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Abstract-Li-ion cell degradation has a strong impact on 

electric vehicle performance both directly, through 

performance reduction, and indirectly through deviating 

behavior away from initial control system calibration. This 

necessitates a process for evaluating degradation causes 

and quantifying corresponding behavioral changes. This 

paper shows a holistic approach for achieving this, giving 

both an insight into the causes of cell degradation and 

emulation of the resultant performance changes through a 

virtual tools platform which can be used for degradation 

algorithm development. Additionally, the paper is an 

overview of the novel methodology developed within the 

process including testing, data evaluation, modelling and 

electrical and chemical validation. The process makes use 

of electrical cycling and electrochemical impedance 

spectroscopy (EIS) data to evaluate cell stoichiometry and 

individual impedance features to achieve a much more 

comprehensive ageing behavioral adaptation than is 

typically present in Li-ion cell equivalent circuit models. 

This is achieved while maintaining the versatility and 

computational efficiency of compact model approaches. 

The outlined process also gives a resolution of 

performance changes that allow for conclusions to be 

drawn on the root causes of ageing only through 

evaluation of electrical data, which is itself significant. 

Chemical analysis results are shown to verify the validity 

of the ageing cause conclusions shown by the process. 

 
Index Terms Li-ion, Battery cell, degradation, ageing, 

modelling. 

I. INTRODUCTION 

The automotive industry is in rapid technological transience 

with vehicle driving, ownership models and powertrain 

philosophy undergoing significant disruptive changes [1]. For 

vehicle powertrains the Internal Combustion Engine (ICE) is 

declining in popularity due to vehicle emissions legislation 

[1,2]. Zero emission powertrain alternatives are Battery 

Electric Vehicles (BEVs) [3] and Fuel Cell Electric Vehicles 

(FCEVs) [4]. While battery cells are a clear requirement for 

BEV’s, they also provide benefits as part of a fuel cell 

powertrain by allowing for regenerative braking as well as 

smoothing load demand to allow optimal operation of the fuel 

cell stack.  

 Automotive battery cell usage comes with many stringent 

targets and associated challenges including cost, energy 
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density and lifetime. Li-ion battery costs project a strong 

decreasing predicted trend over the next 5-10 years [5,6] with 

energy density continually increasing [7], with economies of 

scale and new cell chemistries/designs enabling improvements 

in the latter areas. Degradation, however, is a much more 

challenging problem to solve, due to its inherent complexity 

and dependency on cell design and usage conditions [8,9]. It is 

however important for vehicle usage, with manufacturers 

typically providing warranty conditions of 5 years and above 

[10–13] or related mileage utilization. It is also important to 

quantify degradation during usage as it changes several 

aspects of cell behavior in complex and nonlinear ways as 

explained in section II. If this is not understood, the continued 

achievement of vehicle requirements throughout life, such as 

power capability and driving range, cannot be predicted at the 

design stage. In the usage stage, the complex behavioral 

changes will make the Battery Management System (BMS) 

uncalibrated relative to the real cell performance. This affects 

the ability of the BMS to estimate changes in State-of-Charge 

(SoC) during usage due to mis-estimation of capacity and 

therefore relative capacity throughput, as well as mis-

estimation of initial SoC through unrecognized changes in cell 

Open Circuit Voltage (OCV). Unaccounted changes in 

resistance can also lead to inaccurate forecasting of power 

limits which can compromise vehicle power and create issues 

from a usage perspective. For this reason, battery cell ageing 

must be fully understood and quantified. 

A complex problem such as battery cell degradation 

estimation requires a sophisticated solution. A range of 

degradation estimation approaches have been created ranging 

from simple empirical measurements to data driven methods 

[14,15]. No approach thus far gives a completely satisfactory 

solution. Direct measurements are simple to implement and 

compatible with the limited computational power of a battery 

management system. The downside to simple methods 

however such as counting current throughput during charge, or 

measuring instantaneous voltage drop, give a simplified 

perspective of ageing. This simplified perspective does not 

inform of ageing cause, is sensitive to sensor error and does 

not account for variations with parameters such as 

temperature. As a result, data driven methods are increasingly 

popular, made possible by the additional computational 

capability of cloud based off-board analysis. These methods 

use machine learning techniques, for example Neural 

Networks [16] or Support Vector Regression [17]. Data driven 

approaches can give very powerful and accurate estimation of 

cell performance changes however they are often ‘black box’ 
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in their nature i.e. they do not reveal their internal correlation 

model. This is important as a key advantage of monitoring 

degradation is being able to react to it effectively, which 

requires understanding of its cause. Data driven approaches 

also require a significant amount of datapoints which 

depending on vehicle usage patterns may not give a full set of 

possible conditions. Between these are model based 

approaches, which still rely on vehicle data but have an 

underlying structure with which to infer physical meaning. In 

every case, to develop and validate algorithms a large amount 

of testing is required which is not physically realizable due to 

time and cost. For this reason, an accurate yet computationally 

efficient battery emulation and an understanding of underlying 

ageing is required from a relatively small dataset as tools for 

training BMS algorithms. This paper shows an approach to 

create such tools. 

This paper outlines a holistic approach to understanding and 

quantifying the multiple aspects of Li-ion cell degradation. 

Section II introduces the aspects of cell ageing. Section III 

introduces the overall approach designed to quantify ageing, 

and the remaining sections explain the individual aspects of 

the process.. Some aspects of the work from this paper have 

been included in the patent applications as cited in [18,19] 

which apply to the impedance evaluation and the incremental 

capacity analysis (ICA) capacity and Open Circuit Voltage 

approach. This paper shows how the testing approach, data 

analysis algorithms and modelling approach combines to give 

a coherent and effective Li-ion cell ageing evaluation process 

to identify the ageing root causes and to quantify and model 

the changes in cell performance. The presented holistic 

approach is designed to work across the range of Li-ion cell 

designs and chemistries however the data included in the 

figures and results is taken from a case study by the authors 

using prismatic automotive NMC/graphite Li-ion cells. These 

cells were aged for 9 months at high temperature with 

varying SoC ranges and charge currents as explained in [20].  

II. LI-ION FUNDAMENTALS AND AGEING 

Lithium ion cells store and transport cells electrochemically. 

While the cell functions as a complete device, it is made up 

of multiple components shown in Figure 1. Li-ion cells work 

via intercalation of lithium between each electrode, with 

lithium moving from the positive electrode (cathode) to the 

negative electrode (anode) during charging of the cell and the 

reverse when discharging. In each case, the Li-ion must move 

from its current electrode and flow through the electrolyte, 

crossing the separator. The separator plays an important role, 

permitting flow of Li-ions while being electrically isolating. 

Li-ions have a positive charge and therefore when moving 

between electrodes create a charge imbalance. To resolve this, 

negatively charged electrons also move between the electrodes 

however they cannot go through the separator. Instead, they 

travel through the metallic current collectors and around an 

external circuit, giving or receiving work in the process. The 

rate of electron flow defines the current. Each electrode has a 

capacity for accepting lithium and its own electrical potential 

as a function of its relative amount of lithium contained and 

the resistance to any current applied. The full cell voltage 

measurable at the cell terminals is then given by the difference 

between the electrode potentials as shown in Figure 2. 

Ageing in Li-ion cells is complex due to the multitude of 

mechanisms that occur across the different cell components as 

a function of usage and time. The evolution rate of each 

mechanism can depend on cell design conditions, such as 

electrode surface area. It can also depend on usage conditions 

such as temperature. For detail on cell ageing, there are many 

high quality reviews explaining the mechanisms in detail 

[8,21–23]. This section gives a high-level overview with a 

focus on the implications on cell performance. 

A dominant degradation mechanism for Li-ion cells is the 

formation and growth of the Solid Electrolyte Interphase (SEI) 

layer due to anode-electrolyte surface reactions [23,24]. This 

SEI layer is formed by design, as it forms a barrier for further 

Figure 2 Illustration of Li-ion cell stoichiometry through the 

interaction of the Cathode, a, the Anode, c) and the full cell Open 

Circuit Voltage (OCV) b). Cell b) shows the Open Circuit 

Voltage through the difference between the cathode and anode at 

a given SoC, In b) it is also shown the Incremental Capacity 

Analysis (ICA) curve which shows the relative differential 

capacity to differential voltage across the SoC range. In each 

case, the difference due to ageing in each curve is shown due to a 

reduction of cathode capacity and subsequent rescaling of 0-

100% SoC 

a) 

b)) 

c))

a) 

Cell V = Cathode V-Anode V 

OCV = Cell V at 0A 

Figure 1 Cross-section of a Li-ion cell and its internal 

components 
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reactions. It cannot however completely prevent all further 

reactions with a small rate of reactions persisting throughout 

lifetime. These reactions consume lithium, reducing cell 

capacity, and the resultant SEI surface layer increases cell 

impedance. This mechanism causes a steady degradation 

throughout the cell life which is accelerated by higher 

temperatures and higher cell potentials.  

Another significant mechanism is lithium plating. This 

mechanism is avoidable but has large consequences when it 

occurs. If anode potential drops below 0V Li/Li+ , or 0V 

relative to the lithium standard potential, then lithium 

deposit’s on the anode surface rather than intercalating into 

it’s bulk structure [25–27]. In cases where there is high 

thermal gradients in the cell, such as fast charging, the 

threshold for lithium plating can even be several mV higher 

than 0V [28]. Plated lithium can be recovered by stripping 

during discharge however if the lithium becomes 

electrochemically disconnected this is no longer possible and 

the plated lithium and associated capacity is permanently lost. 

This can also pose a safety risk as the lithium deposits on the 

surface and repeated deposition can form dendrites that can 

eventually pierce the separator, causing a short circuit in the 

cell [29,30]. The occurrence of this mechanism depends on the 

anode overpotential, which makes it more prevalent at low 

temperatures and high current dendrites [31].  

Aside from SEI formation and lithium plating, there are also 

several additional mechanisms that occur such as mechanical 

damage from anode volume change at low SoC [22,32], 

cathode damage from lithium intercalation/deintercalation 

[33–35] and cathode surface layer formation [36–38]. These 

combine to cause a map of different condition sensitivities, an 

example of which is shown in Figure 3 that uses temperature 

and SoC as examples. 

Multiple ageing causes each with complex evolution 

profiles makes tracing individual ageing mechanisms difficult. 

A reduced framework grouping ageing into important features 

and locations helps simplify the problem while retaining 

useful information. To do this, the key performance changes 

must be known and included. 

A common ageing consequence is a reduction in the cells 

ability to store charge which is known as capacity fade. 

Capacity fade is caused by changes in cell stoichiometry, and 

what is often neglected is these changes also cause alterations 

in the Open Circuit Voltage (OCV) profile with SoC, and 

affect sensitivity to further ageing [39,40]. With the OCV 

curve typically used to define initial SoC, changes in the SoC-

OCV relation are important to understand for effective control 

recalibration. An example change in electrode stoichiometry 

with ageing and the corresponding subtle change in SoC-OCV 

is shown in Figure 2. 

The other important aspect of battery cell performance 

change with ageing is its ability to give and receive charge i.e. 

impedance change. Cell impedance itself is very complex, 

being made up of ohmic, charge transfer (CT) and diffusion 

contributions with each contribution occurring in multiple 

regions of the cell [41]. Ohmic resistance arises from material 

resistances within the cell, particularly the electrode materials 

and electrolyte [41,42]. Ohmic resistance acts instantaneously, 

and arises from material properties that are not dependent on 

current or SoC [43,44], although the electrolyte resistance has 

some temperature dependence [41]. Charge transfer 

impedance occurs due to the resistance at the 

electrode/electrolyte interface to Li-ion transfer into the 

electrodes. Charge transfer impedance has a fast acting time 

constant of <1s, decreases significantly with temperature rise 

[43–45] and current magnitude increase  [41], and is also 

sensitive to SoC dependent on the electrode stoichiometry of 

individual cells. Diffusion impedance arises from the buildup 

of concentration gradients within the electrolyte and electrodes 

due to continued current application and Li-ion transfer. The 

time taken to build up these gradients gives diffusion 

relatively long time constants (up to 100s of seconds) relative 

to the other impedance aspects. Diffusion impedance strongly 

decreases at higher temperature [44] due to improved 

electrode intercalation kinetics. It can also have a strong 

relationship with SoC as the electrodes undergo phase changes 

at different levels of lithiation which also affect electrode 

kinetics particularly for graphite anodes [46]. 

Each impedance aspect arises from different components 

and causes and is therefore sensitive to different ageing 

mechanisms. The consequence of ageing therefore is not just a 

change in absolute resistance, but a changing profile with 

usage parameters and a change in dynamic response to 

current. An evolution of dynamic response with ageing at a 

consistent temperature, SoC and current magnitude is shown 

in Figure 4. It can be seen that the absolute resistance value 

changes with month but also that the response-time profile 

Figure 3 The influence of temperature and State-of-Charge (SoC) 

on the types of cell ageing that occur, as illustrated by the 

physical effect and resultant ageing symptoms that occur at the 

high and low ends of temperature and SoC. 

Figure 4 Cell Voltage Response to step current at identical 

temperature and SoC conditions, with ageing month. In this 

figure it is shown that the voltage response to current changes 

in its overall magnitude, but it also changes in the evolution of 

that response with time after the change in current 

application. 
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changes, with the aged cells responding over a longer time 

period than when new. This effect is important, because 

changes in voltage evolution can affect heat generation and 

available power during the highly transient automotive drive 

cycles as well as the waiting period after loading before the 

cell is sufficiently relaxed for OCV measurements. 

The complexity of the combined changes in cell 

stoichiometry and impedance necessitate a process combining 

multiple aspects and algorithms, explained in section III. 

III. HOLISTIC APPROACH TO BATTERY DEGRADATION 

The complexity of battery degradation and the resulting 

effects on cell performance make a solution both essential and 

challenging. Outlined in this section is a holistic process to 

understand, quantify and model Li-ion cell ageing.  This 

process must provide a reliable and informative evaluation of 

ageing and its behavioral impact. To be practically applicable, 

the approach is also required to be versatile across different 

Li-ion cell designs and electrode chemistries, functional using 

only data accessible from electrical cycling, and intuitive in its 

process without strong domain knowledge user requirements.  

The elements of the developed approach are shown in 

Figure 5. To quantify ageing, 3 main aspects are required: 

characterization testing, data evaluation, and modelling of 

resultant cell performance. It is critical that these aspects are 

designed to be optimal together. The testing approach defines 

the input data available for the analysis algorithms, which in 

turn defines the results available for the model. It is therefore 

important that the entire approach is designed to achieve the 

objective of understanding the root causes of ageing and to 

quantify/model the behavioral differences described in section 

II. It is also important to be able to validate the approach. It is 

important to both evaluate the underlying ageing causes and 

model the resultant ageing symptoms. These must be validated 

using separate approaches as described later in section VII. 

IV. CHARACTERIZATION & AGEING TESTING 

A fundamental aspect of the evaluation process is 

acquisition of representative data. This process achieves this 

through electrical characterization testing. Electrical testing is 

practically accessible in a way that cell dismantling, and 

chemical evaluation is not and does not need as significant 

adaption across different electrode chemistries and designs. 

The objectives of the electrical characterization are to 

characterize new cell behavior and acquire data on cell 

performance changes with ageing. 

For new cell characterization it is important to acquire data 

that depicts all behavior including capacity, OCV and dynamic 

impedance evolution. This is required across the usable range 

of cell conditions, such as temperature, SoC and current [41]. 

It is not necessary to emulate real automotive cycle profiles 

during characterization, instead optimizing cycling for key 

data acquisition and ease of analysis. Many methods exist for 

this, such as Electrochemical Impedance Spectroscopy (EIS), 

Incremental Capacity Analysis (ICA) and Time based pulse 

relaxation analysis [47–53]. Each gives unique information; 

therefore, a combination of methods is recommended and 

applied during this process. 

It is not practically realizable to quantify ageing 

comprehensively across usage conditions due to the associated 

time and cost. Ageing characterization therefore must be 

efficient in giving informative data. This requires defining two 

aspects of ageing testing, the ageing cycles and the 

characterization cycles. The ageing cycles must be closely 

representative of the target use case. For automotive 

conditions when a cycle is not already known, the Federal 

Urban Driving Schedule (FUDS) [54] is generally 

representative due to it’s inclusion of transient profiles, 

scalability to different cell designs, large 

current magnitude range and inclusion of 

regenerative braking. It is shown in Figure 6.  

The ageing characterization profiles can be 

based on the new cell characterization, but the 

range of tests and conditions must be 

condensed. Hybrid Pulse Power 

Characterization (HPPC) tests are useful for 

this, giving a wide range of information in a 

compact test profile [55]. 

Cell degradation cause and effect is highly 

sensitive to cell usage conditions, as discussed 

in section II. For this reason a design of 

experiments approach to cell ageing testing is 

used to evaluate the impact of different 

Figure 5 Overall holistic process that incorporates all of the required steps to 

evaluate ageing in Li-ion cells. 

  

Figure 6 FUDS profile as defined in [54], chosen for its 

dynamic profile spanning the full range of cell usage, 

and its inclusion of charge pulses representing 

regenerative braking 
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parameters [9,20,56]. The choice of variables can vary, but 

overall the most significant usage parameters on cell 

performance are temperature, cyclable SoC range and charge 

current [31,57,58]. When formulating a design-of-experiments 

approach, the experimental matrix should consider that these 

parameters have both higher order and interaction effects, so 

multiple levels should be used [20]. Close control of the 

conditions, particularly temperature, is also crucial due to high 

sensitivity. For modern Li-ion cells lifetime performance is 

very high therefore even with continual 24-hour high 

temperature cycling it can take at least 9 months to approach 

end-of-life conditions, although this varies significantly with 

cell chemistry and design. 

V. DATA ANALYSIS 

The data analysis stage uses the available characterization 

data to generate model parameters quantifying changes in cell 

performance and to inform on the underlying ageing causes. 

The cell performance results must also be output in a way that 

can be used in a modelling platform such as in section VI. 

Section II explained the complex landscape of Li-ion cell 

ageing and subsequent performance changes. To evaluate this 

several algorithms must be applied, each targeting a specific 

aspect of cell characteristics. The strategy taken in this holistic 

approach is summarized in Figure 7.  

Figure 7 shows how one algorithm is applied to evaluate 

cell stoichiometry and subsequently OCV and cell capacity 

changes. This algorithm infers information about the cell 

underlying behavior, specifically changes in individual 

electrode capacities and lithium distribution within the cell. 

 ICA is a powerful technique for achieving this through 

calculating the change of SoC relative to the change in voltage 

across the cell capacity range [40]. The resultant profile is 

dependent on the relative lithiation state of each electrode, as 

voltage change with lithiation is sensitive for each electrode to 

points in the lithiation curve at which phase changes occur 

[59]. This trait makes the ICA curve shape very sensitive to 

ageing, as shown by Figure 2 which compares a subtle change 

in OCV with ageing to a very pronounced change in the ICA 

profile. The ICA curve features change uniquely based on the 

cause of degradation being Loss of lithium, anode capacity 

reduction or cathode capacity reduction [60]. The sensitivity 

of the ICA curve to cell internal stoichiometry means it can 

first acquire the baseline cell relationships. With the baseline 

established, changes in ICA curves at a consistent current can 

be used to track specific degradation modes within the cell. 

The subsequent knowledge of cell stoichiometry can then be 

used directly to give expected changes in OCV and cell 

capacity. 

Impedance is a very complex aspect to analyze due to the 

combination of ohmic, charge transfer and diffusion 

impedance acting across both electrodes, the electrolyte and 

current collectors [41,44,61,62]. The accumulation of these 

features span a large range of characteristic time constants 

with ohmic resistance being instantaneous and diffusion 

resistance acting over 1000s of seconds (see Figure 4). No one 

method can reliably evaluate the entire impedance range, so 

the high and low frequency aspects are evaluated separately. 

EIS is effective at ascertaining high and medium frequency 

impedance aspects such as ohmic and charge transfer [63]. It 

is fast to perform allowing coverage of a range of SoC and 

temperature values quickly. It is not however good at 

identifying low frequency effects such as diffusion [63,64]. 

EIS requires a net zero current to be valid, and at lower 

frequencies the longer current application causes sufficient 

OCV oscillation for the corresponding voltage change to 

appear on the resulting impedance estimate. As the 

frequencies get slower, the time of the test also elongates to 

the point of impracticality. For the generation of the analysis 

and modelling in this work, a range of 1mHz to 10kHz was 

used. 

Current interrupt through methods such as time pulse 

relaxation provide a good alternative for low frequency 

evaluation [63,64]. By applying a fixed current until cell 

impedance is fully evolved then allowing the cell to relax for 

an extended time period, the cell impedance behavior can be 

evaluated through the voltage-time profile as OCV is 

approached [53]. The high frequency aspect due to their fast 

characteristic time constants are difficult to separate using this 

method, but the zero current during relaxation allows for the 

slower diffusion behavior to be quantified well. This method 

can also be applied across multiple load currents, with the 

relaxation behavior reflecting the current magnitude before 

relaxation. 

The combination of frequency and time domain methods 

can be used to ascertain baseline impedance values and ageing 

changes in each contribution. These can be translated into 

virtual tools through the model platform in section VI. The 

remaining cell behavioral changes are completed by the cell 

stoichiometry algorithm altering cell rest parameters. 

The combined knowledge of individual impedance 

contributions and cell stoichiometry also allows for the root 

cause of ageing to be evaluated. The understanding of how 

Figure 7 Schematic showing the different aspects of cell 

behavior that need to be incorporated and the different 

range of techniques incorporated for quantification 

including Incremental Capacity Analysis (ICA), 

Electrochemical Impedance Spectroscopy (EIS) and time 

domain pulse relaxation. The schematic also shows how 

each aspect quantifies information for the resultant 

equivalent circuit. 
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and why the cell ages can be used to predict lifetimes and 

adapt the cell usage and control approach, demonstrated in 

Figure 8. 

VI. MODELLING PLATFORM 

The modelling platform is required to emulate cell 

performance under a range of conditions and to effectively 

model performance changes with ageing identified by the 

analysis methods in section V. The interaction between the 

algorithms and modelling platform is shown in Figure 7. An 

Equivalent Circuit Model (ECM) approach was used for the 

model structure, implemented within Matlab/Simulink [65]. 

This was chosen due to a wide range of possible cell and 

usage conditions combined with a requirement for emulation 

of cell behavior over the highly transient drive cycles. An 

ECM allows for a more accurate emulation of transient 

performance relative to empirical models while having 

versatility and ease of data population physical-chemical 

models lack. The approach also allows the structure to be 

flexible to incorporate the amount of impedance features 

shown as significant across the usage range by the ageing 

algorithms. The electrical ECM is combined in a closed loop 

format with a thermal model that calculates the irreversible 

ohmic and reversible entropic losses .This paper talks about 

the model structure as part of the overall ageing evaluation 

process. For more information on the model structure 

specifically and underlying theory see the authors previous 

papers [52,53]. 

VII. VALIDATION APPROACH 

The dual purposes of the holistic ageing process are to 

identify root causes of cell ageing and emulate resultant 

performance changes in virtual tools. Both aspects required 

separate validation roots. Model performance was verified by 

comparing outputs with test data variations on electrical 

profiles and ageing month. In addition to model outputs, the 

ageing algorithms also give conclusions on degradation cause. 

These cannot be proven by electrical testing and therefore 

must be validated via physical and chemical investigation of 

the aged cells as described in the second half of this section. 

The electrical validation of the model as applied to new 

cells is shown in [52,66] therefore the focus here is on the 

consistency of the results with ageing. The approach to 

validate the model was to use a variety of cycle data to show 

its accuracy in a range of conditions. In this work, the model 

was validated against constant current (CC) discharge and 

charge tests at 1/3 of the rated cell capacity to evaluate steady 

state performance across the SoC range with ageing as shown 

in Figure 9. In addition, it was explained in section II and 

Figure 4 that ageing can give a significant difference in the 

time based voltage response to current change through 

evolving resistance. This is not easily visible through constant 

current testing therefore time based current and relaxation 

pulses were applied through the Hybrid Pulse Power 

Characterization (HPPC) profiles. These tests were conducted 

at 25°C with temperature control through cooling plates 

connected to the cell, being performed prior to the ageing 

testing and then repeated once per month subsequently. 

The objective of the validation is not to see absolute model 

error but to see changes in model error at relative states of 

ageing therefore evaluating the effectiveness of the ageing 

model. Figure 10 shows the mean absolute error (MAE) of the 

ageing model relative to original Reference Performance Test 

(RPT) data for the monthly HPPC, C/3 discharge and C/3 

charge tests. It can be seen that the error stays within a similar 

order of magnitude throughout life. Figure 9 compares the 

model to the validation test data at early, mid and late life. It 

Figure 9  Validation of ageing model against reference test 

progiles of a hybrid pulse power characterization (HPPC) 

and a constant current (CC) discharge. Shown at 

beginning of life (Month 0), Mid-Life (Month 5) and near 

end of life (Month 8) 

Figure 8 Link between ageing modes, mechanisms, and control 

aspects. The top row shows types of degradation modes, the middle 

row their underlying cause, and the bottom row the sensitivities of 

those mechanisms in terms of controllable usage conditions. 
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can be seen the profile is followed well during the dynamic 

HPPC and CC tests. The main regions of error are the very 

low SoC regions and around 60% SoC where a phase change 

is occurring in the anode [59]. This is due to linear 

interpolation of insufficient datapoints in the model for the 

highly transient impedance and OCV behavior in these regions 

and can be resolved through more targeted RPT profiles. 

The chemical evaluation was performed based on a range of 

techniques. The stoichiometry changes involve changes in 

lithium distribution and active material capacity degradation. 

This is resolved by half-cell analysis of the electrodes in the 

new and aged cells, and techniques such as Nuclear Magnetic 

Resonance (NMR) [67] to investigate the lithium consumed in 

surface layer formation. The impedance changes can be due to 

surface and structural changes in the electrode and 

electrode/current collector interfaces therefore surface and 

cross-sectional surface imaging through Scanning Electron 

Microscopy (SEM) [68] is required. 

The key conclusions from the presented case study is a 

significant loss of lithium and loss of cathode capacity. In 

addition to this, there was a noticeable decrease in the cathode 

charge transfer impedance. The loss of lithium is confirmed by  

Figure 11 (a), which through NMR shows a larger quantity of 

lithium within the SEI meaning it is no longer contributing to 

cell charge storage [69]. The loss of cathode active material is 

confirmed by cycling of active material extracted from new 

and aged cell samples, showing a 

reduction of capacity within the 

cyclable cathode limits in Figure 11 

(b). The SEM results in Figure 12 

compare an example new and aged 

(end of 9-month cycling) cell for the 

anode and cathode surface. The 

graphite anode shows only minor 

changes in surface condition however 

the cathode shows significant 

deterioration and both inter-granular 

and intra-granular cracking. This 

increases cathode surface area, which 

in turn reduces its charge transfer 

impedance [70]. It is important to 

apply a range of chemical analysis 

methods when proving out an ageing 

evaluation approach to verify the 

conclusions are physically accurate. 

Once this is proven to be robust, the 

chemical analysis in future case studies 

is not essential. 

VIII. CONCLUSIONS 

This paper shows a holistic 

approach for evaluating ageing in Li-

ion cells and emulating the complex 

performance changes through virtual 

tools. Li-ion ageing is complex both in 

terms of multitude of ageing 

conditions and the resultant combined 

Figure 10  mean absolute error of ageing model relative to 

test data at monthly intervals for Hybrid Pulse Power 

Characterization (HPPC) testing, C/3 charge and C/3 

discharge tests, 5-90% SoC range 

Figure 11  Chemical evaluation of new and aged Li-ion 

cells showing (a) Nuclear Magnetic Resonance (NMR) 

results showing increased surface layer formation and 

(b) cathode half-cell curves for new and aged cells 

showing noticeable reduction in cathode capacity, 

(a) 

(b) 

Figure 12 SEM images of anode and cathode samples under identical 

resolution for the new and both aged cells. All Graphite Anode images 

are at 5K magnification and NMC111 Cathode images are at 2k . 

magnification. Images included to show clear deterioration of the 

cathode and minor deterioration of cathode at the aged cell condition 

of 9 months of cycling 

Graphite Anode NMC111 Cathode 

New 

Cell  

Aged 

Cell  

Cell 1 
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performance changes however the metrics for evaluating and 

expressing this are often over-simplified. This approach 

resolves that issue by more fully evaluating ageing impact and 

in particular by expressing individual performance changes in 

capacity, OCV and individual impedance features. 

The approach involves definition of representative testing, a 

suite of evaluation algorithms to cover the range of cell 

behavior and ageing, and a versatile equivalent modelling 

platform designed to be adaptable to the algorithm 

conclusions. The result was shown to be a model that retains 

consistency in accuracy over lifetime. It was also shown 

through chemical validation that it provides reliable 

conclusions on the root causes of cell ageing at least in high 

temperature cycling conditions. 
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