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The large deviation (LD) statistics of dynamical observables is encoded in the spectral properties
of deformed Markov generators. Recent works have shown that tensor network methods are well
suited to compute the relevant leading eigenvalues and eigenvectors accurately. However, the efficient
generation of the corresponding rare trajectories is a harder task. Here we show how to exploit
the MPS approximation of the dominant eigenvector to implement an efficient sampling scheme
which closely resembles the optimal (so-called “Doob”) dynamics that realises the rare events. We
demonstrate our approach on three well-studied lattice models, the Fredrickson-Andersen and East
kinetically constrained models (KCMs), and the symmetric simple exclusion process (SSEP). We
discuss how to generalise our approach to higher dimensions.

I. INTRODUCTION

The complex behaviour of the non-equilibrium dynam-
ics of stochastic systems can be characterised by studying
trajectory ensembles, that is, the set of all possible tra-
jectories alongside the probability that they occur under
the evolution defined via a stochastic master operator .
This is analogous to standard thermodynamics, where
static properties are entirely determined by the equilib-
rium ensemble of all microstates and the probabilities [1].
Often dynamical behaviour of interest is dominated not
by trajectories that are typical under the dynamics, but
by “rare events” which are exponentially (in time and in
system size) scarce. Studying these rare events is made
possible by using the framework of large deviations (LDs)
[2–7], where in large time limits time-extensive dynami-
cal observables obey a LD principle, and their statistics
is encoded in functions which play for dynamics the role
that thermodynamic potentials play for statics (see below
for definitions).

LD functions can be obtained in principle from a de-
formation or tilting of the dynamical generator (in the
case of continuous-time dynamics) or the Markov ma-
trix (in the case of discrete-time dynamics), through its
largest eigenvalue. Obtaining this eigenvalue is not al-
ways an easy - or even possible - task, and often one needs
to resort to numerical methods. Methods to overcome
this difficulty often include techniques based on popula-
tion dynamics, namely cloning or splitting [8–11], and
importance sampling [12–16] which provide information
about the configurations frequently visited by the rare
events. Notice that even if one manages to diagonalise
the tilted generator (or the Markov matrix), the genera-
tion of rare trajectories is non-trivial: while rare trajec-
tories are “generated” by the tilted operator, this is not a
proper stochastic operator and these trajectories cannot
be directly sampled.

The efficient sampling of rare events can be achieved
by searching for another stochastic dynamics which gen-

erates trajectories with desirable probabilities that are
the same as (or a close approximation to) those of the
tilted generator (with any small discrepancy corrected
via importance sampling techniques). Methods for do-
ing so currently include optimal control [17, 18] and ma-
chine learning approaches, where one attempts to “learn”
this convenient sampling dynamics [19–21]. The most
optimal choice for a reference dynamics is the so-called
generalised Doob dynamics [22–25], which generates tra-
jectories with the exact tilting corresponding to the de-
formed generator. The Doob dynamics thus produces
rare trajectories of the original dynamics “on demand”.
To construct such optimal dynamics, however, requires
knowledge of the leading eigenvector of the tilted gener-
ator.

Variational tensor network (TN) techniques [26–32],
originally devised as a tool to study quantum many-body
systems, have recently been shown to be useful in the con-
text of classical stochastic models, specifically for study-
ing LD statistics [33–36]. In particular, it is often both
possible and easy to approximate the leading eigenstate
of the tilted generator of a one-dimensional stochastic lat-
tice system using a matrix product state (MPS) ansatz,
even those with dynamical (i.e. LD) phase transitions.
Recent works have made use of this eigenstate to deter-
mine the statistical properties of the dynamics [33–36].
To our knowledge, however, such TN approach has not
been exploited yet to sample efficiently rare trajectories.
This is what we do in this paper. We present a scheme to
use the MPS approximation to the leading eigenvalue of
the tilted generator to construct a new dynamics which
very closely resembles the optimal Doob dynamics, and
we show how we can use this new dynamics to efficiently
sample rare events.

We focus on three paradigmatic models. The first two
correspond to kinetically constrained models (KCMs)
[6, 37, 38], specifically the Fredrickson-Andersen (FA)
and the East [39] model, two well-studied models known
for their connection to structural glasses [40, 41]. The
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third model is the symmetric simple exclusion processes
(SSEP) [42, 43]. All these models have interesting LD
statistics, including trajectory phase transitions con-
trolled by their activities and/or currents (in the case
of the SSEP) [3, 5, 44–47].

The paper is organised as follows. In Sec. II, we re-
view continuous time Markov dynamics and LDs. We
also recap how one can apply an MPS ansatz to study
KCMs. In Sec. III, we define the Doob dynamics and
introduce a scheme to approximate it with a reference
dynamics, constructed using an MPS approximation to
the leading eigenstate of the tilted generator. In Sec. IV
we present the numerical results from our method applied
to the three models. We show how our approach can ef-
fectively be used to accurately measure the statistics of
time-extensive observables. We provide an outlook on
possible generalisations and our conclusions in Sec. V.

II. LARGE DEVIATIONS AND MATRIX
PRODUCT STATES

In this section we introduce continuous-time Markov
dynamics, giving specific examples in the context of ki-
netically constrained models (KCMs) and exclusion pro-
cesses. We then also review the framework of large devi-
ations (LDs) and how variational matrix product states
(MPS) can be used to determine the LD statistics.

A. Continuous time Markov dynamics for KCMs
and exclusion processes

We consider stochastic Markov dynamics which evolves
continuously in time. Suppose we have some system with
the set of configurations {x1, x2, . . . , xM} where M is the
size of the configuration space. The probability that the
system is in some configuration x at the time t is en-
coded in the probability vector |P (t)〉 =

∑
x Px(t) |x〉

which evolves under the stochastic master equation

d

dt
|P (t)〉 = W |P (t)〉 . (1)

Here the generator of the dynamics W is given by

W =
∑
x,x′ 6=x

wx→x′ |x′〉 〈x| −
∑
x

Rx |x〉 〈x| , (2)

where wx→x′ are the transition rates from configuration
x to x′ and Rx =

∑
x′ 6=x wx→x′ is the escape rate from x.

The largest eigenvalue of the generator is zero, with left
eigenvector the flat state 〈−| =

∑
x 〈x|, and right eigen-

vector the steady state |ss〉 =
∑
x P

ss
x |x〉, which describes

the probability of finding any configuration at equilib-
rium. If our system obeys detailed balance, then we are
guaranteed that any initial state will eventually relax to
some equilibrium state given enough time. Here we as-
sume this to be the case.

We will focus on two broad areas of 1D constrained
systems. The first is KCMs (for reviews see [6, 37, 38]),
for which configuration changes are governed by a kinetic
constraint which is explicitly encoded in the generator.
For concreteness, we focus on the 1D spin facilitation
Fredrickson-Andersen (FA) [48] and East [39] models.
Both models are defined on a 1D lattice of N binary
variables (spins) nj = 0, 1 for j = 1, . . . , N , and configu-
ration changes are only allowed via single-spin flips. The
Markovian generators for both models are given by

WEast/FA =

N∑
i=1

PEast/FA
i

[
cσ+
i + (1− c)σ−i (3)

− c(1− ni)− (1− c)ni
]

where σ±i are the Pauli raising/lowering operators acting
on site i and c ∈ (0, 0.5] controls the rates at which spins
flip, given they satisfy the kinetic constraints

PFA
i = ni−1 + ni+1, PEast

i = ni−1, (4)

where the first only allows a transition if the spin at-
tempting to flip has a neighbouring excitation, and the
second only if the neighbouring spin to the left is excited.
(For the FA model the constraint is sometimes defined as
the projector ni−1 + ni+1 − ni−1ni+1, but in practice it
makes little difference with the definition above.)

The second area we consider are exclusion processes
[42, 43] - particles hopping around sites on a lattice, with
a hardcore exclusion such that we can have at most one
particle per site. We focus on the 1D symmetric simple
exclusion process (SSEP), adopting the lattice notation
we used for KCMs, where now nj = 1(0) implies the site
is occupied (empty). In the SSEP, a particle can hop
left or right to its neighbouring sites, both with the same
rate (γ = 1/2) if the neighbouring site is not already
occupied. The generator for the dynamics is

WSSEP =
1

4

N∑
i=1

σxi σ
x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1 − 1 (5)

where σai are the Pauli operators acting on site i.
For the entirety of this paper, we will assume open

boundary conditions (OBC), which will later reduce the
computational cost of tensor network contractions. This
formally means that we set n0 = nN+1 = 0. Further-
more, we impose certain restrictions on the state space.
For the FA model, we simply exclude the disconnected
zero state ni = 0, ∀i. On the other-hand, we set n1 = 1
for the East model which ensures the state space remains
fully connected on each dynamical site i > 1. Finally,
we restrict SSEP such that the total number of particles
Np =

∑
i ni is fixed, with particle density np = Np/N

which will be assumed to be np = 1/2.

B. Trajectories and large deviations

Consider some general trajectory ωt = {x0 → xt1 →
· · · → xtK} where the system moves into the configura-
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tion xti at time ti and has the total time t > tK . The

dynamical activity K̂ [3–6, 49] is a trajectory observable
which measures the number of configuration changes for
a given trajectory. The probability of observing some
activity K can then be calculated as the sum over all
trajectories with K configuration changes, and the prob-
ability they occur,

Pt(K) =
∑
ωt

π(ωt)δ
[
K̂(ωt)−K

]
, (6)

where π(ωt) is the probability of observing ωt. For large
times, this obeys the large deviation (LD) principle [2–5]

Pt(K) ∼ etϕ(K/t), (7)

where ϕ(K/t) is called the LD rate function and plays the
role of entropy density for trajectories. Alternatively, one
can consider the moment generating function (MGF) [2]

Zt(s) =
∑
K

Pt(K)e−sK =
∑
ωt

π(ωt)e
−sK̂(ωt), (8)

which contains equivalent information to Eq. (7) and can
be considered the partition function. From Eq. (8), we
see that the weighting of each trajectory is the probabil-
ity that the trajectory occurs, exponentially re-weighted
by its dynamical activity. The MGF also obeys a LD
principle,

Zt(s) ∼ etθ(s), (9)

where θ(s) is the scaled cumulant generating function
(SCGF), whose derivatives evaluated at s = 0 give the
cumulants of K scaled by time. The SCGF plays the role
of the thermodynamical free energy of trajectories and is
related to the LD rate function by a Legendre transform
θ(s) = −mink(sk + ϕ(k)) [2].

The MGF Eq. (8) can be expressed as

Zt(s) = 〈−|etWs |in〉 , (10)

where |in〉 is some initial probability vector and Ws is a
new operator which we name the tilted generator, and is
a deformed version of Eq. (2) where we tilt with respect
to the dynamical observable of interest [2–5]. For the
case of the dynamical activity [3–5], we simply tilt the
off-diagonals of W with the same factor to obtain

Ws =
∑
x,x′ 6=x

e−swx→x′ |x′〉 〈x| −
∑
x

Rx |x〉 〈x| . (11)

The largest eigenvalue of Ws is the SCGF θ(s), with as-
sociated left and right eigenvectors 〈ls| and |rs〉. Since
〈ls| in general is not the flat state, Ws is not a proper
stochastic generator for s 6= 0 [3–5]. If one could exactly
diagonalise Eq. (11) to find its leading eigenvalue and
eigenvectors, then they would entirely unravel the LD
statistics. We now briefly recap how this can be achieved
using numerical TN techniques [33–36].

C. Variational matrix product states

A matrix product state (MPS) is an ansatz for describ-
ing vector states of many-body systems [26–28, 50, 51],

|Ψ〉 =

d∑
i1,...,iN

Tr
(
Ai11 A

i2
2 . . . AiNN

)
|i1 i2 . . . iN 〉 , (12)

where each subsystem k has its own rank-3 tensor Ak
with the dimensions d×D×D. The allowed entanglement
within the state is controlled by the bond dimension D
[30]. It is often convenient to represent tensor networks in
a diagrammatic form using shapes to represent tensorial
objects, and (connecting) lines to represent contractions
over tensors. For example, the corresponding diagram
for an MPS is

|Ψ〉 = ,
(13)

where each circle corresponds to one of the tensors Ak.
Similarly, one can also attempt to write some operator Ô
as a matrix product operator (MPO) [31, 32, 52–55]. Op-
erators which act locally on on the sub-systems, such as
Eqs. (3-5), can be efficiently described as a MPO. That
is to say we can represent them exactly in MPO form
with only a small constant bond dimension. The dia-
grammatic representation for MPOs is

Ô = .

(14)

MPS allow for the easy and efficient implementation
of the widely used density matrix renormalization group
(DMRG) method [56, 57], an algorithm designed to iter-
atively minimize the energy of a state EΨ with respect to
some Hamiltonian Ĥ. In the language of MPS [28], we
start with some guess at some fixed bond dimension, and
sweep through each tensor applying local optimizations
with all other tensors fixed. This is done until we reach
convergence, which is usually when the change in energy
of the state per sweep is small. At the end of the routine,
one can efficiently calculate the variance of the state with
respect to the Hamiltonian

δEΨ
2 = varĤ(Ψ) = 〈Ĥ2〉Ψ − 〈Ĥ〉

2

Ψ (15)

where 〈·〉Ψ = 〈Ψ| · |Ψ〉 denotes an expectation value. We
check to see if it has fallen below some desired value, ε; if
not, we run the algorithm with an increased bond dimen-
sion, where we typically use the state from the previous
run as an initial guess. For more details on the workings
of variational MPS (vMPS) algorithms, see the reviews
[28, 58].

Many recent works have shown that vMPS algorithms
are very effective for studying the LD statistics of clas-
sically constrained systems which obey detailed balance
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[33, 34, 36]. In particular, if we write the titled generator
in a way such that it is Hermitian then the state we are
searching for is the ground state. This guarantees each
update is an improvement upon the last. For dynam-
ics obeying detailed balance, the activity-tilted generator
can be brought to a Hermitian form using a similarity
transformation that is independent of s [5],

Hs = −Q−1WsQ, (16)

For the case of the East/FA models [5], the diagonal op-
erator Q is given by

QFA/East =
[√

1− c |0〉 〈0|+
√
c |1〉 〈1|

]⊗N
, (17)

and for the SSEP by QSSEP = I. The new Hamiltonian
Hs has the ground state |ψs〉 with energy −θ(s). The
ground state is related to the left and right eigenvectors
of Ws in the following way [33],

|ψs〉 = Q−1 |rs〉 , (18)

〈ψs| = 〈ls|Q, (19)

|ψs〉 =
∑
x

√
ls(x)rs(x) |x〉 , (20)

where ls(x) = 〈ls|x〉 and rs(x) = 〈x|rs〉.

III. DOOB TRANSFORMATION AND
OPTIMAL SAMPLING

We now define the so-called generalised Doob trans-
formation [19, 22, 23, 25, 59], and show how one can use
our MPS solution to Eq. (16) to construct a reference dy-
namics which closely resembles the true Doob dynamics.
We then present a method to optimally sample the rare
events of our toy models using these new dynamics.

A. Generalised Doob dynamics

The goal is to find a proper stochastic generator which
generates trajectories with the same probabilities as
those in the tilted dynamics Ws, cf. Eq. (11). This can be
achieved using the (long-time) generalised Doob transfor-
mation [19, 22, 23, 25, 59], defined as

WDoob
s = L[Ws − θ(s)I]L−1, (21)

where L = diag(〈ls|) is the left eigenvector 〈ls| as a diag-
onal matrix. It is easy to check that Eq. (21) is annihi-
lated by the flat state 〈−|, which means that WDoob

s is a
stochastic operator. Its stationary state is

|ss〉Doob
s =

∑
x

ls(x)rs(x) |x〉 . (22)

The generator WDoob
s can also be expressed as a sum of

its diagonal and off-diagonal elements

WDoob
s =

∑
x,x′ 6=x

ls(x
′)

ls(x)
e−swx→x′ |x′〉 〈x|

−
∑
x

(Rx + θ(s)) |x〉 〈x| . (23)

Thus our new dynamics has the transition rates and es-
cape rates

w̃x→x′ =
ls(x

′)

ls(x)
e−swx→x′ (24)

R̃x = Rx + θ(s) (25)

respectively. That is to say the transition rates are re-
weighted by e−s and by some ratio ls(x

′)/ls(x) which
depends on the structure of the configurations, and the
escape rate is shifted by θ(s).

We now consider some general time-dependent observ-
able Â, and ask what is the expectation value in the tilted
dynamics,

〈Â〉s ≡
〈Âe−sK〉
〈e−sK〉

= Zt(s)
−1
∑
ωt

π(ωt)Â(ωt)e
−sK̂(ωt).

(26)
One can now apply importance sampling to arrive at

〈Â〉s = Zt(s)
−1
∑
ωt

π̃(ωt)
π(ωt)

π̃(ωt)
Â(ωt)e

−sK̂(ωt),

= Zt(s)
−1

〈
π

π̃
Âe−sK̂

〉
Doob

(27)

where π̃(ωt) is the probability of observing ωt in the dy-
namics generated by WDoob

s and 〈·〉Doob denotes an ex-
pectation value with respect to trajectories with prob-
abilities from the Doob dynamics. At a first glance, it
might look that we have not gained much from expressing
the expectation of A using the Doob generator WDoob

s .
However, if one calculates the ratio of probabilities in
Eq. (27) then the power of this expression becomes ap-
parent.

Let us first consider the original dynamics described
by Eq. (2). If we have some system in configuration x,
then the probability it flips to some other state x′ at the
time ∆t is

Px→x′(∆t) = wx→x′e
−Rx∆t. (28)

It then follows that the trajectory ωt occurs with proba-
bility

π(ωt) = P (x0) e−RxK (t−txK )
K∏
i=1

wxi−1→xi e
−Rxi−1

(txi−txi−1
),

(29)
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where we have also accounted for the fact that the system
must remain in the same state after the final flip for the
remainder of the time, and P (x0) is the probability of the
initial configuration. The probability of the trajectory
under the Doob dynamics has a similar form, with the
substitutions wx→x′ → w̃x→x′ , Rx → R̃x, and P (x0) →
P̃ (x0),

π̃(ωt) =P̃ (x0) e−sKe−tθ(s)
ls(xK)

ls(x0)
e−Rxk (t−tk) (30)

×
K∏
i=1

wxi−1→xi e
−Rxi−1

(txi−txi−1
),

where all but the endpoint factors of ls(x) cancel out
telescopically. The ratio of probabilities then goes as

π(ωt)

π̃(ωt)
=

esKetθ(s)

ls(x0) ls(xK)
, (31)

where we have used P̃ (x0) = P (x0) ls(x0)2. Substi-
tuting Eq. (31) back into Eq. (27) cancels out the ex-
ponential tilting esK . Furthermore, for large times,
Zt(s)

−1 ≈ e−tθ(s) giving the final result

〈Â〉s =

〈
1

ls(x0) ls(xK)
Â

〉
Doob

. (32)

And so it follows that one can exactly sample the ex-
pectation value of a trajectory observable in the tilted
ensemble defined by the non-stochastic tilted generator,
by sampling it directly from trajectories generated by the
stochastic Doob dynamics Eq. (21), up to factors at the
endpoints of each trajectory (which become negligible in
the long time limit).

B. Reference Dynamics

While the above shows how to optimally sample if one
has access to the Doob generator, which is obtained from
the exact minimisation of the tilted generator, we now
consider how to approximate it efficiently.

Suppose we have an MPS approximation |ψref
s 〉 to the

ground state of the Hermitian operator Hs, where our
choice of bond dimension D controls the error. By ap-
plying the operator Q−1 to |ψref

s 〉, as is done in Eq. (19),
one can also retrieve an approximation to the left eigen-
vector. This is easily done as an MPS-MPO product,

〈lref
s | = 〈ψref

s |Q−1 =

= .
(33)

We then construct the generator of the so-called reference
dynamics, which goes as Eq. (2) with the transition rates

and escape rates given by

wref
x→x′ =

lref
s (x′)

lref
s (x)

e−swx→x′ , (34)

Rref
x =

∑
x′ 6=x

wref
x→x′ , (35)

respectively. Note that here we have not used Eq. (25) for
the escape rates, as these reference dynamics only act as
an approximation to the Doob dynamics, and thus would
not give a true stochastic dynamics. In appendix A, we
show the steady-state solution to the reference dynamics
is given by

|ss〉ref
s =

∑
x

ψref
s (x)2 |x〉 , (36)

where ψref
s (x) = 〈x|ψref

s 〉.
If we repeat the steps between Eqs. (27) and (32) but

for the reference dynamics, the expectation Eq. (27) looks
like

〈Â〉s =

〈
1

lref
s (x0) lref

s (xK)
e−tθ(s)+

∫
dt∆R̂Â

〉
ref

, (37)

where
∫
dt∆R̂ is the time integral of the difference of es-

cape rates between the reference dynamics and the orig-
inal dynamics, with ∆R̂x = Rref

x −Rx. We can estimate
a sampling error when using Eq. (37) in the following
way [59]. First, let us assume the effects of the time-edge
factors is negligible (as they are not exponential in time)
and try to sample the quantity

〈e−sK̂〉 = 〈Re−sK̂〉ref ≈
1

Nsp

Nsp∑
α=1

R(ωα)e−sK̂(ωα), (38)

whereR(ωα) = esK̂(ωα)+
∫
dt∆R̂(ωα) is the umbrella which

compensates for change in sampling dynamics and we es-
timate for a fixed number of samples, Nsp. The variance
of Eq. (38) gives a way to quantify the sampling error,

ε2ref =
Varref

(
1
Nsp

∑Nsp

α=1R(ωα)e−sK̂(ωα)
)

〈
1
Nsp

∑Nsp

α=1R(ωα)e−sK̂(ωα)
〉2

ref

=
1

Nsp

[
〈R2e−2sK̂〉ref

〈Re−sK̂〉
2

ref

− 1

]

=
1

Nsp

[
〈e2

∫
dt′∆R̂〉ref

〈e
∫
dt′∆R̂〉

2

ref

− 1

]
. (39)

In appendix B we show

ε2ref ≈
et

2δE2 − 1

Nsp
≈ t2δE2

Nsp
(40)

for small t2δE2 � 1, where δE2 is the calculated variance
on our MPS approximation of the leading eigenvector.

Juan P. Garrahan
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C. Simulating trajectories

We are now in a position to efficiently simulate tra-
jectories from our reference dynamics. The sampling of
trajectories from a classical generator is usually achieved
using a continuous time Monte Carlo (CTMC, otherwise
known as the BKL algorithm) [60]. Given that our sys-
tem is in some configuration x at time t′, we need to cal-
culate the next jump in the trajectory. That is, we need
to decide the next configuration the system will move
into, and the time it does so. Calculating this can be
split into five separate steps:

1. Find each configuration x′ the system can move
into from x.

2. Calculate the transition rates wx→x′ for each x′.

3. Calculate the escape rate Rx as the sum of all tran-
sition rates.

4. Randomly choose one x′, each with the probability
wx→x′/Rx

5. Randomly choose the jump time ∆t with probabil-
ity P (∆t) = Rxe

−Rx∆t.

By starting at a configuration sampled from equilibrium
(which in the case of the reference dynamics can be effi-
ciently done using the MPS |ψref

s 〉 [61, 62]), or otherwise,
one can simply repeat this procedure until some total
time t has elapsed.

We can use this method for our reference dynamics,
where the only step that needs slight adjustment is the
second. While one must still calculate the transition rates
of the original dynamics in the usual way, we must also
calculate the left vector components ls(x) and ls(x

′). Let
us assume the former is carried over from the previous
jump in the algorithm. Then all one needs to do is calcu-
late each ls(x

′). We start by noting that any configura-
tion x can be written in MPS form with bond dimension
1,

|x〉 = |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nN 〉

=
(41)

and then we can simply calculate the left component as
a MPS-MPS contraction

lref
s (x) = | 〈lref

s |x〉 | = .
(42)

The transition rates for the reference dynamics are then
calculated using Eq. (34), and the method proceeds as
before. The total computational cost for calculating each
lref
s (x) is O(D2N), and thus the total cost of each Monte

Carlo (MC) step is O(D2NNF ), where NF is the total
number of configurations x′ for a given step.

Let us now consider our KCMs where we have single-
spin flip dynamics. We first note that the number of
possible configuration changes from x is bounded by the
number of sites, that is, 1 ≤ NF ≤ N . Using the method
described above, the computational cost for each step is
at worst, quadratic in the system size. However, by re-
alising that the tensor network contractions 〈lref

s |x〉 and
〈lref
s |x′〉 are identical apart from just one tensor (corre-

sponding to the spin which would flip), we can reduce
the computational cost by recycling partial contractions
from the edges. We first need to identify the first and last
sites on the lattice which are able to flip, which we label
il and ir respectively. In a similar fashion to variational
algorithms, we then contract from the left edge of tensor
network 〈lref

s |x〉 up to ir−1, and saving each tensor block
along the way.

→

→

We do the same but from the right and up to il+1. This
initialization of partial contractions has a one-time cost
of

O(D2(N + ir − il − 2)) < O(2D2N). (43)

Calculating each lref
s (x′) at site j is then easy, we just

perform a contraction over the left block up to site j− 1,
the right block up to site j+1 and the remaining tensors,

lref
s (x′) =

where of course we now choose the remaining tensor at
site j from the MPS |x′〉. This is done for each possible
site which can flip, and thus entails a computational cost
O(D2NF ). Once a choice is made for which site to flip,
which we will label i, we must updated the blocks of
partial contractions up to (the now possibly different) il
and ir. Note that this time we do not have to start from
the edges of the MPS, but just from site i as the previous
partial contractions that come before do not change. The
total cost of updating the partial contractions is

O
(
D2[(ir − i) + (i− il)]

)
= O

(
D2(ir − il)

)
. (44)

The total computation cost for each MC step is the sum
of the cost for calculating each lref

s (x) and updating the
partial blocks after a choice is made,

O
(
D2(NF + ir − il)

)
≤ O

(
2D2N

)
. (45)

Consequentially, the cost of each MC step is reduced to
one which is at most linear in system size.
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FIG. 1. The dynamical activity from brute-force Monte Carlo. We show the dynamical activity measured for (a) the
FA model with c = 0.5, (b) the East model with c = 0.2 and (c) SSEP with np = 0.5. A variety of system sizes N ∈ [20, 400]

are shown for each. The dashed lines shown expected activity calculated directly from the MPS k̃(s), whereas the markers

show the activity measured via CTMC 〈k〉s with a time t = 100/k̃(s). The inactive phase is shown with a log s scale in the
insets. We also show representative trajectories at s = −1, 1 for each.

IV. NUMERICAL RESULTS

A. Approximating the Doob Dynamics

We put to the test the general method presented above
by approximating the Doob dynamics of each model de-
fined in Sec. II. We show that the Doob dynamics is well
estimated using the MPS reference dynamics, and can
even be well approximated with truncated MPS.

Each of the three models is known to exhibit a trajec-
tory phase transition (when tilted against the activity)
for long times and in the thermodynamic limit N →∞,
manifested in the SCGF θ(s) at s = 0 with a discontin-

uous drop in the dynamical activity K̂(s) = −θ′(s)/N
[3, 5, 36, 45, 47]. We call the dynamical phase for s < 0
the active phase, and that for s > 0, the inactive phase.
One is able to do a detailed investigation of this first-
order phase transition by considering the finite-size scal-
ing of the model [33, 36, 46, 63, 64]. We can estimate
a critical point sc(N) & 0 by finding the peak of the
dynamical susceptibility χ(s) = θ′′(s), which shows a
drastic change in a small region around the transition
point.

We start by taking the usual approach of approximat-

ing the ground states |Ψs〉 using vMPS. That is, we run
the algorithm allowing the bond dimension to increase
until the variance of the energy (with respect to the
Hamiltonian) falls sufficiently, cf. Eq. (15). The resul-
tant MPS is then used to construct the reference dynam-
ics, which approximates the Doob dynamics to a high
accuracy, as explained in the previous section. Note that
because the vMPS tries to keep entanglement as low as
possible, for s > sc(N) the approximated ground state
exhibits localisation at just one edge of the system [33].
While for the East case this corresponds to the structure
of the ground state in the sector with fixed occupation 1
in the leftmost site, the FA and SSEP models have reflec-
tion symmetry, spontaneously broken for s > 0 and large
N . Thus, in order to maintain the symmetry in the latter
two cases, we construct an MPS which is a superposition
of the result from vMPS and its spatially reflected state
to construct our dynamics in the inactive phase.
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FIG. 2. Reference dynamics from a truncated MPS. All data is for the system size N = 100. (a) The truncation error
ε = 1 − 〈ψD|ψD′〉2 as a function of truncated bond dimension D′ for SSEP at various values of s. (b) The measured average
dynamical activity with a reference dynamics constructed with truncated MPS. The dashed line shows the expected value
obtained through vMPS with a large (D ≥ 50) bond dimension, and the inset shows the same but on a log-scale around the
critical point. (c) The same but for the East model. (d) The measured dynamical activity 〈k〉 as a function of D for s = 10−3

close to the critical point sc. The purple circles show the values measured using the reference dynamics alone, whereas the blue
squares show values obtained using the reference dynamics and TPS to incorporate umbrella sampling. The dashed line shows
the expected value obtained from vMPS. Each point is done for a trajectory time of t = 100 and Nsp = 106 trajectories.

1. Direct sampling with the reference dynamics but without
re-weighting

We first check that the CTMC algorithm with our MPS
reference dynamics gives the expected results. We do this
without using the trajectory re-weighting, cf. Eq. (37).
This amounts to only considering infinite-time dynamics,
and assuming that our approximation is actually exact.
Despite this strong assumption, we find that it produces
excellent results as shown in Fig. 1. The expected dy-
namical activity (per unit site and time, dashed lines)
can be calculated as a TN contraction over our MPS and
MPO,

k̃(s) =
1

N

〈
Ψs

∣∣∣dHs
ds

∣∣∣Ψs

〉
. (46)

The same quantity can be calculated on a trajectory level
(symbols) by counting the total number of configuration
changes, 〈K〉 and taking its time (and spatial) average,

〈k〉s =
〈K〉
Nt

, (47)

where t is the run time for each trajectory. We show
results for each model, for a range of system sizes of
N ∈ [20, 400]. The expected and measured results have
excellent agreement. This simplified algorithm struggles
most around the transition point, sc(N), due to the re-
quired large bond dimension (see Refs. [33, 36]).

We also show representative trajectories for the active
(s = −1) and inactive phases (s = 1). Each model excel-
lently contrasts the difference in dynamics between the
two phases. The active phase displays very rapid changes
with structures that allow for unconstrained dynamics.
For the FA and East models this means having a large
number of excitations, while SSEP requires particles to
be spaced apart. Conversely, this inactive phase has just

few configuration changes with highly constrained dy-
namics. This means minimizing the number of excita-
tions for the FA and East resulting in the dynamics re-
sponsible for the so-called “space-time bubble” in local
regions of space [5, 40, 65], while for SSEP we restrict
the activity by clustering the particles [47, 66]. To our
knowledge, direct dynamical sampling of trajectories for
these systems sizes and values of s 6= 0 is unprecedented
for these three models.

2. Reference dynamics with truncated bond dimensions

While in the extreme active/inactive limits we can
achieve a good MPS description with just a bond di-
mension of O(10), one may need a bond dimension of
O(100) for the more difficult regions such as around s = 0
[33, 36]. One reason for the necessity of this high bond
dimension could be that the state has longer-ranged spa-
tial correlations. Another could be that when one runs
the vMPS, we run it against some constraint in the state
space. For the FA model, this is the weak constraint that
restricts to the connected component of all configuration
but the one with ni = 0 for all i. For the SSEP, we have
the stronger constraint that we are within the state space
with fixed Np particles.

The goal is to look for a state with a smaller bond
dimension than we currently have which still contains
all the necessary interactions, but if necessary, discards
the information which enforces the constraint. Then, by
starting our CTMC algorithm in a state which satisfies
the constraint, we will automatically enforce it for the
rest of the trajectory, as the dynamics keeps the system
in the constrained subspace.

Bond dimensions of TNs are typically reduced via trun-
cation. That is, we move through each bond within the
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FIG. 3. Sampling finite time trajectories. All results are done for the FA model with c = 0.5. (a) The measured dynamical
activity 〈k〉 as a function of time t for s = −0.1 (top) and s = 0.1 (bottom) for Nsp = 106 trajectories and system size N = 40.
The circles show the values obtained via TPS with the normal dynamics, and crosses TPS with the reference dynamics. The
dotted lines show the expected value at infinite times. (b) The local occupations 〈ni〉 as a function of time in the inactive
regime s = 0.1 and N = 40. (c) The average excitation density 〈n〉 as a function of time in the active regime, s = −0.1. The
value approaches the expected value in the Doob dynamics (dotted line) in the bulk, but moves towards the equilibrium value
(s = 0, dashed line) at the edges and N = 40. (d) The dynamical activity as a function of s and time t. The data for t =∞ is
obtained directly from the MPS, whereas finite t is obtained using TPS. Note that the sharp drop in activity shifts with time.
The dynamics are run at the system size N = 100.

TN and apply a singular value decomposition over it,
keeping only the D′ states with the largest singular val-
ues, where D′ < D is our new desired bond dimension.
We show this in Fig. 2(a) for SSEP (as this typically
requires the largest bond dimension), where we run the
vMPS to at least (but higher if required) D = 50 to find
the state |ψD〉, and then truncate to |ψD′〉 with the bond
dimension D′ < D. We measure the truncation error
ε = 1 − | 〈ψD|ψD′〉 |2 between the two states, where we
assume both are normalised. We find that when far from
the critical point, we can describe the original state to a
high accuracy with bond dimensions as small as D′ ∼ 20.
Conversely, we cannot attain the same level of accuracy
for s ∼ sc, where the state exhibits larger amounts of
entanglement.

There are multiple reasons that one may want to find a
state with a truncated bond dimension. The first is that
our Monte Carlo algorithm scales quadratically with the
bond dimension - this could hinder the convergence of
time-dependent observables at large times, which can re-
quire a large sample size to be determined with sufficient
accuracy. For such situations, reducing the scaling of the
algorithm would be desired. Another reasoning could be
that we want to investigate a system which requires a
higher complexity of TN, such as 2D system with pro-
jected entangled pair states (PEPS) [58, 67]. Not only
would the scaling of our CTMC algorithm increase, but
so would the scaling of the variational algorithm used to
find the reference dynamics. In this case, one may not
be able to reach a bond dimension large enough to give
a desirable variance.

We show the measured dynamical activity for SSEP
and the East model (symbols), with a reference dynam-
ics constructed from states with a truncated bond di-
mension in Fig. 2(b, c), and compare to the expected

result from the non-truncated MPS (dashed line). Sur-
prinsingly, we find that for the most part, even for bond
dimensions as small as D = 2, we can accurately repro-
duce the correct dynamical activity for each of the mod-
els. As expected, the truncation struggles mostly around
the transition point. Nevertheless, we can achieve good
results for the FA (not shown) and East with a truncated
bond dimension of D = 4, and D = 10 for SSEP.

The calculations done thus far have been with a ref-
erence dynamics constructed using a truncated bond di-
mension without any trajectory re-weighting. In princi-
ple, Eq. (37) is exact and thus allows for further improve-
ments by using the umbrella

g(ω) = e−tθ(s)+
∫
dt∆R̂(ω). (48)

We implement this re-weighting via transition path sam-
pling (TPS) with the shifting method, see Refs. [12, 59]
for further details. Figure 2(d) shows the results of this
umbrella sampling for the FA model with a s value close
to the critical point, sc. It is here the discrepancy is the
largest, and we can do a more detailed analysis by look-
ing at a larger range of bond dimensions. As was the case
for (a), we see a significant improvement when using the
re-weighting factor Eq. (48). It might be that we could
see further improvements with more TPS iterations.

The main point to take from this is that we are able to
achieve accurate results for the dynamical activity (the
observable we are tilting) and some local observables with
a relatively small bond dimension. This of course comes
at a cost however, as when we truncate we discard some
of the information that accounts for the long-ranged spa-
tial correlations. For the case of SSEP, even though it
seems as if we are discarding a large amount of infor-
mation when truncating (cf. Fig. 2(a)), it seems that we
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keep the relevant information needed to reproduce the
correct dynamics, but at the cost of not maintaining the
conservation law. We note however that it is possible to
explicitly implement the conservation laws in the MPS
[68], but it is not clear how this will affect the quality of
the reference dynamics in the CTMC algorithm.

B. Sampling rare events of finite times

For the previous results, we disregard finite-time effects
by considering our sampled trajectories to be a “slice” of
a larger infinite-time trajectory. We now look to incorpo-
rate these effects back into our sampling by considering
the full re-weighting factor

g(ω) =
e−tθ(s)+

∫
dt∆R̂(ω)

lref
s (x0) lref

s (xK)
. (49)

Note that previously, for a large bond dimension, the part
of Eq. (49) which accounts for the difference in escape
rate had a negligible effect, and could be ignored. This
is not always the case here, as the umbrella sampling at
the time-edges of the trajectory causes the system to visit
configurations which are atypical in the Doob dynamics,
and not well described by our MPS approximation.

As a proof of principle, we start by comparing results
from TPS with the original dynamics against TPS with
the reference dynamics for a small system size N = 40,
and a variety of times, as is shown for the FA model at
s = ±0.1 in Fig. 3(a). For small times, both show ex-
cellent agreement. For large times however, the normal
dynamics struggles to correctly account for the expected
activity shown by the dotted lines, a result of the expo-
nential time-dependence in Eq. (26) (as K̂ is time ex-
tensive). While sampling with our reference dynamics
reduces the exponential cost in time, the time-edges still
suffer from an exponential sampling difficulty in the sys-
tem size. This is most noticeable for the inactive phase,
where each model exhibits an exponential localization
[33, 36, 69] at the spatial edge(s) of the system. This
causes the lref

s (x) values to exponentially vary. Neverthe-
less, it is still a significant improvement on the previously
exponential cost in space, time and s. We offer a solution
to ease this sampling difficulty in Appendix C, where we
construct a reference dynamics using our approximation
to the Doob dynamics, in addition to a small perturba-
tion of the stationary state of the generator W.

The average occupations 〈ni〉 (at site i) for s = 0.1
and t = 100 is shown in Fig. 3(b), while Fig. 3(c) shows
the average excitation density 〈n〉 = N−1

∑
i 〈ni〉 for

s = −0.1 and t = 10. It is here the time-edge effects
become obvious; we start at a state which lies some-
where between the expected s = 0 (dashed line) dynamics
and the expected long-time dynamics, which depends on
the whole spectrum of Ws, as well as the total trajec-
tory time. The system quickly evolves and resembles the
Doob dynamics. Note that at the end of trajectory, it is

again described by the original probability vector, as is
expected due to the time-symmetry in Eq. (37).

Finally, Fig. 3(d) shows the average dynamical activ-
ity as a function of s and time, t. We show the ex-
pected activity in the infinite time limit t =∞ as a black
dashed line, and the measured activity for finite times
as symbols. Notice that as time decreases, the drop in
activity becomes less sharp. Furthermore, the transition
from the active to inactive phase happens at decreas-
ing s. While the methods presented here could allow for
a detailed investigation into the temporal scaling of the
critical point, doing so for desirable system sizes would
be at a large computational cost. We hope to investigate
this more extensively using time-evolution methods (see
e.g.[28, 58, 70]).

V. CONCLUSIONS

We have expanded on previous applications of TNs
to classical constrained models [33–36], using the MPS
solution to the ground state of a tilted stochastic gen-
erator in 1D to construct a reference dynamics which
well approximates the exact Doob dynamics. This al-
lows us to (nearly) optimally sample the rare events of
1D constrained systems with just a polynomial cost in
both space and time - rather than the exponential cost
of most sampling methods. We have demonstrated here
the efficiency of this approach by generating tilted tra-
jectory ensembles for the FA and East KCMs and the
symmetric simple exclusion process. Our simulations are
for sizes and times unprecedented for such large deviation
studies.

Furthermore, our results show that it is possible to
obtain an accurate dynamics away from the dynamical
transitions of the models we studied with a truncated
bond dimension, which enables close to optimal sampling
simulations at little cost. Further extensions of our work
includes generalising our methods to higher dimensions,
for example by using two-dimensional variational tensor
network techniques, such as PEPS [58, 67] to approxi-
mate the leading eigenvectors of 2D classical generators,
as is done in Ref. [35]. From the associated leading eigen-
vectors, as we have shown here, we can in turn to con-
struct a reference dynamics which is nearly optimal for
sampling rare trajectories. While PEPS algorithms do
not currently allow for bond dimensions comparable to
vMPS, they remain a fruitful area of research which is
constantly being improved on [71–79]. Recent works [80]
have shown the effectiveness of using recurrent neural
networks (RNN) to approximate the leading eigenstates
of tilted generators in two dimensions. The methods pre-
sented here could be easily generalized to RNN to allow
for the efficient sampling of 2D rare events.

Another area that deserves exploration is to apply
similar TN methods to systems which do not obey de-
tailed balance, and for which their generators cannot be
brought to a Hermitian form. While this would damper
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the effectiveness of variational algorithms, approaches
based on time evolution may offer a promising solution
(see e.g.[28, 58, 70]). Such approaches could also offer
further insights into intermediate time rare events, where
both usual sampling methods and large deviation meth-
ods fall short. We hope to report on such studies in the
near future.

ACKNOWLEDGMENTS

We acknowledge financial support from EPSRC Grant
no. EP/R04421X/1 and the Leverhulme Trust Grant

No. RPG-2018-181. M.C.B. acknowledges support from
Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy
– EXC-2111 – 390814868. J.P.G. is grateful to All Souls
College, Oxford, for support through a Visiting Fellow-
ship. We acknowledge access to the University of Not-
tingham Augusta HPC service. Much of the numerical
data during the later stages of this work was acquired
using the ITensor library [81].

[1] D. Chandler, “Introduction to Modern Statistical Me-
chanics,” (1987).

[2] H. Touchette, Phys. Rep. 478, 1 (2009).
[3] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van

Duijvendijk, and F. van Wijland, Phys. Rev. Lett. 98,
195702 (2007).

[4] V. Lecomte, C. Appert-Rolland, and F. van Wijland, J.
Stat. Phys. 127, 51 (2007).

[5] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van
Duijvendijk, and F. van Wijland, J. Phys. A 42, 75007
(2009).

[6] J. P. Garrahan, Physica A 504, 130 (2018).
[7] R. L. Jack, Eur. Phys. J. B 93, 74 (2020).
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[39] J. Jäckle and S. Eisinger, Z. fur Phys. B 84, 115 (1991).
[40] D. Chandler and J. P. Garrahan, Annu. Rev. Phys.

Chem. 61, 191 (2010).
[41] G. Biroli and J. P. Garrahan, J. Chem. Phys. 138,

12A301 (2013).
[42] K. Mallick, Physica A 418, 17 (2015).
[43] R. A. Blythe and M. R. Evans, J. Phys. A 40, R333

(2007).
[44] T. Bodineau and B. Derrida, C. R. Acad. Sci. 8, 540

(2007).
[45] C. Appert-Rolland, B. Derrida, V. Lecomte, and F. van

Wijland, Phys. Rev. E 78, 21122 (2008).
[46] T. Bodineau, V. Lecomte, and C. Toninelli, J. Stat.

Phys. 147, 1 (2012).
[47] R. L. Jack, I. R. Thompson, and P. Sollich, Phys. Rev.

Lett. 114, 60601 (2015).

http://dx.doi.org/10.1137/1030169
http://dx.doi.org/10.1137/1030169
http://dx.doi.org/10.1016/j.physa.2017.12.149
http://dx.doi.org/10.1140/epjb/e2020-100605-3
http://dx.doi.org/10.1103/PhysRevLett.96.120603
http://dx.doi.org/10.1103/PhysRevLett.96.120603
http://stacks.iop.org/1742-5468/2007/i=03/a=P03004
http://stacks.iop.org/1742-5468/2007/i=03/a=P03004
http://dx.doi.org/10.1063/1.5082247
http://dx.doi.org/10.1063/1.5082247
http://dx.doi.org/10.1063/1.5091669
http://dx.doi.org/10.1063/1.5091669
http://dx.doi.org/10.1103/PhysRevLett.120.210602
http://dx.doi.org/10.1103/PhysRevLett.120.210602
http://dx.doi.org/10.1103/PhysRevE.97.032123
http://dx.doi.org/10.1007/s10955-020-02589-x
http://dx.doi.org/10.1007/s10955-020-02589-x
http://dx.doi.org/10.1088/2632-2153/ab95a1
http://dx.doi.org/10.1088/2632-2153/ab95a1
http://dx.doi.org/10.1088/1367-2630/abd7bd
http://dx.doi.org/10.1088/1367-2630/abd7bd
http://arxiv.org/abs/2002.05185
http://stacks.iop.org/1742-5468/2016/i=7/a=073208
http://stacks.iop.org/1742-5468/2016/i=7/a=073208
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1038/s42254-019-0086-7
http://dx.doi.org/10.1103/PhysRevLett.100.030504
http://dx.doi.org/10.1088/1742-5468/2007/10/P10014
https://link.aps.org/doi/10.1103/PhysRevLett.123.200601
https://link.aps.org/doi/10.1103/PhysRevLett.123.200601
http://dx.doi.org/10.1103/PhysRevE.100.022101
http://dx.doi.org/10.1103/PhysRevE.100.022101
http://dx.doi.org/10.1103/PhysRevLett.125.140601
http://dx.doi.org/10.1103/PhysRevLett.125.140601
http://dx.doi.org/10.1103/PhysRevE.102.052132
http://dx.doi.org/10.1007/BF01453764
http://dx.doi.org/10.1063/1.4795539
http://dx.doi.org/10.1063/1.4795539
http://dx.doi.org/10.1016/j.physa.2014.07.046
http://dx.doi.org/10.1088/1751-8113/40/46/r01
http://dx.doi.org/10.1088/1751-8113/40/46/r01
http://dx.doi.org/https://doi.org/10.1016/j.crhy.2007.04.014
http://dx.doi.org/https://doi.org/10.1016/j.crhy.2007.04.014
http://dx.doi.org/10.1103/PhysRevE.78.021122
http://dx.doi.org/10.1103/PhysRevLett.114.060601
http://dx.doi.org/10.1103/PhysRevLett.114.060601


12

[48] G. H. Fredrickson and H. C. Andersen, Phys. Rev. Lett.
53, 1244 (1984).

[49] C. Maes, Phys. Rep. 850, 1 (2020).
[50] M. Fannes, B. Nachtergaele, and R. F. Werner, Comm.

Math. Phys. 144, 443 (1992).
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R. Orús, Phys. Rev. B 92, 35142 (2015).
[68] C. Hubig, SciPost Phys. 5, 47 (2018).
[69] N. Pancotti, G. Giudice, J. I. Cirac, J. P. Garrahan, and
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APPENDIX

A. Steady-state solution in the reference dynamics

The generator of the reference dynamics defined by
Eqs. (34-35) can be written as

Wref
s =

∑
x,x′ 6=x

e−swx→x′
lref
s (x′)

lref
s (x)

[
|x′〉 〈x| − |x〉 〈x|

]
. (50)

By definition, the stationary state |ss〉ref
s =

∑
z P

ref
s (z) |z〉

is annihilated by Eq. (50). It follows that

Wref
s |ss〉

ref
s =

∑
x,x′ 6=x

e−swx→x′
lref
s (x′)

lref
s (x)

P ref
s (x)

[
|x′〉 − |x〉

]
=
∑
x,x′ 6=x

e−s
[
wx→x′

lref
s (x′)

lref
s (x)

P ref
s (x)

− wx′→x
lref
s (x)

lref
s (x′)

P ref
s (x′)

]
|x′〉

= 0, (51)

where we have used a change of variables in the second
and third line. Let us assume our original dynamics obeys
detailed balance, and that the state space is fully con-
nected. Then it follows that if wx→x′ = 0, so does wx′→x,
in which Eq. (51) is satisfied. Otherwise, we must have
that

P ref
s (x)

P ref
s (x′)

=
wx′→x
wx→x′

lref
s (x)2

lref
s (x′)2

. (52)

Now let us recall that our original dynamics obeys de-
tailed balance. This allows us to use a similarity trans-
formation to write the generator as a Hermitian one,
cf. Eq. (16). In particular, let us define the diagonal
transformation matrix as

Q =
∑
z

Q(z) |z〉 〈z| . (53)

One can easily show that for H to be Hermitian, we must
have

Q(x)2

Q(x′)2
=
wx′→x
wx→x′

. (54)

Substituting this back into Eq. (52), we find

P ref
s (x)

P ref
s (x′)

=
Q(x)2 lref

s (x)
2

Q(x′)2 lref
s (x′)

2 . (55)

and it follows the stationary state is given by

|ss〉ref
s =

∑
x

lref
s (x)

2
Q(x)2 |x〉 . (56)

For the case of our MPS dynamics, we defined 〈ls| =
〈ψs|Q−1 of our solution 〈ψs|. It follows that Eq. (56) can

be written as |ss〉ref
s =

∑
x ψ

ref
s (x)2 |x〉, where ψref

s (x) =
〈x|ψs〉.

B. Sampling variance in the reference dynamics

We start by assuming that we are always at the sta-
tionary state of the dynamics. This allows us to calculate
the trajectory ensemble average of some observable (per
unit time) as the average over all configurations with re-
spect to the stationary state,

〈Ô〉ref ≡
1

t

〈∫ t

0

dt′Ô(t′)

〉
ref

= 〈lref
s |Ô|rref

s 〉 . (57)

The aim is to calculate the expectation value and the
variance of the time-integrated difference in escape rates
(c.f. Eq. (39)). Using Eq. (57), we can write

〈∆R̂〉ref =
∑
x,y 6=x

lx

(
ly
lx
e−sωx→y − ωx→y

)
rx

=
∑
x,y 6=x

lye
−sωx→yrx − lxωx→yrx

= 〈lref
s |Ws|rref

s 〉 = θref(s), (58)

where we have written lx ≡ lref
s (x) and rx ≡ rref

s (x) for

brevity. Performing the same calculation for ∆R̂2, we
find

〈∆R̂2〉ref = 〈lref
s |Ws

2|rref
s 〉 , (59)

giving the variance

Varref ∆R̂ ≡ 〈∆R̂2〉ref − 〈∆R̂〉
2

ref = δE2, (60)

where δE2 is the measured variance of the MPS used
to construct the reference dynamics with respect to the
tilted generator (or tilted Hamiltonian).

We are now in a position to estimate the sampling error
Eq. (39). The time integrated difference in escape rate
can be written as it’s average plus some random noise,∫ t

0

dt′∆R̂(t′) = t 〈∆R̂〉+ tδR̂, (61)

with δR̂ having zero mean and δE2 variance. For sim-
plicity, we also assume δR̂ to be normally distributed,
allowing us to calculate Eq. (39),

ε2ref =
1

Nsp

[
〈e2tδR̂〉ref

〈etδR̂〉
2

ref

− 1

]
≈ et

2δE2 − 1

Nsp
. (62)

[LC: We need some justification to why this is a
fine assumption.]

C. Reference dynamics in the inactive phase

The exponential cost of the time-edge dependence in
Eq. (49) leads to a slow initial convergence in TPS. We
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aim to ease this cost by constructing a reference dynam-
ics which depends on the spectrum of the titled generator
Ws. As the biggest sampling difficultly is close to (but
after) the critical point sc(N), we will construct a ref-
erence dynamics using just the approximations of two
eigenstates. The first is of course the leading eigenvector
we find using vMPS, |ψref

s 〉. The second is the stationary
state of the equilibrium dynamics, |ψs=0〉, which closely
approximates an eigenstate of Ws for small s. Together,
they give the complete reference dynamics

|ψ̃ref
s 〉 = |ψref

s 〉+ κ |ψs=0〉 , (63)

up to a renormalisation factor. To make an appropriate
choice for κ, one can consider the spectrum of Ws for
both states. We first calculate their expectation values

θref(s) = −〈ψref
s |Hs|ψref

s 〉 , (64)

θss(s) = −〈ψs=0|Hs|ψs=0〉 . (65)

Note that the dynamics also evolves exponentially in time
under the generator etWs . We use this to justify our
choice

κ = e−t[θ
ref(s)−θ0(s)]. (66)

We stress that this should only be considered a pertur-
bation to the original choice of the dynamics, where the
perturbation serves as a connection to the original dy-
namics with the purpose of aiding the convergence close
to the critical point. Its exponential time dependence en-
sures that we retrieve the Doob approximation for large
times. As we move further from the critical point, the
gap θref(s)− θss(s) grows and thus the the perturbation
is again exponentially suppressed.
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