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ABSTRACT
Measurements of the Hubble–Lemaitre constant from early- and local-Universe observations show a significant discrepancy. In
an attempt to understand the origin of this mismatch, independent techniques to measure H0 are required. One such technique,
strong lensing time delays, is set to become a leading contender amongst the myriad methods due to forthcoming large strong
lens samples. It is therefore critical to understand the systematic effects inherent in this method. In this paper, we quantify the
influence of additional structures along the line of sight by adopting realistic light-cones derived from the cosmoDC2 semi-
analytical extragalactic catalogue. Using multiple-lens plane ray tracing to create a set of simulated strong lensing systems, we
have investigated the impact of line-of-sight structures on time-delay measurements and in turn, on the inferred value of H0.
We have also tested the reliability of existing procedures for correcting for line-of-sight effects. We find that if the integrated
contribution of the line-of-sight structures is close to a uniform mass sheet, the bias in H0 can be adequately corrected by
including a constant external convergence κext in the lens model. However, for realistic line-of-sight structures comprising
many galaxies at different redshifts, this simple correction overestimates the bias by an amount that depends linearly on the
median external convergence. We therefore conclude that lens modelling must incorporate multiple-lens planes to account for
line-of-sight structures for accurate and precise inference of H0.
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1 IN T RO D U C T I O N

The Hubble–Lemaitre constant, H0, is a cornerstone of the standard
cosmological model, setting the distance scale, age, and critical
density of the Universe. Accurate estimation of the value of H0

is therefore critical for constraining cosmological models in the era
of precision cosmology. However, presently, there is a significant
mismatch between H0 determined from early- and late-Universe
probes (Riess 2019; Verde, Treu & Riess 2019), for instance, mea-
surements of the cosmic microwave background (CMB; see Bennett
et al. 2013; Planck Collaboration VI 2020) and baryon acoustic
oscillations (BAO; see Addison et al. 2018; DES Collaboration et al.
2020) and those made in the more local Universe using supernovae
(SNe; see Dhawan, Jha & Leibundgut 2018; Macaulay et al. 2019),
the tip of the red giant branch (TRGB; see Freedman et al. 2019; Yuan
et al. 2019), and Cepheid variables (Pietrzyński et al. 2019; Riess
et al. 2019). Independent from any of the aforementioned methods,
strong lensing time delays provide valuable measurements of H0

(e.g. Shajib et al. 2020; Wong et al. 2020) that may assist in the
understanding of these discrepancies once systematic uncertainties
in the technique are fully calibrated. With such systematics in mind,
in this paper we focus on the effects of line-of-sight structure, one of
the most dominant sources of error in the lens time-delay method.

� E-mail: nan.li@nottingham.ac.uk

Strong lensing time delays are observed when a variation in flux
of a strongly lensed background source such as a quasar, SN, or a
gravitational wave event is detected at different times between its
multiple images. The deflection of the light path from the source due
to the gravitational potential of a lens, as well as the structures along
the line of sight, leads to both a geometrical and a gravitational delay
of the arrival time of the light from the source. The geometrical delays
are sensitive to H0 (see Schneider, Ehlers & Falco 1992). Therefore,
measuring the time delays and reconstructing the mass distribution
of the lens accurately allow H0 to be estimated. The existing relative
paucity of strong lens systems suitable for this method and the
necessary long monitoring campaigns have somewhat limited the use
of this technique but good progress has already been made with only
a handful of systems (e.g. Suyu et al. 2010, 2013; Birrer, Amara &
Refregier 2016; Bonvin et al. 2017; Wong et al. 2017, 2020; Chen
et al. 2019; D’Agostino & Nunes 2020). However, this is set to
dramatically change (Oguri & Marshall 2010; Collett 2015) with the
advent of the Rubin Observatory Legacy Survey of Space and Time1

(LSST), which will give rise to about 400 well-measured time-delay
systems to constrain H0 to within only a few per cent (Dobler et al.
2015; Liao et al. 2015).

Even with precise time-delay measurements, the reliability of
estimates of H0 depends on how faithfully the lens mass model

1https://www.lsst.org/
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follows the true lensing mass. Degeneracies and inadequacies in the
parametrization of the lens mass model can directly propagate into
the inferred value of H0 (e.g. see Schneider & Sluse 2013; Sereno &
Paraficz 2014; Xu et al. 2016; Muñoz & Kamionkowski 2017; Tagore
et al. 2018; Tie & Kochanek 2018; Wagner 2018; Wertz, Orthen &
Schneider 2018) as can selection effects within the lens sample (see
Collett & Cunnington 2016). In addition, perturbative effects from
substructure within the main lens and from structure along the line of
sight can significantly modify time delays that can bias measurements
of H0 if not properly taken into account. One approach to account for
these effects is to directly characterize perturbing structures identified
in observations (e.g. Wong et al. 2011, 2018; Momcheva et al. 2015;
Rusu et al. 2017; Sluse et al. 2017). Another common technique
is to use external shear, γ ext, and external convergence, κext, in
the lens model. By connecting cosmological simulations and real
observations, an estimate of the distribution function of the amplitude
of these external lensing effects can be obtained (e.g. Suyu et al.
2010, 2013; Collett et al. 2013; Greene et al. 2013; Birrer et al. 2017;
Rusu et al. 2017; Tihhonova et al. 2018). However, the corrections
provided by γ ext and κext are isotropic and cannot properly capture
the complexity of real perturbing structures. Motivated by this, more
sophisticated approaches have been developed using multiple-lens
planes or approximations thereof (e.g. McCully et al. 2014, 2017;
Birrer et al. 2017).

In this work, we investigate the influence of haloes along the line
of sight on measurements of H0 by using multiple-lens plane ray-
tracing simulations. To obtain simulated time delays we construct
the light-cone of each lens from a state-of-the-art semi-analytic
model (cosmoDC22; Korytov et al. 2019) based upon the large Outer
Rim cosmological N-body simulation (Heitmann et al. 2019). By
modelling these time delays with the same methods used for real
data, we directly assess the biases introduced by line-of-sight effects
and the efficacy with which these can be accounted for using external
corrections such as γ ext and κext.

This paper is structured as follows. We outline the methodology
used for determining strong lensing time delays in the cases of the
single-lens plane and multiple-lens planes in Section 2. Details of
the simulations and the process of estimating H0 from the simulated
data are given in Sections 3 and 4, respectively. We present our
findings in Section 5, then conclude with a summary and discussion
in Section 6. The cosmological model adopted in this paper is that
used by cosmoDC2: � cold dark matter (�CDM) with �� = 0.735,
�M = 0.265, and H0 = 71 km s−1 Mpc−1.

2 STRONG LENSING TIME D ELAYS

In this section, we present a basic description of the theory of time
delays in strong lensing systems with multiply-lensed point sources
we have used in this work, for the cases of single- and multiple-
lens planes. Throughout the paper, we have applied the thin lens
approximation. For more details, we refer the reader to Schneider
Ehlers & Falco (1999) and Narayan & Bartelmann (1996).

2.1 Time delays in single-lens planes

For the case of a lensing system with a single deflector, adhering to
the thin lens approximation, one can project the three-dimensional
mass distribution to a two-dimensional mass sheet normal to the line
of sight from the observer to the source. The dimensionless surface

2https://portal.nersc.gov/project/lsst/cosmoDC2

mass density of a thin lens plane can be written as a function of the
lens plane angular position vector, θ , as

κ(θ) = �(θDd)/�crit, (1)

with the critical surface mass density

�crit = c2

4πG

Ds

DdDds
, (2)

where Ds and Dd are the angular diameter distances from the source
and lens to the observer, respectively, Dds is the angular diameter
distance from the lens to the source, and �(θDd) is the surface mass
density of the lens. The lensing potential is given by

ψ(θ) = 1

π

∫
d2θ

′
κ(θ

′
) ln |θ − θ

′ |, (3)

and the deflection angle vector is given by

α(θ ) = 1

π

∫
d2θ

′
κ(θ

′
)

θ − θ
′

|θ − θ
′ |2 . (4)

Once the deflection field at the lens plane is known, we can
construct the lensing equation for a given set of source planes. For
example, in the case of a single-lens plane and a single-source plane,
the lensing equation is simply

β = θ − α(θ ), (5)

where β is the angular source plane position vector that maps to θ in
the image plane (or, equivalently, ‘lens plane’ for the case of single-
lens plane). Based on equation (5), ray-tracing simulations can be
performed from the observer, crossing the lens plane to the source
plane to produce lensed images. For extended-source-like galaxies,
to create distorted lensed images, interpolation can be used in the
source plane to map spatially varying surface brightness back to the
image plane. However, for the point sources used in this work, one
has to adopt triangle mapping and a barycentric coordinate system
to solve the lensing equations numerically. Details of the approach
are discussed in Section 3.3.

In the case of a single-lens plane, the delay of the arrival time of
a light ray from the source to the observer is

τ (θ, β) = (1 + zd)

c

DdDs

Dds

[
(θ − β)2

2
− ψ(θ )

]
, (6)

where zd is the redshift of the lens. The last term in equation (6) is
also known as the Fermat potential,


(θ, β) ≡
[

(θ − β)2

2
− ψ(θ)

]
. (7)

This delay is undetectable, the true observable being the difference
between the arrival time of two separate lensed images (say, image A
and image B), tAB ≡ τA − τB. From equation (6), the time difference
can be written as

tAB = D�τ

c
�
AB, (8)

where

D�τ ≡ (1 + zd)
DdDs

Dds
(9)

and

�
 ≡ 
(θA, β) − 
(θB, β). (10)

Note that

Da(z) = c

H0(1 + z)

∫ z

0

dz
′

E(z′ )
, (11)
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where

E(z) =
√

�r (1 + z)4 + �m(1 + z)3 + �k(1 + z)2 + ��. (12)

These equations show that

tAB ∝ D�τ ∝ 1

H0
, (13)

and thus H0 can be measured from tAB if the mass distribution of the
lens is reconstructed accurately.

2.2 Time delays in multiple-lens planes

In the case of multiple-lens planes, the lens equation must be modified
to account for multiple deflections:

β = θ −
N∑

i=1

αi(θ i), (14)

where the quantities retain their definition from the single-lens plane
case but now take on a subscript referring to a specific lens plane.
We consider N mass distributions, each characterized by a surface
mass density �i, at redshift zi, ordered such that zi < zj for i < j and
such that the source has a redshift zs > zN. The physical distance,
ξ j , of the intersections on the lens planes from the optic axis (i.e. the
impact parameters) is then

ξ j = Dj

D1
ξ 1 −

j−1∑
i=1

Dij α̂i(ξ i), (15)

where Di is the angular diameter distance from the observer to each
lens plane, Dij (such that i < j) is the angular diameter distance
from the ith lens plane to the jth lens plane, and α̂i is the deflection
angle at the ith lens plane (see Fig. 1). For simplicity, we convert the
physical distance to angular positions on the sky θ i = ξ i/Di and the
deflection angles to effective movements on the sky:

αi = Dis

Ds
α̂i , (16)

where Dis is the angular diameter distance from the ith lens plane to
the source plane. By defining a factor Bij,

Bij = DijDs

DjDis
, (17)

equation (15) becomes

θ j = θ1 −
j−1∑
i=1

Bijαi(θ i). (18)

In particular, for j = N + 1 = s, Bis = 1, thus,

β ≡ θN+1 = θ1 −
N∑

i=1

αi(θ i). (19)

The delay of the arrival time of a deflected light path compared
to a straight light path is the integral of the time difference along
the line of sight through all lens planes. For instance, the time delay
created by lens plane i and j is

τij (θ i , θ j ) = 1 + zi

c

DiDj

Dij

[
1

2
(θ i − θ j )2 − Bijψ(θ i)

]
, (20)

where the first term is the geometric delay and the second is the
gravitational delay. Replacing j with i + 1 and summing over all
time delays gives the total time delay through the whole line of

sight,

τ (θ1, . . . , θN, β) =
N∑

i=1

τi,i+1(θ i , θ i+1). (21)

Therefore, similar to the case of a single-lens plane, the time delay
between two separate lensed images A and B can be given by

tAB ≡ τA − τB

=
N∑

i=1

τi,i+1(θA,i , θA,i+1) −
N∑

i=1

τi,i+1(θB,i , θB,i+1), (22)

which means that deflection fields, lensing potentials, and the angular
positions of the intersections on the lens planes are all required for
the calculation of time delays in multiple-lens plane systems. In
Section 3, we discuss how we construct a light-cone and model the
lenses to obtain the information required to implement time-delay
simulations with multiple-lens planes.

3 SI M U L AT I O N S

To quantify the influence of galaxies along the line of sight on mea-
suring H0 with strong lensing time delays, we generated simulated
images following the formalism in Section 2 for both single- and
multiple-lens planes with a strong lensing simulation pipeline named
PICS (Li et al. 2016). In this section, we describe the simulations
used and how the lens equations are solved using a triangle-mapping
algorithm.

3.1 Semi-analytic light-cones

For creating light-cones with realistic spatial and redshift distribu-
tions of the galaxies, we extract light-cones from the cosmoDC2
synthetic source catalogue (Korytov et al. 2019). Designed for
an LSST data challenge project, it is established upon a large
cosmological simulation called the Outer Rim simulation run by the
Argonne Cosmology Group using the Hybrid/Hardware Accelerated
Cosmology Code (HACC; Habib et al. 2016). CosmoDC2 covers
500 deg2 in the redshift range 0.0 ≤ z ≤ 3.0 and is complete to a
magnitude depth of 28 in the r band. Each galaxy is characterized
by a multitude of properties including stellar mass, morphology,
spectral energy distributions, broad-band filter magnitudes, host halo
information, and weak lensing shear.

The light-cones for each of our strong lensing simulations are
cut out from the full light-cone of cosmoDC2. Each extracted light-
cone is centred on a bright central galaxy (BCG) identified in the
cosmoDC2 catalogue since these massive central elliptical galaxies
are likely strong lensing candidates. Each BCG forms the primary
lens mass in its corresponding light-cone (see Section 3.2). The field
of view of the light-cones is 20 × 20 arcsec2, and the corresponding
simulated images are 512 × 512 pixels in size. To focus on the impact
of line-of-sight galaxies, we select light-cones with the primary lens
located in the redshift range zd = 0.5 ± 0.01 and we assume a
fixed source redshift of zs = 2.0. We calculate the Einstein radius of
the primary lens of each light-cone and then discard light-cones
that yield Einstein radii outside the range of [1.3, 2.4 arcsec].
The lower limit avoids resolution issues encountered by ground-
based telescopes/surveys [such as Canada–France–Hawaii Telescope
(CFHT), Dark Energy Survey (DES), and LSST] and the upper limit
discards systems that give year-like time delays. In total, we selected
500 light-cones adhering to these criteria (although this is ultimately
reduced further by additional selection criteria – see the following
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Figure 1. A schematic view of the multiplane formalism, as described in Section 2.2. A light ray (solid black line) experiences a deflection only when it passes
through a lens plane (vertical solid grey lines). The deflection angle α̂i is the actual deflection of a ray passing through the ith lens plane, calculated from the
surface density �i on the ith lens plane. Using the deflection angle α̂i and the position of the intersection of the light ray at the (i − 1)th lens plane, ξ i−1, and
that at the ith lens plane, ξ i , the physical position of the intersection at the (i + 1)th plane, ξ i+1, can be obtained.

section and Section 5). Furthermore, within each light-cone, we
remove any deflectors with Einstein radii larger than 0.3 arcsec to
concentrate our study on the effects of secondary perturbations to the
lensing potential. The substructures of the primary lens are also not
included so that our analysis solely concentrates on the influence of
line-of-sight structures.

3.2 Ray-tracing simulations

For each light-cone, we run two sets of simulations for generating
the lens time delays. The first set includes only a single-lens plane
containing the primary lens galaxy. In this set, the omitted line-of-
sight haloes are approximated with a constant external convergence,
κext, and a constant external shear, γ ext, in the lens model when
computing deflection angles. For each light-cone, we estimate the
value of κext and γ ext by tracing multiple rays throughout it as
described in more detail below. In the second set of simulations,
we include all haloes in the light-cone and use a separate lens plane
for each halo including the primary lens.

In both sets of simulations, we assume a singular isothermal
ellipsoid (SIE) density profile for all haloes (although in our lens
modelling, we use a more general elliptical power-law profile; see
Section 4). The SIE profile, which provides a realistic model for the
total mass profile of real elliptical galaxies (Koopmans et al. 2006;
Bolton et al. 2012; Shu et al. 2016), has deflection angles given by
Kormann, Schneider & Bartelmann (1994) and Keeton (2001),

αx ≡ ψx = bq√
(1 − q2)

tan−1

[√
1 − q2θx

φ

]
, (23)

αy ≡ ψy = bq√
(1 − q2)

tanh−1

[√
1 − q2θy

φ

]
, (24)

where φ2 = q2x2 + y2, q is the minor to major axial ratio, and b is
an effective factor to represent Einstein radius,

b = 4π√
q

(σ

c

)2 Dls

Ds
. (25)

In the case of circular lenses, b can be calculated from the velocity
dispersion. The lensing potential can be computed according to the

relationship between the lensing potential and the deflection field of
SIE model (Keeton 2001),

ψ(θx, θy) = θxψx + θyψy. (26)

The complete parameter set required by equations (23)–(26) is
{x1, x2, σ v , q, �, zd}, where (x1, x2) is the angular position of the
SIE profile centre with respect to the centre of the field of view, σ v

is the velocity dispersion of the lens, q is the ellipse axial ratio, �

is the position angle of the ellipsoid, and zd is the redshift of the
deflector. The parameters x1, x2, q, �, zd are taken directly from the
cosmoDC2 catalogue. σ v is derived from the L–σ scaling relation
from the bright sample of Parker et al. (2007) given by

σv = 142

(
L

L�

)(1/3)

km s−1, (27)

where log10(L/L�) = −0.4(magr − magr�), and magr is the apparent
r-band magnitude of the galaxy given by the cosmoDC2 catalogue.
We adopt the assumption in More et al. (2016) that magr� evolves
with redshift as magr� = +1.5(z − 0.1) − 20.44 (Faber et al. 2007).

Sources are described by the parameter set {y1, y2, ms, zs}, where
(y1, y2) is the angular position of the source with respect to the optic
axis, ms is the apparent r-band magnitude of the source, and zs is the
redshift, fixed to zs = 2. The angular positions are randomly sampled
in the source plane in the vicinity of the caustic structures. We only
retain simulated data in which quadruply lensed images are produced
in both versions of a given light-cone, i.e. both the single- and the
multiple-lens plane version. This reduces our initial selection of 500
light-cones (see Section 3.1) to 400.

With a fully parametrically defined light-cone, the simulated
lensed images can be produced by ray tracing and image finding.
For our single-lens plane simulations, we determine κext and γ ext

in the following manner. First, we trace rays through a given light-
cone from the image plane, computing the deflections caused by all
haloes (including the primary lens), each in their own lens plane. To
obtain γ ext, along each ray, we compute the cumulative external shear
from all haloes. We take γ ext to be the median of the distribution
of values of the cumulative external shear along different rays in
the light-cone. For the external convergence, along each ray, we
compute an ‘external halo convergence’ by summing κ as given by
equation (1) for all secondary haloes excluding the primary lens
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Figure 2. The distribution of the mean (blue) and median (orange) con-
vergence of all fully ray-traced light-cones used in this work. The blue and
orange curves show a smoothed version of the distributions calculated using
kernel density estimates.

halo. This external halo convergence ignores the divergence caused
by voids and so we must apply a correction to obtain κext. The
correction uses the results of Collett et al. (2013) who showed that
κext can be obtained by subtracting the median convergence along
random sightlines from the external halo convergence. The resulting
κext has an uncertainty associated with it due to the scatter in the
relationship between the two quantities, but negligible bias. Firing
rays along random lines of sight in our light-cones and computing the
convergence, again using equation (1), yield a value of κcorr = 0.048.
When correcting the external halo convergence, we distribute κcorr

across all lens planes according to the lensing weights (DdsDd/Ds)
for each plane and subtract them separately.

Fig. 2shows the probability distribution functions (PDFs) of the
mean and median values of κext across all light-cones obtained in
the manner described. We note that our peak of κext � 0.1 is higher
than that of previous studies, for example peaks of 0.075 and 0.05
in Suyu et al. (2013) and McCully et al. (2017), respectively. We
attribute this mainly to our selection of BCGs from cosmoDC2
and their location within more overdense galaxy groups. Secondary
effects also likely include a difference in mass models and simulated
light-cones. Nevertheless, many of our light-cones yield external
convergences that are consistent with these studies and so in our
analysis, we explore how inferred values of H0 vary with varying
κext.

With κext determined, we include it in the primary lens model
for the single-plane simulations and calculate maps of the deflection
angle and the lensing potential. The lensing equation in equation (5)
is used to map the image plane back to the source plane. Since the
sources in this paper are point sources, we have to adopt a triangle-
mapping algorithm to solve the lensing equation. This is described
further in Section 3.3.

For the case of multiple-lens planes, we ray trace through the whole
light-cone in the same manner as outlined above when computing
the external halo convergence, placing each halo on its own lens
plane. As equation (20) shows, to calculate the total time delay,
the deflection map and lensing potential for every lens plane must
be computed. The intersections of the light rays traced from the
image plane (given by equation 18) are required for the calculation
of the time delay between two lens planes. These are summed over
all neighbouring pairs of lens planes to obtain the total time delay
according to equation (21). Again, for our adopted point source, we
have to apply triangle mapping and barycentric interpolation to obtain
the position of lensed images for a given source position on the source

plane (see Section 3.3). The same image-finding process is applied to
locate the intersections of the light rays between neighbouring lens
planes (see equation 20).

Since we are concerned purely with the effects of line-of-sight
structure in this study, we have not included the effects of measure-
ment error in our simulated data, i.e. we do not scatter any of the time
delays, image positions, or flux ratios. However, we do use priors in
the modelling to allow exploration of parameter degeneracies. More
details are given in Section 4.

3.3 Image finding

Since we are concerned with multiply-imaged point-like sources,
e.g. active galactic nuclei (AGNs) or SNe, in this work, solving the
lensing equation for point sources is a critical issue in the simulation.
To determine the apparent positions of our point sources, we make
use of a triangle-mapping technique described in (Schneider et al.
1992). First, a set of Delaunay triangles is constructed from a regular
grid of image plane positions that define the intersections of light
rays from the source (see Fig. 3). These image plane vertices are
then mapped to the source plane. Any image plane triangles that
map to a triangle in the source plane containing the source position
are identified. For each of these identified image-plane triangles,
we compute the barycentric coordinate of the source position
inside the corresponding source-plane-mapped triangle using the
relation⎛
⎝x1 x2 x3

y1 y2 y3

1 1 1

⎞
⎠
⎛
⎝λ1

λ2

λ3

⎞
⎠ =

⎛
⎝xP

yP

1

⎞
⎠ , (28)

where (xP, yP) are the Cartesian coordinates of the point source inside
its triangle of vertices (x1, y1), (x2, y2), and (x3, y3); the corresponding
barycentric coordinates are (λ1, λ2, λ3). We then assume that the
barycentric coordinates are conserved between the image and source
planes and use them, with the vertices of the image-plane triangle to
determine the position of each image of the source.

For the case of multiple-lens planes, the intersections between the
light rays from the source and the lens planes are required for the
calculation of total time delays. Hence, we need to ascertain all the
intersections. If there are N lens planes plus one source plane in the
lensing system, there are N parent triangles for the triangle on the
source plane. Also, we assume the barycentric coordinates of the
source are conserved in the source triangle and all parent triangles.
Then the intersections can be obtained. The intersections on the first
lens plane (0th plane in Fig. 1) are the positions of the lensed images.

4 ST RO N G L E N S MO D E L L I N G

We use the multipurpose open-source lensing package
LENSTRONOMY3 (Birrer, Amara & Refregier 2015; Birrer &
Amara 2018) to measure H0 from our simulated data. For our lens
modelling, instead of the SIE profile used to create our simulated
data, we use the more general singular elliptical power law (SEPL)
profile. The parameters of the SEPL are the Einstein radius, θE,
the two components of complex ellipticity, e1 and e2, the SEPL
power-law index, γ , and the coordinates of the SEPL centre (θ1,
θ2). Also included as free parameters in the modelling are the
coordinates of the source (β1, β2) in the source plane. Finally,
we apply the SEPL model both with and without external shear

3https://github.com/sibirrer/lenstronomy
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H0 with LOS haloes 2229

Figure 3. The interpolation scheme used for determining image positions of point sources. The regular grid of rays in the image plane (filled circles in the
left-hand panel) is used to partition the image plane into triangles (grey lines in the left-hand panel). The image positions (the open white circle in the left-hand
panel) of a source inside a triangle (the grey triangle in the right-hand panel) formed by the backtraced rays on the source plane (grey filled circles in the
right-hand panel) are then determined by using linear interpolation in the barycentric coordinates.

Table 1. Uniform priors applied to parameters in the lens modelling.

Model component Parameter Prior

Lens, Einstein radius θE (arcsec) U (0.01, 10)
Lens, power index γ U (1.7, 2.3)
Lens, ellipticity e1, 2 U (−0.5, 0.5)
Lens, position θ1, 2 (arcsec) U (−10, 10)
External shear γ ext U (0.0, 0.5)
External shear angle θγ , ext (rad) U (−π,π)
Source, position β1, 2 (arcsec) U (−10, 10)
Hubble–Lemaitre constant H0 (km s−1 Mpc−1) U (20, 120)

Figure 4. PDFs of the fractional differences between measured H0 and the
true value in the case of the simulations with constant κext and γ ext. The
blue histogram shows the PDF of fractional differences in H0 with the single
SEPL mass model only. The orange histogram shows the PDF of fractional
differences with the mass model of SEPL + γ ext, i.e. including external
shear as a free parameter. The green histogram shows the corrected fractional
differences of the orange histogram with constant κext correction. The vertical
dashed lines show the median of each PDF, whilst the black vertical solid line
is placed at zero bias.

(see below). We use the complex shear parametrized by γ ext, 1 and
γ ext, 2. We apply generous uniform priors to all model parameters in
LENSTRONOMY as detailed in Table 1.

We model all four different combinations arising from the two lens
model configurations (i.e. the SEPL with and without external shear)
and the two sets of simulated data (i.e. the single- and multiple-lens
plane light-cones). We designate the simulations with a single-lens
plane as ‘SGK’ (SIE + γ ext + κext) and those with the multiple-
lens plane as ‘SL’ (SIE + lens planes). Similarly, we designate the
lensing model that includes external shear as ‘SG’ (SEPL + γ ext) and
that without as ‘S’. The four combinations, labelling the simulation
type first, are therefore referred to hereafter as ‘SGK|S’, ‘SGK|SG’,
‘SL|S’, and ‘SL|SG’. Note that in all cases we fix κext = 0 and
retrospectively apply the correction to H0 for external convergence
determined from the simulated light-cones following the procedure
used by existing studies (see Section 5). In cases where external shear
is not included as a free parameter in the lens model (SGK|S and
SL|S), we fix γ ext = 0.

The simulated data that we fit with LENSTRONOMY are the
four image positions, the three flux ratios, and the three time
delays. For optimization of the lens model parameters and H0,
we use LENSTRONOMY’s particle swarm optimizer (PSO; Kennedy
& Eberhart 1995) since this technique performs well in lower
dimensional parameter spaces such as ours (see Birrer et al. 2015).
We apply the PSO with 200 particles, a particle scatter of 1, and
a maximum number of iterations of 500. These choices yield
an acceptable computation time whilst still allowing a thorough
exploration of the model parameter space.

5 R ESULTS

In carrying out the modelling, we find that not all measurements of
H0 obtained are valid. This is due to the limited precision of the
simulations; when a source is almost coincident with the caustic
in the source plane, the magnifications of the simulated lensed
images become unreliable because of the finite image grid size,
despite our interpolation. These problematic cases can be effectively
removed by imposing a likelihood threshold of log(L) > −1000.
This further reduces our sample of 400 lens systems to 364, 372,
366, and 394 lenses in the cases of SGK|S, SGK|SG, SL|S, and
SL|SG, respectively. By applying this threshold in likelihood, we also
remove poor fits arising from large perturbations from substructures
not caught by the 0.3 arcsec cut in Einstein radius.
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Figure 5. Corner plot showing the distribution of best-fitting parameters of all 372 systems simulated with a single-lens plane and uniform external convergence
and shear. The plot includes the Einstein radius and H0 corrected by the simplistic factor of 1 − κext. These are denoted θ c

E and H c
0 , respectively. γ is the power

index of the SEPL mass model, e1 and e2 are the two components of the complex ellipticity of lenses, γ ext, 1 and γ ext, 2 are the two components of the complex
external shear, Hm

0 is the best-fitting uncorrected Hubble constant, and H0 is the input Hubble constant. The contours show the 1σ and 2σ confidence intervals.
The plot is created with CORNER.PY (Foreman-Mackey 2016).

First, we consider our analysis of the simulations created with line-
of-sight structure approximated by a constant external convergence
and shear. Fig. 4 shows the PDFs of the fractional difference between
the input and inferred H0 obtained for the two different lens models
applied, i.e. the SEPL-only model (SGK|S) and the SEPL + γ ext

model (SGK|SG). Taking the median of each of these distributions,
we find that without including any external convergence in the
modelling, the inferred value of H0 is biased high by ∼11 per cent
in both cases. The inclusion of external shear in the lens model
reduces the spread of the distribution but does nothing to remove
the bias.

Following the procedure commonly used in the literature to correct
for external convergence effects (see e.g. Suyu et al. 2017), we apply
a correction of 1 − κext (with κext determined from the simulations as
explained in Section 3.2) to the biased measurements of H0 from the
SGK|SG configuration. The green histogram shown in Fig. 4 shows
the results of this correction. Clearly, the correction in this simplified
case works well, recovering a median value of H0 that differs from
the input value by only −0.7 per cent.

In Fig. 5, we show the two-dimensional probability distributions
of all parameter pair combinations for the SGK|SG configuration.
Note that in addition to the bias in H0, there is also a similar bias
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Figure 6. The same as Fig. 4, except using the fully ray-traced simulations
containing line-of-sight haloes.

in the inferred Einstein radius, θE. This is a result of the strong
degeneracy between θE and H0 caused by the fact that the external
convergence impacts both quantities by the same factor of 1 − κext.
As Fig. 5 shows, correcting θE by the factor 1 − κext (to give the
quantity θ c

E in the figure), the input value of the Einstein radius is
reliably recovered.

Second, we consider our modelling of the simulations created
with the full light-cones containing haloes (i.e. the cases of SL|S
and SL|SG). Fig. 6 shows the distribution of inferred values of H0

for both cases. This time, we find that the biases in inferred H0 are
significantly smaller than the biases observed with the single-lens
plane light-cones. Now, we find a median value that is 3 per cent and
4 per cent higher than the input value of H0 for the SL|S and SL|SG
cases, respectively. Once again, the inclusion of external shear in the
lens model does little to improve the bias. Furthermore, the inclusion
of external shear does not reduce the scatter in inferred values of
H0, unlike the single-lens plane modelling. Fig. 6 also shows the
histogram of inferred H0 from the modelling that includes external
shear (SL|SG) corrected by 1 − κext, where again, κext is determined
from ray tracing through the light-cone. This time, the correction
is too severe and leads to an underestimation of H0 such that the
corrected distribution has a median that is offset by −7 per cent from
the input value. We therefore conclude that statistically the 1 − κext

correction cannot be reliably used to account for clumpy external
convergence.

Similar to Fig. 5, Fig. 7 shows the two-dimensional probability
distributions of all parameter pair combinations for the SL|SG
configuration. Again, the figure includes both H c

0 and θ c
E, the inferred

values of H0 and Einstein radius corrected by 1 − κext. This time,
however, the degeneracy between H0 and θE has been removed by the
more complex lens geometry caused by the line-of-sight structure;
clumpy external convergence affects the time delays in a different
way to the way in which it affects the inferred Einstein radius, unlike
when a uniform external convergence is assumed. In the same way
that the inferred H0 is not biased as high with the full light-cones,
neither is the inferred Einstein radius and so the correction provided
by the factor of 1 − κext is also too severe and also results in a bias
of −7 per cent from the input value on average.

Since our simulations span a range of lens systems each with
a different median external convergence, κext, we can investigate
whether there is any correlation between the bias we see in inferred
H0 and κext. Identifying such a correlation might instruct future
studies on how best to minimize the bias. Fig. 8 shows the scatter

plot of the bias in inferred H0 versus κext for each lens system
with the SL|SG configuration. As the figure shows, there is a
positive correlation such that the fractional bias in H0 due to the
overcorrection correlates with the median external convergence. The
scatter plot can be fitted using a linear function �H0/H0 = 0.626κext

− 0.005. Unsurprisingly, selecting a lens system in an environment
with a stronger level of external convergence is more likely to bias
the value of H0 inferred from that system.

6 D I SCUSSI ON AND C ONCLUSI ONS

To quantify the influence of secondary deflectors on the measurement
of H0 with strong lensing time delays, we have simulated approx-
imately 800 galaxy-scale strong lensing systems with quadruply
lensed variable point sources; half of these were created with a
primary lens and line-of-sight haloes and half with the same primary
lens plus a constant external convergence and shear. The light-
cones were extracted from a semi-analytic model based on the
Outer Rim large-scale cosmological simulation and are centred
on the location of central galaxies of groups of galaxies. In the
simulations constructed with external convergence and shear, we
used a single-lens plane located at the redshift of the primary lens
galaxy, whereas in the simulations containing haloes, each halo
has its own lens plane. Using an SIE mass profile for the primary
lens galaxy and the haloes, and an interpolative mapping method to
refine the location of the lensed point source images, we generated
time-delay data. This time-delay data were then modelled using
LENSTRONOMY to estimate H0 with a singular ellipsoidal power-
law lens profile and external shear and compared to the known input
value of H0.

Our main conclusion is that incorporating constant external con-
vergence in the modelling only works reliably if the lensed time
delays are subjected to a uniform external convergence. If time delays
are subjected to perturbations due to haloes lying close to the line of
sight as expected in the real Universe, and no correction for external
convergence is made in the modelling, the inferred value of H0 is
overestimated by approximately 4 per cent on average. However, if
a constant external convergence is incorporated in the lens model
with a normalization set by the median or mean convergence of
the line-of-sight haloes, then an overcorrection of H0 occurs such
that it is biased low by ∼7 per cent on average. These results were
obtained from our simulations where we measure a relatively high
median external convergence of κext � 0.11 but we find that the
size of the fractional bias in H0 scales almost proportionally with
κext = 0.11 on average (see below for details). Nevertheless, even
with low levels of external convergence, this effect cannot be ignored,
since the uncertainties of current measurements of H0 from strong
lensing time delays are typically quoted as being lower than this
(Bonvin et al. 2017; Birrer et al. 2019; Chen et al. 2019; Rusu
et al. 2020; Wong et al. 2020). With the forthcoming large sample
of strong lensing time-delay systems observed by the future time
domain large-scale surveys, e.g. Multichannel Photometric Survey
Telescope (Mephisto)4 and LSST, the effect becomes even more
problematic.

Qualitatively, our conclusions are consistent with those of Mc-
Cully et al. (2017) in the sense that line-of-sight structures signifi-
cantly affect the accuracy of the measurement of H0. We find a larger
median external convergence of κext � 0.11 compared to the value
of 0.05 from McCully et al. (2017). We attribute this to the fact that

4http://www.swifar.ynu.edu.cn/info/1015/1073.htm
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Figure 7. Corner plot showing the distribution of best-fitting parameters of all 394 systems simulated by ray tracing through light-cones containing line-of-sight
haloes. All parameters are the same as those in Fig. 5 and the contours again show the 1σ and 2σ confidence intervals.

we have selected central galaxies of galaxy groups as the primary
lenses in our light-cones and because we have included more line-
of-sight structures; we include galaxies from cosmoDC2 down to an
r-band apparent magnitude of 28, compared to the i-band limit of
21.5 adopted by McCully et al. (2017). Nevertheless, our findings
indicate that even small values of κext bias H0 on average. We have
shown that the fractional bias in inferred H0 correlates with median
external convergence according to the linear relationship �H0/H0 =
0.626κext − 0.005.

We have also investigated the effects of incorporating external
shear in the lens model. In the simulations using line-of-sight haloes,
adding an external shear term to the SEPL lens model makes a
negligible impact on the distribution of recovered values of H0.
Not unexpectedly, we also find that correcting this SEPL + γ ext

model with the average constant external convergence also leads to
a ∼7 per cent underestimation, which implies that the influence of
external shear is negligible in the case of our study. This conclusion
differs from that of McCully et al. (2017), most likely because we
cleaned our lens sample by removing secondary haloes that give rise
to an Einstein radius of greater than 0.3 arcsec.

The Outer Rim simulations used to populate our lensing light-
cones with haloes include only dark matter. As such, we have used
SIE profiles in place of identified haloes to better represent the total
mass (baryons + dark matter) profiles of real lens galaxies. One
effect this may have is that the lensing strength of any lower mass
haloes, which in the real Universe may not have accrued baryons,
could be artificially enhanced by the more efficient isothermal profile.
In addition, our simulated data sets do not include any large-scale
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Figure 8. The relationship between the fractional bias seen in the corrected
value of H0, H c

0 , and the median external convergence measured across
all 394 fully ray-traced light-cones containing line-of-sight haloes. The
contours show the 1σ and 2σ confidence intervals and the black line shows
the best-fitting linear relationship that exhibits almost exact proportionality:
1 − H c

0 /H0 = 0.626κext − 0.005.

structure such as filaments, although this is expected to be a small
effect. We have explored the use of truncated SIE profiles in place of
the non-truncated profiles used in this work but find that our results
do not change significantly. Finally, we have ignored the effects
of environmental structure in the simulations in the sense that our
assumed smooth SIE profiles for the primary lens do not include
substructure. We will leave consideration of these additional effects
for future work.

To summarize, simple corrections for line-of-sight structure such
as external shear or external convergence in estimations of H0

using lensed time delays cannot be relied upon in general. Time-
delay studies opt for lens systems that are apparently free of strong
perturbers in an attempt to exclude line-of-sight effects, or they select
systems where the perturbers are low in number and can be easily
incorporated in the lens model. Our simulations have mimicked the
former selection to a degree by removing haloes from all of our light-
cones that produce a deflection resulting in an Einstein radius larger
than 0.3 arcsec. Since this may still allow a significant flexion shift,
an improved technique is to include perturbers in the lens model
with a flexion shift above a certain threshold (e.g. Rusu et al. 2020).
However, our work reveals that the culmination of many small line-
of-sight perturbers continues to result in a significant portion of the
measured bias in H0 and more sophisticated modelling methods,
for example, including more lens planes by lowering flexion shift
thresholds are key to reliable measurements of H0 from the hundreds
of well-measured time-delay systems anticipated in forthcoming
large strong lens samples.
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