
Nonlinearity
            

PAPER • OPEN ACCESS

Transfer operator approach to ray-tracing in circular domains
To cite this article: J Slipantschuk et al 2020 Nonlinearity 33 5773

 

View the article online for updates and enhancements.

This content was downloaded from IP address 146.200.209.252 on 05/10/2020 at 10:12

https://doi.org/10.1088/1361-6544/ab9dca


London Mathematical Society Nonlinearity

Nonlinearity 33 (2020) 5773–5790 https://doi.org/10.1088/1361-6544/ab9dca

Transfer operator approach to ray-tracing
in circular domains

J Slipantschuk1,∗ , M Richter2,3 , D J Chappell3, G Tanner2 ,
W Just1 and O F Bandtlow1

1 School of Mathematical Sciences, Queen Mary University of London, London E1
4NS, United Kingdom
2 School of Mathematical Sciences, University of Nottingham, University Park,
Nottingham NG7 2RD, United Kingdom
3 School of Science and Technology, Nottingham Trent University, Nottingham
NG11 8NS, United Kingdom

E-mail: j.slipantschuk@qmul.ac.uk, martin.richter@nottingham.ac.uk,
david.chappell@ntu.ac.uk, gregor.tanner@nottingham.ac.uk, w.just@qmul.ac.uk and
o.bandtlow@qmul.ac.uk

Received 7 October 2019, revised 30 April 2020
Accepted for publication 17 June 2020
Published 30 September 2020

Abstract
The computation of wave-energy distributions in the mid-to-high frequency
regime can be reduced to ray-tracing calculations. Solving the ray-tracing
problem in terms of an operator equation for the energy density leads to an
inhomogeneous equation which involves a Perron–Frobenius operator defined
on a suitable Sobolev space. Even for fairly simple geometries, let alone real-
istic scenarios such as typical boundary value problems in room acoustics or
for mechanical vibrations, numerical approximations are necessary. Here we
study the convergence of approximation schemes by rigorous methods. For cir-
cular billiards we prove that convergence of finite-rank approximations using a
Fourier basis follows a power law where the power depends on the smoothness
of the source distribution driving the system. The relevance of our studies for
more general geometries is illustrated by numerical examples.
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1. Introduction

Ray-tracing methods serve as an important toolkit in finding approximate solutions of lin-
ear wave equations in the high frequency limit. This approximation is used in a variety of
fields providing, for example, the connection between Maxwell’s equations and geometric
optics, as well as between quantum mechanics and classical Hamiltonian mechanics [16]. The
ray-tracing limit has also been considered in detail in acoustics, seismology and mechanical
vibrations [27]. In engineering applications, ray-tracing is employed in handling electromag-
netic problems, such as coverage estimates for 5G or WiFi communication [14], room acoustics
simulations [26] as well as structure-borne sound propagation in mechanical structures [8].
Finding closed form, analytical solutions to such engineering problems of sufficient complex-
ity is generally impossible, even using ray-tracing techniques, and one has to use numerical
methods instead.

For solving linear wave problems such as those listed above, the numerical methods used
have to be adapted to the relevant length and frequency scales involved. In the low frequency
regime, finite element methods (FEM) are routinely employed for resolving the full wave
dynamics. However, the number of degrees of freedom in an FEM model needs to scale with
the wavelength and there is thus an upper limit in frequency above which the required compu-
tational resources become unfeasible. At very high frequencies, power balance approaches can
often be used as long as certain assumptions on the ergodicity of the underlying ray dynam-
ics are satisfied [28]. In the mid-to-high frequency range, ray-tracing becomes the method
of choice; standard ray-tracing techniques track all possible rays from a source to a receiver
point [26]—a method which becomes cumbersome if many reflections need to be taken into
account. As an alternative dynamical energy analysis (DEA) was proposed and has proven
to be useful in particular for structure-borne sound problems [17, 28]. Instead of tracking
individual rays carrying vibrations across the complex structure—which is extremely chal-
lenging–in DEA, the problem is reformulated in terms of densities of rays, which are then
mapped across a mesh representing the structure [9, 10]. This reduces the ray-tracing problem
from tracking rays on complicated and curved domains to mapping ray segments across small,
plane patches of a simple shape forming the mesh, typically triangular or quadrilateral mesh
cells. The ray densities are then mapped from one cell of the mesh to adjacent ones and
the overall transport problem can be formulated in terms of an inhomogeneous equation of
the form

(I − L) f = f0, (1)

where f0 is the initial ray density, L a Perron–Frobenius type operator describing the evolution
of ray densities and f the required final ray density. Using DEA, the distribution of vibrational
energy in mechanical structures, such as ships, cars and tractors [17, 18] can be calculated
successfully.

For such realistic geometries, equation (1) above cannot be solved analytically, so recourse
is made to numerical schemes based on heuristic finite-dimensional matrix approximations of
the operator L. To date, very little is known about the convergence properties of these schemes
and the dependence of the convergence rate on the ray dynamics, as well as the discretiza-
tion techniques [10]. The precise form of convergence is likely to be highly sensitive to both
the basis functions used in approximating the inhomogeneous equation (1), as well as dynam-
ical and damping properties of the system under investigation [18]. For our study, we will
therefore be concerned with the approximation of L by operators of finite rank. There is a
plethora of papers on numerical approximation of Perron–Frobenius operators, starting with
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Ulam’s method of phase space discretization, finite section or Galerkin methods, and data-
driven methods, see for example [2, 12, 13, 20, 22] to mention but a few. Surprisingly, the
application of DEA (which falls into the Galerkin category) to even fairly simple geometries
has not been dealt with at a rigorous level. Here, we shall thus focus on one of the simplest
cases, the billiard dynamics given by the ballistic motion within a circular disk. We shall
establish rigorous error bounds of finite-dimensional approximations for the resulting energy
distribution.

In order to set up the required notation, consider a particle moving inside a circular bil-
liard table D being specularly reflected at its boundary ∂D. We parameterize ∂D by the polar
angle x ∈ R/2πZ and we denote by y ∈ [−π/2, π/2] the angle of reflection that the postcolli-
sional velocity vector has with the inward normal to ∂D. Initially the collision angle is defined
on an interval. It is, however, technically simpler to deal with cyclic variables. Since both
angles −π/2 and π/2 correspond to a particle which sticks on the boundary we identify both
angles so that the collision angle becomes a cyclic variable as well. With these conventions, the
collision map T on the domain Ω = (R/2πZ) × (R/πZ) can be written as

T(x, y) = (x + π − 2y, y), (x, y) ∈ Ω (2)

with its inverse φ = T−1 given by

φ(x, y) = (x − π + 2y, y) (x, y) ∈ Ω. (3)

It is not difficult to see that the collision map T preserves the normalized Lebesgue measure on
Ω. The long-term statistical behavior of T can thus be studied by investigating the associated
Perron–Frobenius operator (see, for example, [7]), which for invertible measure-preserving
maps is given by the composition operator Cφ defined as

(Cφ f )(x, y) = f (φ(x, y)), (x, y) ∈ Ω, (4)

where f : Ω→ C. In the current work we are interested in the properties of a weighted Per-
ron–Frobenius operator, also known as a transfer operator. In order to define it, let us first
introduce a multiplication operator Mw acting on functions f : Ω→ C by

(Mw f )(x, y) = w(x, y) f (x, y), (x, y) ∈ Ω, (5)

where w : Ω→ [0,∞) is a suitable weight function, which in the DEA framework accounts
for dissipation caused either by collisions with the wall or by in-flight dissipation. The transfer
operator, understood to be acting on a suitable space of functions detailed in the following
section, is now given by

L = MwCφ. (6)

In the present article, we are interested in approximations of the solution to the opera-
tor equation (1) with f0 : Ω→ [0,∞) interpreted as the initial boundary density of particles
induced by the first boundary collision of particles emitted by a source located in the inte-
rior of D (see [28]). In the DEA approach this quantity represents the energy source. The
resulting energy distribution is captured by the solution, f : Ω→ [0,∞), which gives the sta-
tionary boundary density generated by the collision dynamics. Given a suitable Banach space
and a sequence of finite-rank projections (PK)K∈N, an approximation method for (1) can be
constructed by considering the projected finite-dimensional problem

(I − PKLPK) fK = f0 . (7)
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The aim of this work is to present a Banach space for f0 and (PK)K∈N, so that problem (7) has
solutions, which converge in a suitable topology to the solution of (1) as K tends to infinity, with
the speed of convergence being of the order K−α. The exponent α depends on the smoothness
of f0 and the requirements imposed on the type of convergence.

In passing we note that transfer operators have their roots in statistical mechanics [23, 24]
and nowadays play an important role in the ergodic theory of smooth expanding, or more
generally, hyperbolic dynamical systems (see, for example, [3, 4]). The main reason for their
popularity in this context derives from the fact that for expanding or hyperbolic dynamical
systems the transfer operator, when considered on a suitable function space, can be shown to
have discrete peripheral spectrum, from which long-term statistical properties of the under-
lying system can be derived. In the elliptic setting, however, such as for the circular billiard
considered in this article, analogous results cannot be expected, and, as a consequence, trans-
fer operator methods have received little attention in this context. It is perhaps worth noting
that in our setting we do not require discreteness of the peripheral spectrum of the transfer
operator. The main onus is to show that the resolvent of the transfer operator exists at the
point 1 (see equation (1)) and can be effectively approximated by finite-rank operators (see
equation (7)).

As we intend to keep our presentation accessible to non-specialists, we will occasionally
elaborate on aspects covered in the specialized literature but which may not be well known
to a general audience. The remaining parts are organized as follows. In section 2 we intro-
duce Sobolev spaces, on which the transfer operator and its finite-dimensional approximations
are bounded operators with spectral radii bounded away from 1. In section 3 we shall prove
the convergence results for the operator equations (1) and (7) stated as theorem 3.4. In the
final section 4 we summarize the main findings, compare the formal results with numerical
simulations and explore the relevance of the current study in a wider context.

2. Sobolev spaces and transfer operators

We will be interested in certain subspaces of L2(Ω) = L2(Ω, m) where dm = dxdy/(2π2) is the
normalized two-dimensional Lebesgue measure on Ω. The natural inner product is given by

( f , g)L2 =

∫
Ω

f (x, y)g(x, y) dm.

An orthonormal basis of L2(Ω) is given by {ek : k ∈ Z2} where ek(x, y) = eik1xe2ik2y so that
f (x, y) =

∑
k∈Z2 ck( f )ek(x, y) with Fourier coefficients ck( f ) = ( f , ek)L2 .

Definition 2.1. Let m = (m1, m2) ∈ N2
0. The Sobolev space Hm(Ω) is the collection of all

f ∈ L2(Ω) such that for all ν = (ν1, ν2) ∈ N2 with ν1 � m1 and ν2 � m2 the weak derivatives
Dν f = Dν1

x Dν2
y f exist and belong to L2(Ω).

The space Hm(Ω) is a Hilbert space, when equipped with the inner product4

( f , g)Hm = ( f , g)L2 + (Dm1
x f , Dm1

x g)L2 + (Dm2
y f , Dm2

y g)L2 . (8)

4 This choice of inner product is sometimes referred to as the modified inner product, in contrast with the classical one
(see, for example, [21, definition 2.2]).
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One can rewrite this definition in terms of Fourier coefficients. Using the fact that ck(Dν f ) =
(ik1)ν1 (2ik2)ν2ck( f ), equation (8) can be expressed as

( f , g)Hm =
∑
k∈Z2

(1 + |k1|2m1 + |2k2|2m2 )ck( f )ck(g). (9)

Remark 2.2. For m = (m1, m2) with m1 = m2 the Sobolev space Hm(Ω) coincides with the
classical isotropic Sobolev space, while for m1 �= m2, the space is an example of an anisotropic
Sobolev space (see, for example, [11, section 2.2]).

Using equation (9) we can define fractional Sobolev spaces Hs(Ω) for s = (s1, s2) ∈ R
2
+ as

Hs(Ω) =

⎧⎨
⎩ f ∈ L2(Ω) :

∑
k∈Z2

|ck( f )|2(1 + |k1|2s1 + |2k2|2s2 ) < ∞

⎫⎬
⎭ ,

which are Hilbert spaces when equipped with the inner product given in equation (9) with m
replaced by s.

We shall next investigate the properties of the composition operator Cφ associated with the
map φ in (3) on the fractional Sobolev space Hs(Ω).

Lemma 2.3. The composition operator Cφ given in (4) considered on Hs(Ω) with
s1 � s2 � 0 is bounded, with spectral radius r(Cφ) = 1.

Proof. For any n ∈ N and (x, y) ∈ Ω we have φn(x, y) = (x − nπ + 2ny, y), and thus

(Cn
φek)(x, y) = (Cφnek)(x, y) = (−1)k1nek1,nk1+k2 (x, y), (10)

for any k ∈ Z2.
In order to show that the operator is bounded we will need the following general inequality.

Let (x, y) ∈ [0,∞)2 and t � 0, then

(x + y)t � Ct(x
t + yt), with Ct = max(1, 2t−1). (11)

Using equation (11) we obtain the bound |nk1 + k2|2s2 � C2s2 (n2s2 |k1|2s1 + |k2|2s2 ) for
s1 � s2, which leads to

‖Cn
φek‖2

Hs = 1 + |k1|2s1 + |2(nk1 + k2)|2s2 �
(
1 + C2s2 (2n)2s2

)
‖ek‖2

Hs .

Since (Cn
φek, Cn

φel)Hs = 0 for k �= l, the operator norm of Cn
φ is bounded from above by(

1 + (2n)2s2 max(1, 22s2−1)
)1/2

, resulting in the upper bound for the spectral radius

r(Cφ) = lim
n→∞

‖Cn
φ‖1/n � lim

n→∞

(
1 + (2n)2s2 max(1, 22s2−1)

)1/(2n)
= 1.

In order to see that the inequality above is an equality, observe that the operator norm of Cn
φ is

bounded from below by 1 as ‖Cn
φe0‖Hs = ‖e0‖Hs . Thus r(Cφ) = 1. �

Before proceeding we note that by (10), the action of the composition operator on Hs(Ω)
can be represented by the action of the matrix

A =

(
1 0
1 1

)
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on Fourier coefficients. In particular, we have

Cn
φek = (−1)k1neAnk. (12)

For K ∈ N define ΛK = Λ0
K = {(k1, k2) ∈ Z2 : |k1| < K, |k2| < K}, and let Λn

K = An(ΛK).
Then for any n ∈ N0 we can define a finite-rank operator PΛn

K
: Hs(Ω) → Hs(Ω) by

(PΛn
K

f )(x, y) =
∑

k∈Λn
K

ck( f )ek(x, y), (x, y) ∈ Ω. (13)

Lemma 2.4. Let Cφ and PΛK be as above. Then

Cn
φPΛK = PΛn

K
Cn
φ

for any n, K ∈ N0.

Proof. This follows by checking the equality for any basis element ek and noting that An is
invertible. �

Definition 2.5. Let Mw denote the multiplication operator as defined in equation (5), con-
sidered as an operator on Hs(Ω), with a smooth weight function w : Ω→ [0,∞). In addition,
we assume that w has the following properties:

(a) ‖w‖∞ = supx∈Ω|w(x)| < 1;
(b) w is bounded away from zero;
(c) w(x, y) = w(x′, y) for any (x, y), (x′, y) ∈ Ω, that is, the weight w does not depend on the

first argument.

Remark 2.6. The operator Mw models the effect of damping on the motion of the billiard
particle. Assumptions (a) and (b) imply that the damping is well-behaved, while assumption
(c) is innocuous, given the circular symmetry of the billiard table.

The following two lemmas summarize basic properties of Mw and Cφ.

Lemma 2.7. Let Mw, Cφ and PΛK be as above. Then we have the following.

(a) MwCφ = CφMw;
(b) DxCφ = CφDx;
(c) DxMw = MwDx;
(d) DyCn

φ = 2nCn
φDx + Cn

φDy for n ∈ N;
(e) DyMn

w = nMn−1
w MDyw +Mn

wDy for n ∈ N;
( f ) DxPΛK = PΛK Dx and DyPΛK = PΛK Dy for K ∈ N.

Proof. Items (a) and (c) follow from definition 2.5(c); items (b) and (d) follow by direct
computation using the map φ; item (e) is obvious and (f) is a direct consequence of the relations
ck(Dx f ) = (ik1)ck( f ) and ck(Dy f ) = (2ik2)ck( f ). �

We write LK = PΛKMwCφPΛK for the finite-rank approximation of L = MwCφ. Using
lemmas 2.7(a) and 2.4, we can write Ln

K for n ∈ N as

Ln
K = (PΛKMwCφPΛK )n = PΛK

(
n∏

l=1

MwPΛl
K

)
Cn
φ. (14)
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In order to state the properties of L and LK we need to introduce the following multi-index
notation: an n-dimensional multi-index is an n-tuple in = (i1, i2, . . . , in) of non-negative inte-
gers of order |in| = i1 + i2 + · · ·+ in = m; the corresponding multinomial coefficient is given
by (

m
in

)
=

m!

i1!i2! · · · in!
.

Lemma 2.8. Let Mw, Cφ and PΛl
K

be as above. Then we have the following.

(a) Dm
y Cφ =

∑m
i=0 2m−i

(m
i

)
CφDm−i

x Di
y;

(b) Dm
y Cn

φ =
∑

|in+1|=m2m−in+1

(
m

in+1

)
Cn
φD

m−in+1
x D

in+1
y ;

(c) Dm
y

(∏n
l=1 MwPΛl

K

)
=

∑
|in+1|=m

(
m

in+1

)(∏n
l=1 MD

il
y w

PΛl
K

)
D

in+1
y .

Proof. Item (a) follows by induction over m using lemma 2.7(d) for the base case
m = 1. For item (b), the additional induction over n follows by rewriting (a) as Dm

y Cφ =∑
i1+i2=m2i1

(
m

i1,i2

)
CφDi1

x Di2
y . Finally, item (c) follows from the Leibniz formula. �

We are now ready to prove the main result of this section. Keeping in mind that we assume
that the billiard dynamics is dissipative, that is, the weight is chosen so that ‖w‖∞ < 1, the
following lemma shows that, given f0 ∈ Hs(Ω), the problem (1) and the projected version (7)
have unique solutions f ∈ Hs(Ω) and fK ∈ Hs(Ω), respectively.

Lemma 2.9. Consider L and LK, K ∈ N, as operators on Hs(Ω) for s ∈ N2
0 with

s1 � s2 � 0. Then

(a) (LK)K∈N is a family of bounded operators on Hs(Ω) with norms bounded uniformly in K.
Moreover, r(LK) � ‖w‖∞ for all K;

(b) L is a bounded operator on Hs(Ω) with r(L) � ‖w‖∞.

Proof. We shall only prove statement (a), as the proof of statement (b) follows by almost
identical arguments. In the following, we shall assume that s1 � s2 � 1, as the case s1s2 = 0
follows by identical arguments. For f ∈ Hs(Ω) we have

‖Ln
K f‖2

Hs = ‖Ln
K f‖2

L2 + ||Ds1
x Ln

K f‖2
L2 + ‖Ds2

y Ln
K f‖2

L2 . (15)

Let p, q ∈ N with p � s1 and q � s2. It is not difficult to see that for any f ∈ Hs(Ω) and
K ∈ N0 the following holds.

(a) ‖P
Λ

j
K

f‖L2 � ‖ f‖L2 for any j ∈ N0;
(b) ‖Mw f‖L2 � ‖w‖∞‖ f‖L2 ;
(c) ‖Dp

x f‖2
L2 � ‖Ds1

x f‖2
L2 and ‖Dq

x f‖2
L2 � ‖Ds2

x f‖2
L2 ;

(d) ‖Dp
xDq

y f‖2
L2 � ‖Dp+q

x f‖2
L2 + ‖Dp+q

y f‖2
L2 wherever p + q � s2.

Here, statements (c) and (d) follow by writing the L2 norm of Dp
x f and Dq

y f using Parseval’s
identity.

Writing Ln
K as in equation (14) and using (a) and (b) above iteratively we have

‖Ln
K f‖L2 = ‖(PΛKMwCφPΛK )n f‖L2 � ‖w‖n

∞‖Cn
φ f‖L2 � ‖w‖n

∞‖ f‖L2 , (16)

where the last inequality follows from the fact that the operator norm of Cφ on L2(Ω) equals 1.
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As Dx commutes with any of the operators involved (lemmas 2.7(b), (c) and (f)) we have in
the second term on the right-hand side of (15) that Ds1

x Ln
K = Ln

KDs1
x . By the same argument as

above we have

‖Ds1
x Ln

K f‖L2 � ‖w‖n
∞‖Ds1

x f‖L2 . (17)

In order to bound the last term in equation (15) we are using lemma 2.8(c) and Hölder’s
inequality in order to write

‖Ds2
y Ln

K f‖2
L2 =

∥∥∥∥∥∥
s2∑

j=0

A jD
j
yCn

φ f

∥∥∥∥∥∥
2

L2

� (s2 + 1)
s2∑

j=0

‖A j‖2
L2‖D j

yCn
φ f‖2

L2 ,

where A j =
∑

|in|=s2− j

(
s2

in, j

)(∏n
l=1 M

D
il
y w

PΛl
K

)
.

We shall first obtain a bound for ‖D j
yCn

φ f‖L2 . Using lemma 2.8(b) and decomposing the sum
in terms of powers of Dx and Dy we obtain

D j
yCn

φ = (2n) jCn
φD j

x + Cn
φD j

y +
∑

|in+1 |= j
0<in+1< j

2 j−in+1

(
j

in+1

)
Cn
φD

j−in+1
x D

in+1
y ,

where we have used the multinomial formula
∑

|in|=k

(
k
in

)
= nk. Thus, for j � m we obtain

using Hölder’s inequality, the multinomial formula and upper bounds for 2 j−in+1

‖D j
yCn

φ f‖2
L2 � 2 j(n + 1) j

(
2 jn j‖D j

x f‖2
L2 + ‖D j

y f‖2
L2

)
+ 2 j(n + 1) j

(
(2 j(n + 1) j − 2 jn j − 1)max

0<i< j
‖D j−i

x Di
y f‖2

L2

)

� 22s2 (n + 1)2s2
(
‖Ds1

x f‖2
L2 + ‖Ds2

y f‖2
L2

)
, (18)

where the last inequality uses (c) and (d).
Next we shall obtain a bound on the operator norm of Aj for j � s2. First note that MDl

yw
=

MwM(Dl
yw)/w is well-defined as w is bounded away from zero. By using (a) and (b) iteratively,

for any in = (i1, . . . , in) with |in| = s2 we have∥∥∥∥∥
n∏

l=1

M
D

il
y w

PΛl
K

f

∥∥∥∥∥
2

L2

� Cs2‖w‖2n
∞‖ f‖2

L2 ,

where Cs2 = max i1,...,in
|in |=s2

(∏n
l=1 ‖Dil

yw/w‖2
∞

)
� max0�l�s2‖Dl

yw/w‖2s2∞ is a constant indepen-

dent of n. Using arguments analogous to those used to obtain inequality (18), we obtain the
bound

‖A j‖2
L2 � (n + 1)2s2Cs2‖w‖2n

∞. (19)

Using the estimates (16)–(19) in equation (15) we arrive at the bound

‖Ln
K f‖2

Hs � C̃n,s2‖w‖2n
∞‖ f‖2

H2

with C̃n,s2 � (s2 + 1)s2(n + 1)4s222s2Cs2 + 1. As C̃n,s2 is independent of K, the family (LK)K∈N
is a uniformly bounded family of bounded operators on Hs(Ω). Finally, taking the right-hand
side of equation (15) to the power of 1/n and observing that C̃n,s2 grows polynomially in n, the
upper bound for the spectral radius of LK follows. �
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3. Convergence properties

In the previous section we established (see lemma 2.9) that given f0 ∈ Hs(Ω), the problem (1)
and the projected version (7) have unique solutions f ∈ Hs(Ω) and fK ∈ Hs(Ω), respectively. We
shall now turn to establishing the convergence of fK to f. This would be straightforward if we
knew that LK →L as K →∞ in the operator norm on Hs(Ω), since then, using the so-called
second resolvent identity

(I − LK)−1 − (I − L)−1 = (I − LK)−1(LK − L)(I − L)−1, (20)

we would have

‖ fK − f‖Hs = ‖(I − LK)−1 f0 − (I − L)−1 f0‖Hs = ‖(I − LK)−1(LK − L)(I − L)−1 f0‖Hs ,

from which convergence of fK → f in Hs(Ω) could be readily obtained.
This, however, cannot be the case, as if LK →L as K →∞ in the operator norm on Hs(Ω),

then L, as a uniform limit of finite-rank operators, would be compact on Hs(Ω). However, as
L has a bounded inverse on Hs(Ω), it cannot be compact.

We thus need to resort to a slightly weaker notion of convergence, that is, we shall consider
the transfer operator as an operator between Sobolev spaces of different order. In passing, we
remark that this idea is also at the heart of one of the most successful techniques to obtain
spectral approximation results of transfer operators, where perturbation sizes are measured in
‘triple’ norms (see, for example, [19]).

In the following we shall explain this idea in more detail. We start with the following
important observation. For t, s ∈ [0,∞)2 with s1 � s2 > t1 � t2 � 0, functions in Hs(Ω) can
be identified with functions in Ht(Ω) using the embedding operator J : Hs(Ω) ↪→ Ht(Ω) given
by J f = f . This operator is not just continuous, but also compact, as the following lemma
shows.

Lemma 3.1. LetJ : Hs(Ω) ↪→ Ht(Ω) be the canonical embedding, where t, s ∈ [0,∞)2 with
s1 � s2 > t1 � t2 � 0. Let PK = PΛK be the projection operator in equation (13), and JK =
J PK. Then,

‖J − JK‖Hs→Ht � C(1 + K2)−α/2

for some C > 0 and α = α = s2 − t1.

Proof. Let f ∈ Hs(Ω). Using the notation at(k) = 1 + |k1|2t1 + |2k2|2t2 we have

‖J f − JK f‖2
Ht =

3∑
i=1

∑
k∈Ii(K)

|ck( f )|2at(k),

with I1(K) = {k ∈ Z
2 : |k1| � K, |k2| � K}, I2(K) = {k ∈ Z

2 : |k1| < K, |k2| � K}, I3(K) =
{k ∈ Z2 : |k1| � K, |k2| < K}. We will first show that there exists a constant C′ such that

at(k) � C′(1 + |k1|2 + |2k2|2)−αas(k).

For this, first observe that

(1 + |k1|2 + |2k2|2)s2 � Cs2 (1 + |k1|2s1 + |2s2|2s2 ) � Cs2as(k),

which follows by Hölder’s inequality and s1 � s2. Then,
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at(k) = 1 + |k1|2t1 + |2k2|2t1 � 3(1 + |k1|2 + |2k2|2)t1

= 3(1 + |k1|2 + |2k2|2)t1−s2 (1 + |k1|2 + |2k2|2)s2

� 3Cs2 (1 + |k1|2 + |2k2|2)t1−s2as(k).

Now, by bounding from above each (1 + |k1|2 + |2k2|2)−α with its maximal value in each
of the sums, we obtain

‖J f − JK f‖2
Ht � C′ ((1 + 5K2)−α + (1 + 4K2)−α + (1 + K2)−α

)
‖ f‖2

Hs

� 3C′(1 + K2)−α‖ f ‖2
Hs . �

We are now able to show that L can be approximated by finite-rank operators when
considered as operators from Hs to Ht.

Proposition 3.2. Let LK = PKLPK be the finite-rank approximation of L on Hs(Ω) with
s ∈ N2 and s1 � s2. Let J be as above and t ∈ N2

0 with s2 > t1 � t2. Then

‖J (LK − L)‖Hs→Ht � C(1 + K2)−α/2

for some C > 0 and α = s2 − t1.

Proof. Let L′ denote the transfer operator when considered on the larger space Ht(Ω). Then
using the property JL = L′J , we have

J (Lk − L) = J PKLPK − JL = (JPK − J )LPK − L′(JPK − J ).

Thus,

‖J (LK − L)‖Hs→Ht �
(
‖L‖Hs→Hs‖PK‖Hs→Hs + ‖L′‖Ht→Ht

)
‖J − JK‖Hs→Ht

� C(1 + K2)−α/2,

where we have used lemmas 2.9, 3.1 and ‖PK‖Hs→Hs � 1. �

Proposition 3.3. Let L and the family (LK)K∈N be as above, considered as operators on
Hs(Ω) where s ∈ N

2 with s1 � s2. Then, for t ∈ N
2
0 with s2 > t1 � t2 and for all K ∈ N we have

‖(I − LK)−1 − (I − L)−1‖Hs→Ht � C(1 + K2)−α/2,

for some C > 0 and α = s2 − t1.

Proof. As r(L) � ‖w‖∞ < 1 by lemma 2.9, the operator (I − L)−1 exists and is bounded.
Let (L′

K)K∈N denote the family of transfer operators when considered on the larger space Ht(Ω).
Similarly, as ρ(L′

K) � ‖w‖∞ < 1 and the norms of (L′
K)n are bounded uniformly in K by lemma

2.9, the sums
∑∞

n=0 ‖LK‖n
Ht→Ht are bounded by a constant independent of K and therefore

‖(I − LK)−1‖Ht→Ht is uniformly bounded in K.
Using the property J (I − LK) = (I − L′

K)J and the second resolvent identity (see
equation (20)) we have
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‖J ((I − LK)−1 − (I − L)−1) ‖Hs→Ht

= ‖(I − L′
K)−1J (LK − L)(I − L)−1‖Ht

� ‖(I − L′
K)−1‖Ht→Ht‖J (LK − L)‖Hs→Ht‖(I − L)−1‖Hs→Hs .

Using proposition 3.2 for the bound on ‖J (LK − L)‖Hs→Ht finishes the proof. �
We are finally able to state and prove our main convergence result.

Theorem 3.4. Let L and the family (LK)K∈N be as above, considered as operators on Hs(Ω)
with s1, s2 ∈ N and s1 � s2 > t1 � t2 � 0. Then for f0 ∈ Hs(Ω) the operator equations (1)
and (7) have unique solutions f ∈ Hs(Ω) and fK ∈ Hs(Ω), respectively. Moreover there exist
a constant C > 0 such that for all K ∈ N we have

‖ fK − f‖Ht � C(1 + K2)−α/2‖ f0‖Hs ,

where α = s2 − t1.

Proof. The statement follows by writing f = (I − L)−1 f0, fK = (I − LK)−1 f0 and using
proposition 3.3. �
Remark 3.5. Note that for f0 ∈ ΛK = PK(Hs(Ω)), the unique solution fK to (7) also lies in the
finite-dimensional space ΛK, so that (7) can be solved as a truly finite-dimensional problem.

4. Discussion and numerical experiments

Let us first summarize and rephrase our results in intuitive terms. Since the linear operator
in equation (1) fails to be compact, any finite-dimensional matrix representation would not
reflect properties of the operator at all. Nevertheless the finite-dimensional representation in
(7) provides a meaningful approximation for the solution of the inhomogeneous equation. For
smooth periodic functions in location and angle of reflection, the solution of the approximated
problem (7) converges to the solution of (1) in the Sobolev norm. The approximation error
depends on the degree of smoothness of the inhomogeneous part. In addition, the approxi-
mation error is measured in a weaker norm, for instance the frequently used L2 norm for the
choice t = (0, 0). The properties of this weaker norm also determine the speed of convergence.
Broadly speaking, the convergence rate obeys a power law with the exponent being deter-
mined by the smoothness of the energy source and the norm used to measure the approximation
error.

A finite amount of dissipation is a crucial ingredient in the entire approach, that is, the
weight w has to satisfy ‖w‖∞ < 1. The simplest choice of a constant weight, w(x, y) = μ < 1,
corresponds to a dissipation which occurs at each collision at the boundary, for example, an
attenuation of the sound wave caused by an inelastic reflection at the boundary of the cavity.
Proper modeling of the damping parameters involved is a crucial aspect of the method and
is necessary to describe realistic problems accurately [17]. For example, a linear attenuation
in the medium would result in a path-length dependent weight w(x, y) = exp(−2μ cos(y)).
This choice, however, does not obey the stipulated bound as orbits with angles close to
y = ±π/2 have arbitrarily small path length, and hence small dissipation between subse-
quent collisions. We could overcome this particular problem by restricting the angle of reflec-
tion to non-tangential collisions, that is, y ∈ (−(1 − ε)π/2, (1 − ε)π/2) for a small ε > 0,
effectively constraining the permitted type of energy source. This however requires chang-
ing the Hilbert space and the projection operators, as the validity of ck(Dm

y f ) = (i2k)mck( f )
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and DyPk = PkDy is no longer given for a smooth function f on an interval instead of on a
circle. One suitable choice could be the space of functions in Hs(Ωε) with vanishing weak
derivatives Dν f on the boundary. A suitable basis is then the basis of Daubechies wavelets
[30].

Of course, a circular billiard is very special, exhibiting a smooth boundary and a sim-
ple, analytically available collision map, making a rigorous treatment via Fourier analysis
possible. The next simplest billiard geometry is that of an ellipse. While still an integrable
smooth billiard with an explicit, albeit more complicated collision map, the existence of hyper-
bolic periodic orbits imposes restrictions on either the choice of function space or admissible
weight functions (note that the spectral radius of the unweighted composition operator, con-
sidered, for example, on H(1,1)(Ω), may depend on the maximal expansion rate in the system).
Moreover, without recourse to a technical shortcut like lemma 2.4, proving an analogue of
lemma 2.9 in this setting might be more involved. In the case of chaotic billiards, hyperbolic
orbits are abundant, and hyperbolicity necessitates the use of more complicated anisotropic
function spaces to account for expanding and contracting directions, see, for example [5,
6, 15]. Another important class are polygonal billiards, particularly relevant for numerical
computations in DEA. These systems have zero Lyapunov exponents and the presence of dis-
continuities necessitates the use of function spaces including discontinuous functions, such
as Sobolev spaces of low regularity or spaces of bounded variation [25]. An approximation
scheme based on Fourier analysis is less suited to these systems, and Ulam-type discretization
schemes appear to have more potential.

To illustrate the impact of theorem 3.4, we perform numerical simulations of circular bil-
liards with constant damping w(x, y) = μ. As a proxy for the error estimate we use the dis-
tance between approximations of subsequent order ‖ fK+1 − fK‖Ht , which obeys essentially
the same upper bound

‖ fK+1 − fK‖Ht � ‖ fK+1 − f‖Ht + ‖ fK − f‖Ht � 2C(1 + K2)−α/2‖ f0‖Hs . (21)

Strictly speaking we have established this bound for integer vales of t
 and s
 only. With
a little more effort this could be remedied by appealing to interpolation theory [29]. For
simplicity of exposition we shall not pursue this here. For our numerical considerations we
take the liberty to apply the bound above for non-integer values. For the norm ‖ · ‖Ht , which
estimates the truncation error, we use the choices t = (0, 0), that is, the L2 norm, and t = (1, 1),
a norm which is just outside the set of exponents guaranteeing pointwise convergence.

The transfer operator’s action on Fourier modes is given in equation (12). In order to use it
for a numerical test, we have to use a representation for all Fourier modes, see equation (A.2).
We show results for three different choices of the initial boundary density f0. They have in
common that their support is given by the rectangle

R =
{

(x, y) : x ∈
[
π/6, π/6 + 4π/3

]
, y ∈ [−0.8, 1.2]

}
.

In order to define the boundary densities, we will use variables scaled on this rectangle accord-
ing to x̃ =

(
x − π/6

)
/(4π/3) and ỹ = (y + 0.8)/2 which take values between zero and one

on R.

• Case G: a discontinuous function with f0(x, y) = 1 for (x, y) ∈ R. This function is con-
tained in H(1/2−ε,1/2−ε)(Ω) for any small ε > 0. For simplicity of exposition we will use,
however, the value s2 = 1/2 in the discussion of the numerical results below.

• Case W1: a continuous function given by f0(x, y) =
√

x̃(1 − x̃)
√

ỹ(1 − ỹ) for (x, y) ∈ R.
This function lies in H(1−ε,1−ε)(Ω) for any small ε > 0. As before, we use the choice s2 = 1
in the discussion below.
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Figure 1. Error estimate ‖ fK+1 − fK‖Ht for a circular billiard with constant damping
w(x, y) = μ = 0.9 as a function of the truncation order K on a double logarithmic scale.
Left: t1 = t2 = 0 (convergence in L2 norm), right: t1 = t2 = 1 (point-wise convergence,
in essence). Results are displayed for three different initial boundary densities G: s2 =
1/2 (yellow, top), W1: s2 = 1 (red, middle), W2: s2 = 2 (dark blue, bottom), see text.
Lines show the power law decay according to equation (21), α = s2 − t1.

• Case W2: a smooth function given by f0(x, y) =
(√

x̃(1 − x̃)
√

ỹ(1 − ỹ)
)3

for (x, y) ∈
supp(f0). This function lies in H(2−ε,2−ε)(Ω) for any small ε > 0 and we use the choice
s2 = 2 in our discussion.

The boundary densities above have their support in the rectangle R and exhibit differ-
ent degrees of smoothness. In particular, the common support only covers part of the phase
space and excludes the angles y = ±π/2. If we had chosen a boundary density with sup-
port including these angles, that is, including tangential collisions, and which was otherwise
smooth, then the convergence would still be slow. In this case the rate of convergence of the
Fourier based approximation scheme would still be dominated by the discontinuities which
occur when the density is extended in the angle variable y in a periodic fashion. Hence,
choosing the variable y in equation (2) to be cyclic is rather natural for the approximation
scheme discussed here. This cyclicity condition cannot be dispensed with as the approximation
scheme is based on Fourier expansions. Other approximation schemes, for example, a two-
dimensional Ulam method could be investigated without imposing such a cyclicity condition,
but this scheme does not achieve a speed-up as a result of increased regularity of the boundary
density.

The data shown in figure 1 confirm the upper bound in theorem 3.4. For the L2 norm,
t1 = t2 = 0, we observe, in each case, convergence at a rate which is slightly faster than the
theoretical prediction α = s2 − t1. The power law decay of the truncation error shows up
for large values of K and the onset of this scaling region shifts towards larger values if the
initial boundary density becomes smooth. This should not come as a surprise, since the res-
olution of higher order derivatives requires higher order Fourier modes. For the parameter at
the boundary of point-wise convergence t = (1, 1), we see that the discontinuous boundary
density fails to converge in line with our theoretical predictions. While theorem 3.4 does not
guarantee convergence in case W1 either, the numerical data suggest an extremely slow conver-
gence which is still consistent with the upper bound estimateα = s2 − t1 = 1 − 1 = 0. Finally,
for the smooth boundary density (case W2) we observe a convergence rate slightly faster than
the theoretical prediction.

From a dynamical perspective, circular billiards are trivial since the billiard map (2) is
an integrable twist map. In order to get an idea of how dynamical properties impact on
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Figure 2. Billiard with orbit in configuration space (left) and Poincare plot of the bound-
ary map T in the (x, y) phase space (right) for a deformed billiard according to (22). Top:
weak deformation of the circle (m = 3, δ = 0.01), bottom: strong but still convex defor-
mation (m = 3, δ = 0.1). The orbit depicted in real space is highlighted in phase space
as well.

convergence properties we show numerical results for a deformed circle billiard which displays
mixed regular and chaotic dynamics. For the deformation we choose the radius to depend on
the polar angle x according to

r(x) = 1 + δ cos(mx), (22)

where we choose m = 3 in the following. Deformations of this kind are known in the literature
as Limaçon billiards [1]. We will cover the cases δ = 0.01 and δ = 0.1. For larger values,
the billiard fails to be convex. In order to demonstrate the change in dynamical behavior,
figure 2 shows the Poincaré plot of the collision map T. For a small value of the deformation,
δ = 0.01, one still observes a fairly large number of invariant tori in accordance with general
KAM folklore. The larger perturbation shown in figure 2, δ = 0.1, destroys most of the regu-
lar motion and renders the system chaotic with a few exceptions, for example, the highlighted
period-3 island.

In order to calculate the convergence of the energy distribution we have to evaluate the
matrix elements of the transfer operator. For the circular billiard, the only non-zero entries
take the value ±μ and follow the structure given by equation (A.2). Once the circle has been
deformed, the analytic calculation of the matrix elements is no longer possible. Even worse,
the collision map is not given in closed analytic form either, so that an efficient numerical
calculation becomes a nontrivial task (see the appendix for details). However, we are able
to reduce the calculation of the matrix elements to double integrals with the kernel being
given in closed analytic form, see equation (A.3). Nevertheless, the numerical evaluation is
still time consuming, in particular, since the matrix is no longer sparse. Hence, we can only
calculate finite approximations up to K = 30. In order to reach the scaling regime (see figure 1
for comparison) we employ a stronger damping of μ = 0.1. The results for the error measured
in L2 norm, that is, for the choice t1 = t2 = 0, are shown in figure 3.

It is quite remarkable that the decay of the error is apparently almost unaffected by the
degree of chaoticity. Hence the rigorous error estimate of theorem 3.4 which covers the case
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Figure 3. Error estimate ‖ fK+1 − fK‖Ht in L2 norm, t = (0, 0), for the energy density of
a Limaçon billiard as a function of the truncation order K on a double logarithmic scale.
Constant damping w(x, y) = μ = 0.1 and two deformations, δ = 0.01 (left) and δ =
0.1 (right), are considered. Results are displayed for the three different initial boundary
densities G: s2 = 1/2 (yellow, top), W1: s2 = 1 (red, middle), W2: s2 = 2 (dark blue,
bottom), see figure 1. Lines indicate a power law decay, α = s2 − t1, according to the
rigorous estimate for circle billiards.

δ = 0 seems to have a wider range of applicability. While intuitively such an observation would
not be surprising for nearly integrable cases it is quite counter-intuitive that the same error esti-
mate may hold as well in strongly chaotic situations. However, our proof does not cover any
of the deformed billiards and there does not seem to be an obvious way how the method-
ology can be generalized to these complicated cases. Nevertheless, it is reaffirming that our
study of a simple dynamical system like the circular billiard has relevance for more complex
dynamical behavior.
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Appendix. Matrix elements

Consider a convex billiard with boundary being given by r(x) in polar coordinates
where x denotes the polar angle (see, for example, equation (22)). Denote by (x′, y′) =
(Tx(x, y), Ty(x, y)) the collision map where x and x′ label subsequent collisions with the bound-
ary. Using a standard representation in terms of Fourier basis functions [28], the matrix
elements Ml,k of the transfer operator read

Ml,k =
1

2π2

∫ 2π

0

∫ π/2

−π/2
(Cφek)(x, y) el (x, y) dy dx

=
1

2π2

∫ 2π

0

∫ π/2

−π/2
eik1φx (x,y)−il1x+2ik2φy(x,y)−2il2y dy dx

with k = (k1, k2) and l = (l1, l2).
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Figure A1. Geometric configuration of two subsequent collisions in a convex billiard
with a particle moving from point 1 (with parameter value x) to point 2 (with parameter
value x′). We also depict the ray vector d , the tangent vector t , and the unit vectors er
and eϕ in polar coordinates.

In case of the perfect circle we get a representation which is given by a sparse matrix with
only a few non-zero elements, close to the main diagonal, namely

(Cφel)(x, y) =
∑
k∈Z2

Ml,k · ek(x, y) (A.1)

with the matrix elements

Ml,k = (−1)k1 δk1,l1 δl2,k1+k2 k, l ∈ Z
2. (A.2)

This is the extension of equation (12) to all Fourier modes and it was used to calculate the
values for figure 1.

In order to eliminate the implicitly defined collision map we change integration variables
from (x, y) to (x, x′). Using y1(x, x′) = y and y2(x, x′) = y′ for the two scattering angles the
matrix elements become

Ml,k =
1

2π2

∫ 2π

0

∫ 2π

0

∣∣∣∣∂y2(x, x′)
∂x

∣∣∣∣ ei(k1x−l1x′)e2i(k2y1(x,x′ )−l2y2(x,x′ )) dx′ dx, (A.3)

where the additional factor is the Jacobian of the coordinate transformation. In contrast to the
collision map T, the expressions y1(x, x′) and y2(x, x′) can be obtained in closed analytic form
so that equation (A.3) is easier to implement numerically.

Figure A1 shows a sketch of two subsequent collisions. The first scattering angle y1 is given
in terms of an inner product

sin(y1) = d · t/(|d||t|).

Since the position vector of the initial point is given by r(x)er the tangent is easily obtained as
t = r′(x)er + r(x)eϕ. The vector separating the two points of collision is given in terms of the
local basis vectors by
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d = (r(x′) cos(x′ − x) − r(x))er + r(x′) sin(x′ − x)eϕ.

Hence the closed form expression for the first scattering angle reads

sin(y1) =
r′(x)(r(x′) cos(x′ − x) − r(x)) + r(x)r(x′) sin(x′ − x)√
r2(x) + (r′(x))2

√
r2(x) + r2(x′) − 2r(x)r(x′) cos(x′ − x)

. (A.4)

The second scattering angle is obtained by interchanging the two points in figure A1, that is, by
swapping x and x′ in equation (A.4), and including an additional minus sign for the outgoing
angle

sin(y2) = − r′(x′)(r(x) cos(x − x′) − r(x′)) + r(x′)r(x) sin(x − x′)√
r2(x′) + (r′(x′))2

√
r2(x′) + r2(x) − 2r(x′)r(x) cos(x − x′)

.
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