRF because our results show they do not.
By consulting the QIRFα2 or by comparing the response using the difference QIRFα2 −MIRF the central
bank could observe differences from the MIRF while setting monetary policy.

These illustrations show that the QIRFs developed in this paper provides important additional infor-
mation on the differences in the impulse responses at points on the distribution away from the conditional
mean. They show the range of distributional responses, the extent to which the conditional quantile range
is widening or narrowing, and the degree of skewness responds to monetary policy shocks, which might
otherwise be assumed (incorrectly, in this case) to be identical to the MIRF.
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6 Conclusion

Economic researchers typically rely on conditional mean impulse response functions from models used to
understand the effects of shocks. Central banks use them to form monetary policy decisions. In this
paper, we present a new and proper impulse response analysis in quantile models that ensures that the
advantages of distributional information are conferred on models used for policy purposes. Our paper also
resolves some restrictions in the pseudo quantile impulse response function proposed by White et al. (2015).
Using a structural vector autoregression (SVAR) in the conditional mean set-up, which is used to identify
a structural shock, we permit an intervention into the structural shock to affect the entire conditional
distribution, from which we derive a “quantile impulse response function (QIRF ).” This allows us to
observe the effect of the shock on the entire conditional distribution of the observable structural variable
via any changes to the breadth of the distribution under the shock, which can measure “distributional
effects” caused by positive and negative shocks. None of these advantages are available using impulse
responses from the conditional mean function. Therefore, our methods provide researchers and policy
makers with a broader perspective on the dynamics of macroeconomic variables following a shock. The
new methods are applied to US monetary policy using the VAR model proposed by Romer and Romer
(2004). Our empirical results have identified a clear pattern of distributional effects that the conventional
mean-based impulse response approach alone could have not discovered.
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Mathematical Appendix A. Estimation

For notational convenience, we suppress the dependency on s hereafter unless it is required to clarify the
notations. For example, qαt,s(θ) is denoted as qαt (θ). Let ∇θqαt be the gradient of qαt (θ). If xt is weakly
exogenous, ∇θqαt is simply In⊗wt where wt = (y′t−s, y

′
t−s−1, . . . , y

′
t−s−(p−1), x

′
t−s)

′. Define the n×1 vector

ραt (θ) where the ith element of ραt (θ) is 1{yi,t<qαi,t,s(θ)}−α. Then, it can be shown that the following moment

condition is satisfied.

E[∇θqα∗′t Ωtρ
α∗
t ] = 0, (17)

where ∇θqα∗t = ∇θqαt (θα∗s ), ρα∗t = ραt (θ
α∗
s ), and Ωt ∈ Ft−s is a n×n non-singular positive definite matrix of

the weight function. In this paper we consider estimators that make the sample counterpart of (17) close
to zero; that is, estimators satisfying the following condition

mT (θ̂
α
T ) =

1

T

T�

t=1

∇θqα′t (θ̂
α
T )Ωtρ

α
t (θ̂

α
T ) = op(

1√
T
). (18)

Existing quantile estimators can be considered as special cases of the estimator θ̂
α
T obtained from (18)

with different choices of Ωt. For example, in cross-section models with IID variables, the condition in (18)
can be viewed as the first order condition of the multivariate quantile regression estimator of Chaudhuri
(1996) and the univariate median regression estimator of Zhao (2001) if Ωt = In and Ωt = fi,t|t−s(q

α∗
i,t ),

respectively. Using Ωt = FtT
−1
t where Ft = ⊕ni=1fi,t|t−s(qα∗i,t ) and Tt = E[ρα∗t ρα∗′t ] will result in the efficient

seemingly unrelated quantile estimator of Jun and Pinske (2009). In time-series models with non—IID
variables, using the identity matrix for Ωt is equivalent to the case of the QMLE of White et al. (2015).
We also note that the univariate efficient semiparametric estimator of Komunjer and Vuong (2010) is
considered as the univariate version of Jun and Pinske (2009).

The following proposition whose proof is based on the idea of Huber (1967) provides the asymptotic
properties of the estimator defined in (18).

Proposition 1. Suppose that (i) Ωt is known and (ii) an estimator θ̂
α
T satisfies (18). Under Assumptions

1 through 3,

θ̂
α
T

p→ θα∗,
√
T (θ̂

α
T − θα∗)

d→ N(0,Q−1V Q−1),

where Q = E[∇θqα∗t ′ΩtFt∇θqα∗t ], V = E[∇θqα∗t ′ΩtTtΩt∇θqα∗t ], Ft = ⊕ni=1fi,t|t−s(qα∗i,t ) and Tt = E[ρα∗t ρα∗′t ].

All the technical proofs are provided in the Mathematical Appendix B. The efficiency of the estimator
θ̂
α
T depends on the choice of Ωt. If Ωt is a diagonal matrix such as the identity matrix, the estimator is

basically equivalent to what is obtained by estimating each equation separately by regression quantile. In
that case, we lose efficiency, analogously to the SUR set-up in OLS regression, if the elements of ρα∗t are
correlated. As noted in Section 2, our model eventually considers multiple quantiles, although our notation
uses a single index α for clear presentation. In such a general multi-quantile case, the vector ρα∗t contains
the check functions of the different quantile levels of the same yi,t, which is likely to cause high correlation
between the elements of ρα∗t .

Since efficiency loss caused by such correlation can be substantial, one can consider the choice of Jun
and Pinkse (2009) by setting Ωt = FtT

−1
t where Ft = ⊕ni=1fi,t|t−s(qα∗i,t ) and Tt = E[ρ∗tρ

∗′
t ]. Such a choice of
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Ωt denoted as ΩEt can produce an efficient estimator. However, the estimation procedure of Jun and Pinkse
(2009) has potentially poor finite sample performance and is not applicable to serially dependent series
such as ours. Hence, we suggest using a direct GMM estimation method with kernel density estimators.
The estimation procedure can be carried out in two steps. The first step is an initial estimation stage to
obtain a preliminary proxy estimator for ΩEt . In the first step, the true parameter can be estimated by any
consistent estimation method such as single equation-by-equation quantile regression or QMLE depending
on the property of xt. The conditional density fi,t|t−s(·) = fi,t(·|wt) can be estimated using the traditional
methods such as Powel (1984) and White et al. (2015). Or it can be directly estimated using the data set
by the standard kernel method as follows :

f̂i,t(yi|w) =
1[bT<f̂(w)]f̂(yi, w)

f̂(w)
,

where

f̂(yi, w) =
1

Thk+1T

T�

t=1

K1(
yi − yi,t
hT

)Kk(
w −wt
hT

), (19)

f̂(w) =
1

ThkT

T�

t=1

Kk(
w−wt
hT

).

Note that Ki(ǫ) is a kernel with ǫ ∈ Ri, , hT is a positive bandwidth, k is the dimension of wt and bT is
a sequence of positive constants designed to eliminate the aberrant behavior of kernel estimators for the
conditional distribution (density) in regions where f̂(w) is small. The proxy estimator of ΩEt , denoted
by Ω̂Et , is computed using the first step estimator ρ̂αt ≡ ραt (θ̃

α
T ) and f̂i,t(yi|w) where θ̃

α
T is any first-stage

consistent estimator for θα∗.
The second step for the GMM estimation method is to estimate θα∗ based on (18) using Ω̂Et . Specifically,

we obtain the GMM estimator of θα∗ by minimizing the following objective function:

LT = TmE
T (θ)

′
	
Q̂E

−1

mE
T (θ), (20)

where mE
T (θ) =

1
T

T
t=1∇θqα′t (θ)Ω̂Et ρ

α
t (θ), and Q̂E is a consistent estimator of QE = V ar(

√
TmE

T (θ
∗)) =

E[∇θqα∗′t FtT
−1
t Ft∇θqα∗t ].

A typical GMM estimation method often leads to computational difficulties because the check function
ραt (θ) generally yields too many local non-convex regions. To tackle such a problem, we employ the Laplace-
type Estimator (LTE) of Chernozhukov and Hong (2003) which is relatively easy to compute and is shown
to circumvent the curse of dimensionality which our VAR set-up might have. This method is basically
equivalent to the Markov Chain Monte Carlo (MCMC) approach but uses the quasi-posterior distribution
function which is defined as

pT =
eLTπ(θ)�
eLT π(θ)dθ

, (21)

where π(θ) is a prior distribution function. The detailed estimation procedure to obtain the LTE is
explained in Mathematical Appendix C.

Let θ̂
E

be the LTE which minimizes (20). Note that Proposition 1 cannot be directly used to obtain

the asymptotic distribution of θ̂
E

because the estimated weight function Ω̂Et is used instead of the true

efficient weight function ΩEt . To obtain the asymptotic property of θ̂
E

, we need additional assumptions for
the density estimator. The assumption for the kernel estimator (19) is as follows.
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Assumption 4. (i) supǫ∈Ri |Ki(ǫ)| ≤ C0 <∞,
�
ǫKi(ǫ)dǫ = 0,

�
ǫ2Ki(ǫ)dǫ <∞, i = 1, k.

(ii) Ki(·) has a Fourier transform φi(·) that is absolutely integrable.
(iii) K1(·) is continuously differentiable on R with derivative satisfying supw∈R |K ′

1(w)| <∞.
(iv) hT → 0, Thk+1T →∞, and (TpTh

3
T )
−1 → 0.

While using other density estimation methods, similar assumptions such as Assumptions 5 and 7 of
White et al. (2015) are needed. We now can properly present Theorem 1 as follows.

Theorem 1. Suppose that (i) (yt,∇θqαt ) is strictly stationary, and (ii) bTT
η

2η+1h
k+ 1

2η+1

T → ∞, and

bT/(T
1/4hT ) → ∞ where bT = o(T−

1

4η ), η = limm→∞
− ln�∞

i=m+1 �ψi�
lnm , and {ψi} is the moving average

coefficient of (1). Under Assumptions 1 through 4, the asymptotic distribution of θ̂
E

is given by

√
T (θ̂

E − θα∗) =⇒ N(0,QE
−1

),

where QE = E[∇θqα∗′t FtT
−1
t Ft∇θqα∗t ].

We note that QE can be easily estimated using its sample counterpart Q̂E = 1
T

T
t=1∇θq′tF̂tT̂−1t F̂t∇θqαt ,

and T̂−1t = 1
T

T
t=1 ρ̂tρ̂

′
t.
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Mathematical Appendix B. Proofs

Proof of Proposition 1. We first establish the consistency result. Letm(θ) = 1
T

T
t=1E[∇θqα′t (θ)Ωtρ

α
t (θ)].

Using triangle inequality

�m(θ̂
α
T )� ≤ �mT (θ̂

α
T )�+ sup

θ∈Θ
�m(θ)−mT (θ)� (22)

The first term is op(1) by (18). Note that since {ymt , wmt } is mixing, ∇θqαt (θ)′Ωtραt (θ) is also mixing with
the same mixing coefficients as {ymt , wmt }. Thus, we can apply the law of large numbers for mixing sequence
[Theorem 3.47 of White (2000)] so that �mT (θ)−m(θ)� = op(1) for all θ ∈ Θ. Then, the second term is
op(1) by Glivenko-cantelli Theorem, which completes the proof by Assumption 3.

Next, we prove the asymptotic normality of the proposed estimator. Since θ̂
α

T satisfies the asymptotic
first order condition by (18), we can apply the proof of Theorem 2 of White et al. (2015). Our setup,
if replacing ∇θqα′t by ∇θqα′t Ωt, still satisfies assumption of White et al. (2015), denoted by WA1 through
WA6. WA1 can be replaced by Assumptions 1 and 2 (iii) because WA1 is required to apply CLT for√
TmT (θ̂

α
T ) and the mixing property of ∇θqα′t Ωt from the assumptions allow to apply appropriate central

limit theorems for mixing processes. WA 2, 3, and 4 are equivalent to Assumptions 2(i), (ii), and 3. WA5
(i) and (ii) are satisfied by Assumptions 1(iii) and 2(iii). WA 5(iii) also follows from the same assumptions
because Ωt is finite. Thus, we skip the detailed proof. �

To prove Theorem 1, we need to prove the following proposition first.

Proposition 2. Suppose the model satisfies the conditions for Theorem 1, then for all i = 1, . . . , n

sup
yi,w

|f̂(yi|w)− f(yi|w)| →p 0.

Proof of Proposition 2. Similar to the proof of Theorem 1 of Komunjer and Vuong (2010), the propo-
sition can be proved if

sup
yi,w

|Dλ
yi f̂(yi|w)−Dλ

yi f̄(yi|w)| = Op

�
T−

η

2η+1h
−k−λ− 1

2η+1

T

�
+Op(hT ) (23)

where Dλ
yi f̂(·) and Dλ

yi f̄(·) are λth derivative with respect to yi, f̄(yi|w) = f(y|w)ḡ(w), ḡ(w) = 1
T

T
t=1 gt(w)

and gt(·) is the marginal density of wt. (23) is a modification of Lemma 4 of Komunjer and Vuong (2010)
so that the order is adjusted to a NED process case. We will prove λ = 1 case only. λ = 0, 2 cases are
straightforward from this as is Lemma 4 of Komunjer and Vuong (2010). Using (19), the left hand side
can be rewritten as

sup
(y,w)

1

ThT

T�

t=1

����K1(
y − yt
hT

)Kk(
w −wt
hT

)− ft(y,w)

���� =

sup
(y,w)

1

ThT

T�

t=1

����K1(
y − yt
hT

)Kk(
w −wt
hT

)−E[K1(
y − yt
hT

)Kk(
w −wt
hT

)]

����

+

����E[K1(
y − yt
hT

)Kk(
w −wt
hT

)]−E[ft(y|w)Kk(
w −wt
hT

)]

����+
����E[ft(y|w)Kk(

w −wt
hT

)− ft(y, w)

����
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The proofs of the second and the third term are equivalent to those of Lemma 4 of Komunjer and
Vuong (2010) which are Op(hT ) and Op(h

k
T ), respectively. Thus, we have only to show that the first term

is Op

�
T−

η

2η+1h
−k−λ− 1

2η+1

T

�
. Similar to (A.10) of Andrews (1995), this can be proved if

E[ sup
(h≤hT ,y,w)

1

ThT

T�

t=1

����K1(
y − yt
hT

)Kk(
w −wt

h
)−E[K1(

y − yt
hT

)Kk(
w −wt
hT

)]

����] = Op

�
T−

η

2η+1h
−k−λ− 1

2η+1

T

�

(24)
Using the Fourier inversion theorem such that Kk(

w−wt
hT

) =
�
exp(−iv′(w−wt)/hTφi(v)dv and Assumption

4 (ii)

sup
(y,w)

�����
1

Thk+1T

T�

t=1

K1(
y − yt
hT

)Kk(
w −wt
hT

)− 1

Thk+1T

T�

t=1

E[K1(
y − yt
hT

)Kk(
w −wt
hT

)]

����� (25)

≤
�

sup
(y,w)

�����
1

ThkT

T�

t=1

�
K1(

y − yt
hT

)

�
exp(−iv′(w −wt)−E{K1(

y − yt
hT

)

�
exp(−iv′(w −wt)}

�
φi(h

k
T v)

����� dv

≤
�

sup
y

�����
1

ThkT

T�

t=1

�
K1(

y − yt
hT

)

�
exp(iv′wt)−E{K1(

y − yt
hT

)

�
exp(iv′wt)}

�
φi(h

k
T v)

����� dv

=

�
sup
y

�����
1

ThkT

T�

t=1

��
K1(

y − yt
hT

) cos(v′wt)−E[K1(
y − yt
hT

) cos(v′wt)]

�������

+

�����
1

ThkT

T�

t=1

�
i(K1(

y − yt
hT

) sin(v′wt)−E[K1(
y − yt
hT

) sin(v′wt)])

������φi(h
k
T v)dv

(26)

Then, similar to (A.13) of Andrews (1995), equation (24) can be proved if there exist bounded constants
C∗0 , C

∗
‘ , and C∗2 such that

E[
1

T

T�

t=1

����
��

K1(
y − yt
hT

) cos(v′wt)−E[K1(
y − yt
hT

) cos(v′wt)]

������ < T−
η

2η+1h
− 1

2η+1

T [C∗0 + �vhT�C∗1 +C∗2 ] .

Let ymt and wmt be E[yt|F tt−m] and E[wt|F tt−m], respectively, where F tǫ,t−m is the σ−field generated by
(ǫt−m, . . . , ǫt, x′t). Note that

K1(
y − yt
h

) cos(v′wt)−E[K1(
y − yt
h

) cos(v′wt)] =

�
K1(

y − yt
h

)−K1(
y − ymt

h
) cos(v′wt)

�

+

�
K1(

y − ymt
h

){cos(v′wt)− cos(v′wmt )}
�
+

�
K1(

y − ymt
h

) cos(v′wmt )−E[K1(
y − ymt

h
) cos(v′wmt )]

�

+

�
E[K1(

y − ymt
h

){cos(v′wmt )− cos(v′wt)}]
�
+

�
E[{K1(

y − ymt
h

)−K1(
y − yt
h

)} cos(v′wt)]
�

= at + bt + ct + dt + et

(27)

Assumption 1(i) implies that there exists a sequence of absolutely summable {ψi} such that yt = µy +∞
i=1 ψiǫt−i. Then,

sup
t
E[�yt − ymt �] = sup

t
E[�

∞�

t=m+1

ψiǫt−i�] ≤
∞�

t=m+1

�ψi��V ar(ǫt−i)�]→ Op(m
−η) (28)
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where η is as defined in the theorem. wt has the same property by Assumption 2(iii). Then, 1
T


E|at| ≤

C0M0T and 1
T


E|et| ≤ C0M0T for a bounded constant C0 and M0T = Op(h

−1
T m−η) because cos(·) ≤

1, ∇yK1(·) is bounded by construction, and K1(
y−yt
hT

) − K1(
y−ymt
hT

) = ∇yK1(
yt−ȳ
hT

)(
yt−ymt
hT

) = C0M0T .
1
T


E|bt| ≤ �v�C1M1T and 1

T


E|dt| ≤ �v�C1M1T for a bounded constant C1 and M1T = Op(m

−η)
because K1(·) is bounded and cos(v′wt) − cos(v′wmt ) = sin(v′w̄)v′(wt − wmt ) ≤ �v�M1T . To show the
convergence of 1

Th


E |ct|, note that by Assumptions 1(iii) and 2(iii), {ymt , wmt } is φ−mixing with mix-

ing coefficient φ(s − m) as defined in Assumption 1(iii). Then by Corollary 14.5 of Davidson (1994),

Cov(K1(
y−ymt
hT

)cos(v′wmt ), �Km
1t cos(v

′wmt )) < 4Cr2φ(|t − u|(r−2)/r) for a bounded constant C2. Hence, we
have the following result:

V ar(
1

T

T�

t=1

�Km
1t cos(v

′wmt )) ≤ 8C2
1

T

�
φ(|t−m|)(r−2)/r ≤ C3

m

T

for a constant C3 that depends on C2 and 1
T


φ(|t − m|(r−2)/r, which indicates that 1

T


E|ct| ≤

C2(
8C3m
T )1/2 for bounded constants C2 and C3. Consequently, by choosing m as the integer part of

T 1/(2η+1)h
−2/(2η+1)
T ,

1

T
E

�����

T�

t=1

K1(
y − yt
h

) cos(v′wt)−E[K1(
y − yt
h

) cos(v′wt)]

����� ≤ C0M0T + �v�C1M1T +C2

�
8C3m

T

�1/2

= T
− η

2η+1h
− 1

2η+1

T [C∗0 + �vhT�C∗1 +C∗2 ] (29)

for bounded constants C∗0 , C
∗
1 , C

∗
2 . This completes the proof. �

Proof of Theorem 1. We will prove the theorem using the standard kernel estimator in equation
(19). Using the other density estimator will be similar. The theorem can be proved by showing that
Assumptions for Theorem 2 of Chernozhukov and Hong (2003) (denoted CA1 to CA4) hold in our set-up.
Assumption 3(ii) indicates CA1. Chernozhukov and Hong (2003) state that a quadratic function with the
prior in our set-up satisfies CA2. To prove CA3, note that 1

T

T
t=1∇θqαt Ω̂Eραt (θ) = 1

T

T
t=1∇θqα′t (Ω̂E −

ΩE)ραt (θ)+
1
T

T
t=1∇θqα′t ΩEραt (θ) of which the first term is op(1) by Proposition 2, E�∇θqαt �2 <∞, and

the bounded ραt (θ).Also, (yt,∇θqαt ) are NED of size η and it can be easily shown that ∇θqα′t ΩEραt (θ)
satisfies Lipschitz condition. Thus, by Theorem 17.12 of Davidson (1994) ∇θqα′t ΩEραt (θ) is also NED

of size η, and, together with Proposition 2, E�∇θqαt �2 < ∞, and min
	
4η+2
3η+1 ,

8r−9
7r−9



> 1, we can apply

Theorem 20.19 of Davidson (1994) to obtain that 1
T LT (θ) − 1

TL
0
T (θ) → 0 in probability uniformly over

Θ, where L0T (θ) = Tm0
T (θ)

′Em0
T (θ) and m0

T (θ) =
1
T

T
t=1E[∇θqα′t ΩEραt (θ)]. Also L0T (θ) is positive except

m0
T (θ) = 0 and by Assumption 3(ii), m0

T (θ) = 0 if and only if θ = θ0. Thus, CA3 is satisfied by Lemma 1 of
Chernozhukov and Hong (2003). To prove CA4, we verify that our set-up satisfies Conditions (i) through
(iii) of Lemma 2 of Chernozhukov and Hong (2003). LT and L0T are twice continuously differentiable,
which satisfies (i). Since (yt,∇θqαt ) is NED of size η on {ǫt} or on {ǫt, zt}, for any vector ι with ι′ι = 1,
the sequence ι′LE−1s mE

t (θ
∗) with LEs L

E′
s = QEs satisfies 24.6(a), (b), and 24.7(c’), (d’) of Davidson (1994)

for a bounded constant cnt = c < ∞. Then, by Corollary 24.7 and Theorem 25.6 of Davidson (1994),
1√
T
mE
t (θ

∗)⇒ N(0,QEs ) which verifies (ii). To check (iii), let us define

rT (θ1, θ2) =
�m̂E(θ1)− m̂E(θ2)−∇T (θ1 − θ2)�

�θ1 − θ2�
(30)
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where ∇T = 1
T


∇t, ∇t = [(qαt (θ1) − qαt (θ2))δt(θ2)]/�θ1 − θ2� and δt(·) is the diagonal matrix of which

the diagonal elements are dirac delta function. Note that for any θ1, θ2 ∈ Θ

√
T�
�
m̂E(θ1)− m̂E(θ2)

�
−
�
E[mE(θ1)]−E[mE(θ2)]

�
�

1 +
√
T�θ1 − θ2�

≤
√
T [�rt −E[rt]��θ1 − θ2�+∇t −E[∇T ]�|θ1 − θ2|]

1 +
√
T�θ1 − θ2�

≤ �∇t −E[∇T ]�+Op(rt) = Op(rt) (31)

Thus, (iii) can be satisfied if there exists ǫ > 0 and η > 0 such that P [�rt� > ǫ] < η. Let ǫt(θi) = yt−qαt (θi),
et = qαt (θ1)− qαt (θ2), and rt as

rt = �∇θqα′t Ω̂Et ρ
α
t (θ1)−∇θqα′t Ω̂Et ρ

α
t (θ2)−∇θqα′t Ω̂Et ∇t(θ1 − θ2)�/�θ1 − θ2�

≤ �Ω̂Et ��1[ǫ2t + et]− 1[ǫ2t ]− etδt�/�θ1 − θ2�
≤ �Ω̂Et ��et/�θ1 − θ2���1[ǫ0t + et]− 1[ǫ0t ]− etδt�/�et� (32)

Since rT (θ1, θ2) = 1
T


rt by definition, we will show that P [|rt| > ǫ] < η for all t. By Assumptions 1

and 4 ∇θqα′t Ω̂t = Op(1). Since qαt (θ) is differentiable, the mean value theorem and Assumption 2 implies
that �et/�θ1 − θ2��� is also bounded in probability. Thus, we have only to show that Pr[�1[ǫ2t + et] −
1[ǫ2t ] − etδt�/�et� > ǫ] < η. For given ǫ > 0, η > 0, there exists e > 0 such that �et� < e implies
Pr[�1[ǫ0t + et] − 1[ǫ0t ]− etδt�/�et� > ǫ] < η. Since qαt (θ) is continuous on Θ, there exist some ι > 0 such
that �θ1 − θ2� < ι implies �et� < e which proves the inequality. �
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Mathematical Appendix C. LTE Procedure

The Laplace type estimator (LTE) is obtained by the following 4-step procedure.

Step 1. Obtain an initial consistent estimator of θs using conventional equation-by-equation methods.
Compute f̃t(·) and ρ̃st as described above to calculate T̃s =

1
T

T
t=1 ρ̃stρ̃

′
st, Ṽst = F̃stT̃−1s , and Ĥs.

Step 2. Let θsl be the lth element of θs. For each l = 1, . . . , nkr, generate ξl from N(|ξl − θ
(j)
sl |, φ) where

the starting value θ
(0)
s is the estimator in Step 1).

Step 3. Update θ
(j+1)
sl from θ

(j)
sl for j = 1, 2, . . . using

θ(j+1) =

�
ξ with probability p(θ(j), ξ)

θ(j) with probability 1− p(θ(j), ξ)

�
, (33)

where

p(x, y) = inf

�
eLT (y)π(y)q(x|y)
eLT (x)π(x)q(y|x) , 1

�
.

Step 4. Iterate Step 2 to Step 3 B times. The final estimator is the sample average given by

θ̂ =
1

B

B�

j=1

θ(j).

Note that φ is updated every 100 times so that the rejection rate at Step 3 is approximately 50%.

26



  

(a) Before Shock (b) After Positive Shock 

 

 
 

(c) Before Shock (d) After Negative Shock 
 
Note: ���� is generated from −2� + (1 − 0.5��)��  where �� is standard normal. For (a) and (c),  � 
is set to zero. For the positive and negative shock cases (b) and (d), � is set to 1 and -1, respectively. 

 
Figure 1. Shifts in the distribution of a hypothetical variable ���� with respect to a positive 
and a negative shock   
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(Response of �� to �� shock) 
 

 
(Response of �� to �� shock) 

  

Note: The bivariate VAR is generated from equations (1) and (6) with �� � � 1 0
−0.5 1�, �� �

�0.4 0.2.
0.2 0.3�, 1 2

0 0 0,γ γ= = 1 2
1 1(0.3, 0.2) , (0.2,0.3) ,γ γ′ ′= − = and 

*
1,tε , 

*
2,tε are IID following 

the standard normal distribution. The sample size is set to 100. Each line shown above represents 

!"#$%
&. 

  
Figure 2. Example of simulated quantile impulse responses around the median impulse 

response  
  



 

 
Note: Each shaded region begins at a National Bureau of Economic Research (NBER) business 
cycle peak, and ends at a trough. (Source: FRED) 
 
 
Figure 3. The change in the Federal Funds rate and the Romer and Romer monetary policy 
shock series 

 
 

  



   

<employment growth>                                 <inflation>  
 

 
Note: The VAR includes the variables total non-farm employment, consumer price index 

inflation rate, Romer and Romer measure of monetary policy shock. The usual Cholesky 

decomposition scheme is used to identify the relevant policy shock. Quarterly observations are 

used and the sample period is from 1969 Q1 through 2008 Q4. Dotted lines represent 67% 

confidence intervals. 
 
 
Figure 4. Mean impulse response to 100bp positive monetary policy shock with confidence 

intervals 
 
 
 

  



  

  

  

 

  
  

          <lower quantiles>          <upper quantiles> 
 

Note: The solid line shows the deviation of !"#$%
& from MIRF. The VAR includes the variables 

total non-farm employment, consumer price index inflation rate, Romer and Romer measure of 

monetary policy shock. The usual Cholesky decomposition scheme is used to identify the 

relevant policy shock. Quarterly observations are used and the sample period is from 1969 Q1 

through 2008 Q4. Dotted lines represent 67% confidence intervals. 
 
 
Figure 5. Deviations of quantile impulse response functions from the mean impulse 

response function (of employment growth) in response to a positive monetary policy shock 
 

 
 

  



 

 

 

 
   

 

 

 
 

<positive shock> 
  

<negative shock > 
  

  
 Note: The probability density functions after shock (solid lines) are calculated from the 

asymmetric power distribution of Komunjer (2006) such that the parameters in the asymmetric 

power distribution are chosen to make the quantiles of the distribution as close as possible to 

the results of the quantile impulse responses in Figure 5. The center of each density is 

normalized to zero, and the density before shock (dotted lines) is set to a normal distribution 

with mean zero and standard deviation equal to the standard error of the regression. 
  

Figure 6. Probability density functions of employment growth before and after shocks 

  



 

  

 
 

<lower quantiles> 
 

<upper quantiles> 
 

Note: The solid line shows the deviation of !"#$%
& from MIRF. The VAR includes the variables 

total non-farm employment, consumer price index inflation rate, Romer and Romer measure of 

monetary policy shock. The usual Cholesky decomposition scheme is used to identify the 

relevant policy shock. Quarterly observations are used and the sample period is from 1969 Q1 

through 2008 Q4. Dotted lines represent 67% confidence intervals. 
 
 
Figure 7. Deviations of quantile impulse response functions from the mean impulse 

response function (of inflation) in response to a positive monetary policy shock 
 

 
 

 

  



 

 

 
   

 

 

 
 

<positive shock> 
  

<negative shock > 
  

  
 Note: The probability density functions after shock (solid lines) are calculated from the 

asymmetric power distribution of Komunjer (2006) such that the parameters in the 

asymmetric power distribution are chosen to make the quantiles of the distribution as close 

as possible to the results of the quantile impulse responses in Figure 5. The center of each 

density is normalized to zero, and the density before shock (dotted lines) is set to a normal 

distribution with mean zero and standard deviation equal to the standard error of the 

regression. 
  

Figure 8. Probability density functions of inflation before and after shocks 

 



       

<employment growth>                                  <inflation> 

 

Note: The solid line shows the deviation of !"#$%
&'�.( (the median impulse response) from MIRF. 

The VAR includes the variables total non-farm employment, consumer price index inflation rate, 
Romer and Romer measure of monetary policy shock. The usual Cholesky decomposition scheme is 
used to identify the relevant policy shock. Quarterly observations are used and the sample period is 
from 1969 Q1 through 2008 Q4. Dotted lines represent 67% confidence intervals. 

 

Figure 9. Deviations of the median impulse response function from the mean impulse response 
function (of employment growth and inflation) in response to a positive monetary policy shock  
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