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Abstract 

Herein, we report a facile route to synthesize isolated single iron atoms on nitrogen-

sulfur-codoped carbon matrix via a direct pyrolysis process in which hemoglobin, a by-

product of the meat industry, was utilized as a precursor for iron, nitrogen and sulfur 

while bamboo-shaped carbon nanotubes served as a support owing to their excellent 

conductivity and numerous defects. The resulting metal-nitrogen complexed carbon 

showed outstanding catalytic performance for the oxygen evolution reaction (OER) in 

alkaline solutions. At an overpotential of 380 mV, the optimal sample yielded a current 

density of 83.6 mA cm-2, which is 2.5 times that of benchmark IrO2 (32.8 mA cm-2), 

rendering it as one of the best OER catalysts reported so far. It also showed negligible 

activity decay in alkaline solutions during long-term durability tests. Control 

experiments and X-ray absorption fine structure analyses revealed that Fe-Nx species 

in the samples are the active sites for OER. Further density functional theory 

calculations indicated that the presence of sulfur in the carbon matrix modified the 

electronic structures of active species, thereby leading to the superior activity of the 

sample. 

Keywords: Single-site catalysts; sulfur doping; Fe-Nx; oxygen evolution reaction; 

carbon nanotubes   
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1. Introduction 

Molecular hydrogen is an ideal candidate for replacing fossil fuels because of its 

environmental-friendliness and high energy efficiency [1]. Electrochemical water 

splitting via the hydrogen evolution reaction (HER) and oxygen evolution reaction 

(OER) represents a promising approach for hydrogen production [2-5]. Owing to the 

sluggish kinetics and high overpotentials, the OER is considered to be the bottleneck 

for water splitting. It necessitates the utilization of high-performance electrocatalysts to 

maximize energy efficiency. Currently, IrO2 and RuO2 are regarded as state-of-the-art 

OER electrocatalysts. Unfortunately, the scarcity and cost of these precious metal 

oxides greatly prevent their large-scale application in OER. Searching for high-

performance and cost-effective electrocatalysts is thus of great significance for the 

widespread application of water-splitting techniques [6-9]. 

Recently, single-atom catalyst (SAC) has triggered enormous interest owing to 

their maximum atom efficiency, outstanding activity and selectivity [10-12], and 

tunable coordination structures [13,14]. Among the reported SAC, metal-nitrogen 

complexed carbon (MNC) materials are of particular interest for electrocatalysis 

because of their excellent conductivity [15-19]. So far, MNC has been used in 

electrochemical processes, such as the oxygen reduction reaction [20,21], HER [22,23], 

OER [24-26], and CO2 reduction reaction [27]. The cost-effective and large-scale 

production of MNC hold the key to their practical applications. Unfortunately, the 

extremely high surface energy of single metal atoms always leads to natural aggregation 

into nanoparticles which are catalytically less active than SAC, and this represents a 

grand challenge for the synthesis of MNC. Currently, pyrolysis of metal salts with 

nitrogen/carbon precursors has been extensively employed for the synthesis of MNC 

[28-30]. This synthesis protocol involves high pyrolysis temperatures to yield 

conductive carbonaceous supports, which unfortunately leads to metal aggregation due 

to the weak interaction of the metal cations with N/C precursors, greatly reducing the 

number of single atoms. Such a trade-off relationship between conductivity and the 

number of catalytically active single atoms greatly affects the performance of the 
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resulting MNC. Alternatively, metal organic framework (MOF) consisting of metal 

sites coordinated by N-containing ligands is a better precursor for MNC synthesis [31-

34]. However, to facilitate a strong interaction of metals with surrounding ligands in 

MOF, the choices of metal type and ligands are limited, not to mention that the synthesis 

of MOF is costly and time-consuming, which significantly prohibits the scalable 

production of MNC [35]. Thus, the development of cost-effective synthesis methods is 

still highly desirable to realize the large-scale production of SAC. 

The catalytic performance of MNC is closely related to the local geometric and 

electronic structures of M-Nx sites. It has been demonstrated that metal atoms in MNC 

catalysts always exhibit unsatisfactory adsorption-desorption behaviors toward 

intermediates owing to the electron depletion arising from the interaction of 

neighboring N atoms, thus increasing the potential barriers of the catalytic reactions 

[36-39]. The electronic structures of the metals can be further tuned by introducing 

proper foreign atoms such as sulfur in the carbonaceous matrix [34-36]. Inspired by 

these results, herein, we report a simple route for the synthesis of MNC via pyrolysis 

of a mixture of hemoglobin (Hb) and bamboo-shaped carbon nanotube (BCNT). Being 

the major content of animal blood which can be obtained as a by-product of the meat 

industry [40], Hb is composed of globin and heme. The former has sulfur elements 

while the latter contains Fe-N5 moieties. Such abundant availability and structural 

features render Hb to be an ideal precursor for the synthesis of MNC. BCNT was 

utilized as a catalyst support owing to their excellent conductivity and abundant defects 

[41]. The contents of iron and nitrogen were readily optimized by varying the Hb 

content in the feedstock and pyrolysis temperature. High-angle annular dark field 

scanning transmission electron microscopy (HAADF-STEM) confirmed the presence 

of abundant single iron atoms. X-ray absorption fine structure analyses revealed that 

the iron atoms were coordinated with nitrogen atoms. The optimal sample showed 

remarkable OER activity in alkaline solutions and outperformed precious IrO2 at high 

overpotentials. Density functional theory (DFT) calculations were conducted to 

investigate the critical role of sulfur dopant. The superior OER performance was mainly 

attributed to the abundant Fe-Nx sites and the promoting role of sulfur. 
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2. Experimental section 

2.1. Materials 

Nafion solution (5 wt.%) was purchased from the Sunlaite Co. Ltd. (Kunshan, China). 

Isopropanol and ethylene glycol were provided by the Qiangsheng Chemical Reagent 

Co. Ltd. (Jiangsu, China) and Fuyu Chemical Reagent Co. Ltd. (Tianjin, China), 

respectively. Hemoglobin was purchased from the Yuanye Biotechnological Co. Ltd. 

(Shanghai, China). All the chemicals were of analytic grade and were used as received 

without further purification. 

2.2. Synthesis of BCNT 

BCNT was obtained from a typical process of thermocatalytic decomposition of 

methane using nickel-copper alloy as a catalyst and further purified by refluxing in a 

solution of concentrated sulfuric and nitric acids at 140oC overnight as reported in the 

authors’ previous work [42,43]. After cooling to ambient temperature, the mixture was 

ultrasonicated for 60 min. Afterwards, the BCNT were thoroughly rinsed with deionised 

water to remove the impurities and dried at 100 oC for further use. 

2.3. Synthesis of Hb/BCNT 

Typically, 800 mg of hemoglobin (Hb) and 200 mg of purified BCNT were dispersed 

in 5 mL of deionised water by ultrasonication. The resulting mixture was transferred 

into a vacuum oven. The pressure of the oven was held at 0.01 MPa for 10 min and then 

recovered to ambient pressure. To facilitate the adsorption of Hb onto the BCNT, the 

vacuum process was repeated twice. Subsequently, the mixture was dried at 80 oC for 

24 h, ground and transferred into a tube furnace. The furnace was heated to a given 

temperature with a rate of 5 oC min-1 under nitrogen atmosphere and held at temperature 

for 2 h. After cooling to ambient temperature, a black powdered product was obtained 

and denoted as Hb/BCNT-1000. The samples synthesized at varying Hb contents and 

pyrolysis temperatures were denoted as x%Hb/BCNT-T for convenience, where x% is 

the weigh percentage of Hb in the mixture and T is the pyrolysis temperature. For 
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comparison, the sample was also prepared at 1000 oC in the absence of BCNT and 

denoted as Hb-1000. 

2.4. Structural Characterization 

The morphology of the samples was studied by field emission scanning electron 

microscopy (FESEM) (JSM-7600F, JEOL) and transmission electron microscopy 

(TEM) (JEM2010, JEOL). To observe the single atoms in the samples, high-angle 

annular dark field STEM micrographs were obtained from an alternative microscope 

(ARM200F JEOL) at the Electron Physical Sciences Imaging Centre at Diamond Light 

Source. An acceleration voltage of 200 kV was used throughout the measurements, with 

a beam current of approximately 15 pA, a convergence semi-angle of 23 mrad and a 

high-angle annular dark field (HAADF) inner angle of 80 mrad used for HAADF data. 

An energy dispersive X-ray (EDX) spectrometer in the TEM and an axis-ultra X-ray 

photoelectron spectrometer (Kratos-Axis Ultra System) with monochromatized Al-Kα 

radiation were used to analyze the elemental composition of the samples. The Fe K-

edge X-ray absorption fine structure (XAFS) spectra were recorded from beamline B18 

at Diamond light source with stored electron energy of 2.2 GeV using transmission 

mode. The Fe K-edge spectra were processed following the conventional procedure 

using the IFEFFIT package. X-ray diffraction (XRD) patterns were obtained by a 

diffractometer (PW1830, Philips) equipped with Cu-Kα radiation of 1.54 Å. Raman 

spectra were recorded with a LabRAM Aramis microscope using 532-nm excitation at 

room temperature. The nitrogen adsorption isotherms were recorded using an ASAP 

2460 (Micromeritics) analyzer. Fourier-transform infrared spectroscopy (FTIR) 

measurements were performed using a VERTEX 33 spectroscopy. 

2.5. Electrochemical Measurements 

Electrochemical measurements were performed on an electrochemical station (CHI 

660E) connected with a typical three-electrode cell. Catalyst powder was dispersed into 

a mixture of deionized water, isopropanol, ethylene glycol and Nafion solution (5 wt.%) 

with a volumetric ratio of 1000:750:150:95:5 by ultrasonication. The weight percentage 

of the catalyst powder in the resulting suspension was 1.6 mg mL-1. 80 uL of the 



7 
 

suspension was deposited onto carbon paper with a geometric area of 10 × 10 mm and 

thoroughly dried before the electrochemical measurements. A carbon rod and Hg/HgO 

electrode were used as counter and reference electrodes, respectively. Linear sweeping 

voltammetry (LSV) measurements were performed with a scan rate of 2 mV/s. To 

evaluate the double-layer capacitance, cyclic voltammetry measurements were 

conducted with varying scan rates in the potential range of 0.15 ~ 0.25 V vs. Hg/HgO. 

The double-layer capacitance (Cdl) was estimated by plotting (Ja-Jc)/2 against scan rate, 

where Ja and Jc are the anodic and cathodic current densities at 0.2 V vs. Hg/HgO, 

respectively. Both chronoamperometry and ISTEP tests were conducted to evaluate the 

durability of the catalyst. Electrochemical impedance spectroscopy (EIS) tests were 

done from 0.1 Hz to 100 kHz with amplitude of 10 mV. The turnover frequency (TOF) 

was calculated by the method reported in the literature by assuming that all single Fe 

atoms in the electrode are active sites and accessible to the electrolyte [44]. All the 

polarization curves were reported with Ohmic drop correction. All the potentials 

reported in this work were referenced to a reversible hydrogen electrode (RHE) by 

following equations: E (vs. RHE) = E (vs. Hg/HgO) + 0.098 + 0.059*pH. All the 

electrochemical measurements were conducted at ambient temperature. 

2.6. Computational Methods 

All DFT calculations, including structural optimizations and total energy calculations, 

were performed using the Vienna Ab initio Simulation Package [45] with periodic 

boundary conditions. We used a plane-wave basis set with a kinetic energy cutoff of 

400 eV to expand the wave functions. The Perdew-Burke-Ernzerhof functional [46] in 

combination with Grimme’s D3 van der Waals correction [47] with the Becke-Johnson 

damping [48], and the projector augmented wave method [49,50] were used to solve 

the Kohn-Sham equations. A first-order Methfessel-Paxton smearing [51] with a width 

of 0.2 eV was used to improve the convergence of electronic self-consistent field 

calculations. All DFT calculations were spin-polarized, and have been performed in the 

-point approximation for sufficiently large cells; we used an 8 × 8 supercell of AB-

stacked bilayer graphene, with a vacuum slab of ~15 Å thickness. An energy 
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convergence threshold of 10−4 eV was used for all total energy calculations, and the 

structural optimizations, including cell parameters and atomic positions, were 

considered converged if all interatomic forces fall below 0.01 eV/Å. The Bader’s charge 

analysis was performed using the method developed by Henkelman et al [52]. A range 

of different configurations, all featuring Fe-Nx species in the top layer and an additional 

graphitic nitrogen in the bottom layer, with or without sulfur substitution were 

considered. The optimized geometries of five relevant configurations (with sulfur 

substitution) and the relative energies, relevant bond lengths and Bader charges on Fe 

atoms of these configurations were studied. 

3. Results and Discussion 

3.1 Structural characterization 

As schematically illustrated in Fig. 1A, the sample is synthesized via pyrolysis of a 

mixture of Hb-adsorbed BCNT in inert atmosphere. The synthesis process is simple 

and does not involve any sophisticated instrumentation and fabrication, which is 

beneficial for large-scale production. Herein, acid-treated BCNT (see Fig. S1) was 

utilized as a catalyst support because of the numerous defects and surface groups, and 

large surface areas, which afford prominent advantages for adsorbing Hb biomolecules 

and further stabilizing single metal atoms. FTIR results (Fig. S2) reveal the changes of 

the surface groups in the samples. After the pyrolysis process, most of the groups of Hb 

were removed except that some -OH and C=O groups are noted from the Hb-1000 and 

Hb/BCNT-1000 samples, indicating the transformation of Hb into carbonaceous 

materials. Fig. 1B shows the morphology of the Hb/BCNT-1000. The FESEM image 

shown in Fig. 1B presents an overview of the sample. It indicates that the sample 

consists of fibrous nanotubes and irregular aggregates. Such aggregates are composed 

of carbon nanosheets arising from the exfoliation of BCNT (see Fig. S1d) as confirmed 

by the TEM image shown in Fig. 1C. High-resolution TEM images (Fig. 1D, E and 

Fig. S3b, c) show the lattice fringes of crystallized BCNT and disorder of the 

amorphous carbons resulting from the pyrolysis of Hb. A HAADF scanning 
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transmission electron microscope (HAADF-STEM) image (Fig. 1F) reveals the 

dispersion of bright dots in the carbonaceous matrix. Aberration-corrected HAADF-

STEM images (Fig. 1G, H and Fig. S3d) further confirm the presence of numerous 

bright dots which highlighted by red circles, corresponding to single Fe atoms. A few 

Fe nanoparticles are also observed from the sample, as shown in Fig. S3e. The EDX 

elemental maps (Fig. S3g-j) vividly resolve the distribution of C, N, S and Fe elements. 

The morphology of the Hb-1000 sample was also examined, as shown in Fig. S4. The 

sample mainly consists of carbon supported iron nanoparticles. On close inspection of 

aberration-corrected HAADF-STEM images (Fig. S4), we could not find single iron 

atoms. These findings suggest that the presence of BCNT is critical for the formation 

of single Fe atoms in the samples. 

 

Fig. 1. (A) schematic illustration of the synthetic process. (B) FESEM, (C) TEM, (D, 

E) high-resolution TEM, (F) HAADF-STEM and (G, H) high-resolution HAADF-

STEM images of Hb/BCNT-1000. 

An XRD pattern of Hb/BCNT-1000 (Fig. 2A) shows four distinct peaks at 25.6, 

43.2, 53.7 and 77.6o, corresponding to the diffraction of (200), (101), (004) and (110) 

planes of graphitized BCNT, respectively. Further examination of the XRD profile also 
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confirms a trace of metallic iron phase (PDF # 01-085-1410). Such an iron phase is also 

noted from the XRD profile of 80%Hb/BCNT-1100, but absent from that of 

80%Hb/BCNT-900 (see Fig. S5), manifesting that its formation is closely related to the 

pyrolysis temperature. The XRD profiles of Hb-1000 show the diffractions peaks of 

graphitized carbon, iron and a trace of magnetite (PDF #00-011-0614).  

The Brunauer-Emmett-Teller (BET) surface area and pore volume of the 

Hb/BCNT-1000 were determined based on the N2 adsorption-desorption isotherm as 

shown in Fig. 2B. For comparison, the isotherms and corresponding analysis results of 

the control samples are shown in Fig. S6-7. The Hb/BCNT-1000 sample has a BET 

surface area of 261 m2 g-1, which is larger than those of BCNT (52 m2 g-1) and Hb-1100 

(119 m2 g-1). Such a large surface area is beneficial for the anchoring of Fe atoms and 

also the dispersion of catalytically active sites. The effect of pyrolysis temperature on 

the surface area was investigated. Interestingly, with increasing pyrolysis temperature, 

the BET value of the samples slightly increased as shown in Fig. S7. 

The structures of the samples were studied by Raman spectra. As shown in Fig. 

2C, all the Raman spectra display typical peaks of carbon materials, consisting of D, G, 

2D and 2D' bands [53]. To quantitatively evaluate the properties of the samples, the 

intensity ratio of ID/IG was calculated. The BCNT exhibit an ID/IG value of 1.06, which 

is smaller than those of Hb/BCNT-1000 (1.64) and Hb-1000 (2.22), suggesting that the 

carbonaceous material resulting from the pyrolysis of Hb has more defects and a lower 

crystallinity [54]. The effects of pyrolysis temperature and Hb content were further 

investigated. The ID/IG value increases with increasing Hb content in the feedstock (see 

Fig. S8). In contrast, the effect of pyrolysis temperature is not so straightforward. The 

80%Hb/BCNT-800 possesses an ID/IG value of 2.06, which is larger than those of 

80%Hb/BCNT-900 (1.57), Hb/BCNT-1000 (1.64) and 80%Hb/BCNT-1100 (2.00). 

The structures of the samples were also revealed by X-ray photoelectron 

spectroscopy (XPS). The deconvolution of high-resolution S 2p and N 1s spectra was 

conducted as shown in Fig. 2D, and E, respectively. It is noteworthy that five 

components including pyridinic N, pyrrolic N, graphitic N, oxidized N and Fe-Nx 
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species, corresponding to binding energies of 398.5, 400.8, 401.6, 403.0 and 399.8 eV, 

respectively, are obtained by deconvolution of the N 1s spectrum [55]. The signal of 

iron is quite weak as shown in Fig. 2F. It is difficult to identify the electronic states of 

iron from the Fe 2p spectrum. Fig. S9 shows the XPS results of Hb-1000. Notably, the 

N 1s spectrum of Hb-1000 does not contain the Fe-Nx species, which is consistent with 

the absence of single iron atoms in the samples. Since the state of nitrogen plays a 

critical role in the catalytic performance, the N 1s spectra of the samples obtained from 

varying pyrolysis temperatures (Fig. S10) and Hb contents (Fig. S11) were 

systematically analyzed. The results are shown in Tables S1-2. It can be seen that the 

total nitrogen content, pyrrolic-N, graphitic-N and oxidized-N in the samples decrease 

with increasing pyrolysis temperature. On the contrary, the pyridinic-N shows an 

opposite trend. Note that the Hb/BCNT-1000 sample possesses a Fe-Nx percentage of 

15.5%, which is larger than those of 80%Hb/BCNT-900 (12.2%) and 80%Hb/BCNT-

1100 (15.1%). The total nitrogen content is also affected by the Hb content in the 

feedstock. The Hb-1000 sample has a total nitrogen percentage of 1.06%, which is 

larger than those of Hb/BCNT-1000 (0.57%) and 50%Hb/BCNT-1000 (0.06%). 

However, it has no Fe-Nx species. Though the 50%Hb/BCNT-1000 has a Fe-Nx 

percentage of 18%, the absolute Fe-Nx content is still limited owing to the negligible 

total nitrogen content. 

 

Fig. 2. (A) XRD pattern, (B) N2 adsorption-desorption isotherm, (C) Raman spectra, 
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and (D-H) XPS spectra of N 1s, S 2p and Fe 2p of the samples. 

To further confirm the Fe-Nx active sites and investigate their chemical states and 

coordination environment in Hb/BCNT-1000 at the atomic level, XAFS measurements 

were performed. The normalized Fe K-edge X-ray absorption near edge structure 

(XANES) spectra of Fe foil, Fe2O3 and Hb/BCNT-1000 are shown in Fig. 3A. It can be 

seen that the position of the absorption edge for Hb/BCNT-1000 is located between Fe 

foil and Fe2O3, indicating that the oxidation state of iron in Hb/BCNT-1000 is between 

Fe0 and Fe3+ [56,57]. The unique electronic structure of Fe species with positive charges 

is mainly due to the coordination of Fe and N in the sample [57]. Fig. 3B shows the k3-

weighted Fourier transform spectra in R space of the Fe K-edge extended X-ray 

absorption fine structure (EXAFS) for the samples. The EXAFS curve of Hb/BCNT-

1000 is clearly different from those of the references. Two distinct peaks were observed 

at 1.51 and 2.21 Å. The peak located at 1.51 Å is ascribed to the Fe-N first coordination 

shell, indicating that the iron atoms in Hb/BCNT-1000 are isolated by nitrogen [31,58]. 

The peak located at 2.21 Å is similar to the Fe-Fe first coordination shell of Fe foil 

reference, suggesting the existence of iron nanoparticles, which is consistent with the 

results of the aberration-corrected HAADF-STEM. Wavelet transform (WT) analysis 

was performed to gain a radial distance resolution and resolution in k space of Fe 

species. The WT contour plots of Fe K-edge EXAFS for Hb/BCNT-1000 are 

significantly different from those of references as shown in Fig. 3C. The WT contour 

plots of Hb/BCNT-1000 could be divided into two intensity maxima at 8.0 and 4.8 Å-1, 

corresponding to Fe nanoparticles and Fe-Nx species, respectively [58,59]. This is 

consistent with the results of k3-weighted Fourier transform spectra in R space. EXAFS 

fitting (Fig. 3C and D) was performed to reveal the coordination structure of Fe-Nx 

species. The best fitting results show that the average coordination number was 

estimated to be 3.2 for Fe-Fe and 5.1 for Fe-Nx species, and that the average bond 

distances of Fe-Fe and Fe-N are 2.57 and 2.07 Å (Table S3), respectively. Based on the 

spectral results and EXAFS fitting, it can be concluded that each single iron atom in 

Hb/BCNT-1000 is coordinated by five atoms and that the resulting Fe-Nx species is 
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stabilized by the nitrogen and sulfur co-doped carbon matrix, affording the active sites 

for the OER. 

 

Fig. 3. Synchrotron XAFS measurement of Hb/BCNT-1000 catalyst. (A) Fe K-edge 

XANES spectra of Hb/BCNT-1000 catalyst and reference samples, (B) k3-weighted 

Fourier transform spectra from Fe K edge EXAFS, (C) WT for the k3-weighted EXAFS 

signal, and (D, E) Corresponding EXAFS fitting curves in k and R space, respectively. 

3.2 Electrochemical activity 

The electrochemical activity of the samples was first evaluated by LSV. Fig. 4A 

shows the LSV curves recorded in 1 M KOH with a scan rate of 2 mV s-1. For 

comparison, the activity of the samples was benchmarked against a commercial IrO2 

electrocatalyst. The BCNT and Hb-1000 samples show limited current densities 

throughout the tested potential range. At potentials less than 1.56 V, IrO2 possesses 

higher current densities relative to the Hb/BCNT-1000 sample. At higher potentials, the 

Hb/BCNT-1000 outperforms IrO2 and the discrepancies of current density increase with 

increasing potential. Specifically, to yield a current density of 10 mA cm-2, the 

Hb/BCNT-1000 requires an overpotential of 326 mV, which is slightly higher than that 

of IrO2 (322 mV), but significantly lower than those of BCNT (526 mV) and Hb-1000 

(551 mV). At an applied overpotential of 380 mV, the Hb/BCNT-1000 possesses a 

current density of 83.6 mA cm-2, which is much larger than those of the BCNT (1.98 
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mA cm-2), Hb-1000 (1.47 mA cm-2) and IrO2 (32.8 mA cm-2) as shown in Fig. 4B. It is 

worth noting that such performance of Hb/BCNT-1000 is better than most non-precious 

OER electrocatalysts reported in the literature as shown in Table S4. The Tafel slopes 

of the samples were determined based on the LSV curves as shown in Fig. 4C. The 

Hb/BCNT-1000 exhibits a Tafel slope of 40.2 mV dec-1, which is smaller than those of 

IrO2 (45.6 mV dec-1), BCNT (169 mV dec-1) and Hb-1000 (173 mV dec-1), indicative 

of its promising prospect for practical applications. For better comparison, TOF values 

of the samples were also calculated as shown in Fig. S12. They reveal that the 

Hb/BCNT-1000 has much larger TOF values than IrO2 and Hb-1000. To explore the 

origin of the superior activity of the Hb/BCNT-1000, the Cdl of the sample, which is 

well correlated with the electrochemical active surface area, was determined by cyclic 

voltammetry curves recorded in a potential range of 0.15~0.25 V with varying scan 

rates, as shown in Fig. S13. There is a good linear relationship between the scan rate 

and (ja-jc)/2, as shown in Fig. 4D. The Cdl values of Hb/BCNT-1000 was determined to 

be 5.33 mF cm-2, which is slightly larger than those of BCNT (4.28 mF cm-2) and Hb-

1000 (3.35 mF cm-2). Given the remarkable differences in current densities of the three 

samples (see Fig. 4A), it can be concluded that the electrochemical active area of the 

sample is not the major reason for the superior activity of Hb/BCNT-1000. The activity 

of the sample was further evaluated by EIS as shown in Fig. 4E and the series resistance 

(Rs) and charge transfer resistance of the catalyst-electrolyte interface (Rct) were 

determined accordingly. The Rs value of the BCNT was determined to be 1.61 Ω, which 

is smaller than those of Hb-1000 (1.83 Ω), Hb/BCNT-1000 (1.91 Ω) and IrO2 (2.45 Ω), 

owing to its outstanding electron conductivity. The Rct value of Hb/BCNT-1000 was 

only 0.66 Ω, which is smaller than those of IrO2 (0.75 Ω), BCNT (8.76 Ω) and Hb-1000 

(11.34 Ω), indicating the fast kinetics of OER over the sample. The stability of the 

Hb/BCNT-1000 sample was evaluated by ISTEP measurement, as shown in Fig. 4F. 

With increasing current densities from 20 to 50 mA cm-2, the potential at each current 

step is quite stable, manifesting the excellent stability of the sample. The durability of 

Hb/BCNT-1000 was further studied by chronoamperometric measurements as shown 

in Fig. S14. At overpotentials of 350 and 380 mV, the corresponding current densities 
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are stable, which is consistent with the ISTEP results. The morphology of the spent 

Hb/BCNT-1000 was examined, as shown in Fig. S15. It reveals that the spent samples 

well preserve the structures. Further inspection of high-resolution HAADF-STEM 

images (see Fig. S15c) confirms the presence of many single iron atoms, as marked by 

red circles. This finding suggests that nitrogen-stabilized single iron atoms in the 

samples are sufficiently stable to survive through the long-term electrochemical 

measurements. The structure of the spent Hb/BCNT-1000 was also investigated by XPS, 

as shown in Fig. S16. Compared with XPS spectra of the fresh Hb/BCNT-1000 (see 

Fig. 2), C 1s, O1s, N 1s and Fe 2p of the spent sample show limited variations. Only 

the S 2p spectrum varied significantly. The relative content of the oxidized-S 

component in the spent sample increases. This could be attributed to the possible role 

of sulfur on stabilizing single iron atoms. 

 

Fig. 4. (A) LSV curves recording in 1 M KOH with a scan rate of 2 mV s-1, (B) 

corresponding Tafel slopes, (C) comparison on the catalytic activity, (D) plots of (ja-

jc)/2 vs. scan rate, (E) electrochemical impedance spectra, and (F) ISTEP result of the 

samples.  

3.3 Theoretical calculation 

The superior catalytic activity of Hb/BCNT-1000 can be explained from three 

aspects. First, abundant active Fe-Nx sites available in the sample play a crucial role in 
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the superior activity. Secondly, the presence of sulfur could further enhance the activity 

of Fe-Nx species. Previous studies suggested that the metal atoms in the Fe-Nx species 

possess high adsorption free energies of H2O and oxygen-containing intermediates due 

to higher positive charge on Fe as a result of the strong electron-negativity of 

neighboring nitrogen atoms, thus compromising their OER activity [14]. Since the 

electronegativity of sulfur (2.58 on Pauling scale) is weaker than that of nitrogen (3.04 

on Pauling scale), the introduction of foreign sulfur atoms in the carbon matrix could 

modify the electronic structure of Fe-Nx species, enriching the electron density of the 

iron atoms, which would reduce the potential barriers and improve the OER kinetics 

[60,61]. Using AB-stacked bilayer graphene (BLG) as a model system, we performed 

DFT calculations with periodic boundary conditions (see the details in the 

computational method) to understand the role of sulfur as a co-dopant. The first 

question that needs to be addressed is the location of sulfur atoms within BLG. We 

considered several configurations with sulfur atoms located at different sites. The 

optimized geometries of five relevant configurations are shown in Fig. 5. The relative 

energies, relevant bond lengths and Bader charges on Fe atoms of these configurations 

were summarized in Table S5. The values of a configuration without sulfur substitution 

(config-0, Fe-N4 species) are also listed for comparison. It turns out that the Fe-N3S-N 

structural motif (See config-1 in Fig. 5) represents the most energetically favorable 

configuration. Comparing with the Fe-N4-S (see config-1 in Fig. 5), the Fe-N3S-N 

configuration lowers the overall energy of the system by 46 kJ mol-1, indicating that 

sulfur tends to form direct chemical bond with iron within the porphyrin-like Fe-N3S 

species. Our calculation results confirm the formation of a chemical bond between 

sulfur and iron atoms, which is consistent with the results reported by Zhang et al [62]. 

The Fe-S bond length in our optimized Fe-N3S-N configuration is 2.0 Å, which is close 

to that of Fe-N (~1.9 Å). Considering that the sulfur content (0.09 wt.%) is significantly 

lower than that of nitrogen (0.57 wt.%) in our sample, the presence of Fe-S bonding in 

our sample cannot be excluded based on the EXAFS data alone (see Fig. 3B). Having 

determined the preferential location of sulfur, the next question is how sulfur affects the 

electronic properties of the center iron atoms which serve as the active site for the OER. 
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To this end, we performed Bader charge analysis on both Fe-N4-N and Fe-N3S-N 

moieties. The results suggest that the partial atomic charge of iron decreases from +1.08 

(in Fe-N4) to +0.82 (in Fe-N3S-N) by replacing nitrogen with less electronegative sulfur. 

In other words, the electron-donating iron atoms become less positive by the sulfur 

substitution, which may improve the OER activity of the sample [36]. Overall, our 

calculations indicate the activity of SACs can be tailored through nitrogen and sulfur 

co-doping of carbon matrix due to formation of metal-sulfur bonds which modifies the 

electronic properties of SACs, leading to enhanced OER activity. Lastly, the excellent 

conductivity and large surface area of the BCNT support are also favorable for the 

superior OER activity of Hb/BCNT-1000. The abundant defects in the BCNT played a 

decisive role in stabilizing the single iron atoms as shown in the aforementioned 

discussion. 

Fig. 5. DFT optimized geometries of selected configurations. The atoms in the top and 

bottom layers are represented by large and small balls, respectively. Only part of the 

structural model is shown for clarity (except config-4 of which the full structural model 

is shown). Color code of different atoms is indicated in the figure. 

3.4 Effects of feedstock and pyrolysis temperature 

The effects of pyrolysis temperature and Hb content on the catalytic activity were 

also explored. Fig. S17a shows the LSV curves of the samples prepared with varying 
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Hb content in the feedstock. Among the samples, the Hb/BCNT-1000 exhibits the 

highest current densities. TOF values of the samples show a similar trend (see Fig. 

S17b). The EIS results reveal that the Rct values of the samples follow the sequence of 

Hb/BCNT-1000 < 90%Hb/BCNT-1000 < 70%Hb/BCNT-1000 < 50%Hb/BCNT-1000 

< 95%Hb/BCNT-1000 < Hb-1000, which is consistent with the LSV results. Fig. S18 

shows the effects of pyrolysis temperature on the electrochemical activity. It reveals 

that the Hb/BCNT-1000 has the largest current densities and TOF values, and smallest 

Rct values. The activity of the samples is well correlated with the content of Fe-Nx 

species as shown in Table S2, which unambiguously suggests that the Fe-Nx is the 

active site for OER reaction. 

4. Conclusion 

In summary, we reported a facile synthetic protocol to prepare single isolated iron atoms 

anchored to nitrogen-sulfur-codoped carbon matrix via pyrolyzing the mixture of Hb 

and BCNT. The composition of iron and nitrogen can be readily tuned by varying the 

Hb content in the feedstock and pyrolysis temperature. Among the samples, the 

Hb/BCNT-1000 sample possessed the best catalytic performance, which outperformed 

the benchmark of IrO2 at an overpotential of 380 mV. The X-ray absorption fine 

structure analyses indicated that the Fe-Nx species in the sulfur doped carbon matrix 

are the active sites. DFT calculations suggested pronounced electronic modification of 

iron arisen from the presence of sulfur. The superior catalytic performance of 

Hb/BCNT-1000 could be related to the abundant Fe-Nx species and the presence of 

sulfur dopants which further modified the electronic structure of the single Fe atoms. 

This work exemplifies a value-added utilization of Hb. It possibly affords a new route 

to convert animal blood waste from slaughterhouses into valuable products. Owing to 

the simplicity, the synthetic strategy reported in this work could be extended to prepare 

other MNCs by varying biomolecule precursors and supports. 
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