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Abstract: Vaccine development for antigenically variable pathogens has faltered because extreme 21 

genetic diversity precludes induction of broadly neutralizing antibodies (nAB) with classical vaccines. 22 

Here, using the most variable epitope of any known human pathogen (HVR1 of HCV), we describe a 23 

novel approach capable of eliciting broadly neutralizing antibodies targeting highly variable epitopes. Our 24 

proof-of-concept vaccine elicited pan-genotypic nAB against HCV variants differing from the immunogen 25 

sequences by more than 70% at the amino acid level. These findings suggest broadly nAB to highly 26 

variable pathogens can be elicited by vaccines designed to target physicochemically conserved residues 27 

within hypervariable epitopes. 28 

Introduction 29 

Antigenic variability is characterized by the existence of multiple strains within a species, dispersed either 30 

within the host, between hosts, or spatiotemporally, for which protective immune responses induced by 31 
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one strain are ineffective for another [1]. Understood as an emergent property involving host immune 32 

responses, rather than solely an intrinsic feature of sequence diversity, antigenic variability is preserved 33 

by the inability of the host adaptive-response to match the immunogenic breadth of the infecting pathogen 34 

[2]. This dynamic is exemplified by HCV, with intrahost populations characterized by antigenic variants 35 

positioned for divergent evolutionary trajectories depending on host immune responses, aggregating in 36 

cycles of viral diversification and immune escape from AB targeting antigenically plastic neutralizing 37 

epitopes [3].  38 

HCV vaccine candidates have therefore focused on the induction of neutralizing AB (nAB) targeting 39 

evolutionarily constrained epitopes [4]. However, conserved epitope masking by glycans, hypervariable 40 

domains, and host-lipoproteins, limits the protective efficacy of conserved epitope-targeting AB in vivo, 41 

and the failure of efforts to elicit broadly nAB with HVR1-deleted immunogens suggests the problem of 42 

antigenic diversity cannot be circumvented by simply amputating variable epitopes [5]. In contrast, though 43 

hypervariable neutralizing epitopes are sterically accessible, immunodominant, and their cognate AB are 44 

associated with resolution of acute infection, they elicit highly strain-specific AB [6]. Based on 45 

observations of antigenic convergence and physicochemical constraints within HVR1, we hypothesized 46 

that a multivalent vaccine designed to maximize physicochemical breadth, rather than sequence-based 47 

phylogenetic distance, would elicit broadly neutralizing antibodies to a hypervariable epitope [7]. We show 48 

that a bivalent HCV vaccine candidate based on this novel design approach elicited pangenotypic nAB to 49 

variants differing from the immunogen amino acid sequences by more than 70%.  50 

Results 51 

To formulate a polyvalent HVR1 vaccine maximally representing the antigenic, rather than sequence or 52 

phylogenetic, space, we developed a novel method combining physicochemical analysis of candidate 53 

sequences with pairwise redundancy reduction. This approach used the average non-bonded free energy 54 

of candidate HVR1 immunogens, calculated from primary sequences in silico, to identify sequence pairs 55 

with the broadest physicochemical coverage of HVR1 (Fig. 1A, B). In our case, this resulted in the 56 

selection of the physicochemically distinct clones 47 & 60 for the bivalent vaccine formulation (Fig. 1C). In 57 

contrast, traditional sequence based approaches, which are vulnerable to the Sequence-Metric Problem 58 



 

 

(discrepancy between coding and structural similarity among aligned sequences), would have selected 59 

for the sequence divergent, yet physicochemically convergent, clones 78 & 72 (Fig. 1C) [10]. To evaluate 60 

if these immunogens could elicit antibodies to the C-terminal neutralizing epitope of HVR1, groups of 4, 61 

female Balb/C mice were immunized with either peptides C47, C60, or both in a bivalent preparation. 62 

Each vaccine elicited high-titre (1:100,000) immunogen-specific IgG (not shown). The epitopes targeted 63 

by bivalent vaccine elicited AB were mapped using competitive ELISA with a series of overlapping HVR1 64 

peptide fragments (N8, N13, M13, C13, C8). Figure 1D shows that vaccine elicited AB exclusively target 65 

the HVR1 C-terminus (Fig. 1E).  66 

Figure 1. Physicochemically Informed Multivalent Vaccine Design  67 

(A) Coding diversity of a patient-derived clonal library is visualized via Pixel alignment of HVR1, with blue shading on consensus 68 
sequence highlighting the putative neutralizing epitope. (B) The average non-bonded free energy of the C-terminus of each 69 
HVR1 sequence was computed using the CRASP program [8]. (C) Physicochemical based immunogen selection from the 70 
patient library using average non-bonded free energy, followed by redundancy reduction via pairwise similarity scoring, yields 71 
immunogens C47 & C60. (D) Immunogens C47 & C60 were synthesized as 20-mer peptides for mouse immunization. (E) Short, 72 
overlapping peptides spanning C47 were used to map the epitope targeted by bivalent vaccine elicited AB via competitive 73 



 

 

ELISA (1:1000 serum dilution). Averages of data from triplicates are shown. Error bars indicate standard deviation. Statistical 74 
analysis was done by one-tailed, unpaired t-test. *, P < 0.001. 75 



 

 

We then examined if vaccine elicited AB were neutralizing. To evaluate homologous neutralization, 76 

HCVpp pseudotyped with C47 were incubated with antisera from each vaccine group (C47, C60, Bivalent, 77 

Adjuvant (-)) (Fig. 2A). We observed significant neutralizing activity in groups vaccinated either bivalently, 78 

or with C47 alone. In contrast, antisera from mice vaccinated with C60 were neither cross-reactive, nor 79 

neutralizing, underscoring the challenge of antigenic variability for vaccine elicited AB (Fig. 2A, B). To 80 

evaluate our primary hypothesis, that a bivalent HCV vaccine designed to maximize physicochemical 81 

breadth would induce bnAB, we employed a panel of 11 HCVpp representing the global phylogenetic 82 

space (Fig. 2C). We observed broad, cross-genotypic neutralization, with the infectivity of 11/11 HCVpp, 83 

derived from Gt 1-6, significantly inhibited by bivalent antisera (Fig. 2A, D). Further, antisera from 84 

bivalently vaccinated mice neutralized 8/11 HCVpp more potently than either, or both, of the monovalent 85 



 

 

vaccines (Fig. 2D). 86 

Figure 2. Bivalent Vaccination Elicits Broad, Pan-Genotypic Neutralizing Antibody Response 87 

(A) Neutralization activity of antisera (1:50 dilution) against HCVpp pseudotyped with homologous C47. (B) An ELISA plate was 88 
coated with peptide C47. Sera from immunized mouse groups were added at 1:1000 dilution. The binding of antibody was 89 
detected with anti-mouse secondary antibody. (C) HCV reference sequence database (gpE2) were supplemented with HCVpp 90 
panel sequences (white circles) for neighbour joining in Molecular Evolutionary Genetics Analysis version 7 (MEGA7). (D) 91 
Neutralization of heterologous HCVpp pseudotyped with 10 strains (H77.20, 1.4.1, 1bTo, 1.20.1, JFH1, 3.2.1, 4.3.1, 5.2.1, 6.1.1, 92 
6.2.1). Neutralization activity was quantified by measuring luciferase activity (relative light units), and normalized to adjuvant 93 
immunized sera. For (A), (B), and (C), averages of data from triplicates are shown. Error bars indicate standard error of the 94 
mean. Statistical analysis was done by unpaired t-test followed by FDR (Q=0.05) adjustment for multiple comparison (*, FDR-95 
adjusted P<0.05). 96 

 97 

Discussion  98 

Using a novel approach to vaccine design for antigenically variable pathogens, based on the hypothesis 99 

that emergent physicochemical features better predict cross-reactivity than sequence homology, we 100 

described a bivalent vaccine candidate capable of eliciting pan-genotypic nAB targeting the antigenically 101 

convergent, sterically accessible C-terminus of the immunodominant HVR1. Intriguingly, and in contrast to 102 

previous reports, the observed cross-reactivity of nAB elicited by HVR1 vaccination was not genotypically 103 

defined [11]. Furthermore, despite competitive ELISA mapping the 8 C-terminal AA of HVR1 as the 104 

epitope targeted by nAB, no resistance conferring residues within this region could be identified. These 105 

results are inconsistent with an entirely sequence-defined conception of antigenicity, and, coupled with 106 

previous reports of antigenic convergence and global physicochemical constraint in HVR1, imply that the 107 

immunological space is distinct from and smaller than the sequence space [7,12].  108 

We also observed, for the first time, that broad, cross-genotype neutralizing antibodies to HVR1 could be 109 

elicited by vaccination with only two mono-genotypic immunogens. The broad-reactivity of these AB, in 110 

contrast to the restricted specificity of the combined AB elicited by monovalent vaccination, indicates that 111 

our vaccine approach altered, rather than merely expanded, the epitope specificity of stimulated clonal 112 

lineages, as the breadth of neutralization following bivalent vaccination exceeded the summed 113 



 

 

neutralization breadth of its monovalent constituents. Collectively, these findings suggest functional 114 

constraints within hypervariable epitopes can be targeted by polyvalent vaccines designed with 115 

physicochemically informed immunogen selection.  116 

 117 

Materials and Methods  118 

To design the vaccine candidate, a set of degenerate primers specific for the N-terminus of Core (nt 328-119 

342) and C-terminus of E2 (2566-2580) were used to generate an HCV structural polyprotein coding 120 

clonal library from 72 patient-derived amplicons [13]. Clones were functionally characterized by co-121 

transfection with pNL4. 3 HIV-1 into HEK 293T cells, as described, with infectious clones then sequenced 122 

for subsequent immunogen selection [14]. The HVR1 from each clone was used to construct maximum 123 

likelihood trees (PhyML) to identify the two most sequence-distal clones. HVR1 sequences were then 124 

transformed into sequence-length matched values representing average-non bonded energy, reported as 125 

an aggregate value across each peptide, using the program CRASP [8]. Physiochemically distinct 126 

peptide-pairs were then resolved via pairwise redundancy reduction, intended to identify the maximally 127 

divergent set among candidate pairs, to yield C47/C60.  128 

For immunizations, C47 and C60 were synthesized into peptides using Fmoc chemistry, N-terminally 129 

conjugated to keyhole limpet hemocyanin via maleimide linkage, and mixed at 1:1 ratio with Freunds 130 

complete or incomplete adjuvant (primary/booster). Mice were subcutaneously injected (35 μg peptide + 131 

35 μL adjuvant) at days 0, 28, and 38, with terminal bleed via cardiac puncture at day 48 (4 female, 4-6 132 

week old Balb/c per group - protocol approved by University Health Network (UHN) Animal Care 133 

Committee (ACC)). Mock immunization used adjuvant with sterile PBS. 134 

To evaluate neutralization breadth, clones from a previously described multi-genotype HCVpp panel were 135 

selected to maximize both genotypic coverage and neutralization sensitivity [10]. Selected variants were 136 

situated within the global sequence space using a neighbour joining tree constructed with an E2 137 

reference set in MEGA7 [15]. Neutralization assays were performed as previously described [14]. In brief, 138 

infectious HCVpp (100ul) containing media was mixed with sera diluted 1:50, and incubated 1 hour at 139 



 

 

37 °C. Thereafter, media from Huh7 cells seeded one day prior in 96-wells was discarded, and replaced 140 

with the pseudoparticle/sera mixture (100uL), in triplicates. Plates were then incubated (37°C, 5% CO2) 141 

for 72 hours before lysis with BrightGlo luciferase detection reagent (Promega). Neutralization was 142 

determined by the triplicate averaged reduction in relative light units as normalized to adjuvant vaccinated 143 

sera.  144 

For competitive ELISA epitope mapping, PBST diluted sera (1:1000) were incubated at room temperature 145 

with peptides (1ug/well) corresponding to either full length HVR1, or a series of overlapping peptides 146 

spanning full length HVR1, for 1 hour at room temperature. Peptide-sera mixes were then added, in 147 

triplicate, to 96-wells pre-coated with full length HVR1 (1ug), and incubated 1 hour. Post-incubation, 148 

plates were washed 5 times in PBST, and HRP conjugated donkey anti-mouse IgG was diluted 1:10,000, 149 

added across wells, and incubated for 1 hour to detect primary AB. After a final three washes, TMB 150 

substrate was added to each well, dark-incubated for 15 minutes, then reaction terminated with Stop-151 

Solution (0.16M sulfuric acid). Absorbance was read at 450nm, in triplicate, with measurements 152 

corresponding to the visual colour change in each well. Statistical analysis was done by unpaired t-test 153 

followed by a Benjamini-Hochberg false discovery rate (FDR) adjustment for multiple comparisons 154 

(Q=0.05) using Prism8 [16]. 155 

 156 

Data Availability 157 

Sequences used to pseudotype HCVpp H77.20, 1.4.1, 1.20.1, JFH1, 3.2.1, 4.3.1, 5.2.1, 6.1.1, and 6.2.1 158 

are available in GenBank (accession numbers: NC_038882, KU285161, KU285213, KF268446, 159 

KU285200, KU285218, KU285223, KU285226, KU285227, KU285228). HVR1 sequences of 1bTO, I.1, 160 

I.2, are available upon request. Sequences used for NPJ constructing are available from 161 

(https://hcv.lanl.gov/content/sequence/NEWALIGN/align.html) with parameters “2008/ E2/ protein”, or 162 

from corresponding author upon request. 163 
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