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Digital twins (DT) form part of the Industry 4.0 revolution within manufacturing and related industries. A
DT is a digital model (DM) of a real system that features continuous and automated synchronisation and
feedback of optimisations between the real and digital domains. A core technology for predictive capa-
bilities from DT is discrete event simulation (DES). The modelling cycle for developing and analysing
DES models is significantly different compared to DM. A DT specific DES modelling cycle is introduced
that is evolved from that of DM. The availability of specialised software tools for DT tailored to these dif-
ferences would benefit industry.
� 2021 The Authors. Published by Elsevier Ltd on behalf of Society of Manufacturing Engineers (SME).
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1. Introduction

Industry 4.0 [1] refers to the fourth industrial revolution, char-
acterised by the application to industrial production and manufac-
turing of cyber-physical systems that are composed from deeply
intertwined networked physical and software components. This
includes digital twins (DT) [2–5] as a core component which are
computer models that simulate the behaviour of a real world phys-
ical system in the deployed environment, mirroring its current
condition using online data from sensors and information systems,
to predict and optimise its performance. Similar to a digital model
(DM), a DT is a digital representation of a physical object, but fea-
tures bi-directional and automatic data flow of operational data
and feedback between them [6] (see Fig. 1). Facilitated by growth
in internet of things (IoT) connectivity, computing power, and
advanced analytics, DT have the potential for enhancing a manu-
facturing system by predicting future events, such as machine
faults or production bottlenecks, based on its current status and
anticipated behaviour and then implementing the appropriate
responses to optimise performance in near real-time [7,8].

Simulation has been defined as the imitation of the operation of
a real-world system over time, through the generation and obser-
vation of artificial histories, from which inferences are drawn con-
cerning the operation of the real system [9]. Within manufacturing,
discrete event simulation (DES) is the most popular simulation
technique [10]. A DES model comprises of interacting entities rep-
resenting the tangible (e.g. manufacturing station) and intangible
(e.g. work-in-progress queue) elements of the modelled system
[11] that are updated at discrete, but possibly random, event times
[12]. The totality of entities and their attributes represents the
state of the real system [11]. Simulation has been used extensively
for analysing and optimising the design and operation of manufac-
turing systems [13] and DT has been described as the latest wave
in simulation technology [14]. A simulation DT can synchronise
with the status (e.g. degradation status) and future operating and
maintenance schedules of the assets in the real manufacturing sys-
tem, simulate the probable future outcomes (e.g. predict a likely
machine failure), determine an optimised solution (e.g. scheduling
a preventive maintenance action) and update the real system
accordingly (e.g. update the computerised maintenance manage-
ment system (CMMS)) [15,16]. Simulation has been shown as an
effective tool for real-time control of manufacturing systems
[17–20]. The activities involved in the development, implementa-
tion and analysis of a DES model is described by a modelling cycle.
For a DES DM, the modelling cycle has been addressed in many
publications such as [21–23]. Direct autonomous feedback control
from the DT to the physical world has been identified as one of the
seven key research issues for advancing Digital Twin-driven smart
manufacturing [24]. The emerging ISO 23,247 standard is a generic
framework for manufacturing DT [8], comprising four layers: the
observable manufacturing system entity, the data collection and
device control entity, the digital twin model entity and the user
interface entity. A reference DT architecture has also been pro-
posed comprising of a physical layer, a digital layer, a cyber layer,
and communication for data exchange amongst them [25]. This
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Fig. 1. Difference between a digital model (DM) and digital twin (DT) [6].
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paper proposes a DES DT modelling cycle that is intended to fit into
these generic frameworks and architectures, comparing it to a DES
DM modelling cycle to highlight the major differences.
2. Simulation modelling cycles for DM and DT

A typical modelling cycle for developing and analysing a DES
DM is shown in Fig. 2, exemplified by Figure 1.7 in Page and Kreut-
zer [23] and Figure 1.1 in Banks [22]. The main activities during the
model development phase are: define the problem and modelling
goals; collect and analyse data from the real system; develop and
validate the conceptual model representing the real system; imple-
ment and validate the conceptual model to create the DM. Once
implemented, the analysis phase begins where the main activities
are: perform the simulations to obtain results; analyse the results
to obtain solutions to the modelling goals; and implement the
solutions in the real system. Each of these activities generally
requires input and oversight from the modeller to perform and
are therefore defined as manual activities. The analysis phase for
Fig. 2. A) A typical cycle for developing a DES digital mod
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a DM is often intended to be performed once, to obtain the solution
to the analysis goals before the model is discarded.

The authors researched how the corresponding model develop-
ment cycle would be for DES DT, resulting in the model develop-
ment cycle shown in Fig. 3. In the development phase, which is
performed offline, system data sources and analytical queries are
collated instead of collecting actual data on the real system. These
include database management systems (DBMS), where static data
is stored (e.g. future production plans), and data stream manage-
ment systems (DSMS) that process continuous data streams (e.g.
produced by sensors monitoring the real system). This difference
stems from the fact that a DT must continuously represent the real
system as it evolves over time, therefore data describing the real
system at a particular time (e.g. model design time) is insufficient.
The modeller must simultaneously develop and validate the
queries that will be used to obtain the data from these sources that
will be later used in generating the DT model. These queries may
range from simple lookups to complex machine learning tech-
niques and include those for reading, updating and inserting data
to enable data flow between the DT as shown in Fig. 1.

Instead of developing a static DES model representing the real
system at development time, a generator is developed that can
output a DES model that mirrors the real system at generation time
using data it obtains from the queries. First a conceptual model
generator is developed that describes the assumptions, abstrac-
tions, and logical structure for generating the model from the data
pertaining to the real system. It includes details such as which data
sources and queries will be used to obtain data for the individual
entities in the model, how that data will be transformed into the
formation of those model entities and how the logical interrela-
tions between the entities will be composed. The model generator
may encompass complex domain specific logic to transform
dynamic inputs into models that must be developed on a case-
by-case basis. Following on from this, the model generator is
el. B) Typical analysis cycle for a DES digital model.



Fig. 3. Proposed cycle for developing a simulation digital twin.
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implemented and validated, which includes testing for bugs and
correspondence with the conceptual model. The next activities
are to develop and validate routines (i.e. algorithms) for validating
the DT whenever it is generated, analysing the simulation results
to determine optimisations (constituting the ‘intelligence’ of the
DT) and implementing them in the real system. These activities
can then be performed each time the model is generated during
the analysis cycle, in contrast to the DM modelling cycle where
they are performed once manually. The validation routines
must ensure that errors in the implementation or data, e.g. from
faulty sensors, do not result in the generation of an inappropriate
model.

The analysis cycle for a DT, shown in Fig. 4, is performed online
continuously and autonomously, using the objects resulting from
the development cycle. At the start of each simulation cycle, the
digital twin is synchronised to mirror the state of the real system.
Usually, only the model entity attributes need updating. Occasion-
ally, when more significant changes occur in the real system, the
model entities also need rebuilding by the generator – a more com-
putationally expensive operation. The model is then verified, sim-
ulated, and optimised before any optimisations are implemented
in the real system and the cycle repeats. The exact time for each
cycle will depend on design choices for number of simulation trials
(replications), optimisation criterion and implementation, set to
balance the need for computational efficiency with avoidance of
the model state becoming stale. The distributed execution of this
continuous analysis on a cluster of computing nodes is beneficial
to obtain faster analysis, increased fault tolerance and improved
scalability. This has potential for analysis cycles that update the
56
DT of a manufacturing system every few seconds to reflect its cur-
rent state in near real-time.

3. Summary and conclusions

A proposed model development and analysis cycle for a DES
DT was presented and compared to the equivalent cycle for a
DES DM. A major difference is that it uses data queries, a model
generator, validation routines, results analysis routines and opti-
misation implementation routines instead of a static model. This
allows analysis to be performed in a repeated cycle that pro-
vides automated optimisation of the real system based on its
current state in near real-time. To ease the adoption of DT
within the manufacturing industry and maximise the productiv-
ity benefits from the Industry 4.0 revolution, specialised soft-
ware tools designed for DES DT modelling that cater to these
differences are needed, along with example use cases of the
modelling cycle in manufacturing industry applications. The
mapping of the DES based predictive DT modelling cycle into
the layers and elements of the emerging ISO 23,247 standard
[8] and reference architectures [25] for generic DT is another
area for further work. The authors hope to contribute to these
areas through future research.
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Fig. 4. Proposed continuous analysis cycle for a DES digital twin.
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