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Network
Ruitao Xie, Jingxin Liu, Rui Cao, Connor S. Qiu, Jiang Duan, Jon Garibaldi and Guoping Qiu

Abstract—Accurately locating the fovea is a prerequisite for
developing computer aided diagnosis (CAD) of retinal diseases.
In colour fundus images of the retina, the fovea is a fuzzy region
lacking prominent visual features and this makes it difficult
to directly locate the fovea. While traditional methods rely
on explicitly extracting image features from the surrounding
structures such as the optic disc and various vessels to infer
the position of the fovea, deep learning based regression tech-
nique can implicitly model the relation between the fovea and
other nearby anatomical structures to determine the location of
the fovea in an end-to-end fashion. Although promising, using
deep learning for fovea localisation also has many unsolved
challenges. In this paper, we present a new end-to-end fovea
localisation method based on a hierarchical coarse-to-fine deep
regression neural network. The innovative features of the new
method include a multi-scale feature fusion technique and a self-
attention technique to exploit location, semantic, and contextual
information in an integrated framework, a multi-field-of-view
(multi-FOV) feature fusion technique for context-aware feature
learning and a Gaussian-shift-cropping method for augmenting
effective training data. We present extensive experimental results
on two public databases and show that our new method achieved
state-of-the-art performances. We also present a comprehensive
ablation study and analysis to demonstrate the technical sound-
ness and effectiveness of the overall framework and its various
constituent components.

Index Terms—Fovea localisation, Coarse-to-fine framework,
Three-stage network, Deep learning, Data fusion, Data augmen-
tation.

I. INTRODUCTION

RETINAL diseases are widespread among the population
and early diagnosis is important for successful treatment.

In recent years, many computer aided diagnosis (CAD) tech-
niques based on the analysis of colour fundus images have
been developed [34], [14], [15], [12], [20], [7]. However, due
to the complex and varied nature of fundus images, there are
still many problems that remained unsolved. One of the most
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challenging problems is the accurate localisation of the fovea
in retinal fundus images.

The fovea is a very important anatomic landmark in the
retina situated at the centre of the macula in the posterior
pole of the human eye. The fovea is of vital importance for
our visual function [43]. If lesions appear near the fovea,
the visual function of our eyes could be affected, which in
severe cases could lead to blindness [38], [16]. The severity
of many retinal diseases, such as maculopathy and diabetic
retinopathy, is often related to the distance of the lesions from
the fovea [19], [39], [11], [28], [33]. Therefore, detecting the
location of the fovea in the images of the eye is a prerequisite
for developing automatic diagnosis of many retinal diseases.

In early works, handcrafted image features are used to
explicitly exploit the positional relationship between the fovea
and the optic disc (OD), the blood vessel information, and the
colour characteristics for fovea localisation [31], [37], [6], [5],
[12], [27], [13]. With the development of deep learning [23],
great breakthroughs have been made on image recognition
using deep learning techniques [21], [18]. It is especially
powerful in learning representative hierarchical features pro-
gressively from large amounts of data in an end-to-end manner.
Applying deep learning methods to detect the fovea location
has received increasing attention in recent years [42], [4], [50].
However, due to the lack of sufficient data and the intrinsically
difficult nature of the task, the fovea localisation problem is
far from solved. There are several major challenges. Many
existing methods rely on auxiliary structures such as the OD
for fovea localisation. However, when these auxiliary parts
are damaged, the predicted results will be seriously affected.
The visual appearance of the fovea is relatively fuzzy in most
cases, the lack of distinctive visual features around the fovea
region often leads to a large degree of uncertainty in the
predicted location. As it is commonly recognized that one of
the major challenges of using deep learning architecture for
medical image analysis is the lack of sufficient labeled data.
The fundus image analysis problem we are tackling here has
the same issue, the lack of training data will lead to model
over-fitting and low generalization capability.

To address the aforementioned issues, in this paper, we pro-
pose a hierarchical deep regression neural network architecture
for end-to-end fovea localisation in fundus images. The end-
to-end architecture of the new method works without having
to explicitly extract features from other anatomic landmarks
such as blood vessels and OD. Besides, unlike most previous
deep learning-based works using one-stage [42], [29] or two-
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stage [36], [4] approaches, the proposed network is composed
of hierarchical coarse-to-fine three stages. Furthermore, we
fuse multi-scale features to obtain rich feature maps and
introduce a self-attention mechanism [49] to acquire enhanced
contextual features for improving the performance of the
coarse localisation step. Additionally, we introduce two tech-
niques to improve the fine localisation networks. We propose
to extract multiple field-of-view (multi-FOV) features as the
regions of interest (ROIs) in the feature maps. We further
propose a novel Gaussian-shift-cropping technique to obtain a
diverse set of ROIs to create a rich set of training samples for
improving the training of deep neural network. A preliminary
version of our model competed at the Pathologic Myopia
Challenge (PALM) [1] held at ISBI 2019, and won the 1st
place in the fovea localisation task. We have also tested the
performance of our network on the widely used Messidor
dataset [10] and compared with state-of-the-art methods. The
results show that our proposed method achieved new state-of-
the-art performances.

In summary, we have made following contributions in this
paper:

• We have developed a hierarchical coarse-to-fine deep
regression neural network architecture for accurate end-
to-end fovea localisation and we demonstrate that the new
technique achieved state-of-the-art performances.

• We have developed an integrated framework of multi-
scale feature fusion and self-attention module to exploit
location, semantic, and contextual information.

• We have developed a multi-field-of-view (multi-FOV)
feature fusion technique for context-aware feature learn-
ing and a Gaussian-shift-cropping method for augmenting
effective training data.

II. RELATED WORK

A. Handcrafted feature-based methods

Most handcrafted feature-based methods leveraged anatom-
ical features to determine the region of interest (ROI), and
then further located the fovea in the ROI based on the darker
visual features of the fovea. These methods can be classified
into four categories in terms of the auxiliary information used,
i.e. 1) only using blood vessel information, 2) only using OD
information, 3) using both blood vessel and OD information,
and 4) using none of the information of blood vessel and OD.

Some works only utilize blood vessel information to identify
ROIs. For example, Deka et al. [12] firstly detected the blood
vessels and then segmented out the macula region; Medhi
et al. [27] applied horizontal canny edge detector to the
blood vessels to find the macula. Other works exploited OD
information to determine ROIs. Narasimha-Iyer et al. [31]
selected a square centred at a point that is 1.75 OD diameter
temporal, and 0.5 OD diameter below the OD centre as the
ROI. Sekhar et al. [37] defined the ROI as the portion of a
sector subtended at the the OD centre by a 30 degree angle
above and below the line between the OD and image centre.
Similarly, based on the location of the OD, the ROI was
identified by Asim et al. [6]. Then all the minimum intensity
value pixels in the ROI were found, and the median pixel of

all the minimum values was considered as the fovea if there
were no blood vessels around it.

There is research using both blood vessels and OD infor-
mation to identify ROIs. Li et al. [24] extracted the points
on the main blood vessels in the fundus image, and the
extraction result was fitted to a parabola with the OD as the
focus. Aquino et al. [5] segmented the OD and vascular tree
to obtain a more accurate fovea location. There are also a
few algorithms that do not explicitly leverage any information
of blood vessels and optic disc. Sinthanayothin et al. [41]
directly designed a template of intensities that can be used to
approximate a typical fovea. GeethaRamani et al. [13] applied
data mining through heuristic based clustering to obtain the
macular candidate regions. Pachade et al. [32] derived the
field of view (FOV) mask of the fundus image based on a
mathematical method and identified the ROI according to the
centre and the diameter of the FOV.

As can be seen above, most handcrafted feature-based
methods rely on information such as blood vessels and OD for
ROI identification, and dark visual features of fovea for final
localisation. However, these methods would fail to work when
damage occurs around the fovea or the auxiliary parts which
can significantly affect the effectiveness of related features.

B. Deep learning-based methods

With its powerful abilities in learning representative features
automatically, the development of deep learning has provided
a new solution to the fovea localisation problem. Currently,
most existing methods based on deep learning can be divided
into two types, one is one-stage localisation, and the other is
two-stage localisation.

Some works treat the fovea localisation problem as a one-
stage issue. Tan et al. [42] proposed a 7-layer convolutional
neural network and simultaneously realized the segmentation
of fovea, OD and blood vessels. For every effective point in
the fundus image, three different size neighborhoods of points
were extracted as the input of the network. The final input size
to this network was settled on 33×33 by some comparative
experiments. Meyer et al. [29] used a pixel-wise MTL-like
(Multi-Task Learning) strategy and reformulated the problem
as regressing the distance from each image location to the
closest of the OD and fovea of interest. Then, a U-Net [35]
based architecture was employed for distance regression and
a good result was obtained on the Messidor dataset.

Some other works address the problem by using two-stage
framework. Sedai et al. [36] designed two fully convolutional
neural networks with 5 convolutional blocks and skip connec-
tions. One is a coarse network used to generate the ROI and the
other is a fine network. For the coarse network, side feature
maps were taken from the last four blocks whereas for the
fine network they were taken from the last two blocks. Then
the authors concatenated these side feature maps and used
them for the coarse segmentation and the fine segmentation.
Similarly, AI-Bander et al. [4] proposed a two-stage system.
In the first stage, the whole resized image along with the
scaled centre was fed to the convolutional neural network and
it would generate the coarse-localisation results of both OD
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and fovea centre. Two subimages were obtained by cropping
the regions around the OD centre and fovea centre. In the 2nd
stage, these subimages along with the scaled centres were used
to train CNNs to obtain the final results.

III. METHODOLOGY

A. Overview of the hierarchical deep regression network

The overall framework of the proposed three-stage network
is shown in Fig. 1, which is mainly composed of three parts,
i.e. the Main-Net, Sub-Net1 and Sub-Net2. The Main-Net is
used for coarse localisation, while Sub-Net1 and Sub-Net2
are used for fine localisation. The output of the Main-Net is a
vector X1, which is a predicted point of coarse localisation.
We crop the feature maps in the Main-Net centered around X1

and obtain the extended ROI (E-ROI-1), which is composed
of 3 ROIs. We use E-ROI-1 as the input of Sub-Net1 which
produces another vector X2 as the result of the second
stage. We again crop the same feature maps in the Main-Net
centered around X2 and obtain another extended ROI (E-ROI-
2). We take E-ROI-2 as the input of Sub-Net2 and obtain the
output X3 as the final result. All three networks target the
location coordinate of the fovea and perform regression. In
the following, we will describe each part of the system in
detail.

B. Main-Net for coarse localisation

As shown in Fig. 1, the Main-Net is the first stage in
our proposed three-stage network and it produces a vector
X1 as the result of the coarse localisation. We first use a
pre-trained VGG19 [40] to extract initial features. Then, we
leverage multi-scale feature fusion technique and the self-
attention module [49] to enhance the extracted features with
richer location and contextual information. As the location of
the fovea is related to many other features on the fundus image,
such as the location of the OD and the distribution of blood
vessels, it is very important to capture the contextual spatial
features. Specifically, the initial features of the 4th and 5th
blocks of VGG19 are fused and then put into the self-attention
module [49] to obtain two sets of features, which are further
fed into two fully connected layers and produce two fovea
location vectors, X1,1 and X1,2, respectively. The weighted
sum of the two locations are taken as the coarse location output
of the Main-Net: X1 = λ1X1,1 + λ2X1,2. In practice, we
only regress X1 towards the fovea location, and fix λ1 and
λ2 to simplify the model. In this paper, these two parameters
are set as λ1 = 1 and λ2 = 3, please see experiment section
for details.

1) Multi-scale feature fusion: In order to obtain more
semantic location information for coarse localisation, we fuse
multi-scale features as shown in the Main-Net in Fig. 1. In
general, the feature maps in shallower layers contain more
location details, while features of deeper layers present more
abstract semantic information [26]. The contour and location
features of other structures on the fundus image is related to
the location of the fovea. For example, the contour and location
features of the optic disc are helpful for fovea localisation be-
cause the location of the fovea is about 2.5 OD diameters away

Fig. 1: The framework of the proposed three-stage network
for fovea localisation. The numbers in the blocks represent
the number of channels of the feature maps. Details of the
self-attention module are illustrated in Fig. 2, and details of the
conv-blocks in Sub-Net1 and Sub-Net2 are illustrated in Fig. 3.
R1 and R2 represent the feature blocks with three different
fields of view. Firstly, the fundus image is fed into the Main-
Net to produce coarse prediction X1. Then, based on X1,
E-ROI-1 is generated and fed into Sub-Net1 to produce X2.
Finally, E-ROI-2, is obtained based on X2 and put into Sub-
Net2 to generate final fine prediction X3. Please see main text
for detailed operations.

from the OD centre [22], [46]. The feature maps in the 4th
block are twice as large as that of the 5th block, therefore, the
former contains more contour and location information than
the latter. Therefore, we additionally extracted the features in
the 4th block of the VGG19 to add more location information.

Here, we marked the features of the 4th and 5th block as
f4 and f5 respectively, and they are fused to integrate more
information. As shown in the Main-Net in Fig. 1, we first
let f4 and f5 pass two 1×1 convolutional layers to reduce the
feature dimension, which can reduce the parameters and make
the features more compact. Since the spatial size of f4 is larger
than f5, in order to match them, we downsample the size of f4
by average pooling to match f5, and upsample the size of f5 via
bilinear interpolation to match f4. Then we let these two sets
of scaled feature maps pass through two 1×1 convolutional
layers respectively, which will generate the weights to mix f4
and f5. The scaled f5 is merged into f4 so that f4 obtains more
semantic information, while the scaled f4 is merged into f5 and
then f5 can include more location details. Finally, we obtain
two sets of enhanced features of the fundus image, which are
more descriptive for fovea localisation.
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Fig. 2: Illustration of the self-attention module. C represents
the number of channels of the feature maps and n represents
the width and height of the feature maps.

2) Self-attention module for long-range dependencies mod-
elling: As shown in Fig. 1, self-attention [49] mechanism is
applied to our Main-Net after we obtain the enhanced feature
maps as described above. The location of the fovea is closely
related to other parts of the fundus images, such as the OD
which is far from the fovea. Due to the limited receptive
field of the convolutional layers, it is often difficult to model
the long-range dependencies, making it not easy to link the
information between the fovea and the OD. Self-attention
is a mechanism that calculates the response at a position
in a sequence by attending to all positions within the same
sequence [8], which has been shown to achieve state-of-the-art
results for machine translation models [44]. Besides, formal-
ized as a non-local operation, the self-attention mechanism can
capture long-range dependencies by computing interactions
between any two positions [45]. Considering these facts, we
exploit the self-attention module [49] to model the long-range
dependencies between different parts of the fundus images.

Fig. 2 illustrates the self-attention module used in this paper.
It can be seen that the input feature map is reshaped from n×n
to 1×N , and then multiplied by its transpose, which allows
the information of each position to be related to all positions
on the feature map. Besides, 1× 1 convolutional layers in the
module make the relationships between positions learnable.
Fovea location is related to the information of other parts,
such as OD and blood vessels on the fundus image, thus the
self-attention module can help capture these critical cues for
fovea localisation.

Specifically, we apply the self-attention module to our
feature maps. For each pixel on the feature maps, a set of
weights, with a sum of 1, are generated, and the weighted
sum of the values at all pixels is set to the response of the
corresponding position on the self-attention map. A larger
value on a position of the self-attention map indicates that
this position is more globally dependent and should be paid
more attention to. We add the original feature maps to the
weighted self-attention maps and obtain the new feature maps.
The introduction of the self-attention module can help generate
more long-range intervening information correlating the parts
associated with the fovea, and produce more attention to the
parts that are relevant to the detection of the fovea.

C. Subnets for location refinement

The Main-Net mainly considers the global characteristics of
the fundus images, and use the self-attention module to model

Fig. 3: The structure of the proposed subnets, i.e. Sub-Net1
and Sub-Net2, which share the same structure. a represents
the 1× cropping window size used to crop the feature maps
of the first block of the VGG19. l represents 2 or 3.

long-range dependencies. It can detect the coarse position of
the fovea. However, for finer localisation, local information
such as the dark colour of the fovea and the absence of
blood vessels inside the fovea is necessary. Thus, we further
design two sub-networks for localisation refinement as shown
in Fig. 1, which are referred to as Sub-Net1 and Sub-Net2,
respectively. The two sub-networks share the same structure
as shown in Fig. 3. The input of the network is the extended
ROI (E-ROI) with three different fields of view in the feature
maps of Main-Net.

1) E-ROI generation for fine localisation: To obtain the
input to Sub-Net1, E-ROI-1 (see Fig.1), we crop the feature
maps of the first and second blocks of VGG19. 3 windows of
different sizes centred around X1 are cropped from the feature
map of the 1st block. Another 3 windows also centred around
X1 are cropped from the feature map of the 2nd block. As
the feature map of the 1st block has a higher spatial resolution
than that in the 2nd block, the window size used for the 1st
block is larger than that of the corresponding window used
for the 2nd block such that both cover the same area in the
input image. The corresponding windows for the two blocks
are then made to have the same number of channels and the
same spatial dimension so that they can be added together to
form E-ROI-1. E-ROI-1 consists of 3 windows of features each
covering a different size of area of the input image centered
around X1. Similarly, to obtain the input to Sub-Net2, E-ROI-
2 (see Fig.1), the process is exactly the same except that this
time, we replace X1 with the output of Sub-Net1, X2.
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The generation of E-ROI can be expressed as Equation (1):

Gk(x, y) = V1(u, v) + U
{
C
[
V2(

u

2
,
v

2
)
]}

,

u = x+ xc −
ka

2
, v = y + yc −

ka

2
, x, y ∈ (0, ka]

(1)

where G represents the generated E-ROI (feature maps), x
and y represent the abscissa and the ordinate of the position
in the feature maps, V1 and V2 refer to the feature maps
of the first and the second block from the VGG19 in the
Main-Net respectively. The operation of 1×1 convolution and
upsampling using bilinear interpolation for the feature maps
is expressed as the functions C and U respectively. xc and yc
represent the abscissa and the ordinate of the cropping centre
position in the feature maps of the first block of the VGG19.
The 1× cropping window size used to crop the feature maps
of the first block of the VGG19 is marked as a. k (k = 1, 2, 4)
represents the multiplier of the 1× cropping window size, 1×,
2× and 4× cropping window sizes are selected to obtain three
sets of feature blocks G1, G2 and G4 as our E-ROI.

2) Multi-FOV feature fusion for context-aware feature
learning: Considering that there is a certain relationship
between the fovea and the surrounding information, such as
its darkest colour in the macula and its absence of major
blood vessels [6], we also exploit the multi-FOV technique to
enhance our subnets for better context-aware feature learning.
Specifically, as explained above, we crop the feature maps
three times using different-sized cropping windows and obtain
1×, 2× and 4× size feature blocks that are the regions of
interest with different fields of view, which are marked as
G1, G2 and G4 respectively. We further downsample the
feature blocks to the same 1× size and obtain G

′

1, G
′

2 and G
′

4

respectively, which can be further explained in Equation (2):

G
′

k(x, y) =

k−1∑
i=0

k−1∑
j=0

Gk(kx−i, ky−j)/k2, x, y ∈ (0, a]. (2)

The feature blocks G
′

2 and G
′

4 contain more surrounding
information, while the local information of interest is less
obvious. As shown in Fig. 3, three parallel convolutional
blocks are used to process three sets of feature blocks, and
we mark them as 1xc, 2xc and 4xc respectively. The G

′

1,
G

′

2 and G
′

4 feature blocks will pass through the 1xc, 2xc
and 4xc convolutional blocks respectively. In the 2xc and 4xc
convolutional blocks, we use 3×3 convolution kernels to link
the surrounding parts to the parts we focus on.

Then, we acquire three sets of feature maps with the same
size from the 1xc, 2xc and 4xc, which are marked as H1,
H2 and H4 respectively. Then we crop the feature maps and
obtain the parts we focus on, which are corresponding to the
H1 feature maps and described in Equation (3):

H
′

k(x, y) = Hk

[
x+

(k − 1)a

4k
, y +

(k − 1)a

4k

]
, x, y ∈ (0,

a

2k
]

(3)
where H

′

k respresents the corresponding result of sampling
from Hk. Using bilinear interpolation, we upsample H

′

2 and
H

′

4, which contain more surrounding information, to the same
size as the H1 feature maps. Finally, we merge these three sets
of feature maps together according to a certain weight ratio.

The merged feature maps are fed into a fully connected layer
and a more accurate location is then obtained.

3) Gaussian-shift-cropping for effective training: As shown
in Fig.1, we crop the feature maps according to the predicted
results of the previous stages, but instead of cropping the
feature maps centred on these predicted locations, we propose
a novel Gaussian-shift-cropping mechanism to crop the feature
maps, which enables us to obtain more effective training data.

When training the network and the predicted location of
the coarse localisation step is relatively stable, if we use the
predicted results as the centre to crop the feature maps, the
acquired ROI would greatly overlap with each other, with little
changes. This would lead to easy training convergence of the
subnets. However, if we randomly select points around the
predicted point, then the corresponding centre cropped feature
maps will significantly differ from each other, which means
that we will have more training data with sufficient variety.

Based on this observation, we propose a novel Gaussian-
shift-cropping technique to generate ROI. Specifically, we
generate a two-dimensional Gaussian probability map centred
at the predicted location, and the cropped centre is obtained
based on this Gaussian probability map, which can be further
explained in Equation (4):

p(x, y) =
1

2πσ2V
exp[

(x− xp)2 + (y − yp)2

−2σ2
]

V =

∫∫
(x,y)

1

2πσ2
exp[

(x− xp)2 + (y − yp)2

−2σ2
]dxdy

x ∈ [xp − 2, xp + 2], y ∈ [yp − 2, yp + 2]

xc = [x− (xp − 2)]a/4 + (xp − a/2)
yc = [y − (yp − 2)]a/4 + (yp − a/2)

(4)

where the predicted location is marked as (xp, yp), the selected
cropping centre is indicated by (xc, yc), and a represents the
1× cropping window size used to crop the feature maps of
the first block of the VGG19. A point (x, y) is randomly
generated with the probability value p(x, y) and the cropped
centre is obtained according to this point. The cropping
centre generated during the training of each iteration will be
sufficiently different, which will further generate different ROI
and increase the diversity of the training data.

D. Loss function

As shown in Fig. 1, the outputs of the Main-Net, Sub-Net1
and Sub-Net2 are X1, X2 and X3 respectively, which are
three predicted fovea locations of the first, second and third
stages in our proposed network. One possible way to define
the loss function of the network is to make each stage’s output
approaching the true fovea location as close as possible. Let
X be the true location of the fovea, we define the overall loss
function, L, as the weighted sum of the Euclidean distance
between the predicted vectors and the ground truth as shown
in Equation (5):

L = w1‖X −X1‖+w2‖X −X2‖+w3‖X −X3‖. (5)

where w1, w2 and w3 are weighting constants of different
networks errors. Because the errors in the coarser network
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will propagate to finer networks, the coarse errors should be
punished more heavily, that is, we should in principle give
more weights to coarser errors.

IV. EXPERIMENTS

A. Datasets

Two datasets are used in our experiments, one is the PALM
dataset [1] and the other is the Messidor dataset [10].

The PALM dataset comes from the Pathologic Myopia
Challenge (PALM) held at ISBI2019. The PALM challenge
published 1200 fundus images, of which 400 are labeled for
training, and the remaining 800 are unlabeled. For the 400
labeled fundus images, 213 are pathological myopia fundus
images and the remaining 187 are normal fundus images. 350
fundus images have a resolution of 2124×2056, while the
resolution of the remaining 50 images is 1444×1444.

There are 1200 eye fundus images in the Messidor dataset.
The dataset is widely used as a benchmark for fovea localisa-
tion. The resolutions of these fundus images are 2240× 1488,
1440×960, and 2304×1536 pixels. 540 cases were marked
as healthy retinas, while the remaining 660 cases marked as
pathological retinas. The fovea centre of 1136 fundus images
in this dataset can be obtained from [14].

B. Experiment setup

1) Data split and augmentation: For PALM, we randomly
divide the 400 fundus images into four equal subsets, where
there are almost the same number of pathological myopia
fundus images in each subset. Three of the subsets are taken
as training data and the remaining part as the testing data. For
Messidor, we randomly split the 1136 labeled fundus images
into two equal subsets, one for training and one for testing.
By exchanging training and testing data, two cross-validation
experiments have been conducted. We take the average of these
two experiments as the final result.

To increase the number of training data, before a fundus
image was fed into the network for training, we generated
a uniform random number between 0 and 1, and we would
add Gaussian noise to this image if this number was greater
than 0.6. The mean value of Gaussian noise was 0, and the
variance value was generated from another uniform random
number between 0.01 and 0.05.

2) Evaluation metrics: For PALM, the predicted location
error of average Euclidean distance is used as the evaluation
metric. Euclidean distance between the predicted location and
the ground-truth fovea centre is also used as the criteria of
performance in many related works [48], [36], [25].

For Messidor, the evaluation metric is the R rule [14], [15],
[5], [9], [17], [30], [4], [29], [50], [32]. When the Euclidean
distance between the predicted result and the ground truth is
smaller than the radius of the OD, it is considered correct.

3) Implementation details: The GPU we used to train the
networks is NVIDIA GeForce GTX 1080 Ti. The input images
are resized to 224×224. Considering that feature maps with
larger spatial resolution contain more location information
(such as the information of the OD and the blood vessels
location) that is crucial for coarse localisation, the weight λ1

Fig. 4: The learning curves when training the proposed three-
stage network on the PALM and Messidor datasets.

and λ2 were set to 1 and 3 respectively, when fusing the two
branches of the Main-Net as shown in Fig. 1. When mixing
the features obtained from the three parallel convolutional
blocks of the Sub-Nets shown in Fig. 3, considering that local
features (such as the darkest colour) is more important for
fine localisation, the weights α, β, and γ were set to 0.5, 0.3,
and 0.2 respectively. This setting assigns more weights to the
features with smaller FOV to include more local information
for finer localisation. Since the first-stage coarse localisation is
vital for fine localisation, we set the weights w1 = 2, w2 = 1,
and w3 = 1 in the final loss function in equation (5). For
the proposed Gaussian-shift-cropping technique, the variance
value (σ) of the Gaussian function as shown in Equation (4)
was set to 1.

C. Network training
The loss funtion used to train the network is defined as

Equation (5). During each iteration of training, the fundus
image is fed into the Main-Net firstly and the predicted coarse
location X1 is obtained, which is used to generate E-ROI-
1. Then Sub-Net1 takes the E-ROI-1 as input and generates
the predicted fine location X2. Finally, E-ROI-2 is generated
according to X2 and fed into Sub-Net2 to produce X3 as
the final predicted location. As shown in Fig. 1, using the
label of fovea location, Loss1, Loss2 and Loss3 are generated
according to the predicted X1, X2 and X3 respectively, and
the final loss is the weighted sum of the losses from three
stages. We train the whole network (the composition of Main-
Net, Sub-Net1 and Sub-Net2) end-to-end based on the final
loss (Equation (5)). The learning curves when we trained the
proposed three-stage network on the PALM and Messidor
datasets are shown in Fig.4. It can be seen that the losses
decrease with the increasing of training epochs, which suggests
that the predicted results of three stages gradually get closer
to the ground truth. We can also see that the learning curve on
the Messidor dataset converges earlier and reaches lower loss
values, which indicates that it is easier to localise the foveas
in the fundus images of Messidor dataset.

D. Experiments on PALM
1) Overall results: To evaluate the performance of our

proposed three-stage network, we have conducted experiments
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TABLE I: Overall results of the proposed network and base-
lines. The best result is highlighted in bold.

Method One-stage Two-stage Three-stage Three-stage (parameter free)

Error 63.84 55.45 50.18 53.64

Fig. 5: Examples of the results of fovea localisation using
different methods. The red cross represents the ground truth,
while the blue, green, and white crosses represent the predicted
results of the one/two/three-stage networks respectively.

on both the proposed network and two baselines, i.e. one/two-
stage networks. For the one-stage network, only Main-Net is
used for localisation. For the two-stage network, the Main-Net
is used for coarse localisation while the Sub-Net1 is used for
fine localisation. For the proposed three-stage network, both
Sub-Net1 and Sub-Net2 are exploited for fine localisation.
Additionally, we also introduce a parameter free version of
the three-stage system by setting all hyperparameters (λ1, λ2,
α, β, γ, w1, w2, w3) to 1.

The overall results of the proposed three-stage network and
the baselines of one/two-stage networks are presented in Table
I. As can be seen, the proposed three-stage network achieves
an error of 50.18 and significantly outperforms both baselines,
with error reduction of 21.40% and 9.50% compared with the
one-stage and two-stage networks respectively. The parameter
free version of the three-stage system also performs better
than the baselines even though it is slightly worse than the
complete system. This result demonstrates the superiority of
our method.

Some cases are presented in Fig. 5. The regions in the red
box in the lower lefthand corner present the zoomed local
regions of the fovea. The red cross is the ground truth, while
the blue, green, and white ones indicate the predicted locations
of the one/two/three-stage networks respectively. We can see
that the three-stage network can always acquire more precise
location than the baselines despite the significant differences
of the fundus images, which demonstrates the effectiveness of
our method.

2) Ablation results of the Main-Net for coarse localisation:
In order to prove the validity of our proposed Main-Net for
coarse localisation, we conducted ablation studies on the multi-
scale data fusion and self-attention design. The results are
presented in Table II, in which Vanilla represents original

TABLE II: The results of the ablation studies of the proposed
multi-scale data fusion and self-attention design for coarse
localisation. The best result is highlighted in bold.

Method Vanilla w/ fusion w/ attention w/ fusion, attention

Error 78.25 66.45 75.89 63.84

Fig. 6: Examples of the results of coarse localisation using
different methods. The red cross represents the ground truth,
while the blue and green crosses represent the predicted results
of the VGG19 and the proposed Main-Net respectively.

TABLE III: The results of the ablation studies of the proposed
multi-FOV design and Gaussian-shift-cropping technique for
fine localisation. The best result is highlighted in bold.

Method Vanilla w/ multi-FOV w/ GSC w/ multi-FOV, GSC

Two-stage 63.28 61.21 60.87 55.45
Three-stage 58.94 54.14 55.83 50.18

VGG19 version, while w/ fusion and w/ attention indicate
the versions with our proposed multi-scale fusion and self-
attention module respectively. We can see that the Main-Net
achieves an error of 63.84 and significantly outperforms other
baselines, with error reduction of 18.42% compared with the
original VGG19 version. Examples of coarse localisation are
also presented in Fig. 6. It can be seen that our proposed
Main-Net performed best in all the cases despite of the obvious
variance of the fundus images, which further demonstrates the
effectiveness of our proposed network design.

3) Ablation results of the Sub-Nets for fine localisation:
Ablation studies have also been conducted to demonstrate the
effectiveness of the proposed multi-FOV design and Gaussian-
shift-cropping technique for fine localisation. The experimen-
tal results are presented in Table III, in which Vanilla repre-
sents the network without the proposed improvements, while
w/ multi-FOV and w/ GSC indicate the versions with multi-
FOV network design and Gaussian-shift-cropping respectively.

As can be seen, for both networks, the ones with both multi-
FOV design and Gaussian-shift-cropping achieve the lowest
errors, with average Euclidean distance of 55.45 and 50.18
pixels, which brings error reduction of 12.37% and 14.86%
for the two-stage and the three-stage frameworks respectively.

4) Evaluation of the impact of mixing weights in Main-Net:
As shown in Fig. 1, the mixing weights of the predicted results
of two different branches are set to λ1 and λ2 respectively. To
analyse the effect of different mixing weights on the coarse
localisation results, we compared the results with different λ1
and λ2 settings. The results are presented in Table IV. As
can be seen, when λ1 = 1 or λ2 = 1, the average Euclidean
distance error decreases first and then increases as λ1 or λ2
increases, which shows that mixing the information of the
two branches with too much or too little is not good for our
detection, and mixing the information of the two branches
with an appropriate weight ratio is beneficial to our detection.
The lowest average Euclidean distance error is obtained when
λ1 = 1 and λ2 = 3, which indicates that the high-resolution
feature maps are more important.



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, 2020 8

TABLE IV: The results of different mixing weights of Main-
Net. The best result is highlighted in bold.

(λ1, λ2) (1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

Error 67.32 64.72 64.34 63.84 64.37 65.22

(λ1, λ2) (0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

Error 65.83 64.72 66.14 66.40 66.92 67.11

Fig. 7: Results of different methods using different cropping
window sizes for the two-stage and three-stage frameworks.

5) Evaluation of the impact of cropping window size:
In order to find the optimal cropping window size for ROI
generation, we evaluated different methods to perform fine
localisation using 10 different window sizes.

We show the results of different methods using different
cropping window sizes in Fig. 7. The horizontal axis shows the
1× window sizes used for Sub-Net1 and corresponding half-
size windows are used for Sub-Net2 when cropping the feature
maps of the first block of the VGG19 in the Main-Net, while
the vertical axis shows the average Euclidean distance error
obtained. We can see that for both two-stage and three-stage
frameworks, the networks with both of our proposed multi-
FOV and Gaussian-shift-cropping methods perform better
compared with vanilla version for almost all window sizes, and
our proposed method using both techniques outperforms other
baselines for almost all window sizes. The optimal window
size for both two-stage and three-stage frameworks is 16×16.

6) Evaluation of the impact of the number of stages: In
order to analyse the effect of the number of stages for fovea
localisation, we further designed a four-stage and a five-stage
network which are based on the proposed three-stage network
by adding one and two extra Sub-Nets (all the Sub-Nets share
the same architecture) respectively. The experimental results
are shown in Table V. We can see that the proposed three-
stage network can achieve the best result. Besides, the more the
stages, the worse the results. The results indicate that too many
stages will use feature maps that are of too low resolution and
contain not enough detailed information about the location of
the fovea, thus leading to worse performances. Therefore, it is
suggested that three stage is a good tradeoff.

TABLE V: The results of different number of stages. The best
result is highlighted in bold.

Method Three-stage Four-stage Five-stage

Error 50.18 53.69 56.91

E. Experiments on Messidor

In order to further verify the validity of our proposed
method, we have also conducted experiments on the Messidor
dataset. For different resolutions of 2240×1488, 1440×960,
and 2304×1536 pixels, the radius of the OD was selected as
68, 103, and 109 pixels respectively [14], [5], [29]. We also
calculated the proportions of the fundus images with prediction
errors within R/8, R/4, R/2 and 2R. And we compared with
several existing methods, the results are shown in Tab. VI.

As can be seen, the accuracy of our proposed method is the
highest for all the evaluation metrics. It is worth noting that our
parameter free model also performed very well. For the R/8
rule, we achieve 13.48% and 23.42% accuracy improvement
compared with the results of Meyer et al. [29] and Zheng
et al. [50] respectively. For the R/4 rule, we attain 4.14%
accuracy improvement compared with the method of Meyer
et al. [29]. Furthermore, 99.74% and 99.82% accuracy have
been achieved for the R/2 and R rules respectively. When
using the 2R rule, an accuracy of 100.00% is obtained. We
also calculated the average Euclidean distance between the
predicted results and the ground truth and obtained the final
result of 7.64 pixels, which is very close to the ground truth.
These results further demonstrate the effectiveness of our
proposed three-stage network for accurate fovea localisation.

F. Experiments on different training and testing datasets

In order to verify the robustness of the proposed model,
we used different datasets for experiments. Specifically, we
trained our network on the PALM dataset while tested it
on the Messidor dataset. This setting is challenging, since
the visual appearances of the fovea, blood vessels and OD
of many fundus images are damaged in the PALM dataset,
while most fundus images in Messidor are relatively complete,
which results in significant differences between the training
and testing datasets. We conducted comparative experiments
on the proposed network and the VGG19 as baseline. We show
the results in Table VII, in which Vanilla represents original
pre-trained VGG19 version, while for the three-stage network,
both Sub-Net1 and Sub-Net2 are used for fine localisation. As
can be seen in Table VII, our proposed three-stage network
significantly outperforms the baseline. Even though very dif-
ferent datasets are used for training and testing respectively,
our method can achieve an accuracy of 95.26% using R rule
and obtain only 22.84 pixels error using average Euclidean
distance. About 22.37% accuracy improvement and 61.14%
error reduction have been achieved, which demonstrates the
superiority of our proposed method in terms of robustness.

We also trained our proposed three-stage network on the
Messidor dataset while tested it on the PALM dataset. This
task is also challenging, since almost no images of the training
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TABLE VI: Comparison with the results of existing methods on the Messidor dataset. The best results are highlighted in bold.

Method No.images 1/8R criterion (%) 1/4R criterion (%) 1/2R criterion (%) R criterion (%) 2R criterion (%)

Gegundez-Arias et al. [14] 1136 - 76.32 93.84 98.24 99.30
Giachetti et al. [15] 1136 - - - 99.10
Aquino [5] 1136 - 83.01 91.28 98.24 99.56
Dashtbozorg et al. [9] 1200 - 66.50 93.75 98.87
Girard et al. [17] 1200 - - 94.00 98.00
Molina-Casado et al. [30] 1200 - - 96.08 98.58 99.50
Al-Bander et al. [4] 1200 - 66.80 91.40 96.60 99.50
Meyer et al. [29] 1136 70.33 94.01 97.71 99.74 -
GeethaRamani et al. [13] 1200 - 85.00 94.08 99.33 -
Pachade et al. [32] 1200 - - - 98.66 -
Zheng et al. [50] 1136 60.39 91.36 98.32 99.03 -
Our three-stage 1136 83.81 98.15 99.74 99.82 100.00
Our three-stage (parameter free) 1136 81.07 97.98 99.65 99.74 99.91

TABLE VII: The results of the proposed method and VGG19
(vanilla) using PALM dataset for training and Messidor dataset
for testing.

Method Vanilla Three-stage (ours)

Error 58.77 22.84
Accuracy (R rule) 72.89% 95.26%

dataset (Messidor dataset) present similar characteristics to the
pathological fundus images of the test dataset (PALM dataset).
The experiment achieved an average Euclidean distance error
of 124.63 pixels, and the proportion of those images with an
error within 150 pixels (close to the R rule for the PALM
dataset) reaches about 80%. Considering the difficulty of the
generalization task, the test results are relatively good, which
further demonstrate the robustness of our proposed network.

To further verify the robustness of the proposed method on
other dataset, we also used our trained model, which have
been trained on the PALM dataset, to test on the Kaggle
Diabetic Retinopathy dataset [2]. The dataset contains five
grades of diabetic diseases, which are labelled as one of the
five categories, i.e. no, mild, moderate, severe, and prolifera-
tive diabetic retinopathy. This dataset has complex situations
around the fovea which is challenging for fovea localisation.
The annotations of the fovea location are not provided, we
herein show several typical visual examples of the localisation
results in Fig. 8, in which two fundus images are presented for
each of the five categories. It can be seen that the predicted
results are roughly accurate, which further shows that our
proposed method is capable of functioning well for this dataset
with complex situations around the fovea.

G. Evaluation of the impact of hyperparameter setting

In order to analyze the degree of dependence of our net-
work on hyperparameter settings, we compare two sets of
hyperparameter settings, i.e. the proposed setting (λ1 = 1,
λ2 = 3, α = 0.5, β = 0.3, γ = 0.2, w1 = 2, w2 = 1 and
w3 = 1) and the equal-weight setting (λ1 = λ2 = α = β = γ
= w1 = w2 = w3 = 1) which is equivalent to removing all the
hyperparameters. We have performed experiments on both the
PALM and Messidor datasets. On PALM, the network with

Fig. 8: Examples of fovea localisation results on the Kaggle
Diabetic Retinopathy dataset. The five columns represent the
fundus images from the five categories of no, mild, moderate,
severe, and proliferative diabetic retinopathy, respectively. The
green crosses represent the predicted fovea locations using our
trained model.

equal-weight hyperparameter setting (parameter free version)
attains average Euclidean distance error of 53.64 pixels, which
is higher than that of the network with the proposed hyper-
parameter setting (50.18) but still significantly lower than the
baselines (see Table I). On Messidor, the network with equal-
weight setting (parameter free version) only brings an error
increase from 7.64 to 8.02 pixels, compared with our proposed
setting; furthermore, the accuracy can still reach 99.65% using
the R/2 rule and 99.74% using the R rule, which is better
than the baselines presented in Table VI. These results show
that our network is not strongly dependent on the setting of
hyperparameters, which further verify the robustness of our
proposed network design.

V. DISCUSSION AND ANALYSIS

A. Evaluation on successful and failure cases

In order to further investigate into the performance of our
model, we test the fundus images and analyse the results. We
first set thresholds to categorize test results into successful and
failed cases. For the PALM dataset, the threshold is set to be
100 pixels in terms of the Euclidean distance error, considering
the fact that the OD radius of most fundus images on the
PALM dataset is about 150 pixels. While for the Messidor
dataset, the threshold is 0.25 OD radius (0.25R rule). The
success rate is about 87% on the PALM dataset and 98% on
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Fig. 9: Examples of failed cases where the visual features
of the fovea, OD, or blood vessels are unclear. The red and
white crosses represent the true and the predicted locations,
respectively. The ones in the first and second rows are the
results from the PALM and the Messidor datasets respectively.

Fig. 10: Examples of successful cases where the visual features
of the fovea, OD, or blood vessels are unclear. The red and
white crosses represent the true and the predicted locations,
respectively. The ones in the first and second rows are the
results from the PALM and the Messidor datasets respectively.

the Messidor dataset respectively. If we further increase the
threshold from 100 to 150 pxiels (close to the R rule) for the
PALM dataset, the success rate can reach about 94%.

We further analyse the failed cases and discover that most
of them are the pathological fundus images, whose visual
appearance is severely affected by lesions. Some failed cases
are presented in Fig. 9. It is of note that the visual features of
the OD, blood vessels, and the fovea are abnormal and difficult
to recognize. However, we further analyse the 213 pathological
fundus images with seriously affected visual appearance on
the PALM dataset and find that the proportion of good cases
within 100 pixels error still reach 78%, and it will reach about
90% if we calculate the ones within 150 pixels error. While for
the 1136 fundus images on the Messidor dataset, more than
half of which are the images marked as pathological retinas,
however, only less than 20 cases have an error exceeds 0.25R.
We also show some successful cases in Fig. 10, and we can see
that even though fundus images have lesions which severely
affect the visual appearance of the OD, fovea, or the blood
vessels, the proposed method still achieves good performance
on them. These results show that our proposed method can
also perform well in challenging pathological images.

Fig. 11: Failed cases when using multiple stages for fine
localisation. The red cross represents the ground truth, while
the blue, green, and white crosses represent the predicted
results of the one/two/three-stage networks respectively.

B. Evaluation on multi-stage fovea localisation

In order to further analyse the behaviour of our pro-
posed three-stage network for fovea localisation, we tested
on the fundus images in the PALM dataset using trained
one/two/three-stage networks respectively. Although the aver-
age performance is greatly improved as shown in experiment
section, there are still some cases where using more stages
performed worse than using fewer stages. We show several
these cases in Fig. 11. We can see that multi-stage design for
fine localisation performs worse than one-stage localisation
in these cases. We discover that most of them are severely
damaged and the local features around the fovea are very
unclear. The subnets we design mainly use local information
around the fovea for fine localisation, so when these local
features are severely affected, the performance of the subnets
may also be affected, leading to erroneous results.

There are about 170 fundus images (most of them are nor-
mal fundus images) with clear local features around the fovea
in the 400 labeled fundus images from the PALM dataset, and
the remaining about 230 fundus images (most of them are
pathological fundus images) are those without prominent local
features around the fovea. For the 170 images with clear local
features around the fovea, multi-stage networks outperformed
one-stage networks for 156 (91.76%) images, with the average
Euclidean distance error reducing from 34.74 to 11.48 pixels
(66.95%); and for the 230 images without clear local features,
multi-stage networks outperformed one-stage networks for 162
(70.43%) images, decreasing the average Euclidean distance
error from 95.62 to 78.89 pixels (17.50%). This further shows
that our multi-stage strategy is desirable in most cases, but
also indicates that our method has scope for improvement.
One possible approach is to first classify the images based on
the regions around the fovea into those with clear features
and those without clear features, and then use networks
with fewer stages for those without and networks with more
stages for those with clear features. Another possibility is to
classify the image into normal or pathological and then process
accordingly [47].

C. Qualitative evaluation of the self-attention module

Fig. 12 shows the self-attention map in the Main-Net that
we have learned for some fundus images. The attention maps
(bottom) are corresponding to fundus images (top), with red
and blue indicate high and low values respectively. As can be
seen, the grids near the OD and the fovea have higher values,
which means that the responses corresponding to the locations
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Fig. 12: Examples of self-attention maps of the feature maps
obtained from the coarse localisation step for fundus images.
The red cross indicates the location of the fovea.

Fig. 13: The predicted results of the Main-Net for 100 images
using four trained models. The coordinate origin represents the
ground truth, while the brown points are the predicted results.

are larger, and as a result, these parts are more globally relevant
and more attention is paid to them. This demonstrates the
effectiveness of the self-attention module in associating the
fovea with the OD, which will be helpful for fovea localisation
since the OD is much more salient in fundus images.

D. Rationality of the Gaussian-shift-cropping

We present our observation to demonstrate the plausible
rationality of the proposed Gaussian-shift-cropping technique.
Specifically, we used four trained models to perform on the
test data. The results of the Main-Net are shown in Fig. 13.
The coordinate origin (0, 0) represents the ground truth, while
the brown points are the predicted results. We can see that
the distribution of the predicted results concentrates around
and spreads from the fovea location. The observation suggests
that the predicted locations from the Main-Net can be ap-
proximated by a 2D Gaussian-distribution centred at the fovea
location. This indicates that we should pay more attention to
the location around the predicted point in most cases (where
the fovea may be located). Thus we can sample points within
the area to simulate the possible predicted locations to generate
ROIs of sufficient variation.

E. Generalization to other applications

To further evaluate the generalization ability of our proposed
method in other applications, we used similar method for the
scleral spur localisation task at the Angle closure Glaucoma
Evaluation Challenge [3] held in the 22nd International Con-
ference on Medical Image Computing and Computer Assisted
Intervention (MICCAI 2019). This challenge provides a large
dataset of 4800 anterior segment optical coherence tomogra-
phy (AS-OCT) images, which consists of three equal subsets

Fig. 14: Several cases of scleral spur localisation. The red
crosses represent the groundtruth, and the green ones represent
the predicted results of our proposed method.

(the number of the images of each subset is 1600) for training,
validation and testing repectively. The resolution of the images
is 2130 × 998. We obtained the average Euclidean distance
error of 15.18 and 14.00 pixels in the validation dataset and
the test dataset respectively, which won the fourth place in the
competition participated by more than 200 teams worldwide.
Fig. 14 shows some visual examples of this application, and it
can be seen that the predicted results are very close to the real
results although these OCT images differ substantially from
the colour fungus images. These results show that our method
can be generalised to other applications and different image
modalities.

F. Analysis of computational complexity

To analyse computational complexity of our network, we
calculate the floating point operations (FLOPs) when we use
the three-stage network to predict the fovea location. Many
works treated the fovea localisation as a segmentation prob-
lem [42], [36], [29], which often means that higher resolution
of the input of the network is needed. We directly treat it as the
regression problem between the predicted point and the ground
truth and reduce the resolution of the image to 224×224 before
we put it to the network, which greatly reduces the amount of
calculation and needs much less FLOPs than these works [42],
[36], [29]. Since we use 1×1 convolution operation to reduce
the feature dimension when extracting the feature maps of 4th
and 5th blocks of VGG19 in the Main-Net and downsample
the features before the E-ROIs are put in the subnets as
shown in Fig. 1, furthermore, the parallel convolution blocks
of the subnets consist of only 6 convolutional layers, and the
downsampling using max pooling is applied to reduce the scale
of the feature maps as shown in Fig. 3, therefore, the FLOPs
is only increased by about 2.3% compared to VGG19. For our
proposed three-stage network, it only takes about 0.3 second to
test a fundus image using our GPU, and one epoch of training
using 300 fundus images of PALM dataset only cost about
one minute.

VI. CONCLUSIONS

Fovea localisation is important for diagnosing and treating
retinal diseases. However, the problem is very challenging due
to the vague appearance of the fovea and its vulnerability
to damage nearby. To address the issues, in this article, we
proposed a coarse-to-fine three-stage regression network for
accurate fovea localisation. The network consists of three
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steps, including one coarse localisation step and two localisa-
tion refinement steps. For the coarse localisation step, we fused
the multi-scale features and introduced the self-attention [49]
mechanism to acquire enhanced features. For the localisation
refinement steps, we extracted multi-FOV features as the E-
ROIs in the feature maps. To reduce the dependence of training
models on specific data, we further proposed a novel Gaussian-
shift-cropping technique to obtain ROIs with more variance
for fine localisation, which can make the network training
more effective. The proposed approach has achieved the 1st
place in the fovea localisation task at the Pathologic Myopia
Challenge (PALM) [1] held at ISBI 2019. We have also tested
the performance of our network on the Messidor dataset [10]
and compared with state-of-the-art methods. The results show
that our proposed method achieve new state-of-the-art results
with accuracy of 99.82% on the Messidor dataset.
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