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Abstract: Radiative cooling (RC) is attracting more interest from building engineers and architects.
Using the sky as the heat sink, a radiative cooling material can be passively cooled by emitting heat
to the sky. As a result of the development of material technology, RC research has been revived,
with the aim of increasing the materials’ cooling power as well as finding reliable ways to utilize
it in cooling for buildings. This review identifies some issues in the current implementation of RC
technologies in buildings from an architectural point of view. Besides the technical performance
of the RC technologies, some architectural aspects, such as integration with architectural features,
aesthetic requirements, as well as fully passive implementations of RC, also need to be considered
for building application. In addition, performance evaluation of a building-integrated RC system
should begin to account for its benefit to the occupant’s health and comfort alongside the technical
performance. In conclusion, this review on RC implementation in buildings provides a meaningful
discussion in regard to the direction of the research.
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1. Introduction

Global warming forces buildings to consume more energy for cooling. For buildings in urban
areas, they also experience the so-called urban heat island (UHI), and this increases the cooling demand
even more in the warm and hot climate region [1]. Some locations that used to maintain their thermal
comfort via passive cooling also now need mechanical assistance. The International Energy Agency
(IEA) reported that energy consumption for cooling has tripled during the last three decades [2].
Reliance of the energy generation on fossil fuel makes the cooling demand somewhat paradoxical,
i.e., by cooling down our buildings, we made the earth even warmer [3]. Thus, passive cooling in
buildings plays a crucial role in the environment [4].

Various passive cooling techniques have been developed by researchers and engineers. The general
mechanism of passive cooling is actually by dissipating heat from buildings to the environmental
heat sink [5]. The most commonly utilized mechanism is convection and evaporation. These two heat
transfer mechanisms mainly deal with ambient air or ground as the heat sinks. Nowadays, there is an
emerging field of study in which thermal radiation is used as a means of cooling with the sky as the
heat sink [6]. This mechanism is not new in nature, e.g., plants experienced this with the effect of dew
and frost formation on their leaves [7]. In buildings, radiative cooling (RC) can be applied to building
envelopes, especially those that acquire the highest sky view factor (SVF).

Despite their potential, RC techniques have not been widely used in buildings. Challenges of
RC application are well defined by researchers. The two most frequently mentioned challenges are
technical and cost problems. Technical problems are related to low cooling power, sophisticated material
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technology to produce the radiator, complicated systems in implementations, durability, and maintenance
issues [8]. Cost problems consist of high production cost and high installation cost [9,10].

There is also a problem regarding geographical constraints. Generally, the RC panel is highly
dependent on climate and geographical conditions. Factors such as sky condition, wind speed,
atmospheric particle, etc. strongly affect the performance of RC panels [5,7,11–13]. RC performs badly
in humid conditions. Moreover, a problem also occurs in the form of a mismatch between the cooling
demand and the supply. The highest cooling power of an RC panel occurs at night, while building
occupants require cooling in the daytime [5,14]. From an architectural point of view, options for
design are more crucial. RC panels should be placed on the side that is fully exposed to the sky,
which already limits the design option of the building roof, or other smaller sky-facing building
components [15]. Moreover, the roof-to-floor area ratio is significantly low for multi-story buildings.
This again constraints the design option for architects [9]. Furthermore, structural considerations could
also limit the design options [15].

In short, implementing passive RC in buildings does not appear to be beneficial for utility and
architectural demand. RC power is not enough for a larger building. Moreover, the technology needs
to be more building-integrated [5,7,16]. Many proposals for the implementation of RC in buildings are
still in the stage of research and development, and they are mainly about the emitter material or the
use of RC to assist active cooling technology [17]. These challenges remain further research topics in
the RC field.

Although there are several reviews on RC technologies, and some of their conclusions are cited
above, to the authors’ best knowledge, only two reviews focused on the applications of RC in buildings.
The first paper by Lu et al. [7] elaborates on the cooling power of RC materials, which back in 2016
seemed to be the main barrier for the adoption of RC in buildings. A recent review on a similar topic by
Chen et al. [18] in 2020 updated the conditions on RC material explorations, which have been improved
since 2016 but still require a real building application, not to mention a large-scale one. Chen et al. [18]
suggested that the potential for real RC application in buildings might lie in RC combination with a
heating, ventilation, and air conditioning (HVAC) system. Moreover, the two reviews also mentioned
that there is a need for study on the economic aspect of many prototype RC systems.

However, one stakeholder that is also important for the application of RC in buildings,
i.e., the architects, was excluded in the reviews. Architects should be taken into consideration
as they implement RC concepts in their designs [19]. Thus, this review offers to fill in the gap by
analyzing the current development of RC technology in buildings from an architectural point of view
and proposes some possible research direction of passive RC application in buildings. This review does
not only include works that directly implement RC in building, but also looks at some relevant papers
on the technological development of RC. The review is arranged in six sections with the main content,
besides the introduction and conclusions, describing RC principles, its state-of-the-art application
in buildings, the architectural features that are involved in current applications, and an outlook for
architectural application of passive RC.

2. Radiative Cooling Principles

All solid surfaces radiate heat in the form of electromagnetic radiation, whose power is proportional
to temperature and emissivity, and is distributed across the frequency spectrum. Thus, the term total
emissive power is differentiated from spectral emissive power, where the former refers to energy
emitted over the entire spectrum, while the latter suggests energy emitted at a specific wavelength
interval. The spectral emissive power of an ideal blackbody is governed by Planck’s law as stated by
Equation (1).

EBλ(T,λ) =
2πhc2

0

n2λ5[ehc0/nλkT − 1]
(1)

EBλ(T,λ) is the spectral emissive power of a blackbody at a certain temperature T for a particular
wavelength λ, h is Planck’s constant (6.626 × 10−34 J·s), c0 is light speed in vacuum (2.998 × 108 m/s), n is
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the refractive index of the medium (1 for vacuum), and k is Boltzmann’s constant (1.3807 × 10−23 J·K−1).
Figure 1 plots the distribution of blackbody emissive power for some temperatures against the
wavelength. It indicates that emissions from different blackbody temperatures peaked at different
wavelengths. The maximum wavelength λmax, the wavelength in which a blackbody at a certain
temperature T emits the maximum power of radiation, can be calculated from Equation (2), which is
obtained from Equation (1). When applied to terrestrial bodies with a temperature around 300 K,
Equation (2) gives λmax of 9.6 µm [20].

λmax =
2898

T
(2)
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Figure 1. Distribution of spectral emissive power of a blackbody for different temperatures, replotted
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The earth’s thermal radiation, which peaks at 9.6 µm, is radiated to outer space through the
atmosphere. Fortunately, the earth’s atmosphere is relatively transparent for thermal radiation at
8–13 µm, the wavelength in which the λmax of terrestrial radiation peaks. This band is called the
atmospheric window. This atmospheric window makes possible the cooling of the earth’s surface via
radiation in the direction of the sky. Figure 2 superimposes the thermal radiation of a terrestrial body
with 300 K temperature on the value of atmospheric transmittance.
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Passive RC techniques utilize this phenomenon. A typical RC panel places the emitter inside
a fully insulated frame and protects it from convective heat loss by a transparent cover, usually a
polyethylene film, as illustrated by Figure 3. The cooling power (Qnet) of a radiative surface is defined
as net heat transfer from the surface. A surface exposed to the sky absorbs radiation from the sun (Qsun)
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and the atmosphere (Qatm) and emits its radiation (Qrad). In addition to the radiative heat emitted
or received by the surface, it also gains and loses heat from conduction and convection (Qcond+conv).
Thus, the energy balance equation of a radiative surface can be written as Equation (3).

Qnet = Qrad(T,λ) − Qatm(Tamb) − Qsun ± Qconv+cond (3)
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Detailed equations for each component of the above equation are summarized by Raman et al. [12].
Qrad is the emissive power of an RC surface with area A at temperature T for the wavelength λ,
as shown in Equation (4). The absorbed heat due to incident atmospheric thermal radiation (Qatm) at
ambient temperature Tamb is given by Equation (5).

Qrad(T,λ) = A
∫

dΩcos θ
∫
∞

0
dλEBλ(T,λ) ε(λ,θ) (4)

Qatm(Tamb) = A
∫

dΩcos θ
∫
∞

0
dλEBλ(T,λ) ε(λ,θ) εatm(λ,θ) (5)

where, ∫
dΩ = 2π

∫ π
2

0
dθsinθ (6)

In Equations (4) and (5), A represents the area of the emitter, and
∫

dΩ denotes angular integral
over a hemisphere as shown in Equation (6). Moreover, EBλ(T,λ) represents the spectral emissive
power of blackbody at the emitter’s temperature T for the wavelength λ as formulated by Equation (1),
whereas ε(λ,θ) is the angle-dependent emissivity of the emitter. For Equation (5), there is an additional
emissivity, εatm(λ,θ), which is the angle-dependent emissivity of the atmosphere.

Further, the absorbed solar radiation is formulated using Kirchoff’s radiation law as shown by
Equation (7), where ε(λ,θsun) is the emissivity of the emitter at the angle of the sun’s position (θsun).
In Equation (7), IAM 1.5 is solar intensity using AM 1.5 spectra. Conduction and convection heat
transfer Qcond+conv(T, Tamb) between the absorber/emitter with the surroundings are also considered
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in Equation (8), where hc is heat transfer coefficient, Tamb is ambient temperature, and Temitter is the
surface temperature of the RC emitter.

Qsun = A
∫
∞

0
dλε(λ,θsun) IAM1.5(λ) (7)

Qcond+conv(T, Tamb) = A hc(Tamb − Temitter) (8)

From the mathematical model of a typical RC emitter as shown above, factors for a successful RC
emitter can be derived. Firstly, the RC emitter needs to be properly insulated from conduction and
protected from unwanted convective loss. Secondly, the emitter must have high emissive power in
the atmospheric window band. This also means the convection cover needs to be transparent in the
same band to transmit the thermal radiation from the emitter. Thirdly, the emitter needs to reflect as
much as possible the incident solar radiation to work in the daytime. Another important factor is the
atmospheric or sky condition, i.e., a humid atmosphere limits the transparency of the atmospheric
window. In other words, a clear sky is more beneficial to the RC emitter than an overcast sky.

3. Research on the Application of Radiative Cooling in Buildings

Attempts to utilize RC in buildings can be traced back to the 1970s when Bartoli et al. [23] and
Harrison and Walton [24] conducted experiments using two similar RC emitter designs with different
materials, namely TEDLAR (a polyvinyl fluoride film) and TiO2 white paint as the emitter, respectively.
In the same period, Givoni [25] proposed another design of a passive RC system that can provide
heating and cooling for buildings. The field started to attract more attention from researchers during
the 1990s. During the decade, besides explorations that focused on the cooling power of emitter
materials [26–30], some proposed RC systems involving working fluid to extract the cooling and other
elements such as thermal storage [31–33] and desiccant [34] to improve the system’s performance.
Since then, the number of explorations of the application of RC in buildings has grown significantly.

There are different classifications of RC technologies applied in buildings. Erell and
Santamouris [15] classified RC technologies into two categories based on how the RC system is
utilized, namely movable insulation and heat exchangers. In an RC system with movable insulation,
the emitter, which was actually a solar thermal collector, was protected from solar radiation at
daytime and exposed to the sky at nighttime by turning the insulation off from the emitter [31,35].
In contrast, in an RC system with a heat exchanger, a working fluid, either water or air, was used as
a medium to “carry the coldness” of the emitter to the building interior [16,36]. On the other hand,
Zeyghami et al. [16] classified the RC technologies into two categories based on working time, namely
nocturnal and diurnal. Nocturnal cooling consists of two general designs, i.e., a gray emitter which
emits in the whole range of the wavelength, and a selective emitter which was designed to have
emissivity higher or lower at a certain wavelength. Meanwhile, diurnal RC prefers to be equipped
with selective emitter material and assisted with a cover shield.

The classifications of RC technology that have been performed by researchers mark a historical or
rather a sequential development of RC technology. In this review, we classify RC technologies
based on the type of improvement carried out by researchers in order to obtain technology
applicable to buildings. The first category is “material improvement”, which includes studies that
focus on new materials or that enhance the current materials for emitters. The second category is
“design improvement”, i.e., researchers tried to modify the panel configuration, design, or supporting
element to improve the emitter performance. The last category is “combination with other technologies”,
which includes applications of RC “to assist” or “with the assistance of” other technologies.
Table 1 summarizes the classifications of improvement strategies and the reported performance.
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Table 1. Improvement strategies for RC technology application in buildings.

Researcher Category Time Improvement Strategy Maximum Cooling
Power/Minimum Temperature

[37]

Em
it

te
r

m
at

er
ia

li
m

pr
ov

em
en

t
Nocturnal

Film-based emitter energy saving for cooling up to
26–49%

[38] Film-based emitter 43 W/m2

[39] Photonic emitter 5 ◦C below ambient

[40] Photonic emitter 5.2 ◦C below ambient

[41]

Diurnal

Film-based emitter 120 W/m2

[42] Film-based emitter not available (N/A)

[43] Film-based emitter 2.5 ◦C below ambient

[8] Film-based emitter 4.2 ◦C below ambient

[44] Film-based emitter 95.1 W/m2

[45] Photonic emitter 110 W/m2

[46] Nanoparticle-based emitter 25.5 ◦C below ambient

[47] Nanoparticle-based emitter 35 ◦C below ambient

[48] Photonic emitter N/A

[49] Photonic emitter 14.3 W/m2

[50] Photonic emitter 7.7 ± 0.2 ◦C below ambient

[51]

C
ov

er
m

at
er

ia
l

im
pr

ov
em

en
t

Nocturnal

Film-based cover 23 W/m2

[52] Film-based cover 175 W/m2

[53] Film-based cover N/A

[54] Film-based cover N/A

[55] Diurnal Photonic cover 50 W/m2

[56]

D
es

ig
n

im
pr

ov
em

en
t Nocturnal

Design aspect: water contact
with the emitter, insulation 97.8 W/m2

[11] Design aspect: construction
material 2.5 ◦C below ambient

[57] Design aspect: water contact
with the emitter 52 W/m2

[58] Design aspect: air duct 90 W/m2

[59] Design aspect: insulation,
air duct 2.5–4 ◦C below ambient

[60] Design aspect: insulation 38 W/m2

[61] Design aspect: insulation N/A

[62] Design aspect: cover,
air duct 1–6 ◦C below ambient

[63]

Diurnal

Design aspect: insulation 37 ◦C below ambient through a
24 h cycle

[64] Design aspect: glazing and
convection scheme 100 W/m2

[65] Design aspect: orientation 7.4 ◦C below ambient

[66] Design aspect: appearance 3.9 ◦C below ambient
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Table 1. Cont.

Researcher Category Time Improvement Strategy Maximum Cooling
Power/Minimum Temperature

[67]

C
om

bi
na

ti
on

Nocturnal

Trombe wall energy saving for cooling up
to 53%

[30] Wall material 55.8 W/m2

[68] Wall material and insulation,
cold water storage 87 W/m2

[69] Solar collector, phase change
material (PCM) N/A

[70] Photovoltaics (PV) 128.5 W/m2

[71] Solar collector 50.3 W/m2

[72] Cold storage N/A

[73] Solar collector 27.3 W/m2

[74]
PV, heating, ventilation, and

air conditioning (HVAC)
system

123.9 W/m2

[75] PV 41.7 W/m2

[76] HVAC N/A

[77] Solar collector and PV, cold
water storage 75 W/m2

[78] PCM energy saving potential can reach
77% for low-rise buildings

[79] Desiccant 5.5–7 ◦C below ambient

[34] Solar collector, desiccant energy saving up to 7400 kWh per
year

[80] PV, solar collector, HVAC N/A

[81] HVAC energy saving for cooling up to
46% for

[82] Radiant cooling, air
handling unit (AHU) 18.1 W/m2

[83] Fan or HVAC 5–10W/m2

[84] Ground coupled heat pump energy saving 10.22% compared to
conventional ground heat pump

[85] PV, solar collector 72 W/m2

[86] HVAC N/A

[87] Thermosyphon and cold
water storage energy saving for cooling up to 8%

[88] Solar collector 36.61 W/m2

[32] Heat pipe 14.5 W/m2

[17] Photovoltaic thermal (PV/T) 65 W/m2

[89] Thermosyphon and cold
water storage N/A

[25] Solar collector 4–5 ◦C below ambient

[90] Solar collector 55.1 W/m2

[91] Solar collector 40 W/m2

[33] Thermosyphon and cold
water storage 15 ◦C below ambient

[31] Thermal mass 77.2 W/m2
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Table 1. Cont.

Researcher Category Time Improvement Strategy Maximum Cooling
Power/Minimum Temperature

[92] PV 72.94 W/m2

[93] Solar collector, HVAC 4.7 ◦C below ambient

[94] Water tank 8.4 ◦C temperature reduction

[95]

Diurnal

HVAC 16 W/m2

[96] HVAC more than 200 W/m2

[97] Thermoelectric, cold water
storage tank

daytime and nighttime cooling of
the radiative sky cooling

subsystem contribute to 55.0%
and 45.0% of annual cold
generation, respectively

[98] Attic insulation energy saving for cooling up to
3.7–11.8 kWh/m2

[99] Cold water storage, radiant
cooling in the room 12.5 W/m2

[100] PCM, thermosyphon energy saving for cooling up
to 25%

[101] PCM, wall material energy saving for cooling up
to 47.9%

[102] PCM, cold water storage energy saving for cooling up
to 10%

[103] Wall material and insulation 50 W/m2 on the wall, and
120 W/m2 on the roof

[104] Shading device reduces solar gain by up to 40%

[105] Glazing energy saving for cooling between
40.9–63.4%

3.1. Material Improvement

The development of nanomaterial technology has helped to increase the cooling power of RC
materials. The material improvement involves two parts, namely emitter material and convection
cover material. Detailed reviews of the emitter materials have been carried out by Zhao et al. [14] and
Family and Menguc [106]. In the work of Zhao et al. [14], they categorize the material technologies for
passive RC into four categories, i.e., a natural emitter, film-based emitter, nanoparticle-based emitter,
and photonic emitter. Examples of these different emitters are shown in Figure 4. In this review, only
some material examinations that are relevant to the application of RC in buildings are included.

There are at least three goals in the RC emitter material field of study, namely, improving cooling
power in daytime [12], improving performance in humid conditions [44], and making a cost-efficient
material [25,58]. Efforts on daytime RC were conducted using different approaches by material
researchers, i.e., film-based emitters [8,41–44], nanoparticle-based emitters [46,47], and photonic
emitters [45,48–50]. The engineered material must reflect most of the solar and atmospheric radiation
and at the same time be able to produce thermal radiation in the specific atmospheric window band.
The film-based emitter could produce all-day cooling between 2–9 ◦C for buildings on a typical sunny
day in northern US latitudes [41]. The photonic emitter recorded a 110 W/m2 cooling power under
direct sunlight [45]. Further, nanoparticle-based emitters in the works of Liu et al. [46] and Kim and
Lenert [47] were also recorded at sub-ambient temperature at daytime, with 25.5 ◦C and 35 ◦C below
ambient, respectively.
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a mechanism found in Saharan silver ants [107] (reprinted from Solar Energy Materials and Solar Cells,
206, Jeong et al., Daytime passive radiative cooling by ultra-emissive bio-inspired polymeric surface,
110296, Copyright (2020), with permission from Elsevier); (b) film-based emitter design by Fan et al. [44]
(reprinted from Applied Thermal Engineering, 165, Fan et al., Yttria-stabilized zirconia coating for
passive daytime radiative cooling in humid environment, 114585, Copyright (2020), with permission
from Elsevier); (c) nanoparticle-based emitter design by Huang and Ruan [108] (reprinted from
International Journal of Heat and Mass Transfer, 104, Huang and Ruan., Nanoparticle embedded
double-layer coating for daytime radiative cooling, 890–896, Copyright (2017), with permission from
Elsevier); (d) photonic emitter design by Gao et al. [50] (reprinted Solar Energy Materials and Solar Cells,
200, Gao et al., Approach to fabricating high-performance cooler with near-ideal emissive spectrum
for above-ambient air temperature radiative cooling, 110013, Copyright (2019), with permission
from Elsevier).

In the subtropical climate, daytime RC emitters in the work of Jeong et al. [49] give a remarkable
result, which is 7.2 ◦C below ambient at daytime. However, in the region of tropical climate with
higher humidity, daytime RC is hardly achieved [39,40,44]. The best results in experimenting with RC
materials for humid climate came from an enhanced specular reflector (ESR) material by 3M [109] that
could be at sub-ambient temperature on a very humid and cloudy night [39,40].

Despite many scientists pursuing higher RC power both in the daytime and humid conditions,
only a few have focused on the affordability of the materials. For instance, Givoni [25] and Erell
and Etzion [58] proposed cheaper RC emitter options, but their examination resulted in a very low
cooling power of RC compared to the other materials. Current high-performance RC materials are still
expensive to produce and have limited durability [8].

In terms of convection cover materials, the spectral properties and durability are key issues.
Benlattar et al. [53,54] are among the first to modify the spectral properties of convection cover. Using a
chemical solution deposition method, they create a cadmium sulfide (CdS) thin film that is transparent
for infrared radiation in the 8–13 µm band. They estimated a temperature reduction of 65 K between the
uncovered nocturnal emitter and the covered one [54]. In another study, Naghshine and Saboonchi [52]
compared different thin film multilayer structures for RC convection cover. Among the 30 possible
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multilayers structures from a combination of 16 thin film materials, structures that involved cubic
ZnS in their layers are better at protecting the RC emitter from parasitic heat loss during the day and
night. Their schematic thin film multilayer structure is shown in Figure 5. Moreover, investigations for
durable alternatives of convection cover were conducted by Bathgate and Bosi [51]. They found that
zinc sulfide (ZnS) was the most promising material for the RC emitter cover, as shown in Figure 6.

Buildings 2020, 10, x FOR PEER REVIEW 9 of 29 

power of RC compared to the other materials. Current high-performance RC materials are still 
expensive to produce and have limited durability [8]. 

In terms of convection cover materials, the spectral properties and durability are key issues. 
Benlattar et al. [53,54] are among the first to modify the spectral properties of convection cover. Using 
a chemical solution deposition method, they create a cadmium sulfide (CdS) thin film that is 
transparent for infrared radiation in the 8–13 µm band. They estimated a temperature reduction of 
65 K between the uncovered nocturnal emitter and the covered one [54]. In another study, Naghshine 
and Saboonchi [52] compared different thin film multilayer structures for RC convection cover. 
Among the 30 possible multilayers structures from a combination of 16 thin film materials, structures 
that involved cubic ZnS in their layers are better at protecting the RC emitter from parasitic heat loss 
during the day and night. Their schematic thin film multilayer structure is shown in Figure 5. 
Moreover, investigations for durable alternatives of convection cover were conducted by Bathgate 
and Bosi [51]. They found that zinc sulfide (ZnS) was the most promising material for the RC emitter 
cover, as shown in Figure 6. 

 
Figure 5. Multilayer structure thin film scheme of Naghshine and Saboonchi [52] (reprinted from 
Optics Communications, 410, Naghshine and Saboonchi, Optimized thin film coatings for passive 
radiative cooling applications, 416–423, Copyright (2018), with permission from Elsevier). They 
investigated 30 combinations of layers. 

 
Figure 6. Typical RC panel design with insulation and convection cover [51] (reprinted from Solar 
Energy Materials and Solar Cells, 95/10, Bathgate and Bosi, A robust convection cover material for 
selective radiative cooling applications, 2778–2785, Copyright (2011), with permission from Elsevier). 

Figure 5. Multilayer structure thin film scheme of Naghshine and Saboonchi [52] (reprinted from Optics
Communications, 410, Naghshine and Saboonchi, Optimized thin film coatings for passive radiative
cooling applications, 416–423, Copyright (2018), with permission from Elsevier). They investigated
30 combinations of layers.

Buildings 2020, 10, x FOR PEER REVIEW 9 of 29 

power of RC compared to the other materials. Current high-performance RC materials are still 
expensive to produce and have limited durability [8]. 

In terms of convection cover materials, the spectral properties and durability are key issues. 
Benlattar et al. [53,54] are among the first to modify the spectral properties of convection cover. Using 
a chemical solution deposition method, they create a cadmium sulfide (CdS) thin film that is 
transparent for infrared radiation in the 8–13 µm band. They estimated a temperature reduction of 
65 K between the uncovered nocturnal emitter and the covered one [54]. In another study, Naghshine 
and Saboonchi [52] compared different thin film multilayer structures for RC convection cover. 
Among the 30 possible multilayers structures from a combination of 16 thin film materials, structures 
that involved cubic ZnS in their layers are better at protecting the RC emitter from parasitic heat loss 
during the day and night. Their schematic thin film multilayer structure is shown in Figure 5. 
Moreover, investigations for durable alternatives of convection cover were conducted by Bathgate 
and Bosi [51]. They found that zinc sulfide (ZnS) was the most promising material for the RC emitter 
cover, as shown in Figure 6. 

 
Figure 5. Multilayer structure thin film scheme of Naghshine and Saboonchi [52] (reprinted from 
Optics Communications, 410, Naghshine and Saboonchi, Optimized thin film coatings for passive 
radiative cooling applications, 416–423, Copyright (2018), with permission from Elsevier). They 
investigated 30 combinations of layers. 

 
Figure 6. Typical RC panel design with insulation and convection cover [51] (reprinted from Solar 
Energy Materials and Solar Cells, 95/10, Bathgate and Bosi, A robust convection cover material for 
selective radiative cooling applications, 2778–2785, Copyright (2011), with permission from Elsevier). 

Figure 6. Typical RC panel design with insulation and convection cover [51] (reprinted from Solar
Energy Materials and Solar Cells, 95/10, Bathgate and Bosi, A robust convection cover material for
selective radiative cooling applications, 2778–2785, Copyright (2011), with permission from Elsevier).

3.2. Design Improvement

Besides enhancements in RC materials, improvements in the design of RC systems have also
been proposed. Most researchers focused on two main aspects of RC system design, namely emitter
insulation, and emitter contact to the working fluid. The emitter’s insulation is one of the crucial
elements in the roof-integrated RC systems designed by Dimoudi and Androutsopoulos [56] and
Khedari et al. [62]. Craig et al. [110] went further by suggesting that improving the RC emitter’s
insulation on the roof not only increases its performance, but by modifying the configuration of
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the roof’s insulation, a conventional roof material could even be an RC emitter. Figure 7 shows the
roof-integrated RC system and how the roof insulation was structured [56].
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Figure 7. Proposed configurations of insulation for roof—integrated solar collector—RC emitters by
Dimoudi and Androutsopoulos [56] (Adapted from Solar Energy, 80/8, Dimoudi and Androutsopoulos,
The cooling performance of a radiator based roof component, 1039–1047, Copyright (2006),
with permission from Elsevier).

Regarding the insulation from convection between the emitter material and the cover shield,
some researchers proposed the use of vacuum to minimize parasitic thermal load to the emitter [60,63].
Chen et al. [63] are the first to experiment with a vacuum-enhanced RC emitter. Their design intends to
achieve daytime RC and succeeds in obtaining a maximum of 42 ◦C below ambient under intense solar
radiation. Tso et al. [60], however, did not achieve a daytime RC effect but could deliver nocturnal RC
in a more humid climate in Hong Kong. Their design, shown in Figure 8, could provide a cooling
power of 38 W/m2 at night.

A different approach was used in the cover design by Falt et al. [61,64]. They proposed a
triple-glazing skylight which features high absorptivity. The gas blocks the infrared part of solar
radiation, and, thus, reduces heat gain to the building’s interior and at night releases heat via radiation
to the sky. The novelty of their design lies in the middle that could tilt, allowing the formation of a
gap between the glass and the skylight’s edge. This gap, in turn, enables the gas to move between the
upper and lower part of the skylight, thus, when the upper gas is cooled by nocturnal radiation, it is
replaced by the warmer lower gas. See Figure 9 for the illustration of the design.

Moreover, to utilize cooling from an RC emitter in the building, the most feasible way is by using a
working fluid, which can either be a water-based or an air-based system. Furthermore, the water-based
system is divided into an open system and a closed system. In the water-based open system, the cold
storage water directly contacts the RC emitter, without any circulation of any working fluid. In the
closed system, however, circulated water is used as a working fluid to deliver coldness either to storage
or to a heat exchanger. The conceptual drawing of the typical water-based and air-based RC system is
shown in Figure 10. The advantages and disadvantages of the water and air-based system are already
summarized by Lu et al. [7] and Zhang et al. [81]. The lower installation cost and the simplicity of
the system are among the advantages of the air-based system, while the water-based system is better
in terms of cooling performance because water has a higher heat capacity than air. It is important
to note that the effectiveness of the heat transfer between the emitter and the fluid has also been the
focus of investigations for both the water- and air-based RC [11,57–59]. The investigations prescribed
the optimum mass flow rate of the fluid to obtain the maximum cooling effect, as Hosseinzadeh and



Buildings 2020, 10, 215 12 of 28

Taherian [57] indicated that the mass flow rate of the fluid is critical in achieving the best cooling
performance of an RC emitter.
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high-absorptivity gas. RC occurs for the upper gas, while the lower gas obtains heat from the building’s
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Modified predator-prey algorithm approach to designing a cooling or insulating skylight, 331–338,
Copyright (2017), with permission from Elsevier).

Other small design considerations were also studied, such as the aesthetic appearance of
the emitter. The appearance of the RC emitter is obviously interesting for architects and might
accelerate the implementation of RC in building design. Lee et al. [66] and Son et al. [111] employed
different techniques to create colored emitters. By adding a photonic nanolayer in the order of
metal–insulator–metal (MIM) below the emitter, Lee et al. [66] could decorate their RC emitter.
The MIM layers consisted of Ag-SiO2-Ag, and a variation of the colors was achieved by varying the
thickness of the SiO2 layer. On the other hand, Son et al. [111] coated the emitter with silica-embedded
perovskite to color it. Figure 11 displays the colored RC emitter by Son et al. [111]. Both colored RC
emitters could achieve sub-ambient temperature during the daytime.
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3.3. Combination with Other Technologies

Application of RC in buildings often appears in combinations with other cooling technologies.
These combinations can be categorized as active systems and passive systems. Many of the water-based
RC systems are active systems, i.e., assisted by a pump to circulate the water. The passive water-based
system is found where a thermosyphon mechanism drives the flow of the fluid. Air-based systems,
on the other hand, are more often found as a passive system. Some strategies involve a fan as the
active part of an air-based RC to maintain the airflow to the RC panel. A detailed comparison for the
precedent of RC combinations is shown in Table 2.



Buildings 2020, 10, 215 14 of 28

Table 2. Comparison of different means of architectural implementation of RC.

Researcher Architectural Feature Means of Implementation Combination

[25]

Roof

Passive system

Air-based Solar Collector

[31] Air-based Thermal mass

[30] Air-based Thermal mass

[98] Air-based Attic Insulation

[94] Water-based open system Water tank

[93]

Active system

Air-based Solar Collector, HVAC

[83] Air-based Fan or HVAC

[79] Air-based Desiccant

[34] Air-based Solar Collector, Desiccant

[80] Air-based PV, Solar Collector, HVAC

[74] Air-based PV, HVAC

[75] N/A PV

[76] Water-based closed system HVAC

[77] Water-based closed system Solar Collector and PV, cold water storage

[78] Water-based closed system PCM

[81] Water-based closed system HVAC

[82] Water-based closed system Radiant cooling, HVAC

[84] Water-based closed system Ground coupled heat pump

[85] Water-based closed system PV, Solar collector

[86] Water-based closed system HVAC

[87] Water-based closed system Thermosyphon and cold water storage

[32] Water-based closed system Heat pipe

[17] Water-based closed system PV, Solar collector

[89] Water-based closed system Thermosyphon and cold water storage

[90] Water-based closed system Solar collector

[33] Water-based closed system Thermosyphon and cold water storage

[95] Water-based closed system HVAC

[96] Water-based closed system HVAC

[99] Water-based closed system Cold water storage

[102] Water-based closed system PCM, Cold Water Storage

[88] N/A Air-based Solar Collector

[92] N/A PV

[103]
Roof and Wall

Passive system Air-based Wall material and insulation

[112] Passive or active Air or water-based Temperature-regulating module

[113]

Wall

Passive system Air-based Trombe wall

[67] Passive system Air-based Trombe wall

[100] Passive system Water-based closed system PCM wall

[101] Passive system Water-based closed system PCM wall

[68] Active system Water-based closed system Wall material and insulation, cold water storage

[105] Window or skylight Passive system Air-based Glazing material

[114] Passive system Air-based Glazing material

3.3.1. Active System

Specifically, the solar collector [25,34,77,90], photovoltaics (PV) [17,76,77,85], air conditioning
(AC) [81,83,86,95,96], and cold water storage [33,89,99,102] are among the frequently studied
combinations for the active systems. Givoni [25] is among the first to utilize a solar collector panel as
an RC panel. The strategy is to utilize the absorber of the solar collector during the day as an emitter at
night. This so-called dual-functional collector is further developed using more advanced techniques
and materials [17,88,90]. Spectral-selective coating on the solar thermal absorber was used, as well as
a low-density polyethylene (LDPE) film as the cover, replacing the glass cover in the conventional
solar thermal collector. The latest results by Hu et al. [90] produce 55.1 W/m2 cooling power at night.
Their design is illustrated in Figure 12.
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Combining PV with RC was initially visualized in the design of Harbeman House by Saitoh and 
Fujino [77], a so-called sustainable house proposal that attempted to integrate various sustainable 
technologies in the house. A more persistent study on the possible application of the PV-RC 

Figure 12. Cross-section schematic drawing of photo-thermal and RC (PTRC) design by Hu et al. [90]
(reprinted from Renewable Energy, 139, Hu et al., Experimental study on a hybrid photo-thermal and
radiative cooling collector using black acrylic paint as the panel coating, 1217–1226, Copyright (2019),
with permission from Elsevier).

Combining PV with RC was initially visualized in the design of Harbeman House by Saitoh and
Fujino [77], a so-called sustainable house proposal that attempted to integrate various sustainable
technologies in the house. A more persistent study on the possible application of the PV-RC combination
is conducted by Zhao et al. [70,75,92,115]. Using photonic material, they develop several strategies in
PV-RC ranging from nocturnal to diurnal cooling. In terms of building energy consumption, PV-RC
can be more beneficial because the combined electricity and cooling energy resulting from the system is
more than the output energy from PV alone [74,75]. Both RC combinations with solar thermal and PV
can be divided into two types when installed on the roof, i.e., similar orientation or opposite orientation.
With similar orientation, the researchers placed the RC panel on the same side of the roof as the solar
collector or PV, normally the sun-facing side [17,70,88,90]. In contrast, the opposite orientation used
the opposite side of the roof to reduce solar heat gain to the emitter [75,77,85].

Furthermore, RC is also commonly used to assist HVAC systems. Usually, the emitter is used to
provide chilled water for the cooling coil of AC, enabling the system to be more energy efficient [95,96].
The design by Jeong et al. [95], for instance, used two types of cooling coils, conventional cooling coils
and RC-supplied cooling coils, thus, RC acted as a supplementary cooling supplier. The system was
claimed to be able to reduce cooling energy consumption by 35%. Another variant of the RC-HVAC
system came from Zhang et al. [81], who added a cold water storage to stock cooling energy from RC.
Figure 13 displays the schematic diagram of an RC-assisted HVAC system.
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3.3.2. Passive System

In terms of the passive system, RC has been combined with more diverse techniques such as
wall-mounted RC [68,98,103], phase change material (PCM) [100,101], thermal mass [30,31], and the
Trombe wall [67,113]. Oliveti et al. [103] attempted to include thermal radiation from the wall to the
sky to the overall heat exchange model of a wall. Yong et al. [68] went further than developing a
mathematical model by proposing an RC system mounted on the wall. Their system is a dual-functional
solar collector that can provide heating in winter and cooling in summer, as shown in Figure 14.
However, the system is an active system, involving pumps to circulate water to be stored in the cold
and hot water storage. The fully passive implementations of a wall-mounted RC were performed by
Shen et al. [100] and He et al. [101]. Their designs are quite similar in principle, using the thermosyphon
method to extract cooling from the wall and storing the heat in a PCM (see Figure 15). In terms of
cooling performance, the wall-mounted dual-functional heating–cooling emitter was predicted to be
able to reduce building energy consumption by 47.9% [68].Buildings 2020, 10, x FOR PEER REVIEW 16 of 29 
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Figure 14. Structure of solar absorber that serves, i.e., two functions for heating and cooling as 
designed by Yong et al. [68]: (a) design without an air gap for insulation purposes; (b) design with an 
air gap for an area with nighttime ambient temperature that is low enough to be used as cooling, 
nocturnal cooling thus provided by both the sky and the surroundings; (c) schematic diagram 
showing the mechanism in which the dual-functional system works—red line for heating, blue line 
for cooling (reprinted from Renewable Energy, 74, Yong et al., Performance analysis on a building-
integrated solar heating and cooling panel, 627–632, Copyright (2015), with permission from Elsevier). 

Figure 14. Structure of solar absorber that serves, i.e., two functions for heating and cooling as designed
by Yong et al. [68]: (a) design without an air gap for insulation purposes; (b) design with an air gap for
an area with nighttime ambient temperature that is low enough to be used as cooling, nocturnal cooling
thus provided by both the sky and the surroundings; (c) schematic diagram showing the mechanism in
which the dual-functional system works—red line for heating, blue line for cooling (reprinted from
Renewable Energy, 74, Yong et al., Performance analysis on a building-integrated solar heating and
cooling panel, 627–632, Copyright (2015), with permission from Elsevier).
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Figure 15. Dual-functional RC-PCM wall design by He et al. [101]. During the daytime, the absorbed
heat is stored by PCM and is later released at night via RC, thus, the temperature of the room can
be kept comfortable, and the PCM can “recharge” (reproduced from Energy and Buildings, 199,
He et al., Experimental study on the performance of a novel RC-PCM-wall, 297–310, Copyright (2019),
with permission from Elsevier).

Whereas the aforementioned researchers used PCM to regulate the heat gain and loss in the wall
or building enclosure, some researchers have attempted to use insulation and thermal mass to regulate
heat transfer from an RC emitter to the building. Etzion and Erell [31] mentioned at least two functions
of thermal mass or other types of thermal storage strategies when combined with nocturnal RC for a
building. Firstly, thermal mass can absorb the excessive heat received by the RC emitter during the
daytime. Secondly, it maintains the cooling rate of the RC emitter to a desired rate, thus, heat does not
dissipate rapidly from the building, and the RC emitter becomes steady. Thus, Etzion and Erell [31]
examined the best location for placing thermal mass. They found that thermal mass should be placed
on the roof or, in more general terms, should be closely coupled with the radiative emitter [31].

Furthermore, Liu et al. [112] also developed a temperature-regulating module (TRM) for solar
heating and RC. The TRM consists of polyethylene film as the convection cover, a porous RC material,
an aluminum sheet, and a solar absorber (Figure 16). The layer order was reversed for heating mode.
The TRM maintained a maximum indoor temperature of 27.5 ◦C in the hottest days of summer and
25 ◦C for some hours on winter days. The heating and cooling provided by the TRM correspond to
42.4% saving in the electricity bill.
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Installing the RC emitter on the roof is the simplest and most promising way. Besides its highest 
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for building service installations. Available roof-integrated passive RC systems consist of both air- 
and water-based systems. The roof water-based RC is an open system which is quite similar to a roof 
pond design [94,116] (Figure 17). Disadvantages of the roof water-based RC are more or less the same 
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and maintenance of the cleanliness of the water. It can also only be installed on top of flat roofs and 
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Figure 16. Temperature-regulating module by Liu et al. [112]: (a) cooling mode; (b) heating mode;
(c) when applied on the roof (reproduced from Energy Conversion and Management, 205, Liu et al.,
Research on the performance of radiative cooling and solar heating coupling module to direct control
indoor temperature, 112395, Copyright (2020), with permission from Elsevier).

4. Architectural Features of Current Radiative Cooling Systems

As the previous section summarizes, RC for buildings has been prototyped in very diverse
ways. Design alternatives are even numerous when RC is combined with other cooling technologies.
Nevertheless, analysis of the RC systems from an architectural point of view should be conducted
before it is widely accepted by the architectural community as one of the promising passive design
strategies for sustainable buildings [19]. One way of doing so is by analyzing the precedents of
architectural features involved in the proposals of passive applications of RC. As compiled in Table 2,
some building components or architectural features that have been involved in passive RC systems are
revealed. Theoretically, the roof is the best location to place an RC emitter compared to other building
envelopes. However, architects might want more flexibility in their design, and few researchers have
applied RC in the wall and façade. These researches, although very few in number, offer alternatives in
architectural implementation.

4.1. Roof

Installing the RC emitter on the roof is the simplest and most promising way. Besides its highest
sky view factor compared to the wall or other building components, the roof is also a common place
for building service installations. Available roof-integrated passive RC systems consist of both air-
and water-based systems. The roof water-based RC is an open system which is quite similar to a roof
pond design [94,116] (Figure 17). Disadvantages of the roof water-based RC are more or less the same
as the roof pond, such as difficulty in waterproofing the roof, additional load to the roof structure,
and maintenance of the cleanliness of the water. It can also only be installed on top of flat roofs and
affects the accessibility of the roof for other uses [117].

Moreover, the roof air-based system offers more techniques. The most straightforward use of an
RC emitter was firstly proposed by Etzion [31], where the RC emitter is attached to a concrete roof
slab. By this design, the cooling effect of the RC emitter is absorbed by the thermal mass of the roof
slab and in turn transmitted to the room. Another air-based roof system uses an air channel to extract
the cooling from the RC emitter [25,98]. By using an air channel attached to an RC emitter, cooling is
provided by means of cool airflow from the air channel instead of convection of the interior air with
the building envelops. This is arguably better for the distribution of the cool and fresh air. Figure 18
shows one example of how the air channel was used to extract cooling from the RC emitter [98]. In the
design, the air was used for heat removal in the attic, although it can be further explored for the room’s
heat removal as well.
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Figure 17. Water-based open system RC on the roof of a building [116] (reproduced from Renewable
Energy, 29/11, Cheikh and Bouchair, Passive cooling by evapo-reflective roof for hot dry climates,
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Figure 18. Air-based RC system on the roof using an air channel to utilize the cooling [98]: (a) illustration
of how the system works to remove heat from the attic; (b) schematic of the air channel and the RC
panel (reproduced from Energy and Buildings, 203, D. Zhao et al., Roof-integrated radiative air-cooling
system to achieve cooler attic for building energy saving, 109453, Copyright (2019), with permission
from Elsevier).

4.2. Wall

The second most appropriate architectural feature to place the RC emitter on is the wall. The wall
has the advantage of providing a large surface when compared to the roof or other building envelopes.
As with the roof RC, the wall RC also appeared in two systems, air-based and water-based systems.
It is worth noting that most of the existing proposals on passive RC systems mounted on the wall are
dual-functional (heating–cooling) modules. For instance, the air-based wall RC system is a combination
with Trombe wall, which was developed by Sameti and Kasaeian [67] and consists of a glass cover and



Buildings 2020, 10, 215 20 of 28

a thermal mass located directly behind the glass. The thermal mass function is to collect the sunlight
entering the façade during heating mode and dissipate the heat to the night sky during cooling time.
The glass cover is open during the heating days to protect it from solar radiation and closed during the
heating nights to prevent radiative heat loss. The reverse is applied for cooling days. Nevertheless,
it is important to note that an RC-Trombe wall system has some features that can affect its performance
such as external glazing material, vents geometry and position, thermal storage, and Trombe wall
area [118,119].

For the water-based RC wall, the system is accompanied by PCM to store the coldness and uses
thermosyphon phenomena to extract it from the emitter, as described in Section 3 (see Figure 15) [101].
A similar design to that of He et al. [101] was also tested by Shen et al. [100]. Compared to the testing
room with a brick wall, the cooling load in the RC-PCM wall room was 42% and 25% lower at ideal
and moderate conditions. Furthermore, there are concerning factors that affect the performance of an
RC-PCM wall system, i.e., the parasitic heat loss due to outdoor wind. Their system was not equipped
with a convection cover, thus, the effect of wind speed was significant. The implementation of the
RC-PCM wall in the testing room can be seen in Figure 19.
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4.3. Other Building Components 

4.3.1. Glazing Material 

Openings on the building envelope are the source of solar fenestration into the building’s 
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Figure 19. The drawing of an experimental room for an RC-PCM wall by Shen et al. [100]. The RC-PCM
wall was mounted on the south wall. The measurement data from this room were compared with
a conventional brick wall room (reprinted from Applied Thermal Engineering, 176, Shen et al.,
Investigation on the thermal performance of the novel phase change materials wall with radiative
cooling, 115479, Copyright (2020), with permission from Elsevier).

4.3. Other Building Components

4.3.1. Glazing Material

Openings on the building envelope are the source of solar fenestration into the building’s interior.
Various glazing materials have been developed to reduce their transmissivity in the solar and infrared
bands. Furthermore, researchers intended to also maximize thermal radiation of the glazing material in
the atmospheric window band. With this strategy, the glazing materials not only reduce heat gain but
also produce cooling for the building. Two prototypes, namely transparent film and coating to be added
on top of glazing materials, have recently been developed [105,114,120]. Currently, the transparent RC
materials are only studied for skylight application, as shown in Figure 20. Future development for
transparent RC film or coating might be evaluated for window application.
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4.3.2. Paints

Recently, paint was proposed as a means to act as a scalable RC emitter. It is well known by
researchers of passive RC that the currently available technologies are not yet scalable and feasible
for building use. Considering paint as a mature technology and always certainly used in buildings
(either for roof, walls, or other parts of a building), for Mandal et al. [121], an RC paint might be the
answer to the problem of scalability of RC technologies. For them, the material technologies have the
capability to develop a scalable and effective RC paint. The current development of cool roof coating is
an example of the success of material technologies to enhance paint performance. However, they also
highlighted some general challenges for the development of RC paint besides the technical difficulties.
The challenges are the assessment of geographical conditions in which RC paint benefits the most,
as well as the examination of the effect of pollution, dirt, and dust on the durability and performance
of the paint.

Furthermore, RC paint can also be seen in the perspective of the aesthetic appearance of RC
surfaces. Currently, research on this aspect is scarce. The study conducted by Lee et al. [66] is one
example of the attempt to answer the aesthetic appearance of an RC emitter (see Figure 21). Research on
RC paint might promote the progress on aesthetic studies of RC surfaces.
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5. Outlook for Architectural Application of Passive Radiative Cooling

The previous sections have discussed the development of RC technologies and how they have
been applied to reduce the cooling energy of buildings. From an architectural perspective, some issues
regarding the implementation of passive RC in buildings arise from the discussions.

• In the range of the current RC power and the challenge to overcome the mismatch in cooling
supply and demand, studies on the application of RC in buildings can search for an efficient RC
system or effective storage mechanism. Additionally, exploration of the combination of RC with
other passive or active cooling techniques should be continued and even extended, because in
this way, the disadvantages of RC technologies can be compensated by the advantages of other
cooling techniques. Moreover, in terms of exploration of potential RC combinations, there might
be other passive design strategies in architecture, outside the cooling techniques, that have not
yet been taken into consideration by RC researchers, such as natural ventilation and daylighting
strategies. Therefore, a review on the type of strategies of passive design architecture that are
suitable for combination with RC is still outstanding.

• Regarding architectural aspects, there are many considerations neglected by current RC studies.
The roof may have an advantage in regard to the sky view factor, but another building element,
such as the wall, may offer advantages in surface area as well as design flexibility. Additional façade
elements on the wall, such as a shading device, secondary skin, cladding, and window, are potential
locations for the RC emitter. In addition, the aesthetic aspect is also important. Thus, research on
transparent and colored RC materials or even RC paints would encourage more flexibility in the
architectural application.

• Following the notions on architectural aspects, another important point arises, that is, the lack of
research on the integration of RC systems in building design. Observations of the implementation
of the RC system into real buildings should be introduced. The design process of such an
observation and the observation itself might reveal some influential details that have not yet
been considered.

• Most of, if not all, the investigations of RC in buildings have focused on reducing cooling energy.
Besides, the benefit of the RC system, if working ideally, may lead to healthy and comfortable
buildings. This area of study, namely the contribution of passive RC in creating thermal comfort
for building occupants as well as its further effect on health (and productivity in the working
space), will eventually arise.

• Lastly, two general factors should not be forgotten, namely, the durability of the radiative material
and the cost of the material. Since there are many studies still in the lab scale, these factors have
not been calculated by many researchers. Nevertheless, these two aspects can be determinant
in terms of real application. Architects and building owners usually prefer to directly know
the cost of installation, saving potential, and payback period of the implemented RC systems.
Full life-cycle analysis of the system can also be an object of study by researchers in the field.

6. Conclusions

The RC research field was revived by the development of new materials. There have been many
high-performance RC materials that resulted from the experimentations. The present challenge in this
field is to provide scalable and durable RC materials. Besides these two purposes, research on colored
and transparent RC materials could also widen the application of RC in buildings. Likewise, pursuing
RC paints might be an alternative way to create scalable and colorful emitters, and thus could attract
more attention from the architectural community. Furthermore, the available RC materials have been
implemented in various RC module designs, as their utilization to reduce cooling energy demand
for buildings has also been conducted. Such efforts can continue to be pursued with emphasis on
the combination of RC with other passive design strategies. The combination is not limited only to
other passive cooling techniques but could also be carried out with natural ventilation, heat storage,
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daylighting, etc. In addition to this, the designs of building-integrated RC should begin to look at
building components other than the roof to be the place for installation. Only a handful of building
features have been involved in the current explorations such as walls and skylights.

Another research direction for the application of RC in buildings is the evaluation of the RC
performance in terms of the occupant’s health and comfort. The two indicators could be supplementary
to the current performance evaluation, i.e., cooling power or energy saving. This is especially relevant
when the RC is combined with other passive design strategies, which may require multi-perspective
performance evaluation. At the latter stage, a life-cycle analysis of a building-integrated RC system
could also be included. Nevertheless, the efforts to apply RC in buildings need to be more integrated
into the architectural design. One way of achieving this is by implementation of the currently available
RC materials or panels to a real building, which can be an existing building or a newly constructed
building. This type of case study using real building would necessitate a design integration and could
uncover some unanticipated aspects of building-integrated RC. Moreover, the uncovered aspects will
be further examined in future studies in the field.
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Nomenclature

RC radiative cooling
PCM phase change material
PV photovoltaics
PV/T photovoltaics thermal
AC air conditioning
HVAC heating, ventilation, and air conditioning
TRM temperature-regulating module
LDPE low-density polyethylene
MIM metal-insulator-metal
ESR enhanced specular reflector
EBλ spectral emissive power (W·m−2

·µm−1)
T temperature (K)
Tamb ambient temperature (K)
Temitter emitter temperature(K)
A emitter’s area (m2)
λ wavelength λ (µm)
λmax the wavelength in which a blackbody emits maximum radiation (µm)
h Planck’s constant (6.626 × 10–34 J·s)
c0 speed of light in vacuum (2.998 × 108 m· s−1)
n refractive index (1 for vacuum)
k Boltzmann’s constant (1.3807 × 10−23 J·K−1)
Qnet cooling power of the RC emitter (W)
Qsun radiation from the sun (W)
Qatm atmospheric radiation (W)
Qcond+conv parasitic heat loss from the RC emitter due to conduction and convection (W)
hc heat transfer coefficient (W ·m−2

· K−1)
ε emissivity of the emitter
εatm emissivity of the sky
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