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Optimal Retirement with Borrowing Constraints and

Forced Unemployment Risk∗

Abstract

In this paper, we study optimal retirement in a two-dimensional incomplete mar-

ket caused by borrowing constraints and forced unemployment risk. We show that the

two aspects jointly affect an individual’s optimal consumption, investment, and re-

tirement strategies. In contrast to the complete market case, the endogenously deter-

mined wealth threshold for retirement is significantly affected by the two-dimensional

market incompleteness, resulting in a lower wealth threshold. We also discuss a pos-

sible unemployment insurance scheme for the borrowing-constrained individual to

respond to the shocks of forced unemployment.
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1 Introduction

Bensoussan, Jang, and Park (2016), hereafter BJP, develop a model of optimal retirement

that deals with both income risks and endogenous (voluntary) retirement in an incom-

plete market,1 where the risk of forced unemployment is unhedgeable. BJP’s work is the

first attempt to solve the incomplete-market retirement problem with the risk of forced

unemployment, since prior studies either do not account for the forced unemployment risk

(Dybvig and Liu, 2010) or assume market completeness with hedgeable risk (Farhi and

Panageas, 2007; Jang et al., 2013). The BJP model, however, faces a major limitation by

neglecting one significant dimension of market incompleteness: the borrowing constraints

against human capital.2

Borrowing against human capital (i.e., the present value of one’s future income) plays

a vital role in household investment and savings decisions, since total available financial

resources for investment and consumption are expanded by the opportunity of borrowing

(Merton, 1969, 1971). In the actual credit market, however, the individual’s ability to

borrow is constrained by market frictions such as asymmetric information, agency conflicts,

and limited enforcement. According to the Survey of Consumer Finances (2017), “In 2016,

1The individual’s optimal retirement decision is to exchange the value of labor income with the extra

leisure that is brought about by exiting the workforce permanently at any time she determines, which

resembles an optimal stopping decision.
2Prior studies have considered the joint effects of labor income risk and borrowing constraints on the

lifetime consumption and investment strategies in the absence of endogenous (or voluntary) retirement.

For instance, Carroll (1992), Cocco et al. (2005), Polkovnichenko (2007), Munk and Sørensen (2010),

Lynch and Tan (2011), Wang et al. (2016), and Ahn et al. (2019).
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20.8 percent of families were considered credit constrained – those who reported being

denied credit in the past year, as well as those who did not apply for credit for fear of

being denied in the past year.” Borrowing constraint is, thus, a significant dimension of

market incompleteness.

Prior work on life-cycle models with endogenous (or voluntary) retirement opportunity

studies the effects of borrowing constraints against future labor income on the optimal

consumption and investment strategies. For instance, Farhi and Panageas (2007) and Dy-

bvig and Liu (2010) show that retirement flexibility and borrowing constraints are leading

factors in determining optimal consumption and investment strategies over the life cycle.

However, their models have overlooked the risk of forced unemployment. It is, thus, un-

clear what a model of optimal retirement with the two-dimensional market incompleteness

(i.e., borrowing constraints and forced unemployment risk) can deliver.

Household life-cycle decisions are further complicated by the rapid developments in

artificial intelligence (AI) and automation, which significantly disrupt labor markets, and

hence, raise the risk of forced unemployment.3 Thus, labor market challenges combined

with capital market frictions (borrowing constraints) hinder the individual’s ability to

derive successful life-cycle strategies. Recent evidence points out that many households are

prone to unexpected hardship and struggling with how to continue being able to afford what

they can currently afford (Federal Reserve report, 2017; European Commission statistics,

3Frey and Osborne (2017) show that around 50% of U.S. jobs performed by the human can be replaced

by automation with AI.
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2017).4 In this paper, we attempt to address the earnings insecurity and volatility towards

the end of the human life cycle by analyzing the optimal consumption, investment, and

retirement decisions of an utility-maximizing individual encountering a two-dimensional

market incompleteness (borrowing constraints and forced unemployment risk).

One of the main difficulties of our analysis lies in that allowing for an extra dimension of

risk or a constraint in financial markets gives rise to considerable challenges in solving the

problems. Adding borrowing constraints makes the derivations and verification of optimal

strategies particularly difficult (Dybvig and Liu, 2011). Existing convex-duality approaches

of Cox and Huang (1989), Karatzas et al. (1991), Karatzas and Wang (2000), Dybvig and

Liu (2011), Jang et al. (2013), and BJP are incapable of solving our retirement problem

with the two-dimensional market incompleteness. In particular, the methods of Cox and

Huang (1989), Karatzas and Wang (2000), Dybvig and Liu (2011), and Jang et al. (2013)

rely on the complete market assumption. Although the method of Karatzas et al. (1991)

can be applied to problems in an incomplete market, it is unable to account for jump-type

income risk by considering only standard Brownian motions. The method of BJP is limited

by relying on a piecewise connected utility function to guarantee the boundedness of the

marginal value function.

In our study, we overcome these limitations and solve the optimal retirement model in

444% of U.S. households are not ready to cover emergency expenses of merely $400 (“Report on the

Economic Well-Being of U.S. Households in 2016” published by Board of Governors of the Federal Reserve

System on May 2017) and about 218 million E.U. households are less likely to be able to fund their future

consumption needs (EU Statistics on Income and Living Conditions, EU-SILC 2017).
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an incomplete market. Specifically, we develop a new dynamic programming approach to

solve the optimal retirement model in the two-dimensional incomplete market (with bor-

rowing constraints and forced unemployment risk).5 We generalize BJP’s framework with

a logarithmic utility function as usual, irrespective of its piecewise connectivity assumed

in BJP.6 We provide a general solution to the nonlinear differential equation with two free

boundaries, and verify its existence and uniqueness.7 We also devise a simple numerical al-

gorithm for graphical illustrations of optimal strategies. To the best of our knowledge, ours

is the first study to analytically derive and theoretically verify the optimal consumption,

investment, and retirement strategies within the two-dimensional market incompleteness

5The other approach for solving an optimal retirement model is to use the principle of dynamic pro-

gramming. Specifically, one needs to solve variational inequalities when applying dynamic programming

to the retirement problem. The optimal retirement models in complete markets have been solved by

the dynamic programming approach, where the resulting linear differential equation with a free (or an

optimal stopping) boundary can be solved analytically. However, when markets are incomplete, there

exists undiversifiable risks, resulting in great complexity in the differential equation. The key issue is the

market incompleteness that results in highly nonlinear terms in the differential equation, which is almost

impossible to be solved analytically or even numerically.
6BJP provides a useful base for understanding the one-dimensional market incompleteness by focusing

on the forced unemployment risk. The two-dimensional incomplete market framework with the logarithmic

utility function allows us to draw important quantitative implications of market incompleteness in the

simplest possible setting. The general case with power utility or stochastic differential utility might not

admit a closed-form solution as in the logarithmic case. One may develop an asymptotic expansion to

solve such a general case.
7The verification theorems of existence and uniqueness can be readily applied to other incomplete

market problems. This is one of our technical contributions.
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framework.

We show that borrowing constraints and forced unemployment risk jointly affect an

individual’s optimal consumption, investment, and retirement strategies. Specifically, we

find that, under the two-dimensional market incompleteness, the individual’s excess hedg-

ing demand leads to excess wealth accumulation.8 Such an increased need for hedging

can be characterized by two opposing effects on the individual’s investment decisions. On

the one hand, the market incompleteness increases the background risk, driving the pre-

cautionary savings motive that reduces risky investment (Campbell, 1987; Kimball, 1993).

On the other hand, it encourages the diversification motive that increases risky investment

(Benzoni et al., 2007; Ahn et al., 2019). While the optimal decision to increase or decrease

risky investment depends on one’s financial wealth and investment opportunities.

Notably, we find that there exists a certain endogenously determined wealth threshold

over which it is optimal for the individual to enter voluntary retirement (e.g., Farhi and

Panageas 2007; Dybvig and Liu, 2010; Jang et al., 2013). In contrast to the complete

market case, the endogenously determined wealth threshold for retirement is significantly

affected by the two-dimensional market incompleteness, resulting in a lower wealth thresh-

old. Thus, neglecting market incompleteness can be costly to the borrowing-constrained

individual who aims to attain her optimal retirement. We calculate the resulting utility

8An individual’s hedging demand induced by the diversification motive results from two sources: the

stock market risk and the forced unemployment risk. The effectiveness of hedging depends on the amount

of available financial wealth for future consumption, so the individual has an incentive to accumulate her

wealth.
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costs of ignoring the market incompleteness. The individual could lose up to 10% of her

retirement wealth if she does not consider market incompleteness.9

We also discuss a possible unemployment insurance scheme (as a pre-arranged financing

instrument) for the borrowing-constrained individual to respond to or recover from the

shocks of forced unemployment. Specifically, we consider two opposing scenarios. On the

one hand, the individual can adopt the unemployment insurance in the complete market

as in Jang et al. (2013). On the other hand, she can still manage her income shocks even

if the insurance contract is not available, as outlined in our incomplete market framework.

By comparing the value functions of the two opposing scenarios (with and without the

unemployment insurance), we calculate a fair value of the unemployment insurance. The

fair value, we hope, will serve as a starting point towards designing such a new insurance

contract.

The paper is organized as follows. In Section 2, we develop an optimal retirement model

in a two-dimensional incomplete market, which is caused by forced unemployment risk and

borrowing constraints. In Section 3, we solve the retirement model and provide analytic

results for optimal strategies. In Section 4, we conduct a quantitative analysis to illustrate

various properties of optimal strategies. In Section 5, we conclude the paper.

9The result of our cost analysis when neglecting the market incompleteness is in line with the difficulty

of addressing the high costs associated with youth unemployment. As Center for American Progress states,

“Building on this research, we estimate that the nearly 1 million young Americans who experienced long-

term unemployment during the worst of the recession will lose more than 20 billion in earnings over the

next 10 years. This equates to about 22,000 per person. The economic consequences of these lost wages

to individuals and to the broader economy are serious.” (Center for American Progress April 5, 2013)
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2 The Model

2.1 Utility Function

An individual has the following logarithmic and time-additive utility function of Cobb-

Douglas type (BJP):

U(l(t), c(t)) ≡ 1

a
ln(l(t)1−ac(t)a),

where c(t) is per-period consumption, l(t) is leisure preference at time t, and 0 < a < 1 is

the weight for consumption. We assume that the individual enjoys leisure l(t) = l while

in employment and l(t) = l (l ≥ l > 0) when she retires.10 If we normalize pre-retirement

leisure l as 1, the utility function during employment is given by

U(1, c(t)) = ln c(t).

The utility function after (voluntary or involuntary) retirement is

U(l, c(t)) = ln{l1/a−1
c(t)}.

For notational simplicity, we introduce a constant K:

K ≡ l
1/a−1

> 1.
10In this paper, labor supply can be adjusted only through the decision of optimal retirement timing.

This is known as the labor supply flexibility along the extensive margin. If individuals can adjust hours of

work on the job (Bodie et al., 1992), i.e., when the labor supply along the intensive margin is considered,

some results might be modified qualitatively or quantitatively. To obtain an analytically tractable life-cycle

model, we follow Farhi and Panageas (2007) and Dybvig and Liu (2010) who assume that the individual’s

labor supply is flexibly controlled by her optimal timing of retirement (rather than by adjusting working

hours).
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The constant represents post-retirement leisure preference, i.e., the individual enjoys more

leisure as K increases.11

2.2 Financial Market

Following the conventional life-cycle models (Merton, 1969, 1971), we assume that there

are two tradable assets in the financial market: a riskless bond and a risky stock.12 The

bond price B(t) follows

dB(t) = rB(t)dt,

where r (r > 0) is the risk-free interest rate. The stock price S(t) is given by the following

geometric Brownian motion:

dS(t) = µS(t)dt+ σS(t)dW (t),

where µ (µ > r) is the expected rate of stock return, σ (σ > 0) is the volatility of the

return, and W (t) is a standard one-dimensional Brownian motion defined on a filtered

probability space (Ω,F , {Ft}, P ).13 The investment opportunity provided by the stock is

11The constant K also reflects the fact that the marginal utility of consumption is larger after retirement

than before retirement. This preference for leisure after retirement results from a disutility of work, or

household production, or cost savings (Dybvig and Liu, 2010). For instance, retirement may allow sufficient

time to enjoy leisure, spent away from business work, domestic chores, and education.
12The single risky asset assumption can be relaxed to allow for multiple risky assets, but it will not alter

our main results.
13All stochastic processes are assumed to be adapted to {Ft}t≥0, which is the P -augmentation of the

filtration driven by the Brownian motion. Throughout the paper, all stated processes are assumed to be

well defined without explicitly stating the usual conditions guaranteeing this.
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characterized by its risk premium µ−r and volatility σ, which are assumed to be constant,

i.e., µ, r, σ are positive constants.14

2.3 Forced Unemployment Risk

In the absence of forced unemployment risk, the individual with no retirement opportunity

works full time permanently with labor income I1, which is certain and insurable over the

life-cycle. In this case, the individual has the following present value of future income

discounted by the risk-free interest rate r (Friedman, 1957):

E
[ ∫ ∞

0

e−rtI1dt
]

=
I1

r
, (1)

which represents the individual’s expected human wealth.15

14The assumption of a geometric Brownian motion for the stock price, combined with that the investment

opportunity is constant, is standard in the literature on life-cycle consumption and portfolio choice (Farhi

and Panageas, 2007; Dybvig and Liu, 2010; Jang et al., 2013; Bensoussan, Jang, and Park, 2016).
15If we consider mortality risk modeled by a Poisson shock with intensity ν > 0, the present value of

future income discounted by the risk-free interest rate r is

E
[ ∫ τM

0

e−rtI1dt
]

=
I1

r + ν
,

where τM represents the individual’s death time, when the value of income jumps to zero. The effects of

mortality risk replace the discount rate of r by r + ν, which does not alter the qualitative features of the

present value of future income. Throughout the paper, the risk-free interest rate r can be thought of as the

constant discount factor incorporating the constant hazard rate ν of death. The present value of future

income would be changed both qualitatively and quantitatively if we allowed for a highly nonlinear hazard

into death by introducing an extra stochastic process for time-varying ν, which is beyond the paper’s

current scope and left for future research.
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Following BJP, the individual with a retirement opportunity either works full time with

an annual income I1 or enters (voluntary or involuntary) retirement with an annual income

I2 (I1 > I2).16 In the presence of forced unemployment risk, the individual encounters an

unexpected, exogenous, and permanent reduction in labor income from I1 to I2.17 To

include a disastrous labor income shock caused by forced unemployment, we allow for a

very small probability of a severe downward jump in the individual’s labor income process.

The individual could lose her job when an exogenous permanent unemployment shock

occurs, which is distributed according to an exponential distribution with positive intensity

δ. More specifically, for time t ≥ 0

Probability of {τU ≤ t} = 1− e−δt,

where τU is the time at which forced unemployment occurs.18 Thus, the individual works

16Economists usually assume that the income rate of I1 is equivalent to ω(l − l) during employment, if

the wage rate ω > 0 is constant.
17Theoretical and empirical work have shown that income risks to a persistent component are having a

larger impact on an individual’s consumption and investment strategies than income risks to a temporary

component (Kimball, 1993; Koo, 1998; Elmendorf and Kimball, 2000; Angerer and Lam, 2009). Along

this line, this paper focuses on the effects of permanent component of unemployment risks.
18The unemployment event is assumed to occur at the first jump time of Poisson arrival, which is

independent of the Brownian motion W (t). The contemporaneous correlation between stock market and

labor income is independent, which is consistent with the data (Cocco et al., 2005; Benzoni et al., 2007).

Returns to the present value of labor income are highly correlated with market returns. We can relax our

independence assumption by considering a stochastically-changing process of δ and our main results are

robust against such a change of assumption. It is well documented that mortality, disability, retirement,

unemployment, and many other disastrous events occur at an uncertain time, so τU following an exponential
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with a stochastic labor income stream I(t), which evolves as

I(t) =


I1, if 0 ≤ t < τ ∧ τU ,

I2, if t ≥ τ ∧ τU ,
(2)

where τ is the voluntary retirement time. As a result, the individual has the following

expected human wealth prior to retirement:

E
[ ∫ τU

0

e−rtI(t)dt
]

=
1

r + δ

(
I1 + I2

δ

r

)
, (3)

which is adjusted by the intensity δ for an unemployment event. Here, the discount rate is

adjusted by the perceived unemployment risk, i.e., r+ δ. Comparing to human wealth (1),

human wealth (3) is lower, which is the present value of the sum of labor income I1 and

post-retirement income I2
δ
r
, (adjusted by the unemployment intensity δ), and discounted

by the sum of risk-free interest rate r and unemployment intensity δ.

We assume that there are no sufficient financial instruments (e.g., securities, financial

contracts, or insurance contracts) to fully hedge against the unemployment risk. Social

securities and private insurance market are insufficient to perfectly hedge against large and

negative wealth shocks (Gormley et al., 2010) and labor income risks (Cocco et al., 2005).

In this regard, we assume that social security can insure only parts (but not all) of the

individual’s labor income after forced unemployment.19 Accordingly, the financial market

is essentially incomplete.

distribution can appropriately account for such a uncertain lifetime (Merton, 1971; Viceira, 2001).
19This assumption has been used in previous standard life-cycle models (Carroll et al., 2003; Cocco

et al., 2005; Lynch and Tan, 2011). Carroll et al. (2003) assume that formal and informal insurance

markets provide a safety net against unemployment risk and consider the unemployment income to be

20% of permanent labor income in the periods of unemployment. Lynch and Tan (2011) also assume
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2.4 Borrowing Constraints

The individual accumulates her wealth X(t) with initial wealth X(0) = x given the follow-

ing dynamic budget constraints:

dX(t) =
(
rX(t)− c(t) + I(t)

)
dt+ π(t)σ(dW (t) + θdt), (4)

where π(t) is the dollar amount invested in the stock, θ denotes the Sharpe ratio
(
(µ−r)/σ

)
,

and I(t) is a stochastic labor income stream formulated by (2).

Throughout the paper, we impose borrowing constraints before voluntary retirement

or forced unemployment as follows:

X(t) ≥ 0 for 0 ≤ t < τ ∧ τU , (5)

which restricts unsecured borrowing against the present value of stochastic labor income.

Following forced unemployment, we assume that the individual could borrow up to the

present value of the lowest possible post-retirement income I2, which can be an annuitized

payout from a Social Security program or subsistence such as public welfare or unemploy-

ment allowance provided by the government.20 Hence, the individual has the following

that income in persistent unemployment state is 10% of permanent labor income. In reality, income after

retirement can be annuity payments from a Social Security program or subsistence such as public welfare

or unemployment allowances provided by the government.
20This consideration is consistent with the conventional economic stimulus during economic downturns,

targeted at poor people and especially at the unemployed, that has turned out to be effective in building

aggregate spending (Carroll et al., 2015).
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present value of post-retirement income discounted by the risk-free interest rate:21

E
[ ∫ ∞

0

e−rtI2dt
]

=
I2

r
.

We thus allow for borrowing after voluntary retirement or forced unemployment as the

following:22

X(t) ≥ −I2

r
for t ≥ τ ∧ τU . (6)

Moving forward, we consider only the admissible investment and consumption strategies

21Although the value of annuity jumps to zero upon death, the future annuity payments still have the

present value I2/(r+ν), which is the discounted value of future annuity payments by the constant discount

factor with the constant hazard rate ν of death. More specifically,

E
[ ∫ τM

0

e−rtI2dt
]

= E
[ ∫ ∞

0

νe−νs
∫ s

0

e−rtI2dtds
]

= E
[ ∫ ∞

0

e−rtI2

∫ ∞
t

νe−νsdsdt
]

= E
[ ∫ ∞

0

e−(r+ν)tI2dt
]

=
I2

r + ν
,

where τM follows an exponential distribution with ν > 0.
22One can consider the non-borrowing situation after either the voluntary or involuntary retirement.

Such an additional borrowing constraint may affect the pre-retirement optimal strategies in a nontrivial

way, thereby reinforcing the effects of forced unemployment risk. The technical difficulty is that the post-

retirement value function no longer has a closed-form as in Merton (1969, 1971), so one needs to solve it

numerically, which adds an extra technical difficulty when solving the pre-retirement value function with

forced unemployment risk and borrowing constraints. Ours is a first step to establish the two-dimensional

framework before retirement. With such a framework, the borrowing constraints after retirement can also

be considered.
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{π(t), c(t)} that satisfy the dynamic budget constraint (4) subject to the borrowing con-

straints (5) and (6).

2.5 An Optimal Retirement Model

An optimal retirement model with borrowing constraints and forced unemployment risk is

to maximize the individual’s life-time utility of consumption by optimally managing per-

period consumption c, risky investment π, and voluntary retirement time τ . Specifically,

the individual with initial wealth x ≥ 0 aims to maximize the following value function

(BJP):23

Φ(x) ≡ max
(c,π,τ)

E
[ ∫ τ∧τU

0

e−βt ln c(t)dt+ e−β(τ∧τU )

∫ ∞
τ∧τU

e−β(t−τ∧τU ) ln (Kc(t))dt
]
, (7)

where β > 0 is the individual’s subjective discount rate, and K > 1 is the preference for

leisure as defined earlier. For simplicity, we assume that the individual has no bequest

motive.24

We define the value function of the individual who receives income at the rate equal to

I2 infinitely as the following:

U2

(
X(τ ∧ τU)

)
≡ max

(c,π)
E
[ ∫ ∞

τ∧τU
e−β(t−τ∧τU ) ln

(
Kc(t)

)
dt
]
.

23We consider an infinite-horizon life-cycle model; as a result, we overestimate the effects of unemploy-

ment risk in that our representation of forced unemployment is more painful than it actually is because

unemployed people undergo a drastic and permanent reduction of income.
24The presence of the bequest motive reinforces the negative effects of income reduction when forced

unemployment takes place.
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Let s = τ ∧ τU . Then

U2

(
X(s)

)
= max

(c,π)
E
[ ∫ ∞

s

e−β(t−s) ln
(
Kc(t)

)
dt
]
.

Using the dynamic programming approach of Merton (1969, 1971) or the martingale ap-

proach of Cox and Huang (1989), we obtain

U2

(
X(s)

)
=

1

β

[
ln
(
X(s) +

I2

r

)
+

1

β

(
r +

θ2

2
− β(1− lnK)

)
+ ln β

]
.

Further, using the principle of dynamic programming, we can rewrite the value function

Φ(x) given in (7) as the following:

Φ(x) = max
(c,π,τ)

E
[ ∫ τ∧τU

0

e−βt ln c(t)dt+ e−β(τ∧τU )U2

(
X(τ ∧ τU)

)]
.

The conditional expectation of τU allows us to restate the value function in (7) as the

following:25

Φ(x) = max
(c,π,τ)

E
[ ∫ τ

0

e−(β+δ)t
{

ln c(t) + δU2(X(t))
}
dt+ e−(β+δ)τU2(X(τ))

]
. (8)

25After integrating out τU using its conditional expectation, it seems that voluntary retirement time

τ does not depend on forced unemployment time τU . However, τU interacts with τ in a significant way

through forced unemployment intensity δ, which causes an increase of subjective discount rate β by the

amount of δ and accompanies the post-retirement value function U2. Consequently, the extra terms

involving δ caused by τU affect the optimal life-cycle consumption, investment, and retirement decisions.

For a more realistic life-cycle model, one may relax the assumption that the forced unemployment intensity

is constant. Rather, it should be time-varying as unemployment risk fluctuates in business cycles. For

example, one can allow for a highly nonlinear intensity into forced unemployment by considering an

additional stochastic process for δ.
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The value function in (8) reduces to the value function of BJP without considering

the borrowing constraints and thus, initial wealth x could be larger than or equal to

−I1/r (x ≥ −I1/r), which is the human wealth in (1). However, as BJP acknowledges,

the presence of forced unemployment risk makes the retirement problem in (8) harder

to be well defined. In particular, the individual can be involuntarily retired due to forced

unemployment with substantial negative wealth lower than−I2/r, where the term involving

U2(X(t)) inside the integrand on the right-hand side of (8) is not defined at all and becomes

−∞ as intermediate wealth X(t) at time t approaches −I2/r.
26 The borrowing constraints

in (5) makes the retirement problem in (8) well defined, where the term involving U2(X(t))

has finite values as wealth X(t) at time t approaches zero.

3 The Solution

3.1 Problem Reformulation

Our optimal retirement problem in (8) is the optimal stopping problem formulated by

Φ(x) ≡ max
τ

Jτ (x),

26To bound the value function, BJP has modeled forced unemployment risk with the piecewise connected

utility function. With the piecewise connected utility function (i.e., when the individual is risk averse for

positive wealth, while becomes indifferent to negative wealth), the boundedness of the first derivative of

U2 is still guaranteed even when wealth approaches its lower limit.
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where

Jτ (x) ≡ max
(c,π)

E
[ ∫ τ

0

e−(β+δ)t
{

ln c(t) + δU2

(
X(t)

)}
dt+ e−(β+δ)τU2

(
X(τ)

)]
,

for a fixed stopping time τ . To solve the optimal stopping problem, we adopt the widely

used variational inequality approach of Bensoussan and Lions (1982) and Øksendal (2007).

According to this approach, the solution to the optimal stopping problem is equivalent

to the solution to the variational inequality, which characterizes two separate regions:

the continuation region and the stopping region. Here, there exists a free boundary that

determines the two regions.

We first derive the variational inequality of the optimal stopping problem. For any

x ≥ 0,

(β + δ)φ(x)− (rx+ I1)φ′(x) +
θ2

2

φ′(x)2

φ′′(x)
+ 1 + lnφ′(x) ≥ δU2(x),

φ(x) ≥ U2(x),[
(β + δ)φ(x)− (rx+ I1)φ′(x) +

θ2

2

φ′(x)2

φ′′(x)
+ 1 + lnφ′(x)− δU2(x)

](
φ(x)− U2(x)

)
= 0.

(9)

The variational inequality indeed characterizes the two regions. On the one hand, the

individual continues to work and receive labor income, i.e., she is in the work region. On

the other hand, the individual enters voluntary retirement, i.e., she is in the retirement

region. The first inequality in (9) shows that the equality holds in the work region, and

the strict inequality holds in the retirement region. As long as the value function before

retirement is larger than the value function after retirement, the strict inequality of the

second inequality holds. As a result, the individual is in the work region and will opt for
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retirement when she accumulates enough wealth. As the value function before retirement

approaches the value function after retirement, the equality of the second inequality holds

and hence, the individual is in the retirement region and enters voluntary retirement. Note

that since either the first inequality or the second inequality holds, the final inequality in

(9) should be satisfied for any values of x ≥ 0.

It turns out that the work region and the retirement region can be characterized by the

popularly termed critical wealth level, over which it is optimal to enter voluntary retirement.

We conjecture that the optimal stopping problem formulated by variational inequalities in

(9) can be solved by finding a free boundary x̂ that represents the critical wealth level for

retirement. Specifically,

(β + δ)φ(x)− (rx+ I1)φ′(x) +
θ2

2

φ′(x)2

φ′′(x)
+ 1 + lnφ′(x) = δU2(x), 0 ≤ x < x̂,

φ(x) = U2(x), x ≥ x̂,

φ(x̂) = U2(x̂),

φ′(x̂) =
1

β

1

x̂+ I2/r
.

(10)

The free boundary problem (10) significantly differs from that of BJP in that initial wealth

x is always larger than or equal to zero, which represents the borrowing constraints. If we

can find a unique solution φ(x) of (10) that is C1 and piecewise C2, then it can also satisfy

the variational inequalities in (9). Note that the solution φ(x) becomes the value function

in our retirement problem (8) following Theorem 10.4.1 in Øksendal (2007).

To solve the problem, we reformulate the problem by introducing a new state variable

instead of financial wealth x. Following BJP, let λ(x) be the first derivative of the value
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function φ(x). Next, we associate the total wealth x + I1/r (the sum of financial wealth

and human wealth) with a convex-dual function G(λ(x)):27

G(λ(x)) ≡ x+
I1

r
. (11)

Note that the following relations hold:

G′(λ(x))λ′(x) = 1

and

G′′(λ(x))λ′(x)2 +G′(λ(x))λ′′(x) = 0.

Also, the boundary condition of φ′(x) at x̂ in (10) results in

λ ≡ φ′(x̂) =
1

β(x̂+ I2/r)
. (12)

In BJP, the individual is allowed to borrow against future labor income, i.e.,

x ≥ −I1

r
,

as a result, G(λ(x)) becomes zero as financial wealth x approaches −I1/r. In this paper,

however, the individual is subject to borrowing constraints, i.e.,

x ≥ 0,

27The convexity of G is hard to prove, but it is numerically verified with a wide range of parameter

values. In the Online Appendix, we theoretically prove that G is a monotonically decreasing function with

somewhat complex parameter conditions. Further, G also has a dual relation with the value function φ

according to the definition of λ as the first derivative of φ.
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and hence, there exists an upper bound λ̄ at which G(λ(x)) becomes I1/r. Thus, we can

reformulate the problem (10) using λ(x) instead of x. In particular, when differentiating

both sides of the first equation in (10) with respect to x, we obtain the following equation

for λ < λ(x) < λ̄:

−1

2
θ2λ2G′′(λ)− λG′(λ)(θ2 + β + δ − r) + rG(λ) +

δ

β

G′(λ)

G(λ)− I1/r + I2/r
=

1

λ
, (13)

where we have used λ instead of λ(x) for notational simplicity. The definition (11) of G(λ)

and the relations between λ and x̂ give the boundary condition of G(λ) at λ:

G(λ) =
1

βλ
+
I1 − I2

r
. (14)

Also, borrowing constraints lead to two boundary conditions:

G(λ̄) =
I1

r
, G′(λ̄) = 0, (15)

where the boundary condition of G′(λ) at λ̄ is derived from the fact that risky investment

becomes zero as λ approaches λ̄, i.e., as financial wealth x reaches zero (Dybvig and Liu,

2011).28

In sum, our retirement problem in (8) is reformulated by a nonlinear differential equa-

tion (13) with boundary conditions in (14) and (15). In the Online Appendix, we prove the

existence of the solution of (13) satisfying C1 and C2 for any λ > 0, λ̄ > 0. If we can find

28Specifically, the optimality condition for risky investment is given by

π∗(t) = − θ
σ

φ′(x)

φ′′(x)
= − θ

σ
λG′(λ),

accordingly, the boundary condition of G′(λ̄) is equivalent to zero risky investment.
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such a solution analytically or numerically, we can then determine the two free boundaries

according to the boundary conditions in (14) and (15). We also prove the uniqueness of

the solution of (13) with some parameter conditions including the two free boundaries.

Having determined these free boundaries, it is straightforward to check whether or not

the conditions hold with reasonable parameter values. In Section 4, we confirm that the

conditions are valid with carefully chosen parameter values and their perturbations, and

thereby the resulting optimal strategies are clearly visualized.

3.2 Solution

Given the reformulated retirement problem (13) with boundary conditions in (14) and (15),

we aim to find a solution to the problem.

A general solution. To derive a general solution of (13), we define two constants αδ > 1

and −1 < α∗δ < 0 as the two roots of

F (α; δ) ≡ −1

2
θ2α(α− 1) + α(β + δ − r) + r = 0.

Next, we conjecture the general solution as follows:

G(λ) =
1

λ(β + δ)
+ A(λ)λ−αδ + A∗(λ)λ−α

∗
δ ,

subject to

A′(λ)λ−αδ + (A∗(λ))′λ−α
∗
δ = 0.
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Putting the conjectured solution into (13) results in the following for λ < λ < λ̄:

G(λ) =
1

λ(β + δ)
+B(λ)λ−αδ +B∗(λ̄)λ−α

∗
δ

+
2δ(αδ − 1)

θ2(αδ − α∗δ)β
λ−αδ

∫ λ

λ

µαδ−2 ln
(
G(µ)− I1

r
+
I2

r

)
dµ

+
2δ(α∗δ − 1)

θ2(αδ − α∗δ)β
λ−α

∗
δ

∫ λ̄

λ

µα
∗
δ−2 ln

(
G(µ)− I1

r
+
I2

r

)
dµ,

(16)

where

B(λ) ≡ A(λ)− 2δ

θ2(αδ − α∗δ)
λαδ−1 ln

(
G(λ)− I1

r
+
I2

r

)
+

2δ

θ2(αδ − α∗δ)β
λαδ−1 ln

1

λ
,

B∗(λ̄) ≡ A∗(λ̄)− 2δ

θ2(αδ − α∗δ)β
λ̄α

∗
δ−1 ln

(I2

r

)
+

2δ

θ2(αδ − α∗δ)β
λ̄α

∗
δ−1 ln

(
G(λ̄)− I1

r
+
I2

r

)
.

The value-matching condition φ(x̂) = U2(x̂) in (10) gives rise to

lnK = λ(I1 − I2)
(

1 +
θ2α∗δ
2r

)
+
δ

β
lnλ+

θ2(αδ − α∗δ)
2

B(λ)λ−αδ−1. (17)

The boundary conditions in (15) leads to the following two equations:

I1

r
=

1

λ̄(β + δ)
+B(λ)λ̄−αδ +B∗(λ̄)λ̄−α

∗
δ +

2δ(αδ − 1)λ̄−αδ

θ2(αδ − α∗δ)β

∫ λ̄

λ

µαδ−2 ln
(
G(µ)− I1

r
+
I2

r

)
dµ,

0 =− 1

λ̄2(β + δ)
− αδB(λ)λ̄−αδ−1 − α∗δB∗(λ̄)λ̄−α

∗
δ−1 +

2δ

θ2βλ̄2
ln
(I2

r

)
− 2δαδ(αδ − 1)λ̄−αδ−1

θ2(αδ − α∗δ)

∫ λ̄

λ

µαδ−2 ln
(
G(µ)− I1

r
+
I2

r

)
dµ.

Rearranging the above two equations results in

αδ − 1

β + δ
+

2δ

θ2β
ln
(I2

r

)
=
αδI1

r
λ̄− (αδ − α∗δ)B∗(λ̄)λ̄−α

∗
δ+1. (18)

The equations (17) and (18) yield the system of two algebraic equations with λ and λ̄ as
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the following:

I1 − I2

r
+ (I1 − I2)

(
1 +

θ2α∗δ
2r

) 2

θ2(αδ − α∗δ)

=
1

λ(β + δ)
− 1

βλ
+
{ lnK

λ
− δ lnλ

βλ

} 2

θ2(αδ − α∗δ)

+
[αδI1

rλ̄
−
{αδ − 1

β + δ
+

2δ

θ2β
ln
(I2

r

)} 1

λ̄2

] 1

(αδ − α∗δ)

( λ̄
λ

)α∗
δ
λ̄

+
2δ(α∗δ − 1)λ−α

∗
δ

θ2(αδ − α∗δ)β

∫ λ̄

λ
µα

∗
δ−2 ln

(
G(µ)− I1

r
+
I2

r

)
dµ

(19)

−I1

r

α∗δ
(αδ − α∗δ)

=
1

λ̄(β + δ)
+
{

lnK − (I1 − I2)
(

1 +
θ2α∗δ
2r

)
λ− δ

β
lnλ

} 2

θ2(αδ − α∗δ)

(λ
λ̄

)αδ 1

λ

−
[{αδ − 1

β + δ
+

2δ

θ2β
ln
(I2

r

)} 1

λ̄

] 1

(αδ − α∗δ)
+

2δ(αδ − 1)λ̄−αδ

θ2(αδ − α∗δ)β

∫ λ̄

λ
µαδ−2 ln

(
G(µ)− I1

r
+
I2

r

)
dµ.

(20)

An iterative numerical algorithm. We now need to determine the two free boundaries λ

and λ̄ with G(λ) in (19) and (20) numerically. We develop an iterative numerical algorithm

as follows.29

• (Step 0) Suppose δ = 0, i.e., when we do not allow for forced unemployment risk, we

can easily obtain B(λ) and B∗(λ̄) from (17) and (18), respectively. Thus, we can get

G(λ) from (16). Putting G(λ) into the system comprised of two equations (19) and

(20), we can determine λ and λ̄, numerically.

29In the Online Appendix, the convergence of the proposed numerical algorithm is shown by the Banach

fixed-point theorem.

23



• (Step 1) Suppose a sufficiently small positive value δ, i.e., when we allow for forced

unemployment risk. We exploit G(λ), λ, and λ̄ for the case where δ = 0 as the initial

values for our numerical algorithm.

• (Step 2) Using the initial values, we update B(λ) and B∗(λ̄) from (17) and (18),

respectively. We also update G(λ) from (16) with the updated B(λ) and B∗(λ̄).

• (Step 3) Putting the updated G(λ) into the system that consists of two equations

(19) and (20), we can determine λ and λ̄, numerically.

• (Step 4) Repeat the above steps 1,2, and 3 until λ and λ̄ converge.

3.3 Optimal Strategies

Having solved the retirement problem (8) or equivalently, the nonlinear differential equation

(13) with boundary conditions (14) and (15), we provide analytic results for the optimal

strategies.

Optimal Wealth Accumulation. We present explicit expressions for (and various prop-

erties of) optimal wealth of the individual who faces forced unemployment risk and is

borrowing constrained.

Theorem 3.1 The time-t optimal wealth is derived in closed-form prior to voluntary re-
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tirement, i.e., for 0 ≤ X(t) < x̂,

X(t) +
I1

r
=

{ c(t)

β + δ︸ ︷︷ ︸
consumption savings

}
+
{

B(λ)λ
(
X(t)

)−αδ︸ ︷︷ ︸
retirement-induced savings

}

+
{

B∗(λ̄)λ
(
X(t)

)−α∗
δ︸ ︷︷ ︸

borrowing-constraints-induced savings

}
+ U,

(21)

where U represents unemployment-risk-induced savings and it is given by

U = U1 + U2,

U1 =
2δ(αδ − 1)

θ2(αδ − α∗δ)β
λ
(
X(t)

)−αδ ∫ λ(X(t))

λ

µαδ−2 ln
(
G(µ)− I1

r
+
I2

r

)
dµ

U2 =
2δ(α∗δ − 1)

θ2(αδ − α∗δ)β
λ
(
X(t)

)−α∗
δ

∫ λ̄

λ(X(t))

µα
∗
δ−2 ln

(
G(µ)− I1

r
+
I2

r

)
dµ.

(22)

Proof. See Proofs in the Online Appendix. Q.E.D.

Theorem 3.1 explicitly decomposes the time-t optimal wealth into four savings mo-

tives: (i) consumption savings, (ii) retirement-induced savings, (iii) borrowing-constraints-

induced savings, and (iv) unemployment-risk-induced savings.

If we consider only the consumption savings motive, we can easily revisit the classic

permanent-income-hypothesis (PIH) of Friedman (1957):

c(t) = (β + δ)
(
X(t) +

I1

r

)
.

It shows that the individual’s optimal consumption is determined by the annuity value of

total wealth comprised of time-t financial wealth X(t) and human wealth I1/r.

In addition to the consumption savings motive, when we consider retirement-induced

savings motive, the option-based analysis in Farhi and Panageas (2007) provides an in-

tuitive interpretation of the time-t optimal wealth in (21). Voluntary retirement can be
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viewed as an American-style option that allows the individual to exchange the value of

labor income with extra leisure that is brought about by entering retirement. Since the

time-t optimal wealth acts as an underlying asset of such option and subsequently, con-

trols the distance to retirement, the retirement-induced savings become increasingly large

as wealth X(t) approaches a certain threshold x̂ or equivalently, as λ(X(t)) reaches λ.

In the presence of borrowing constraints against future labor income, the individual

is responsible for keeping the time-t wealth above zero. In other words, the individual

maintains her time-t optimal wealth to be larger than zero in all states (Dybvig and Liu,

2010). The individual responds more actively to changes in the state variable λ(X(t)) that

affect her chance of ending up with X(t) ≤ 0. That is, the individual accumulates more

wealth as X(t) approaches zero or equivalently, as λ(X(t)) reaches λ̄.

Unlike Dybvig and Liu (2010), we show that borrowing constraints and forced unem-

ployment risk jointly affect the individual’s time-t optimal wealth. The individual’s hedg-

ing demand results from two sources: the stock market risk and the forced unemployment

risk. We find that the individual under the two-dimensional market incompleteness can

have excess hedging demand that results in excess wealth accumulation to avoid binding

borrowing constraints, and to cope with unexpected hardship in the aftermath of forced

unemployment.

In the presence of forced unemployment risk, i.e., when δ > 0, the individual accumu-

lates time-t optimal wealth non-myopically with respect to potential unemployment shock.

In anticipation of future disastrous income shock, the unemployment-risk-induced savings

motive becomes significant. In particular, the savings motive has two parts. The first

26



term that involves λ is associated with the savings motive for retirement with a likelihood

of unemployment. The second term that involves λ̄ is related to the savings motive for

maintaining the time-t optimal wealth above zero with a likelihood of unemployment.

We demonstrate that the negative effect of forced unemployment risk becomes larger

as the time-t optimal wealth approaches zero or equivalently, λ(X(t)) reaches λ̄, and the

savings motive becomes stronger. In contrary, the effect of unemployment risk becomes

negligible as the wealth approaches the critical wealth threshold x̂ or equivalently, λ(X(t))

reaches λ and the savings motive becomes weaker, implying more consumption or invest-

ment. In the intermediate region, i.e., 0 < X(t) < x̂, the effect of forced unemployment risk

exhibits convexity in λ(X(t)), and it is worth investigating how this convexity will increase

or decrease as the individual accumulates her wealth. We show that in these intermediate

states, the individual should begin to insure herself by optimally accumulating wealth.

We can perform a simple exercise to demonstrate the impacts of joint consideration of

borrowing constraints and forced unemployment risk on time-t optimal wealth. Suppose

that the forced unemployment takes place and the individual is now unemployed with

available wealth x∗ between zero and x̂. Using the definition (11) of G(λ(x)), we obtain

G(λ∗) = x∗ +
I1

r
,

where, for simplicity, we use λ∗ instead of λ(x∗). Then, the unemployment-risk-induced

savings term becomes

2

θ2(αδ − α∗δ)

{ δ
β

ln
(
x∗ +

I2

r

)}
c(t)
{

1−
( λ
λ∗

)αδ−1}
− 2

θ2(αδ − α∗δ)

{ δ
β

ln
(
x∗ +

I2

r

)}
c(t)
{

1−
( λ̄
λ∗

)α∗
δ−1}

.
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In the presence of forced unemployment risk, the individual accumulates wealth to finance

consumption needs in the aftermath of unemployment, which are adjusted by the utility

value from current available resources x∗ + I2/r. For levels of wealth close to zero, the

unemployment-risk-induced savings term approaches

2

θ2(αδ − α∗δ)

{ δ
β

ln
(I2

r

)}
c(t)
{

1−
(λ
λ̄

)αδ−1}
> 0.

This positive savings demand for the preparedness after unemployment highlights the im-

portance of borrowing constraints. As a result of the two-dimensional market incomplete-

ness, the individual has a strong demand for savings to smooth out her consumption path.

The other interesting observation is that the impacts of forced unemployment risk and

borrowing constraints are non-trivial, rather they are highly nonlinear depending on the

levels of wealth at unemployment. Due to the concavity of logarithmic utility function,

the unemployment-risk-induced savings motive becomes stronger with respect to changes

of wealth for individuals with small wealth compared to those with large wealth. Since

the forced unemployment event is distributed continuously following an exponential distri-

bution with positive intensity δ, such impacts are represented by two integrals over state

variables between λ and λ̄ leading to the unemployment-risk-induced savings in (22).

Optimal Consumption and Investment. Having explored how the individual accumu-

lates her time-t optimal wealth in the event of both forced unemployment and borrowing

constraints, next, we characterize the optimal consumption and investment strategies an-

alytically.
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Theorem 3.2 The optimal consumption c∗ and investment π∗ are derived in closed-form

prior to voluntary retirement, i.e., for 0 ≤ X(t) < x̂,

c∗(t) = (β + δ)
[(
X(t) +

I1

r

)
−B(λ)λ

(
X(t)

)−αδ −B∗(λ̄)λ
(
X(t)

)−α∗
δ − U

]
, (23)

π∗(t) =
θ

σ

[(
X(t) +

I1

r

)
+ (αδ − 1)B(λ)λ

(
X(t)

)−αδ + (α∗δ − 1)B∗(λ̄)λ
(
X(t)

)−α∗
δ

− 2δ

θ2β
ln
(
X(t) +

I2

r

)
c∗(t)− U + αδ × U1 + α∗δ × U2

]
,

(24)

where U is the unemployment-risk-induced savings defined in Theorem 3.1, U1 and U2 are

its first and second terms, respectively, defined in Theorem 3.1.

Proof. See Proofs in the Online Appendix. Q.E.D.

Equation (23) explains the typical pattern of the individual’s optimal consumption.

We characterize four segments in the optimal consumption function. In the complete

market setting without retirement, borrowing constraints, and forced unemployment risk,

the PIH rule prevails. While in the incomplete market setting, the optimal decision is to

reduce current consumption and build wealth for voluntary retirement, binding borrowing

constraints, and/or high likelihood of forced unemployment.

Interesting economic insights into the optimal consumption result from the investigation

of the marginal propensities to consume (MPC) out of financial wealth. The MPC formula
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is obtained in closed-form:

∂c∗(t)

∂X(t)
=(β + δ)

+ (β + δ)
∂λ
(
X(t)

)
∂X(t)

[
αδB(λ)λ

(
X(t)

)−αδ + α∗δB
∗(λ̄)λ

(
X(t)

)−α∗
δ

− 2δ

θ2β
ln
(
X(t) +

I2

r

)
c∗(t)

+ αδ × {first term of unemployment-risks-induced savings}

+ α∗δ × {second term of unemployment-risks-induced savings}
]
c∗(t).

(25)

In terms of the MPC, it is possible to set a stable path of consumption profiles regardless

of levels of wealth if we consider only the first (β + δ) term on the right-hand side of (25).

This is known as consumption smoothing.

Parker (1999) and Souleles (1999) suggest empirical estimates of MPC ranging from 0.2

to 0.6. Carroll (1992), however, suggests much lower values of MPC ranging from 0.04 to

0.07. We show that the MPC relies crucially on levels of wealth, supporting Carroll et al.

(2015), and it can be larger or smaller due to the two-dimensional market incompleteness.

Because of the following inequality

∂λ
(
X(t)

)
∂X(t)

< 0,

the extra terms on the right-hand side of (25) induced by forced unemployment risk and

borrowing constraints are found to increase the MPC. In particular, the term

− 2δ

θ2β
ln
(
X(t) +

I2

r

)
c∗(t)

implies that the individual who is borrowing constrained needs to finance her consumption

adjusted by her utility value of time-t optimal wealth, in the event of forced unemploy-
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ment. Accordingly, the individual needs to accumulate extra wealth to sustain her future

consumption, resulting in an increase in the MPC.

However, the last terms involving the first and second terms of unemployment-risk-

induced savings turn out to affect the MPC negatively. We find that there is a trade-off

between consuming instantly and the available financial resources that the individual can

afford to reserve. Naturally, the individual needs to secure precautionary wealth and

hence, is more inclined to cut back her consumption in the event of forced unemployment.

Moreover, such a precautionary savings motive becomes stronger as wealth approaches zero

because of borrowing constraints, leading to a decrease of the MPC.

Overall, the decision to consume more or less with respect to an increase of wealth falls,

to a large extent, on how the individual reacts to the market incompleteness caused by

forced unemployment risk and borrowing constraints.

As to the optimal investment, in addition to the standard CAPM mean-variance term

(the first term on the right-hand side of (24)), the individual has a need to invest in

the stock market according to retirement-induced, borrowing-constraints-induced, and

unemployment-risk-induced savings motives, as would be characterized in time-t optimal

wealth (21). The individual invests more in the stock market by a fraction (αδ − 1) of

retirement-induced savings in light of the increased flexibility in choosing the optimal tim-

ing of retirement (Farhi and Panageas, 2007; Dybvig and Liu, 2010; Jang et al., 2013; BJP).

However, if borrowing constraints are considered, the individual can also reduce her stock

investment by the fraction (α∗δ − 1) of borrowing-constraints-induced savings, resulting in

reduced financial resources for stock investment (Dybvig and Liu, 2010; Jang et al., 2013).
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In line with the analysis of the MPC, the optimal choice is to satisfy one’s current

consumption needs, and hence, reduce stock investment. However, at the same time, the

individual needs to balance between current and future consumption in the aftermath of

forced unemployment, and thus, has a need to invest in the stock market.

Overall, we find two opposing effects: on the one hand, market incompleteness increases

background risk, leading to precautionary savings motive that reduces stock investment

(Kimball, 1993; Koo, 1998; Heaton and Lucas, 1997); on the other hand, it encourages

a diversification motive that increases stock investment (Benzoni et al., 2007; Ahn et al.,

2019). Hence, the optimal decision to increase or decrease investment in the stock market

depends on one’s financial wealth and investment opportunity, which we illustrate in the

next section.

4 Quantitative Analysis

In this section, we carry out an in-depth quantitative analysis to illustrate various proper-

ties of the individual’s optimal consumption, investment, and retirement strategies.

4.1 Baseline Parameters

Following BJP, the baseline parameter values are set as follows: the risk-free interest rate

r = 3.71%,30 the subjective discount rate β = r,31 the expected rate µ and standard

30The risk-free rate can be chosen by the annual rate of return from rolling over 1-month T-bills between

1926 and 2009. Source: Bureau of Labor Statistics.
31This is acceptable in terms of the perceived forced unemployment risk β + δ in the discount rate.
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deviation σ of stock returns are µ = 11.23% and σ = 19.54%,32 the annual rate of labor

income I1 is normalized as one, the post-retirement income I2 = 0.10,33 and the post-

retirement leisure preference K = 3 (Dybvig an Liu, 2010).

In our study, retirement occurs in two cases. First, the individual optimally enters

(voluntary) retirement when she approaches the endogenously determined wealth threshold

for retirement. Second, the individual is forced to retire due to a forced unemployment

shock. Here, we allow for a small possibility of the unemployment shock via a Poisson shock

parameter δ that causes a down-jump of income from I1 to I2.34 For the baseline parameter

value, we choose a very small possibility of forced unemployment by setting δ = 0.5%. Our

conservative choice for this parameter value has two practical interpretations. Similar to

the Cocco et al. (2005) model in which a 0.5% annual probability of zero income has been

matched up with a disastrous labor income shock, the individual, in our study, may be

forced to be unemployed with a 0.5% probability. Second, the expected time to forced

unemployment is 200 years by setting δ = 0.5%.

Our conservative choice of parameter δ works in real retirement situations because an

unemployment shock considered in this paper is not equivalent to a temporary unemploy-

32We use the return and standard deviation of the world’s large stocks between 1926 and 2009. For

details, see pp. 170 of Bodie, Kane, and Marcus (2011).
33Following Lynch and Tan (2011), the post-retirement income can be financed by annuitized payout

from a Social Security program or subsistence such as public welfare or unemployment allowances provided

by the government.
34Carroll (1992) utilizes this type of disastrous labor income shock and Cocco et al. (2005) introduce

the disastrous income shock with 0.5% probability of zero income at each period over the life cycle.

33



ment situation, but to a forced retirement scenario, which is akin to a disability shock.

According to Lachance and Seligman (2008), the most commonly cited reason for involun-

tary retirement is poor health conditions (43.6%). Along these lines, we could match up

the expected time to forced unemployment with the expected retirement age reported in

Dwyer and Mitchell (1999). Based on years of survival in employment with poor health

conditions, the unemployment intensity δ is 3.62% and 17.86% for people who are condi-

tional on working at age 35 and 57, respectively. Comparatively, our choice of the baseline

parameter value of 0.5% is, indeed, a conservative estimation.

4.2 Optimal Consumption and Investment Strategies

Forced unemployment risk negatively affects the optimal consumption and investment (Ta-

ble 1). Even small chances of forced unemployment can significantly change one’s optimal

strategies. Given x̂ is the endogenously determined threshold for voluntary retirement,35

the consumption of the individual with financial wealth x̂ − 45 decreases substantially

by 16.42% as δ increases from 0 to 0.5%, which shows a significant discontinuity and a

dramatic change in the concavity of consumption with small values of δ. Further, con-

sumption decreases as δ increases, demonstrating a strengthened precautionary savings

motive (Carroll, 1992).

[Insert Table 1 here.]

Forced unemployment risk also influences the sensitivity of consumption with respect

35We also illustrate x̂ in the next subsection.
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to changes in wealth. In the absence of forced unemployment risk (i.e., when δ = 0), the

consumption increases by 31.58% as wealth increases from x̂ − 45 to x̂ − 40, whereas it

increases by 11.94% as wealth increases from x̂ − 25 to x̂ − 20. In the presence of forced

unemployment risk (when δ = 0.5%), the consumption increases by 40.05% as wealth

increases from x̂ − 45 to x̂ − 40, whereas it increases by 12.86% as wealth increases from

x̂− 25 to x̂− 20.

[Insert Figure 1 here.]

[Insert Figure 2 here.]

It creates two opposing effects on one’s investment decision. The optimal decision relies

on the interdependent relationship between wealth and investment opportunity. Given a

constant investment opportunity, forced unemployment does not seem to have a significant

impact on the sensitivity of investment to changes in wealth (Table 1). However, with a

variation of investment opportunity, the sensitivity changes with one’s wealth (Figures 1

and 2). In the presence of two-dimensional market incompleteness, investment in the stock

market decreases (increases) with investment opportunity when wealth is low (high).

4.3 Optimal Retirement Strategy

Table 2 suggests that the borrowing-constrained individual with forced unemployment risk

(δ > 0) accepts a lower threshold of wealth for retirement than indicated by a complete

market model (δ = 0; Farhi and Panageas, 2007; Dybvig and Liu, 2010; Jang et al.,

2013). This implies that existing guidance on retirement without taking into account the
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two-dimensional market incompleteness (borrowing constraints and forced unemployment

risk) represents an overly simplified situation. In this subsection, we develop quantitative

measures associated with optimal retirement decisions to derive a more realistic wealth

threshold under the market incompleteness.

[Insert Table 2 here.]

We measure the value of human capital by the marginal rate of substitution between

income and financial wealth. It is the individual’s subjective marginal value of labor

income. The value of human capital plays a key role in determining the timing of optimal

retirement. Intuitively, if the human capital value is higher than that of post-retirement

income, it would induce the individual to continue to work. In contrast, a lower human

capital value would encourage the individual to enter voluntary retirement to enjoy more

leisure than work.

Definition 4.1 Let Φ(x; I1, δ) be the value function described in Section 2.5 provided the

annual rate of labor income prior I1 and the forced unemployment intensity δ. The value

of human capital is

∂Φ(x; I1, δ)

∂I1

/∂Φ(x; I1, δ)

∂x
.

The value of human capital shows a hump-shaped pattern (Figure 3). It shows that

labor income is highly appealing to individuals who are starting their full-time employment

and hence, accumulating wealth. It gradually becomes less attractive as one’s wealth

approaches to a certain threshold (i.e., wealth for retirement). We can derive such a wealth
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threshold numerically. The intersection point of the human capital value and the present

value of the actuarial fair value (PRAV) of post-retirement income represents the wealth for

the retirement threshold. Comparing to the retirement threshold in the complete market,

our two-dimensional incomplete market threshold is lower due to the reduced human capital

value.

[Insert Figure 3 here.]

Further, the value of human capital decreases with investment opportunity when wealth

is low, whereas it increases with investment opportunity when wealth is high (Figure 4).

The rationale behind this is that the individual will not solely depend on risky labor income

(with forced unemployment risk) to accumulate wealth when her wealth is low. Instead,

it would be optimal for her to invest more in the stock market for diversification purposes

rather than only resort to the risk-free investment.

[Insert Figure 4 here.]

Neglecting the two-dimensional market incompleteness can be costly to the borrowing-

constrained individual who aims to attain her optimal retirement. We calculate the result-

ing utility costs of ignoring the market incompleteness by comparing two value functions

with and without forced unemployment risk.

Definition 4.2 ∆(x) is the certainty equivalent wealth gain (CEWG) with financial wealth

x if it satisfies

Φ(x−∆(x); I1, δ = 0) = Φ(x; I1, δ > 0),
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where Φ(x; I1, δ) is the value function described in Section 2.5 provided the annual rate of

labor income I1 and the unemployment intensity δ.

The utility costs increase as forced unemployment risk rises (Figure 5). The individual

could lose up to 10% of her retirement wealth if she does not consider market incomplete-

ness.

[Insert Figure 5 here.]

4.4 Discussion on Unemployment Insurance

We have, so far, shown that the two-dimensional market incompleteness caused by borrow-

ing constraints and forced unemployment risk significantly affects an individual’s optimal

consumption, investment, and retirement strategies. In this subsection, we briefly discuss

a possible unemployment insurance scheme, which can be considered as a pre-arranged fi-

nancing instrument for the borrowing-constrained individual to respond to or recover from

forced unemployment shocks.

In the case of insufficient social securities and limited private insurance market against

large and negative wealth shocks, the role of insurance is of utmost importance to indi-

viduals in making life-cycle investment and savings decisions (Gormley et al., 2010). In

this respect, Jang et al. (2013) have proposed a personalized unemployment insurance

contract, through which borrowing-constrained individuals can hedge against their forced

unemployment risk and derive optimal life-cycle strategies.36

36In Jang et al. (2013), the contract involves a stream of payments to an insurer in exchange for a
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Under our two-dimensional incomplete market framework, we can consider two opposing

scenarios. On the one hand, the borrowing-constrained individual can adopt the insurance

contract in the complete market as in Jang et al. (2013). On the other hand, she can still

hedge her income shocks even if the unemployment insurance is not available, as outlined in

our incomplete market framework. If we compare the value functions of the two opposing

scenarios (with and without the insurance contract), we can calculate the fair value of the

unemployment insurance, which represents a starting point towards designing such a new

insurance contract.37

To obtain plausible indications on the fair value of the unemployment insurance, we use

the Survey of Consumer Finances (SCF) data from 1995 to 2010. Specifically, we match

up an individual’s wealth-to-income ratios in our model with the ratios between family net

worth and before-tax family income of the SCF. We group U.S. families into percentiles of

net worth during the period (Figure 6). Both the family net worth and before-tax family

income increase with the percentile of net worth.

[Insert Figure 6 here.]

The fair value of unemployment insurance decreases with individual’s wealth. It shows

that more-wealthy people pay less than less-wealthy people to obtain the insurance coverage

(Table 3). The lower price of unemployment insurance for the wealthy reflects their ability

to hedge against income shocks with large savings.

certain guaranteed level of wealth in the event of forced unemployment.
37The fair value can be regarded as the sum of subjectively discounted insurance premiums that indi-

viduals have to pay for the unemployment insurance.
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[Insert Table 3 here.]

The fair value of unemployment insurance also depends on individual’s investment op-

portunities (summarized by expected return µ and volatility σ) and post-retirement leisure

preference K. The unemployment insurance becomes more expensive when investment op-

portunity decreases (with low µ or high σ) or leisure demand decreases (with low K), due

to a high likelihood of unemployment at times of economic downturns. Also, the individual

with low post-retirement leisure demand typically has high consumption needs via working

longer rather than retiring earlier. Financing future consumption needs for a longer period

can be more costly in the face of forced unemployment, resulting in an increase in the price

of unemployment insurance.

5 Conclusion

We study an optimal retirement problem under the two-dimensional market incomplete-

ness, caused by borrowing constraints and forced unemployment risk. We show that the

two aspects jointly affect an individual’s optimal consumption, investment, and retirement

strategies. Our results suggest that neglecting the two-dimensional market incompleteness

is costly to the borrowing-constrained individual who aims to attain her optimal retirement.

Technically, our paper is also the first attempt to develop a new dynamic programming

approach for solving an optimal retirement model in such a unique incomplete market

setting.

We raise four questions that may be considered for future research on optimal retire-
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ment. First, the investment opportunity considered in this paper is assumed to be constant,

i.e., risk-free interest rate, expected stock return, and stock volatility are all constants. In-

vestigating the effects of a stochastic investment opportunity on the optimal retirement

would be an interesting extension of the paper. One can consider a tractable way to model

the stochastic investment opportunity through a continuous-time Markov regime-switching

model.

Second, our voluntary retirement decision is controlled by the endogenously determined

timing of optimal retirement. In addition to the retirement choice, one can allow for

another labor supply flexibility by considering flexible working hours (Bodie et al., 1992).

An optimal retirement model for an individual who can respond to forced unemployment

risk by changing her working hours can be an interesting extension of the paper.

Third, we have not considered the positive general equilibrium implications of mar-

ket incompleteness for our optimal retirement model. While with the help of Lucas-type

equilibrium asset pricing framework, equity premium and risk-free interest rate can be

significantly affected by voluntary retirement decisions under incomplete markets.

Finally, by introducing the possibility that an individual could re-enter the workforce

after forced unemployment would improve the realism of the model.
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δ \ x x̂− 45 x̂− 40 x̂− 35 x̂− 30 x̂− 25 x̂− 20 x̂− 15 x̂− 10 x̂− 5 x̂

0 0.5918 0.7787 0.9490 1.1103 1.2657 1.4168 1.5646 1.7097 1.8526 1.9936

0.005 0.4946 0.6927 0.8681 1.0326 1.1903 1.3434 1.4927 1.6391 1.7831 1.9250

0.006 0.4922 0.6901 0.8654 1.0299 1.1878 1.3408 1.4902 1.6367 1.7807 1.9227

0.007 0.4899 0.6876 0.8628 1.0274 1.1853 1.3384 1.4879 1.6344 1.7785 1.9204

0 28.9932 43.4261 56.6174 69.2027 81.4303 93.4243 105.2557 116.9686 128.5927 140.1485

0.005 22.0918 37.2083 50.6002 63.2734 75.5535 87.5893 99.4613 111.2181 122.8909 134.5011

0.006 22.0244 37.0867 50.4454 63.0975 75.3645 87.3928 99.2619 111.0193 122.6957 134.3120

0.007 21.9572 36.9664 50.2930 62.9247 75.1791 87.2004 99.0669 110.8252 122.5055 134.1282

Table 1: Optimal consumption (top table) and optimal risky investment (bottom table) as a

function of initial wealth x for several values of δ. Default parameter values: β = 0.0371, r = 0.0371,

µ = 0.1123, σ = 0.1954, I1 = 1, and I2 = 0.10.

µ σ K

δ 0.1023 0.1123 0.1223 0.1854 0.1954 0.2054 2 3 4

0 47.4590 51.1636 54.5313 52.5721 51.1636 49.8445 90.0721 51.1636 37.8977

0.005 46.0740 49.7891 53.1892 51.2084 49.7891 48.4632 87.1063 49.7891 37.0099

0.006 45.8201 49.5342 52.9377 50.9543 49.5342 48.2083 86.5632 49.5342 36.8440

0.007 45.5731 49.2850 52.6911 50.7057 49.2850 47.9592 86.0340 49.2850 36.6814

Table 2: Critical wealth levels x̂ for various parameter values of µ, σ, K, and δ. Default

parameter values: β = 0.0371, r = 0.0371, I1 = 1, and I2 = 0.10.
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µ σ K

Percentile of net worth 0.1023 0.1123 0.1223 0.1854 0.1954 0.2054 2 3 4

0-25 0.7978 0.5942 0.4433 0.5279 0.5942 0.6617 0.6617 0.5942 0.4917

25-49.9 0.2792 0.2105 0.1590 0.1878 0.2105 0.2334 0.2754 0.2105 0.1721

50-74.9 0.1571 0.1201 0.0919 0.1077 0.1201 0.1325 0.1606 0.1201 0.0964

75-89.9 0.0933 0.0723 0.0560 0.0652 0.0723 0.0794 0.1000 0.0723 0.0565

90-100 0.0606 0.0476 0.0374 0.0431 0.0476 0.0520 0.0687 0.0476 0.0359

Table 3: Fair value of unemployment insurance as a percentage of individual wealth for

various parameter values of µ, σ, and K. Default parameter values: δ = 0.005, β = 0.0371,

r = 0.0371, I1 = 1, and I2 = 0.10.
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Figure 1: Optimal consumption to wealth ratio and risky investment to wealth ratio as a

function of initial wealth x for various expected rates µ of stock returns. Default parameter

values: δ = 0.005, β = 0.0371, r = 0.0371, σ = 0.1954, K = 3, I1 = 1, and I2 = 0.10.
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Figure 2: Optimal consumption to wealth ratio and risky investment to wealth ratio as a

function of initial wealth x for various stock volatilities σ.Default parameter values: δ = 0.005,

β = 0.0371, r = 0.0371, µ = 0.1123, K = 3, I1 = 1, and I2 = 0.10.
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Figure 3: Value of human capital as a function of initial wealth x. Default parameter values:

β = 0.0371, r = 0.0371, µ = 0.1123, σ = 0.1954, K = 3, I1 = 1, and I2 = 0.10.
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Figure 4: Value of human capital as a function of initial wealth x for various parameter

values of investment opportunity set (µ and σ). Default parameter values: δ = 0.005, β = 0.0371,

r = 0.0371, K = 3, I1 = 1, and I2 = 0.10.
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Figure 5: Certainty equivalent wealth gain (CEWG) to wealth ratio, ∆(x)/x, for various

values of unemployment intensities δ. Default parameter values: β = 0.0371, r = 0.0371, µ = 0.1123,

σ = 0.1954, I1 = 1, and I2 = 0.10.
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Figure 6: Family net worth and before-tax family income by percentile of net worth from

the SCF for the period 1995-2010.
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