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European Society for Paediatric Oncology (SIOPE) MRI guidelines for imaging patients with 

central nervous system tumours. 

 

Introduction 

 

Imaging evaluation of primary tumours of the central nervous system (CNS) and possible 

CNS dissemination is core to their management in children. Given the infrequency of 

childhood CNS tumours, multicentre studies provide the best scientific evidence for their 

management. Standardisation of imaging not only facilitates comparisons of scans for an 

individual subject across various time points (pre-operative, post-operative and subsequent 

follow -up imaging) but also aids comparability across multiple centres by the central study 

co-ordinators and designated radiologists. Standardisation of imaging acquisition therefore 

is an essential pre-requisite across all centres who participate in paediatric CNS tumour 

studies. 

 

One of the main challenges involved in designing a standard imaging protocol is the 

variation in imaging resources across all centres i.e. the manufacturer, the field strength of 

MR scanners, availability of newer hardware/sequences, advanced imaging capabilities and 

expertise, radiology department workflow, anaesthetic provision and personnel. For 

maximum compliance with a protocol, a balance needs to be struck between practicality 

and image quality. This principle was used to develop a brain tumour imaging protocol for 

centres in North America following a workshop consisting of members including imaging 

experts, clinical scientists and patient advocates [1]. They opted for a pragmatic approach, 

striking a balance between an ideal protocol that may be available only to select specialized 

centres and a protocol that could be adopted more widely. A standard protocol was also 

developed by the European Organization of Research and Treatment of Cancer (EORTC) 

Brain Tumour Group. They developed a basic protocol that was mandatory for all centres 

and an advanced protocol that was to be adopted by specific sites [1].  

 

Assessment of tumour response to treatment has evolved over many years with transition 

from the Macdonald criteria [2] to the Response Assessment in Neuro-Oncology (RANO) 

criteria [3] that addressed the challenges related to contrast enhancement including the 

pseudoprogression and the pseudoresponse phenomena. There has been further 

modification of the RANO criteria more recently with recommendations on image 

acquisition, analysis and detailed definitions of response [4]. These recommendations have 

acknowledged the need for standardisation of image acquisition in the management of 

brain tumours mainly focusing on gliomas. More recently the Response Assessment in 

Pediatric Neuro-Oncology (RAPNO) committee have published recommendations for image 

acquisition and response assessment more specific to the paediatric population, which vary 

according to tumour type [5][6-8] . It is important to ensure that there is a basic MRI 
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protocol for the paediatric CNS tumour population that is achievable across all sites, 

reviewed periodically and satisfies the minimum requirement for response assessment of 

the various multicentre cancer studies. 

 

Materials and methods 

  

The European Society for Paediatric Oncology (SIOPE) Brain Tumour Imaging Working Group 

has developed an imaging protocol based on consensus and evidence from earlier clinical 

trials. The members of the group consist of neuroradiologists, imaging scientists and 

clinicians with an interest in brain tumour imaging. The brain imaging working group was 

recognised formally as discipline group within SIOPE Brain Tumour Group in 2011. The 

group members communicate on a regular basis including one annual meeting that 

coincides with the annual SIOPE Brain Tumour Group meeting. One of the main functions of 

the group is to develop imaging protocols based on evidence to facilitate multicentre trials 

led by the various SIOPE tumour working groups (e.g. ependymoma, low grade glioma, 

craniopharyngioma etc.). The protocol has evolved over the past decade and is being 

updated in response to changes in imaging practices and the specific needs of the various 

clinical trials. The protocol is based on consensus among the group members either 

obtained in person and/or using e-mail surveys and at various stages of development. 

During the consensus process, each MRI sequence used in paediatric CNS tumour imaging 

was considered based on published evidence and individual practice. The merits and 

limitation of each sequence, the imaging parameter and plane of acquisition were decided 

through iterative discussions before reaching consensus. The wide MR imaging capability 

ranging from relatively small hospitals with limited imaging capacity to dedicated paediatric 

neuro-oncolgy centres with advanced imaging capability was taken into consideration when 

deciding on essential and optional sequences. The protocol has been successfully 

incorporated into a number of multisite studies, including the Low Grade Glioma studies, 

SIOPE Ependymoma II trial and SIOPE PNET V Medulloblastoma trial[9-11].The protocol 

comprises a mandatory set of sequences which represent a minimum requirement and 

additional sequences including advanced multi-modal MRI that are recommended. This 

protocol was ratified by the group in December 2019. 

 

 

Imaging protocol 

 

The imaging protocol consists of sequences that are specific for the magnetic field strength 

(1.5 and 3 Tesla). Advances in MR technology have contributed to vast improvements in 

quality of imaging on 1.5T and 3T MR scanners. Despite these advances there is a huge 

variation in the capability of the scanner hardware and software across various centres.  The 

rationale for the sequences and parameters recommended is based on practicality, 

published evidence where available and the reliability of tumour assessment. The protocol 
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has been tailored to consist of the minimal essential/mandatory sequences in order to allow 

effective basic tumour evaluation whilst allowing for the use of additional sequences 

including multi-modal advanced MRI. 

We have provided recommendations on advanced imaging methods including MR 

spectroscopy (MRS), diffusion tensor imaging (DTI) and perfusion imaging. The advanced 

imaging recommendations are based on studies performed by the SIOPE group members 

and are aimed as a guideline and are currently not mandatory.  

 

 

 

Brain imaging 

 

 

 

Table 1 summarises the essential and optional sequences for brain imaging with the generic 

sequence technique and the plane of acquisition. 

 

T1 weighted imaging 

 

The T1 weighted (T1W) sequences differ on 1.5T and 3T scanners. 2D T1W spin echo (SE), 

turbo/fast spin echo (TSE/FSE) sequences are recommended for 1.5 T scanners both prior to 

and following contrast administration. For 1.5T scanners, the pre-contrast T1W sequence 

should be obtained in the axial plane along the anterior commissure – posterior commissure 

(AC-PC) plane. Post-contrast 2D T1W sequences should be obtained in 3 orthogonal planes. 

The 3D isotropic radio frequency spoiled T1W gradient echo sequence (MPRAGE/SPGR/ Fast 

SPGR/ 3D TFE/ 3D FFE) is recommended on 3T scanners prior to and following contrast 

administration. It is important to use an identical acquisition plane and T1W sequence type 

for the pre-contrast and post-contrast scans. The quality of 3D T1W sequences have been 

variable on 1.5T scanners with relatively few centres capable of obtaining the high-quality 

3D T1W sequences that are now available on newer 1.5T scanners. It is therefore not 

recommended as an essential sequence at 1.5T. However, it is listed as an optional 

sequence on the 1.5T scan protocol, particularly to obtain a 3D dataset for neuro-navigation 

or radiotherapy planning purposes. 3D T1W sequences have the advantage of facilitating 

volumetric analysis and detection of smaller abnormalities. More recently 3D TSE 

acquisition (CUBE/SPACE/ VISTA)  has been reported to be more sensitive for detecting 

enhancing brain lesions due to improved contrast resolution, high signal-to-noise ratio, 

black blood effect  and reduced artefact from static field inhomogeneity[12-15]. This 

sequence is becoming more widely available on newer scanners but was not available on 

the older systems (or only as an option) and so further validation of this technique in 

paediatric subjects will be considered in the future when a larger dataset is available.  For 

the 3T protocol an axial 2D T1W sequence following contrast is recommended in addition to 
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the 3D T1W sequence following contrast administration. The rationale for this is to maintain 

comparability of the post contrast imaging in case an individual subject needs to undergo 

scanning on 3T and 1.5T scans at various time points. Another reason is that 2D T1W images 

contain few vascular or CSF pulsation artefacts. Some centres perform 2D T1 FLAIR, T1W 

inversion recovery (IR) or T1W gradient echo sequence as the 2D T1W SE/TSE/FSE sequence 

is suboptimal on some 3T scanners. This is acceptable as long as the diagnostic quality of the 

imaging is not compromised, and the same sequence is used consistently at all time points 

for the individual patient. The T1W sequences in the SIOPE protocol are largely compatible 

with the more recently published RAPNO guidelines for medulloblastoma, low-grade 

gliomas (LGG) and high-grade gliomas (HGG)[5] [6,7] [8]. The RAPNO medulloblastoma 

protocol recommends a postcontrast 3D T1W TSE sequence in addition to an axial 2D T1W 

sequence. The type of 3D sequence has not been specified in the LGG and HGG protocols. 

 

Recently, concern has been raised regarding the long-term effects of gadolinium deposition 

in the brain, mainly in the globus pallidus and dentate nucleus and more frequently linked 

to linear gadolinium-based contrast agents than macrocyclic gadolinium-based contrast 

agents[16] [17] The clinical significance of gadolinium retention in the brain is unknown. We 

recommend the use of macrocyclic gadolinium-based contrast agents as per the 

recommendation of the European Medicines Agency [18]. We also recommend appropriate 

consideration when using gadolinium contrast agents, keeping doses as low as possible to 

minimise gadolinium accumulation in the brain. 

 

T2 weighted imaging 

 

T2 weighted (T2W) imaging comprises of T2W and T2 weighted fluid attenuated inversion 

recovery (T2 FLAIR) sequences. We recommend 2D T2W spin echo/ turbo spin echo/fast 

spin echo (T2W SE/TSE/FSE) sequences in the axial plane. Non-enhancing or poorly 

enhancing tumours are seen in a wide variety of paediatric tumours. Novel treatment 

methods including the use of anti-angiogenic agents have reinforced the role of non-

contrast sequences in response assessment [19] [3]. Good quality 2D T2W sequences are 

vital in the characterisation and measurement of non-enhancing tumours. We have 

recommended the 2D T2W SE/FSE/TSE sequence as it provides images with good signal-to-

noise and contrast-to-noise ratios. The axial plane of acquisition parallel to the AC-PC plane 

is universally followed and a reliable plane for obtaining measurements of the tumour in 

two dimensions. More recently 3D T2W sequences have gained popularity in neuroimaging. 

A volumetric T2W sequence does have its advantages particularly with aiding 

neuronavigation during surgery and volumetric measurement of tumours, but its role in 

response assessment has not been validated. From anecdotal experience it is felt that the 

3D T2W sequence is inferior to 2D T2W sequences in defining tumour margins. This is 

particularly the case in tumours situated close to CSF spaces where flow-related artefact can 

mimic solid or cystic tumour (Figure 1).  
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A balanced steady-state free precession (bSSFP) scan produces heavily T2W images that 

have superior contrast resolution and can delineate structures situated within and close to 

CSF. The commonly used sequences on the various MR scanners are CISS, FIESTA, T2 DRIVE 

and BFFE. The use of 3D bSSFP scans have been shown to be effective in identifying small 

tumours in the internal auditory canal such as vestibular schwannomas[20,21]. 3D bSSFP 

scans are also very useful in delineating tumours in the midst of complex post-surgical 

changes, in characterising tumours that have ill-defined margins and appear isointense to 

CSF on T2W images and identifying small extra-axial metastatic foci and differentiating them 

from normal structures in challenging locations such as  the internal  acoustic canals (Figure 

2). The heavily T2 weighted bSSFP sequence has been added to the protocol, for the 

aforementioned reasons as an optional sequence and can be performed as a 2D or 3D 

sequence based on the clinical need. 

 

A T2 FLAIR sequence is complementary to T2W images in neuroimaging allowing 

suppression of signal related to CSF and increases the conspicuity of lesions close to the 

ventricles and the cortex. We have recommended a 2D acquisition for both 1.5T and 3T MRI 

as this is the most commonly used method across all centres. The option of acquiring the 

scan in the axial or coronal plane has been provided, acknowledging the varying preferences 

in practice among different centres. 3D FLAIR has the advantage of multiplanar 

reconstruction and enabling volumetric analysis of lesions. It is available in newer MR 

scanners and has been added as an optional sequence. 3D FLAIR can be used instead of 2D 

FLAIR but not if 2D sequences have been used for the same individual on previous 

occasions. The practice of acquiring FLAIR post contrast has been popular and post-contrast 

3D T2 FLAIR has been shown to be highly sensitive in identifying leptomeningeal metastasis 

in single centre studies [22,23]. Routine use of contrast enhanced FLAIR will need further 

validation in the paediatric brain tumour population, and even if used, should be in addition 

to pre-contrast FLAIR rather than as a replacement. 

 

Among most SIOPE led brain tumour studies, tumour measurement is performed in 3 

orthogonal planes (i.e. anteroposterior [along AC-PC plane], craniocaudal and transverse). In 

order to obtain the 3 plane measurements in non-enhancing or poorly enhancing tumours, 

the combination of 2D T2W and 2D T2 FLAIR sequences will need to be obtained in at least 

two different planes. If both the T2W and T2 FLAIR sequences are obtained in the axial 

plane, an additional T2W/T2 FLAIR sequence will need to be acquired in a different plane. 

The use of 3D T2 FLAIR can mitigate this, provided the individual has not had 2D T2 FLAIR 

imaging previously.  

 

Diffusion Weighted Imaging  
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Diffusion weighted imaging (DWI) has become established as a standard sequence in 

neuroradiology. It is extremely valuable in the assessment of tumour cellularity, differential 

diagnosis, treatment response and in identifying metastases [24] [25] [26] [27]. We 

recommend 2D echo planar DWI sequence with at least 2 b-values (b = 0 s/mm2 and b = 

1000 s /mm2). The b=1000 and the ADC maps should be available for interpretation. 

ADC measurement has some resilience to variations in protocol when acquired on a range 

of scanners from phantoms and volunteers, providing a good basis for its use as a 

quantitative biomarker[28].The choice of b-values for acquisition has been the subject of 

many publications but the choice of 0 s/mm2 and 1000 s/mm is widely used in the brain 

where perfusion effects are small. The practical application of ADC for diagnosis in children 

with brain tumours has been tested in a multi-centre setting and shown good diagnostic 

potential, particularly when combined with advanced analysis methods including histogram 

analysis and machine learning, although these analysis methods are not widely available 

clinically[24] . The acquisition of DWI at multiple b-values between 0 s/mm2 and 1000 

s/mm2 can separate the effects of water apparent diffusion from perfusion and may further 

increase the accuracy of DWI biomarkers in a multi-centre setting but a paucity of 

comparative data for paediatric brain tumours and a current lack of readily available 

analysis software makes this approach a research tool currently [29].”The choice of b-

values for acquisition has been the subject of many publications but the choice of 0 s/mm2 

and 1000 s/mm is widely used in the brain where perfusion effects are small. The 

acquisition of DWI at multiple b-values between 0 s/mm2 and 1000 s/mm2 can give 

information on perfusion but a lack of comparative data for paediatric brain tumours and a 

current lack of readily available analysis software makes this approach a research tool 

currently[29]. 

 

Spine imaging 

 

The essential sequence for spine imaging is a sagittal 2D T1W SE/TSE post contrast of the 

whole spine including the entire dural sac. If there are lesions within the spine suspicious of 

tumour / metastasis, axial 2D or 3D gradient echo T1W post-contrast sequences should be 

performed over the regions of interest.  Physiological veins over the surface of the cord can 

be mistaken for nodules of tumour dissemination and axial slices without gaps are essential 

for all suspicious areas. The T2W sequence of the spine is helpful in the evaluation of 

intramedullary tumours. We recommend sagittal 2D T2W SE/TSE as an option with axial 2D 

T2W sequences covering areas suspicious of pathology. In case of a known primary spinal 

tumour, pre-contrast T1W and T2W sequences should be obtained. The inclusion of the 

posterior fossa in the field of view of the sagittal T1W post-contrast spine sequence is 

encouraged particularly in children with posterior fossa tumours as this may demonstrate 

the late enhancement characteristics of the tumour or reveal subtle areas of recurrence or 

metastasis. Depending on the height of the patient and the capability of the scanner, this 

may require two sagittal acquisitions.  
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1.5T is preferred to 3T for spinal imaging as the quality on older 3T systems is often inferior 

and more unpredictable. More recent generation 3T scanners now enable good, diagnostic 

quality spinal imaging but there must be a low threshold to reimage the spine on a 1.5T 

scanner if it is of a suboptimal quality. Ideally, spinal imaging should be performed prior to 

surgery to avoid diagnostic problems related to postoperative intraspinal subdural 

collections[30,31]. Early post-operative spine imaging should therefore be interpreted with 

caution. If the scan findings are equivocal for metastasis, an early follow up imaging of the 

spine is recommended 2-4 weeks following surgery. This should include pre-contrast T1 W 

sequence in addition to the recommended protocol. 

 

 

The bSSFP sequences (CISS /FIESTA /B FFE) are extremely useful in identifying drop 

metastases and shown to be particularly useful in detecting small drop metastases (<3 mm) 

and non-enhancing metastases in the paediatric brain tumour population [32]. 2D or 3D 

bSSFP sequence of the spine in the sagittal plane ( axial plane) is recommended when 

there is suspicion of drop metastases (Figure 2). As fat suppression sequences often leads to 

artefacts and are not specifically necessary for the delineation of meningeal disease they 

should not be used routinely. 

 

 

 

Early post-operative imaging 

 

Optimal evaluation is made within the first 48 hours following surgery. As non-specific 

intracranial enhancement is often seen 72 hours following surgery the postoperative MRI 

must be obtained within this time [33,34]. However, even within this time surgically induced 

contrast-enhancement can be seen [35,36]. This is compounded by surgical technique 

including the use of haemostatic materials and following electrocoagulation. It is therefore 

prudent to carefully evaluate the pre- and post-contrast T1W images in combination with 

the signal intensities on the T2W and T2 FLAIR sequences.  

 

With increasing use of intraoperative MRI, the validity of the final intraoperative scan as the 

baseline scan has been debated. Based on a single centre study and consensus among the 

SIOP-E brain imaging group, it has been agreed that the final intraoperative MRI scan is now 

acceptable as the baseline, provided it is from a 3T scanner (as it has been only validated on 

3T), this SIOPE brain tumour protocol is followed, is supervised by a radiologist experienced 

in children’s brain tumours and is reported in consensus with the operating neurosurgeon 

[37] . The preoperative and final intraoperative sequences must be comparable. On 

occasions where there has been further resection following the intraoperative scan, this will 

not qualify as a final intraoperative scan. A further scan after the extended resection using 
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the full SIOPE protocol should be performed. The final decision to use intraoperative MRI 

scans rests with the national reference radiologist or radiology panel as the practices vary in 

different countries.  

 

 

Comparability with the preoperative MRI is essential for the detection of residual tumour. 

The size of a possible residuum has to be measured in all three planes. If the residuum is 

best visible on T2W images, a second plane incorporating a 2D T2W or T2 FLAIR sequence, 

or a 3D volume, must be employed. A residuum is considered to be any area of persisting 

pathological signal and/or enhancement that is comparable with the appearance of the pre-

operative tumour. DWI is helpful to demonstrate any local surgical or ischaemic injury, 

which may influence enhancement patterns and tumour evaluation on subsequent 

examinations. For the evaluation of residual tumour seen on imaging, the surgical report is 

often valuable and should be available. 

 

 

Follow up imaging 

 

Timing for follow-up MRI appointments should be planned according to the individual trial 

protocol or clinical management plan. The protocol similar to that used for the pre-

operative imaging is recommended during follow up. 

For uniformly enhancing tumours, the post-contrast T1W should be used for the 

measurement of the diameters. For heterogeneously, poorly or non-enhancing tumours the 

dimensions on T2W/T2 FLAIR and in pre-contrast T1W sequences can be used. In some 

instances, therapy-related reduction of enhancement disproportionate to the change in 

tumour volume may be encountered (Figure 3). The best sequence cannot be predicted at 

the outset in these tumours. In these circumstances, it is useful to choose the initial 

sequence on which the tumour was assessed or change the sequence (e.g. due to a change 

in contrast behaviour) and compare the tumour characteristics with the same sequence on 

the previous staging MRI to assess response.  

In instances where the MRI findings are equivocal for tumour progression/resolution 

(pseudoprogression/pseudoresponse), an early follow up scan(s) may be required to 

evaluate for true progression or response. When true progression is confirmed, the initial 

scan which showed the abnormality should be considered as the time of progression. In the 

paediatric neuro-oncology setting, pseudoresponse mainly refers to reduction of 

enhancement following anti-angiogenic therapy without a change in survival outcome and 

the response assessment in this setting is based on measurement on the T2W and T2 FLAIR 

sequences [3].  

 

 

Multimodal advanced MRI  
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There is increasing experience in the use of a number of advanced MRI techniques which 

give information on tissue properties and these augment conventional MRI[38]. The 

individual techniques should be thought of as complimentary and as such a multi-modal 

approach is most appropriate. We have developed and tested protocols which seek to 

provide a balance between quality of data and length of acquisition and at the same time 

give sufficient flexibility that they can be implemented on most MR scanners. We have 

focused on diffusion imaging, magnetic resonance spectroscopy and perfusion imaging. 

 

Diffusion tensor imaging (DTI) gives information on the directionality of water diffusion and 

fractional anisotropy maps generated automatically by the scanner can be useful for 

investigating tumour margins and proximity to nerve tracts[39]. The additional diagnostic  

value of DTI over standard DWI (which allows the calculation of ADC, but lacks information 

about the directionality of water diffusion) for children’s brain tumours is only just being 

investigated [40]. The agreed protocol uses isotropic voxels and a number of directions 

which is aimed at producing Fractional Anisotropy maps. A larger number of directions e.g. 

60 would be required to provide detailed tractography, particularly in regions of fibre 

crossing. 

Magnetic resonance spectroscopy (MRS) has been extensively investigated in childhood 

brain tumours[41,42]. Single voxel spectroscopy is more robust than spectroscopic imaging 

and is preferred where a profile of the tumour is required for diagnosis or prognostication.  

For the standard protocol one echo time is chosen to minimise scan time and a short echo 

time is preferred as it maximises the metabolite information. There are advantages to 

higher field strength, but a longer repetition time is advised due to longer metabolite and 

water T2 values. The commonly used PRESS localisation suffers from chemical shift 

artefacts, which become more apparent at higher field strength and a recent consensus 

document has advised moving to a semiLASER localisation sequence[43]. MRS data is best 

analysed quantitatively using software methods which can fit the spectra to obtain 

metabolite concentrations but it has also been shown that visual interpretation aids 

diagnostic accuracy when added to conventional MRI[44]. Spectroscopic imaging may be 

more appropriate than single voxel spectroscopy for large diffuse tumours and may aid the 

identification of most aggressive regions, but implementation of the technique requires 

experience and is not part of the routine protocol[45]. 

Perfusion imaging is perhaps the most challenging technique to agree a consensus protocol 

due to the existence of multiple methods and variations acquisition and analysis protocols, 

and few comparative studies have been performed in children. Injection of a gadolinium-

based contrast agent is used routinely in MRI of childhood brain tumours and Dynamic 

Susceptibility Contrast (DSC) – MRI has traditionally been the standard imaging method in 

the brain. Blood vessel leakiness of the contrast agent leads to incorrect estimates of the 

Cerebral Blood Volume (CBV), the main parameter measured, and many methods have been 

used to reduce the effects of this including giving a pre-bolus of contrast agent. We feel that 
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the standard bolus should not be exceeded in children and should be split if a pre-bolus is 

desired. There is an increasing trend towards giving a single bolus and making a leakage 

correction in the post processing supported by studies in adults[46]. A gradient echo 

sequence is recommended as this is readily available. Arterial spin labelling [47] which 

requires no contrast injection but does add to the acquisition time is gaining popularity and 

is likely to form part of future trials. A consensus protocol exists although implementation 

has not been optimised for children with brain tumours and may not be available on local  

scanners[48]. Studies using ASL have shown that perfusion is higher in high grade than low 

grade tumours[49]. It has also been shown that perfusion measured by ASL correlates well 

with values obtained from DSC-MRI with leakage correction in paediatric brain tumours[50].  

ASL perfusion has some limitations in terms of accuracy in children’s brain tumour grading 

but can be effectively combined with DWI, although diffuse midline glioma remains a 

challenge for both these methods [51].The protocol for advanced MRI has been designed 

largely to determine tumour properties since the focus of most clinical trials is on the 

tumour and its response to treatment. However, advanced MRI is commonly used in other 

settings which are applicable to clinical trials. Surgical planning with a combination of 

tractography and functional MR to determine eloquent regions of the brain is becoming 

popular in adults[52]. The effects of treatment on the brain and in particular neurocognition 

are important and there is increasing interest in combining DTI and resting state BOLD 

evaluate changes in structural and functional brain connectivity[53] [54] . Whilst a uniform 

protocol such as the one presented in the supplementary material is a useful starting point 

for developing the imaging protocol for a clinical trial, adaptations may be required to 

optimise the acquisition for specific key questions. 

 

 

 

Conclusion 

 

The SIOPE brain tumour imaging protocol has been developed over a period of 10 years 

following consensus among the imaging group members. The recommendations are based 

on commonly used methods of imaging and their adequate flexibility for the users to 

comply with the protocol. We have provided guidance on multimodal imaging which will be 

increasingly used in the future with advances in treatment and imaging methods. The 

recommendations in this article are solely related to image acquisition; the response 

assessment criteria have not been discussed in this article as they vary between studies. 

However, the SIOPE brain tumour protocol is flexible and compliant with most European 

paediatric neuro-oncology studies and studies employing the RANO/RAPNO criteria.  
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Figures: 

 

Figure 1. 

 

Axial images from a 3D T2W gradient echo sequence (a & c) are compared with images from 

a 2D T2W TSE sequence (b & d) in a patient with posterior fossa ependymoma. Flow-related 

artefact (white arrows) within the 4th ventricle (a) and extra-axial spaces (c) is 

indistinguishable from solid tumour. These areas are clearly identified as CSF containing 

spaces (black arrows) on the 2D T2W sequences (b & d) 

 

 

 

Figure 2. 

 

Utility of bSSFP sequence in CNS tumour imaging. Sagittal bSSFP weighted image (a) of the 

lumbar spine demonstrates a 2 mm drop metastasis (white arrow) that is faintly visible 

(white dotted arrow) on the 2D T2W image (b) and is not evident on the T1W post contrast 

image (c). Axial bSSFP weighted image (d) prior to 2nd stage resection of an ependymoma 

(white circle) clearly demonstrates the tumour margins. The non-enhancing tumour is 

isointense to the brain stem on the T1W post contrast image (e) and cannot be delineated. 

Post-operative bSSFP image (f) shows a small residuum at the opening of the right internal 

auditory canal and demonstrates its relationship to the VIIth and VIIIth cranial nerves (curved 

arrow). 

 

  

 

 

Figure 3. 

 

Axial (a) and coronal (d) T1W post contrast images demonstrates an enhancing optic 

pathway glioma. The enhancement had almost completely disappeared following treatment 

with a BRAF inhibitor (b & e). The axial 2D T2W (c) and 2D T2 FLAIR (f) demonstrate the size 

and extent of the tumour and will be used as the sequence of choice for obtaining 2 or 3 

dimensional measurements. 

 

 

 


