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Abstract

This paper describes how asymptotic analysis can be used to gain new insights
into the theory of cloaking of spherical and cylindrical targets within the context of
acoustic waves in a class of linear elastic materials. In certain cases these configurations
allow solutions to be written down in terms of eigenfunction expansions from which
high–frequency asymptotics can be extracted systematically. These asymptotics are
compared with the predictions of ray theory and are used to describe the scattering
that occurs when perfect cloaking models are regularised.

1 Introduction

A widely–studied (Cummer et al [1], Greenleaf et al [2]) non–dimensional model for cloaking
a sphere of radius a insonified by plane acoustic waves is

(r − a)2
∂2p

∂r2
+ 2 (r − a)

∂p

∂r
+

1

sin θ

∂

∂θ

(
sin θ

∂p

∂θ

)
+ k2sh (r − a)2 p = 0, (1)

where p is a complex function whose real part is the pressure, (r, θ) 1 are spherical polar
coordinates and the cloak lies in a < r < b; the cloak, or sheath, is characterised by the
parameter ksh. The region r > b is a homogeneous medium in which wave propagation is
described by the Helmholtz equation

∇2p+ k20p = 0, (2)

1In view of the symmetry of the problem we assume that p is independent of the azimuthal angle φ.
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where k0 = ksh

(
b− a
b

)
.

The cloak and its surroundings are coupled by the conditions

[p]b
−

b+ = 0,

[
1

ρ

∂p

∂r

]b−
b+

= 0, (3)

where the density ρ(r) is given by

ρ =

{
1 r > b(
b−a
b

) (
r

r−a

)2
b > r > a,

(4)

and all variables are dimensionless.

The insonification is described by eik0r cos θ so that the total axisymmetric wavefield in
r > b is

p = eik0r cos θ + psc, (5)

where psc is the outgoing scattered field. Boundary conditions at r = a may not need precise
definition in view of the form of (1), but, if necessary, they can be homogeneous Dirichlet
or Neumann conditions.

The above model has been constructed in such a way that the scattered field is zero and

p =

{
eik0r cos θ r > b
eiksh(r−a) cos θ b > r > a,

, (6)

so that the target r = a is perfectly cloaked for any value of k0 and, by symmetry, for all
angles of the incoming radiation. We will say more about its derivation shortly but we note
at once that the density profile (4) is physically unrealistic at r = a and one of our principal
aims is to perturb some of the variables to avoid this shortcoming. We also note that (1)
is a traditional Helmholtz equation after a ‘transformation optics’ shift in the radial space
coordinate and we will also find that (6) still holds for cylindrical geometries. Indeed as
indicated in references [1]- [6], transformation optics can be applied to many kinds of wave
propagation and many different insonifications.

A physical derivation for the model has been described in detail in [1] (and references
cited therein), whose notation we have adopted. The simplest physical realisation is that of
elastic waves propagating in an inhomogeneous cloak which has the property of having negli-
gible shear modulus 2 compared to its isotropic bulk modulus which is highly inhomogeneous
and takes the dimensionless form

λ =
(b− a)3 r2

(r − a)2 b3
(7)

2This assumption is not unreasonable for certain rubber–like materials.
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as the shear modulus tends to zero. Moreover, it is crucial that the cloak density tensor ρ

is anisotropic, taking the constant value
b− a
b

in the circumferential and azimuthal direc-

tions as distinct from (4) in the radial direction. As explained in Norris [4] and associated
references, such a surprising property may be realised in certain metamaterials.
A detailed account of cloaking of elastic waves is given in [3] and [6] and a simple derivation
of (1) is as follows.

Under the above assumptions, classical linear elastic wave propagation is modelled by a
displacement U satisfying

ρ
∂2U

∂t2
= ∇ (λ∇ ·U) + µ

(
∇ (∇ ·U) +∇2U

)
, (8)

where ∇2 = ∇ (∇·)−∇× (∇×) and µ is the soon–to–be–neglected constant dimensionless
shear modulus. Hence, in the frequency domain we write U = Re

(
e−iωtu

)
, and we now

non–dimensionalise time in order to make ω = k0, so that

−λ∇ · u = p, (9)

−k20ρu+∇p+ µ
(
∇
(p
λ

)
−∇2u

)
= 0. (10)

Multiplying by the inverse ρ−1, taking the divergence and taking the singular limit as µ→ 0,

we obtain
k20p

λ
+∇ ·

(
ρ−1∇p

)
= 0. (11)

Since k2sh =
k20b

2

(b− a)2
and using (7), this model reduces to (1) when

ρ =


(b−a)
b

r2

(r−a)2 0 0

0 (b−a)
b

0

0 0 (b−a)
b

 (12)

in spherical polar coordinates, assuming no azimuthal variation.

Typical boundary conditions for (11) are that the complex displacement u or the trac-
tions τ · n are prescribed at a boundary with normal n, where τ is the stress tensor

τ = λ (∇ · u) I + 2µe,

where I is the identity matrix and e is the strain tensor eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
in Cartesian

coordinates. Hence, when µ = 0, prescribing τ · n is equivalent to prescribing λ∇ · u and
zero traction corresponds to homogeneous Dirichlet data for ∇ · u and hence p. Equally,

using (10), zero displacement (i.e. a rigid target) corresponds to
∂p

∂n
= 0.
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As explained in [4], the unrealistic values of ρ and λ in (12), (7) as r ↓ a need not arise

for cloaks such as ‘pentamaterials’ that have more general anisotropy. In this paper, we will
avoid infinite parameter values by regularising the model so that the target is expanded from
r = a to r = a (1 + ε) where 0 < ε� 1. This is an example of what is called near-cloaking,
see for example [7], [8], [9]. One of the aims of our paper is to complement this literature
by deriving some specific asymptotic expansions of the solution in the physical plane.

We note that, without expanding the target, it is shown in [4, 5] that a radial scaling
can reduce the problem to that of a classical Helmholtz equation in which ρ and λ are

determined by the scaling; when the scaling is linear in r, (1) is retrieved.
We make the important observation that the solution to the problem for the near-cloak

can be obtained by writing down the classical solution, as described in [15] or [10], for a
target of radius abε/ (b− a), using transformation optics (TO) to define the variable

rTO =
b (r − a)

(b− a)
, (13)

and solving the Helmholtz equation

∇2
TO
p+ k20p = 0. (14)

Although this transformation holds for any values of the parameters k0 and ε, carrying
out the asymptotic analysis in terms of these parameters in the TO plane is no easier
than carrying out a direct asymptotic expansion on the model (1). Moreover, the physical
interpretation of, for example, the shadow boundary is clearer when we work in physical
space.

In Section 2 we will do this both for spherically symmetric configurations described by
(1) and also for cylindrically symmetric targets. Then, in Section 3, we will apply ray theory
to derive the solutions to all these problems directly when ksh is large. Several generalisa-
tions will be considered by the same methods in Section 4.

We conclude this section by briefly recapitulating the classical separation of variables
technique in terms of spherical Hankel functions h(1)n and Legendre polynomials Pn, which
results in a series expansion for solutions of (2) in the general form

p (r, θ) =
∞∑
n=0

αnh
(1)
n (k0r)Pn (cos θ) ,

in which the αn’s are constants. This expansion is useful for relatively small values of k0 but
for large k0 it converges extremely slowly. Indeed, if a is a typical scatterer dimension then,
for a relative error of 1 per cent, O (k0a) terms of the series need to be computed. This
difficulty is overcome by appealing to the ‘Watson’ transformation, which relies upon the
identification of the sum as the residue evaluation of a strategically–chosen integral taken
over a specified contour C.
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In general, the important identity is∫
C

f(ν)

sin (πν)
dν ∼ 2i

N∑
n=−N

(−1)n f(n) as N →∞, (15)

where, for example, C comprises two infinitely long parallel, straight lines – one lying
infinitesimally below and parallel to the real ν–axis and the other infinitesimally above it
– and connected by infinitesimally short, straight lines parallel to the imaginary ν–axis ‘at
infinity’ (along which both contributions to the integral vanish in the limit), with C being
traversed in a counter–clockwise sense. The basic idea is that within this infinitesimally
thin contour, the only poles of the integrand on the left hand side of (15) are the integer
zeroes of sin (πν). When the contour is deformed to encompass the complex poles of f(ν),
then, when we use the methods of stationary phase and steepest descents to evaluate the
integral asymptotically, the resulting residue series is found to be rapidly convergent and
only the first term of the residue series is needed to secure sufficient accuracy. For further
details, see Jones [10] or Spence [11].

2 Exact solutions for spherical and cylindrical cloaks

2.1 Spherical cloaks

We begin by considering the way in which the solution for a spherical target r = a can be
found by separating the variables.

2.1.1 Target r = a

We assume that in the spherical polar region r > b a plane wave

p (r, θ) = pinc (r, θ) = eik0r cos θ

insonifies the cloak externally, giving rise to a scattered field psc (r, θ) within the same region
and a corresponding pressure field p (r, θ) inside the cloak (a ≤ r ≤ b). Our procedure will
be closely related to that used for uncloaked spheres (see [15] or Ch 8 in [10]) for which (15)
is a key ingredient.

Noting the Jacobi-Anger expansion (Colton and Kress [14])

eik0r cos θ =
∞∑
n=0

in (2n+ 1) jn (k0r)Pn (cos θ) , (16)

where jn is a spherical Bessel function, we are motivated to write down expressions for the
outgoing scattered field psc and the field p within the cloak in the forms

psc (r, θ) =
∞∑
n=0

αni
n (2n+ 1)h(1)n (k0r)Pn (cos θ) , r > b (17)
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and

p (r, θ) =
∞∑
n=0

in (2n+ 1)
[
βnjn (ksh (r − a)) + γnh

(1)
n (ksh (r − a))

]
Pn (cos θ) , a < r < b,

(18)
where h(1)n is the spherical Hankel function of the first kind. Thus, the total field in the
region r ≥ b exterior to the cloak is

pt (r, θ) = pinc (r, θ) + psc (r, θ)

=
∞∑
n=0

in (2n+ 1)
[
jn (k0r) + αnh

(1)
n (k0r)

]
Pn (cos θ) , (19)

and we note that this expression can also be used when satisfying more general boundary
conditions. Notice that the ‘scattered’ component psc depends only upon the specific spher-
ical Hankel function of the first kind h(1)n (k0r); this choice guarantees that the scattered
field psc radiates away from the boundary r = b as r →∞.

We note that applying the boundary conditions (3) on r = b yields the algebraic equa-
tions

βnjn (k0b) + γnh
(1)
n (k0b) = jn (k0b) + αnh

(1)
n (k0b) (20)

βnj
′
n (k0b) + γnh

(1)′

n (k0b) = j′n (k0b) + αnh
(1)′

n (k0b) , (21)

where we recall that k0 = ksh(b− a)/b, and these must both be satisfied regardless of any
conditions imposed upon p either within the cloak a < r < b or on its inner boundary r = a.
Since the Wronskian

W (k0, b) = jn (k0b)h
(1)′

n (k0b)− j′n (k0b)h
(1)
n (k0b) =

i

k20b
2
,

we see that αn ≡ γn and βn ≡ 1 for each non–negative integer n.

We now have a choice as to how to proceed. One option is to adopt the approach
taken in [1], which is to insist upon the field being everywhere finite within the cloak, in-
cluding at the inner boundary. This choice necessitates γn ≡ 0, from which αn ≡ 0 then
follows whilst βn ≡ 1 remains true from the previous analysis. The solution in the cloak
can then be summed explicitly using (16) to give the exact solution (6). The price that is
paid for perfect cloaking is the presence of unphysical singularities in (7) and (12), together
with the inability to impose specific and realistic boundary condition on the target r = a.
Nonetheless, it is interesting that the assumption that the field is finite at r = a generates
a physically acceptable reflected field within the cloak.

In the light of these comments our strategy here, is to maintain every detail of the cloak-
ing material, including its mathematical description, but to relocate the target at a slightly
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displaced position specified by r = a (1 + ε), (0 < ε� 1) within the cloak. Thus, regardless
of which of the spherical Bessel functions arise in the solutions that follow, all are now guar-
anteed to remain finite within and on any boundary to the solution domain.Unfortunately,
this approach will never allow the perfect cloaking achieved previously. Even so, it is inter-
esting to calculate the radiation back into the exterior region r ≥ b and estimating this loss
is one of our objectives.

We remark that this ‘near-cloaking’ configuration for spheres and cylinders has been
addressed using transformation optics in [4] and [5] where numerical results are derived for
K = O(1) and asymptotic results for K → 0.

2.1.2 Target r = a (1 + ε)

The boundary conditions at r = b still hold, as do the general solutions (18) and (19),
and so the previous conclusions that αn = γn, βn ≡ 1 remain valid. However, rather than

insisting upon finite fields in a ≤ r ≤ b, we now impose either a Neumann

(
∂p

∂r
= 0

)
or

Dirichlet (p = 0) boundary condition at r = a (1 + ε). Setting K = kshaε, these then lead
to the additional constraints

Neumann: j′n (K) + γnh
(1)′

n (K) = 0 (22)

Dirichlet: jn (K) + γnh
(1)
n (K) = 0, (23)

and so the solutions are completely fixed with

αn = γn = −j′n (K) /h(1)
′

n (K) (24)

for Neumann data or
αn = γn = −jn (K) /h(1)n (K) (25)

for Dirichlet data.

Our next step is to analyse the corresponding infinite series solution asymptotically by
an application of a Watson transformation of the type referred to in the Introduction, and
the calculation proceeds as follows.

First, we note that the series solutions for the spherical geometry under review involve
eigenfunction expansions summed over non–negative integer orders. In this case, the inte-
gration path C referred to in (15) is replaced by a ‘keyhole’ contour Γ running from infinity
towards zero immediately below the real–ν axis and then returning to infinity along another
straight path, this time running immediately above the real–ν axis. The path encircles the
origin in such a way that the ‘loop’ connecting the upper and lower branches of Γ crosses
the real axis at ν = ν0 lying somewhere between −1 and 0 (in order to avoid capturing a
contribution from n = −1 or other negative values of n further along the negative real axis).
Notice that the sense of integration along this path, which is chosen so that we ultimately
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end up with integrals along the real–ν axis (or, technically, just above it) which run from
‘minus’ to ‘plus’ infinity, is now no longer traversed in a counter–clockwise sense necessitat-
ing a minus sign on the right–hand side of (15).

This integration path is not convenient for subsequent asymptotic analysis, for which
we need to replace the lower branch of Γ by another which runs just above the negative
real axis and which connects continuously with the original upper branch of Γ. Referring
to the eigenfunction expansions once more and for simplicity considering Neumann data
prescribed on the target at r = a (1 + ε), we see that appropriate choices for the function
f (ν) relevant to the total field evaluated (a) on the target boundary itself and (b) within
the observation region r ≥ b are:

f (ν) = − 1

2K2

e−iνπ/2 (2ν + 1)

h
(1)′
ν (K)

Pν (cos θ) , (26)

f (ν) =
i

2
e−iνπ/2 (2ν + 1)

[
jν (k0r)h

(1)′
ν (K)− j′ν (K)h

(1)
ν (k0r)

]
h
(1)′
ν (K)

Pν (cos θ) , (27)

and we note that h(1)
′

ν (K) has no real zeros. Connection formulae in ν can then be used
in both cases (26) and (27) to establish the invariance of f (ν) under the transformation
ν → − (ν + 1), with continuity of the integration path described above being guaranteed by

the universal choice ν0 = −1

2
(so that ν0 = − (ν0 + 1)). This now leads to an integration

path D as shown in Figure 1.

ν0=-1/2 Re (ν)

Im (ν)

Figure 1: The integration contour D

The analysis of the integral representation of the solution resulting from the use of the
functions (26) or (27) is dependent on whether we consider it in the geometrical shadow
(where the incoming field is blocked by the impeding spherical target and cloak) or in the
illuminated region accessible to the incident irradiation. In both spatial regions, we can
think in terms of decomposing the total field into the following constituents: (i) the inci-
dent field, (ii) the “geometrical optics” field and (iii) the diffracted field. In the shadow, the
geometrical optics field exactly cancels the incident field leaving just the diffracted field as
the leading–order contribution, whereas, in the illuminated region, the geometrical optics
field supplies the specularly reflected wave, and the diffracted wave co–exists with both this
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and the incident field but, as we shall see, at an exponentially lower order.

Concentrating on the reflected field in the illuminated region, our first step is to write
the Legendre function Pν (cos θ) in (27) in the form

Pν (cos θ) = eiνπPν (− cos θ)− ieiνπR0
ν (cos θ) sin (νπ) (28)

([13], Chapter 10) where, in terms of standard associated Legendre functions,

R0
ν (cos θ) = Pν (cos θ) +

2i

π
Qν (cos θ) (29)

and from which, as long as θ is not close to 0 or π,

R0
ν (cos θ) ∼

(
2

πν sin θ

) 1
2

e−i[(ν+
1
2)θ−π4 ] as ν →∞ (30)

follows. The denominator sin (νπ) in (15) is maintained with regard to the first term on the
right–hand side of (28), and the corresponding integral can be evaluated by deforming the
contour Γ to encompass the poles arising from the zeroes of h(1)

′

ν (K) , which can be expressed
in terms of an Airy function. When the resulting integral is evaluated as a residue series
using the method of stationary phase, we find that the field in the shadow is exponentially
small as K →∞; we return to this in Section 3.1.2. The sin (νπ) term in the denominator
disappears altogether when considering the contribution from the second term in (28) and
the asymptotic representation of this part of the solution contains the geometrical optics
field we are interested in calculating. In fact, after some labour this entire contribution
(which we now label pgo) to the (so far exact) integral representation of the total field in
r ≥ b can be expressed in the alternative form

pgo =
1

4

∫
D

(2ν + 1) eiνπ/2

[
h(2)ν (k0r)−

h
(2)′
ν (K)

h
(1)′
ν (K)

h(1)ν (k0r)

]
R0
ν (cos θ) dν, (31)

where we have used h(1)ν and h(2)ν instead of jν , and we wish to study this integral in the
independent but simultaneous limits K →∞ and k0r →∞. Following Nussenzveig [15], the
first term (involving h(2)ν (k0r)) does not contribute at all at leading order and what remains
is to obtain appropriate estimates of the second term, which is given by the approximate
integral representation

pgo ∼ −
(

1

2π sin θ

) 1
2

eiπ/4−iθ/2
∫
D

ν1/2
h
(2)′
ν (K)

h
(1)′
ν (K)

h(1)ν (k0r) e
iν(π2−θ)dν, (32)

in which R0
ν (cos θ) appearing within the integrand in (31) has been approximated using

(30) under the assumption that the principal contributions will come from large values of
ν. In broad terms, Debye–type asymptotic expansions, in which the order and argument of
the Bessel functions are comparable (see [13]), are now used on the three spherical Bessel

9



functions within the integrand in (32) and steepest descents methods applied; two principal
contributions emerge, one being the incident field and the other the reflected field according
as ν ∼ K or ν ∼ k0r, respectively.

More specifically, making the change of variable ν = µ− 1

2
removes the exponential fac-

tor multiplying the integral and has the added advantage of leaving the integrand in terms of

spherical Bessel functions of order µ− 1

2
, which can then be expressed in terms of ordinary

Bessel functions of order µ (and specifically not µ± 1

2
). This allows standard asymptotic

results to be quoted and used without any modifications being necessary to account for the
half–integer that would otherwise have been present in the order (it is very tempting, for

example, to say that h
(1,2)

µ− 1
2

(z) ∼ h(1,2)µ (z) as µ→∞, but doing so will in general lead to the

omission of O(1) contributions to the phases of some terms within our integrand, especially
when Debye–type limits are being taken).

The integral to be estimated is now

pgo ∼ −
(

1

2π sin θ

) 1
2
∫

D
µ

1
2

h
(2)′

µ− 1
2

(K)

h
(1)′

µ− 1
2

(K)
h
(1)

µ− 1
2

(k0r) e
iµ(π2−θ)dµ. (33)

It is clear from (33) that two distinct ranges of µ are going to feature in the asymptotic
structure of pgo :for large K, k0r,

(i) µ− 1

2
= O (K) ,

(ii) µ− 1

2
= O (k0r) ,

these being the values of ν for which the order and argument of each of the two different
types of spherical Bessel function that arise are of similar sizes, necessitating the use of
Debye–type expansions. Notice that just as in the problem considered in [15], both of our
arguments (K and k0r) are large, but our situation is quite different in that k0r is much
larger than K, and so we will encounter situations where we use Debye expansions on one
part of the integrand but apply a standard leading–order asymptotic expansion on the other
– something that never occurred in [15].

In fact, exactly this happens in case (i) for which µ− 1

2
= O (K), when the term

h
(1)

µ− 1
2

(k0r) has its argument greatly exceeding its order, in direct contrast with the ratio

of spherical Bessel functions for which the order and argument are comparable. Since

h
(2)′

µ− 1
2

(K)

h
(1)′

µ− 1
2

(K)
∼ −e−2i[

√
K2−µ2−µ cos−1( µK )−π4 ] (34)
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as K →∞ for µ− 1

2
= O (K), it now follows that the contribution p(1)go to pgo from this

region of the integration path is given by

p(1)go ∼
(

1

2π sin θ

) 1
2

eiπ/4
eik0r

k0r

∫ ∞
−∞

µ
1
2 ei[−2

√
K2−µ2+2µ cos−1( µK )−µθ]dµ, (35)

to which a standard stationary phase argument can be applied to yield

p(1)go ∼
abε

2 (b− a)
e−2iK sin( 1

2
θ) e

ik0r

r
. (36)

This is a scattered wave radiating away from r = b with spherical wave fronts concentric
with the cloak, and can be identified as a reflected wave of O (ε) amplitude.

The other principal contribution (case (ii)) is such that the functions h
(1)′

µ− 1
2

(K), h
(2)′

µ− 1
2

(K)

now have orders significantly exceeding their arguments, and then

h
(2)′

µ− 1
2

(K)

h
(1)′

µ− 1
2

(K)
∼ −1. (37)

A Debye expansion is now necessary for the spherical Bessel function dependent upon k0r
and the approximation

p(2)go ∼ e−iπ/4
(

k0r

2π sin θ

) 1
2
∫ ∞
−∞

λ
1
2

(1− λ2)
1
4

eik0r[
√
1−λ2−λ cos−1(λ)+λ(π2−θ)]dλ (38)

results, which can be further simplified to yield

p(2)go ∼ eik0r cos θ, (39)

and this contribution therefore supplies the incident wave.

2.2 Cylindrical cloaks

We now consider the regularised cloaking problem with Neumann data prescribed at the
target located at r = a (1 + ε), and with outer cloak radius r = b. Assuming a standard
incident plane wave pinc = eik0r cos θ in cylindrical polar coordinates, we find that the total
field can be written as

p = p0e
ik0R(r) cos θ − p0

∞∑
n=0

in (2− δn,0)
J ′n (k0R (a (1 + ε)))

H
(1)′
n (k0R (a (1 + ε)))

H(1)
n (k0R(r)) cos (nθ) , (40)

where Jn, H
(1)
n are cylindrical Bessel and Hankel functions and

R(r) =

{
b (r − a) / (b− a) a (1 + ε) ≤ r < b
r b ≤ r <∞. (41)
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Alternatively, with an eye towards obtaining an integral solution whose integrand is analo-
gous to that in (31) for the spherical case, so that hopefully some of the asymptotic results
used there carry over to this situation with minimal effort, we re–express (40) to give a
modified version of the total field in r > b in the particular form

pt (r, θ) =
1

2

∞∑
n=−∞

in

[
H(2)
n (k0r)−

H
(2)′
n (K)

H
(1)′
n (K)

H(1)
n (k0r)

]
e−inθ. (42)

We can immediately deduce from this that the relevant function f (ν) in (15) is given by

f (ν) = − i
4

[
H(2)
ν (k0r)−

H
(2)′
ν (K)

H
(1)′
ν (K)

H(1)
ν (k0r)

]
e−iν(θ+

π
2 ), (43)

so that our integral solution now becomes

pt (r, θ) = − i
4

∫
D

[
H(2)
ν (k0r)−

H
(2)′
ν (K)

H
(1)′
ν (K)

H(1)
ν (k0r)

]
e−iν(θ+

π
2 ) dν

sin (νπ)
. (44)

Broadly speaking, when evaluating (44) as both k0r →∞ and K →∞, the ideas from the
analysis of the spherical geometry carry over almost directly, so that the first term within
the integrand (proportional to H(2)

ν (k0r)) does not contribute at all. In what remains, there
are (i) the residue contributions from the zeroes of sin (νπ), which get transferred via a
deformation of contours into those from the zeroes of H(1)′

ν (K) (thus providing a rapidly
convergent series contribution), (ii) those contributions from the integration range when

ν = O (k0r), when the ratio
H

(2)′
ν (K)

H
(1)′
ν (K)

is both constant and independent of a and ε and

finally (iii) contributions from ν = O (K) when the sensitivity of the afore–mentioned ratio
on a and ε is paramount, whilst the third Hankel function

(
H(1)
ν (k0r)

)
then just represents

an outgoing cylindrically–spreading wave of principal phase k0r and with an amplitude pro-
portional to (k0r)

−1/2. The terms in (i) are the diffracted field, those in (ii) combine to yield
the incident field (which is why that element is independent of both a and ε – the incident
field is a stand–alone contribution and is always an exact solution of the Helmholtz equa-
tion completely independent of the presence or otherwise of any obstructing boundary) and
those in (iii) are the ones in which we are most interested since they give the ‘geometrical
optics’ specularly reflected field.

Restricting attention to case (iii), we replace H(1)
ν (k0r) by its standard asymptotic ex-

pansion (since exterior to the cloak k0r � K � 1), and this includes a multiplicative factor
e−iνπ/2.This combines with another such factor already present within the integrand of (44)
to give an overall factor e−iνπ, which we then write as

e−iνπ = −2i sin (νπ) + eiνπ.

The second term on the right–hand side of this decomposition maintains the sin (νπ) term
on the denominator of (44) and becomes a part of the total diffracted field referred to just

12



now as case (i). However, the first term on the same right–hand side removes this sin (νπ)
term altogether, leaving behind an asymptotic representation of the reflected field pr in the
integral form

pr (r, θ) ∼ − i√
2π

eik0r+iπ/4√
k0r

∫ ∞
−∞

H
(2)′
ν (K)

H
(1)′
ν (K)

e−iνθdν, (45)

evaluation of which as K →∞ is by now elementary (using the Debye expansions of the
ratio of differentiated Hankel functions) and is given by

pgo (r, θ) ∼
√

abε

b− a

√
1

2r
sin

(
1

2
θ

)
eik0r−2iK sin( 1

2
θ). (46)

Note in particular that on r = b,

pgo (b, θ) ∼

√
aε

2 (b− a)
sin

(
1

2
θ

)
eik0b−2iK sin( 1

2
θ), (47)

– a result to which we shall refer in Section 3.2.

3 Ray theory

3.1 Spherical targets

Ray theory has been applied to the numerical solution of cloaking models by several authors
(Gao et al [12], Tanaka et al, [16], Crosskey et al [17] and Hu et al [18], for example). Here
we will use the method to obtain explicit asymptotic solutions for large K.3

3.1.1 Target r = a

For large values of ksh and a spherical target r = a , the WKB expansion is

p ∼ eikshu
(
A0 +

1

ksh
A1 + . . .

)
. (48)

We note immediately that if we follow the ray starting at r = b and θ = θ0, and use the
fact that the rays in the TO plane given by (13) are straight lines parallel to the x-axis,
then the incoming ray is given by

r − a = (b− a)
sin θ0
sin θ

(49)

and the associated phase and amplitude are given by u = (r − a) cos θ and A0 = 1. Hence
we have arrived at the exact solution stated in (6) and we find Ai = 0 for i ≥ 1 in (48).

The ray geometry is shown in Figure 2 which gives a geometric interpretation of the
way in which the incident wave energy in r| sin θ| < b is diverted around the target. This
situation changes when the target is at r = a (1 + ε).

3In practice the wavelength must always be larger than that of the microstructure of the cloaking material.
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a b

Figure 2: Rays in a perfect cloak

3.1.2 Target r = a (1 + ε)

Expanding the target to r = a (1 + ε) in order to keep the density and bulk modulus finite
cannot affect the incident field described above. Also, it is clear from Fig. 3 that only the
rays for which π − θ0 = O (ε) can impact the target, the limiting ray being given from (49)
by

θ0 = π − sin−1
(

aε

b− a

)
, (50)

where here, and henceforth, the inverse sine is taken to lie in
(
−π

2
,
π

2

)
. Hence we are led

to consider a boundary layer in which

r̃ =
r − a
εa

= O(1) (51)

and p satisfies the classical Helmholtz equation

r̃2
∂2p

∂r̃2
+ 2r̃

∂p

∂r̃
+

1

sin θ

∂

∂θ

(
sin θ

∂p

∂θ

)
+K2r̃2p = 0, (52)

where K must be large for ray theory to apply. In contrast to Section 2, we first assume
the Dirichlet condition p = 0 on r̃ = 1 and, when we subtract out the known incident field,
the boundary condition for the specularly reflected field is

psc = −eiK cos θ on r̃ = 1. (53)

Since (52) is (1) with r − a replaced by r̃ and ksh replaced by K, the ray model described
in the previous case also applies to the specularly reflected field of rays formed when the
incident rays impact the boundary. For an incident ray parametrised by θ0, this impact
happens at

θ = θ1 = π − sin−1
(

(b− a) sin θ0
aε

)
. (54)

Writing psc ∼ Asce
iKũ, the eikonal equation for (52) is(

∂ũ

∂r̃

)2

+
1

r̃2

(
∂ũ

∂θ

)2

= 1 (55)
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and the associated Charpit equations (Ockendon et al [19]) are

dr̃

dt
= 2

∂ũ

∂r̃
,
dθ

dt
=

2

r̃2
∂ũ

∂θ
,
dũ

dt
= 2,

d

dt

(
∂ũ

∂r̃

)
=

2

r̃3

(
∂ũ

∂θ

)2

,
d

dt

(
∂ũ

∂θ

)
= 0, (56)

which must be solved subject to

r̃ = 1, ũ = cos θ1,
∂ũ

∂θ
= − sin θ1,

∂ũ

∂r̃
= − cos θ1 when θ = θ1. (57)

After some manipulation we find that the specularly reflected rays are

r̃ = − sin θ1
sin (θ − 2θ1)

with ũ = 2 cos θ1 + sin θ1 cot (θ − 2θ1) (58)

and hence that these rays leave the boundary layer at θ = θ2 = 2θ1 − π, leading to the ray
pattern in Figure 3. We note that this result could also have been obtained by mapping
into the TO plane since specular reflection is preserved.

aa(1+ε) b

Figure 3: Rays in an imperfect cloak. The shadow region is shown shaded.

This scattered field reduces to that for classical scattering as ε increases and the cloak
thickness vanishes. However, our WKB solution is not uniformly valid as ε→ 0 as we now
discuss.

We begin by noting that the incoming rays on which θ0 = O (ε) are almost rectangular
hyperbolae in a region where r̃ = O

(
ε−1/2

)
, π − θ = O

(
ε1/2
)

and the lowest order ray theory

solution is still the incident wave p = e−iKr̃ cos θ. However, we need to go to smaller values
of r̃ − 1 and π − θ before we encounter a scattered field that is not described by ray theory.
We notice that if r̃ − 1 ∼ π − θ ∼ O (δ),

(
δ � ε1/2

)
, our ray theory remains valid as long

as Kδ � 1. But, when δ ∼ 1

K
, (52) can be rescaled to become a Helmholtz equation with

coefficients of O(1) 4.

4Such problems arise in all scattering problems for blunt targets and, in this case, the model will predict
a scattered field near θ = π which is independent of ε and which decays with a suitable power of distance
from the focus of the osculating parabola or paraboloid at the point of minimum curvature. However,
this scenario only holds when Kε1/2 is small; when this parameter is of O(1), the solution of the relevant
Helmholtz equation will need to match to a far-field that is non-radial, which will result in a different
scattered field near θ = π.
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There is another non–uniformity near r̃ = 1, θ =
π

2
, where the incident and reflected

rays graze the target. Such grazing phenomena in homogeneous media have been exten-
sively studied (see, for example, Ockendon and Tew [20]), and they typically lead to an inner
region described by a version of the parabolic wave equation known as the Fock–Leontovich
equation. Solutions of this equation match with an incident grazing plane wave and a trans-
mitted shadow boundary near the outgoing grazing ray (Fig. 3). Between this shadow
boundary and the target, a deep shadow region is formed in which there are real ‘creeping
rays’ with exponentially small amplitude and a similar scenario is expected to apply to our
problem even though the grazing rays are now curved.

Our final and most important calculation is that of the asymptotic form of the reflected
wavefield which can only be determined by a more complicated calculation involving the
transport equation for the reflected wavefield as θ → θ2. The lowest order amplitude Asc
satisfies

P
∂Asc
∂r̃

+Q
∂Asc
∂θ

+ SAsc = 0, (59)

with Asc = −1 at θ = θ1, where

P = 2r̃2
∂ũ

∂r̃
, Q = 2

∂ũ

∂θ
and S = r̃2

∂2ũ

∂r̃2
+ 2r̃

∂ũ

∂r̃
+
∂2ũ

∂θ2
+ cot θ

∂ũ

∂θ
.

Along a ray, this eventually yields the equation

1

Asc

dAsc
dθ

=
S

2 sin θ1
,

where

S =
2 sin2 θ1 − sin θ1 cos θ1 cot (θ − 2θ1)

2 sin θ1 cot (θ − 2θ1) + cos θ1
+ 2 sin θ1 cot (θ − 2θ1)− cot θ sin θ1; (60)

this in turn yields

Asc = sin (θ − 2θ1)

√
cos θ1

sin θ (cos θ1 sin (θ − 2θ1) + 2 sin θ1 cos (θ − 2θ1))
. (61)

Thus, as θ → θ2 = 2θ1 − π, r̃ =
sin θ1

sin (θ − θ2)
and so Asc ∼ −

1

2r̃
and hence

psc ∼ −
1

2r̃
eiK(r̃−2 sin( 1

2
θ)) as r̃ →∞.

Since the scattered field satisfies the same equation throughout the cloak, the scattered field

at r = b is − εa

2(b− a)
eiksh(b−a)−2iK sin( 1

2
θ), which can be written in the equivalent form

− abε

2 (b− a)
e−2iK sin( 1

2
θ) e

ik0b

b
.
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Hence the scattered far field in r > b is of the spherically–spreading form d (θ)
eik0r

r
, where

d (θ) = − εab

2 (b− a)
e−2iK(sin 1

2
θ), with an amplitude which is both radially symmetric and of

O (ε), uniformly as r →∞. We note that in the WKB approximation, the Neumann prob-
lem only differs from the Dirichlet problem in that the sign of psc is changed and hence this
result is in complete agreement with the solution (36) obtained in Section 2.1.2.

3.2 Cylindrical Cloaks

For a cylindrical target in which (r, θ) are cylindrical rather than spherical polar coordinates,
the only modification to (1) is the removal of the coefficient 2 in the second term and the

replacement of the third term by
∂2p

∂θ2
.

When the target is at r = a, the calculations for the phase and rays are exactly as in
the spherical case in Section 3.1.1, and again ray theory provides the exact solution to the
full problem. The same remarks apply when the cylinder is perturbed to r = a (1 + ε), with
the sole exception that Asc is no longer given by (61). It turns out that

1

Asc

dAsc
dθ

=
S

2 sin θ1

as before, but now, instead of (60),

S =
2 sin θ1

(cot θ1 + 2 cot (θ − 2θ1)) sin2 (θ − 2θ1)
,

with θ1 (r̃, θ) still given by (58). Thus, since Asc = −1 at θ = θ1,

Asc = −

√
− cot θ1

cot θ1 + 2 cot (θ − 2θ1)
.

The scattered amplitude as θ → 2θ1 − π and r̃ = − sin θ1
sin (θ − 2θ1)

→∞ is given by

Asc ∼ −
√
−cos θ1

2r̃
= −

√
sin
(
1
2
θ
)

2r̃
. (62)

Not only does the field have the expected inverse square root behaviour in r̃, but its ampli-

tude is no longer radially symmetric having an angular dependence

√
aε

2 (b− a)
sin

(
1

2
θ

)
.

When we reinstate the phase and change the sign in order to conform with Neumann bound-
ary conditions this is in perfect agreement with (47) in Section 2.2.
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3.3 Thin cloaks

We conclude this Section with a brief discussion of how cloaking deteriorates for thin cloaks.

When we formally take the limit
b

a
↓ 1 in the model (52), we retrieve the classical problem

of scattering by a sphere or a cylinder in a homogeneous medium. Since the scattered field

is dramatically reduced by the cloak when
b

a
= O(1) and the target is r = a (1 + ε), we now

consider the situation in which b = a (1 + γε) with γ > 1. Again we will restrict considera-
tions to the case K � 1 and we begin with the spherical case.

Away from the areas of non–uniformity mentioned in Section 3.1.2, the phase of the
incoming wave field in the cloak is still

u = r̃ cos θ,

with the incident rays being

r̃ = γ
sin θ0
sin θ

.

Thus, writing θ∗0 = π − sin−1 (1/γ) with
π

2
< θ∗0 < π, we see that the rays for which θ0 > θ∗0

will reflect from the target. As γ → ∞, a smaller and smaller proportion of incident rays
will impact the target and from (61), on the cloak boundary, 2θ1 − θ = θ0 and θ0 → π so
that

Asc ∼ −
sin θ0

2 sin θ1
.

Hence, we see that Asc ∼ −1/ (2γ) as γ →∞.

In the cylindrical case the corresponding result is, from (62), that Asc ∼ −

√
sin
(
1
2
θ
)

2γ
.

Note that both these results are in line with those of Sections 3.1.2 and 3.2 when γ = O

(
1

ε

)
.

4 Generalised models

4.1 Point source insonification

We now consider a spherical target r = a whose cloak is modelled by (1) but which is now
insonified by a source situated at (r, θ, φ) = (d, 0, 0) in d > b given by

p =
eik0R

4πR
=
ik0
4π

∞∑
n=0

(2n+ 1)h(1)n (k0d)jn(k0r)Pn(cos θ), R < d, (63)

where
R = (r2 + d2 − 2rd cos θ)1/2.

18



Then we find the field in the cloak is given by

p =
∞∑
n=0

Bnjn (ksh (r − a))Pn (cos θ) , (64)

where

Bn =
ik0
4π

(2n+ 1)h(1)n (k0d)b−1/2(b− a)−1/2 (65)

and so

p =
ik0
4π

∞∑
n=0

(2n+ 1)h(1)n (k0d)jn

(
k0b

(r − a)

(b− a)

)
Pn(cos θ). (66)

Hence

p =
eik0R1

4πR1

in a < r < b, (67)

where

R1 =

(
b2

(r − a)2

(b− a)2
+ d2 − 2b

(r − a)

(b− a)
d cos θ

)1/2

, b > r > a.

and R1 is a measure of distance from the image point (
d(b− a)

b
+ a, 0 0). Thus, for large

values of d, the scattered field is of O
(
d−1
)

and it is easy to show that it would be of

O
(
d−1/2

)
in the cylindrical case. However, all cloaking would be lost if sources were dis-

tributed uniformly on r = d so as to produce a radial incident wave.

We remark that the transformation optics technique in which the radial distance r is
replaced by (r − a) can also be used to
(i) solve the problem of a homogeneous spherical target with a point source embedded at
r = 0 and(ii) analyse the effect of a composite cloak in c < r < b, in which, say,

ρ =
a− c
c

r2

(r − a)2
for c < r < a with c =

ab

2b− a
,

in addition to (4).

4.2 Material properties proportional to (r − a)α, 2 > α > 0

In anticipation that solutions of (52) will have radically different properties when the r̃–
dependent coefficients are replaced by constants, we now consider the effect of moderating
the singularities in λ and ρ as r → a. For simplicity, we will restrict attention to the con-

figurations with

(
b

a
− 1

)
= O(1).

We replace (7) by

λ =
(b− a)α+1 r2

b3 (r − a)α
for a < r < b, (68)
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for 0 < α < 2, so that the singularity at r = a is less severe than was the case in the previous
Sections.
Correspondingly, we choose the anisotropic density

ρ =

 (b−a)α−1r2

b(r−a)α 0 0

0 b−a
b

0
0 0 b−a

b

 . (69)

Substitution of (68) and (69) into (11) reveals that (1) is replaced by

(r − a)α
∂2p

∂r2
+ α (r − a)α−1

∂p

∂r
+

(b− a)α−2

sin θ

∂

∂θ

(
sin θ

∂p

∂θ

)
+ k2sh (r − a)α p = 0. (70)

We will only consider the high–frequency limit in which ksh →∞ and then the phase u
in (48) satisfies (

∂u

∂r

)2

+
(b− a)α−2

(r − a)α

(
∂u

∂θ

)2

= 1. (71)

With the usual incident field p = eik0r cos θ, the boundary conditions on r = b are still given
by (??), but Charpit’s equations are now

dr

dt
= 2

∂u

∂r
,

dθ

dt
=

2 (b− a)α−2

(r − a)α
∂u

∂θ
,

du

dt
= 2, (72)

d

dt

(
∂u

∂r

)
=

2 (b− a)α−2

(r − a)α+1

(
∂u

∂θ

)2

and
d

dt

(
∂u

∂θ

)
= 0. (73)

When θ0 = π,
∂u

∂θ
= 0 and so θ = π and this ray will reach the target r = a. However, when

θ0 < π, the differential equation for the ray through r = b, θ = θ0 is

dr

dθ
=

[(r − a)α
(
(r − a)α

(
cos2 θ0 + 2

α
sin2 θ0

)
− 2

α
(b− a)α sin2 θ0

)
]1/2

(b− a)α−1 sin θ0
, (74)

where the positive value of the square root is taken since r and θ are both decreasing on
the incoming ray. Hence we see that r will have a minimum when

r − a = (b− a)

[
2 sin2 θ0

α cos2 θ0 + 2 sin2 θ0

]1/α
,

which will always occur in r > a for 0 < α < 2. Once this minimum value has been achieved,
r will increase while θ continues to decrease and so it is necessary to take the negative square
root in (74) on this latter part of the ray.

It can further be shown that as α decreases from 2 the value of θ for which the ray
entering the cloak when θ = θ0 refracts into the homogeneous medium at r = b will increase
from π − θ0. Thus we see that the effect of the cloak weakens as α decreases.
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4.3 Low–frequency cloaking

Hitherto, we have not considered cloaking at frequencies low enough for k0 and ksh to be of
O(1) or smaller. When these parameters are of O(1) and the target is a sphere r = a (1 + ε),
we can write down expansions for p in powers of ε, with (6) being the lowest order solution
except in a boundary layer where r̃ = O(1). In this layer, p will be a harmonic function of

(r̃, θ) to lowest order, whose solution is p = 1− 1

r̃
for zero Dirichlet data on r̃ = 1. The

scattered field in the cloak will then satisfy the Helmholtz equation (52) with p ∼ − 1

r − a
as r ↓ a, while, for Neumann data, we would have to go to higher orders in ε. We will not
pursue this regime further here except to note that the scattered field will be of O (ε) for
Dirichlet data and o (ε) for Neumann data and that the corresponding cylindrical problem

will involve expansions in powers of
1

(log ε)
. A general discussion of low–frequency scat-

tering is given by Dassios and Kleinman [22] and we will simply record the lowest–order
fields when k0 and ksh are small. In this case, explicit asymptotic expansions for p can be
found by perturbing about the static solution when k0 = ksh = 0. For the canonical regime
in which k0 and ksh are of O (ε), the leading terms are as follows, where D and N denote
Dirichlet and Neumann conditions, respectively. In each case, the same four spatial regions
need to be considered asymptotically and these regions are defined in the first case.

a) Spherical Target, r = a (1 + ε)

D: 1 r
>∼ O

(
1

ε

)
: p ∼ eik0r cos θ − εab

r(b− a)
e−ik0r +O

(
ε2
)
.

2
1

ε
� r > b : p ∼ 1 + ik0r cos θ − εab

r(b− a)
+O

(
ε2
)
.

3 b− a > r − a� aε : p ∼ 1− εa

r − a
+ iksh(r − a) cos θ +O

(
ε2
)
.

4 r̃ =
r − a
aε

= O(1) : p ∼ 1− 1

r̃
+ iεksh cos θ

(
r̃ − 1

r̃2

)
+O

(
ε2
)
.

N: 1 p ∼ eik0r cos θ +O
(
ε3
)
.

2 p ∼ 1 + ik0r cos θ +O
(
ε2
)
.

3 p ∼ 1 + iksh(r − a) cos θ +O
(
ε4
)
.

4 p ∼ 1 + iεaksh cos θ

(
r̃ +

1

2r̃2

)
+O

(
ε4
)
.
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b) Cylindrical Target, r = a (1 + ε)

D: 1 p ∼ eik0r cos θ − π

2i

h
(1)
0 (k0r)

log ε
+O (ε) .

2 p ∼ 1− log (r(b− a)/ab)

log ε
+ ik0r cos θ +O

(
ε

log ε

)
.

3 p ∼ 1− log ((r − a)/a)

log ε
+ iksh(r − a) cos θ +O

(
ε

log ε

)
.

4 p ∼ − log r̃

log ε
+ iεksha

(
r̃ − 1

r̃

)
cos θ +O

(
ε

log ε

)
.

N: 1 p ∼ eik0r cos θ +
ik0ε

2a2b2

(b− a)2
cos θ

r
+O

(
ε4
)
.

2 p ∼ 1 + ik0r cos θ +
ik0ε

2a2b2

(b− a)2
cos θ

r
+O

(
ε4
)
.

3 p ∼ iksh(r − a) cos θ +O
(
ε3
)
.

4 p ∼ 1 + ikshεa cos θ

(
r̃ +

1

r̃

)
+O

(
ε3
)
.

We note that the above results for large r under Dirichlet boundary conditions are consistent
with the results in [4], [5].

As expected, the Neumann boundary condition produces much less scatter than the
Dirichlet condition, as well as having different directionality.

5 Conclusion

This brief study of models for the cloaking of a special class of elastic spherical and cylin-
drical targets under arbitrary plane wave insonification has revealed that a class of cloaks
whose density is everywhere finite may still only generate a small scattered field.

We have especially exploited ray theory, despite the fact that it only applies when the
target and cloak are much larger in size than the incident wavelength and despite the exis-
tence of spatial nonuniformities. Fortunately, for the target geometries we have considered,
exact eigenfunction expansions are available and we have shown how the Watson transfor-
mation can be used on these expansions so as to verify the applicability of ray theory.

Our analysis has not only predicted differences between the scattered fields for spherical
targets and cloaks compared to cylindrical ones, but has also revealed that our regularisa-
tions create narrow shadow regions in the scattered field behind the target and enhanced
insonification near the front of the target. Furthermore we have been able to study cloaks
whose density is radially symmetric but quite different from the perfect cloaking density
and insonification by a point source rather than a plane wave.
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