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ABSTRACT 

BACKGROUND & AIMS 

Little is known about genetic factors that affect development of alcohol-related cirrhosis. We 

performed a genome-wide association study (GWAS) of samples from the United Kingdom Biobank 

(UKB) to identify polymorphisms associated with risk of alcohol-related liver disease.  

METHODS 

We performed a GWAS of 35,839 participants in the UKB with high intake of alcohol against 

markers of hepatic fibrosis (FIB-4, APRI and Forns index scores) and hepatocellular injury (levels of 

aminotransferases). Loci identified in the discovery analysis were tested for their association with 

alcohol-related cirrhosis in 3 separate European cohorts (phase 1 validation cohort; n=2545). Variants 

associated with alcohol-related cirrhosis in the validation at a false-discovery rate of less than 20% 

were then directly genotyped in 2 additional European validation cohorts (phase 2 validation, 

n=2068).  

RESULTS  

In the GWAS of the discovery cohort, we identified 50 independent risk loci with genome-wide 

significance (P<5 x 10-8). Nine of these loci were significantly associated with alcohol-related 

cirrhosis in the phase 1 validation cohort; 6 of these 9 loci were significantly associated with alcohol-

related cirrhosis in phase 2 validation cohort, at a false discovery rate below 5%. The loci included 

variants in the mitochondrial amidoxime reducing component 1 gene (MARC1) and the heterogeneous 

nuclear ribonucleoprotein U like 1 gene (HNRNPUL1). After we adjusted for age, sex, body mass 

index, and type-2 diabetes in the phase 2 validation cohort, the minor A allele of MARC1:rs2642438 

was associated with reduced risk of alcohol-related cirrhosis (adjusted odds ratio, 0.76; P=.0027); 

conversely the minor C allele of HNRNPUL1:rs15052 was associated with an increased risk of 

alcohol-related cirrhosis (adjusted odds ratio, 1.30; P=.020). 

CONCLUSIONS  
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In a GWAS of samples from the UKB, we identified and validated (in 5 European cohorts) single-

nucleotide polymorphisms that affect risk of alcohol-related cirrhosis in opposite directions: the minor 

A allele in MARC1:rs2642438 decreases risk whereas the minor C allele in HNRNPUL1:rs15052 

increases risk. 

KEYWORDS 

biomarker, prognostic factor, SNP, hepatic fibrogenesis 
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INTRODUCTION 

Alcohol-related cirrhosis causes an estimated 350,000 deaths every year from chronic liver failure[1] 

and is a major risk factor for hepatocellular carcinoma, the 3rd leading cause of cancer mortality 

worldwide.[2] Current therapies to prevent or retard progression to alcohol-related cirrhosis are 

limited, and center around reducing alcohol intake, either through behavioral or pharmacological 

interventions.[3] The transition from a healthy liver to alcohol-related cirrhosis occurs gradually, 

alongside years of sustained heavy alcohol use and concomitant chronic liver injury. Total volume of 

alcohol consumed and alcohol drinking patterns are strongly associated with risk of alcohol-related 

cirrhosis,[4,5] but they do not fully explain why some drinkers develop this outcome (<10%) whereas 

others do not.[6] Twin studies suggest that there is a heritable component to alcohol-related liver 

disease,[7,8] yet genome-wide association studies (GWAS) undertaken to date have identified only a 

handful of specific risk variants, including PNPLA3:rs738409; TM6SF2:rs58542926; 

MBOAT7:rs641738 and HSD17B13:rs72613567.[9-12] 

Two factors are likely to have limited the yield of GWAS studies for alcohol-related cirrhosis (and 

chronic liver disease in general).[9-11] Firstly, the lack of statistical power, and secondly, the limited 

range of endophenotypes employed in discovery analyses. The development of alcohol-related 

cirrhosis is strongly underpinned by fibrogenesis, a process that causes substitution of the liver 

parenchyma with non-functional mesenchymal scar tissue.[13,14] Thiele et al. recently showed that 

combinations of routine liver blood tests – such as APRI, FIB-4, and Forns index – can differentiate 

individuals with high alcohol intake and advanced fibrosis from individuals with high alcohol intake 

without relevant fibrosis with acceptable accuracy (area under the curve of 0.80-0.86).[15] These 

endophenotypes of alcohol-related cirrhosis have not been leveraged by GWAS studies thus far. 

The United Kingdom Biobank (UKB) study integrates host genetic, health behavior, hospital 

admission records, mortality, and biochemistry data for a cohort of half a million people in the UK 

aged 40-69 years,[16] and thus provides an unprecedented opportunity to extend existing GWAS data 

by incorporating a broader set of surrogate phenotype data. Data on fibrosis markers and markers of 

hepatocellular damage are available for a high proportion of participants. 
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The primary aim of this study was to identify novel risk variants associated with alcohol-related 

cirrhosis risk. To this end, we undertook a GWAS in UKB participants reporting high alcohol intake 

to identify genetic variants associated with surrogate measures of liver fibrosis and conventional 

markers of hepatocellular injury. Any significantly associated variants were tested for association with 

alcohol-related cirrhosis across appropriate European cohorts with robust liver-specific phenotypes to 

validate the findings.  

A secondary objective was to assess whether the genetic risk variants identified by this study have any 

value regarding stratification of “at risk” patients in a community setting. This is highly relevant 

because chronic liver disease is frequently not diagnosed until decompensated cirrhosis and/or HCC 

emerges, by which point, liver damage is usually intractable and prognosis bleak.[17,18] Early 

identification of “at risk” patients is seen as a critical step towards reducing liver mortality; yet 

existing risk stratification tools are suboptimal.[17,18] Promising Genetic Risk Scores (GRS) have 

been developed for a variety of diseases including type 2 diabetes, coronary artery disease and 

inflammatory bowel disease,[19] but the utility of a liver cirrhosis GRS remains unclear at present. 

 

METHODS  

DISCOVERY ANALYSIS 

At enrolment, UKB participants were asked to report their average alcohol intake per week/month in 

terms of the number of: glasses of red wine (Field IDs: 1568, 4407), glasses of champagne/white wine 

(UKB Field IDs: 1578, 4418), pints of beer/cider (Field IDs: 1588, 4429), measures of spirits (Field 

IDs: 1598, 4440), glasses of fortified wine (Field IDs: 1608, 4451), and glasses of “other” types of 

alcoholic drinks (Field IDs: 5364, 4462). This was converted into the average units of alcohol 

consumed per week, assuming there are 2 units (16g) of pure alcohol in a pint of beer/cider; 1.5 units 

(12g) in a glass of red wine, champagne, white wine, fortified wine, and “other” alcoholic drink; and 1 

unit (8g) in a measure of spirits. These conversions are comparable to those used in the Health Survey 

for England methods protocol.[20]  
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The discovery analysis was based on data from the Version 3 release of the UKB imputed genetic 

dataset (downloaded in May 2019), which provides host genetic information for 487,320 participants. 

[21] Participants with poor quality genetic data, as indicated by extreme levels of heterozygosity or 

missing data (see UKB Field ID:22027) were not included in the version 3 imputation file, and thus 

did not feature in this study. From the imputed dataset, we excluded participants if they were: i) first 

or second-degree relatives of another participant. This was inferred via the kinship coefficient, 

generated by the UKB core team for all pairs of participants. Specifically, a second-degree relation or 

greater was defined as a kinship coefficient ≥0.1;[21] or ii) not of Caucasian British ancestry (defined 

by UKB according to field ID:22006). However, the small number of UKB participants with gender-

sex mismatch or aneuploidy (n<1000; <0.2%), were not excluded from our analysis due to the low 

level of potential bias they may exert. Of those remaining, women who reported alcohol consumption 

≥ 25 units/week (200g) in “an average week”, and men who reported alcohol consumption of ≥36 

units/week (288 g), were included in the discovery GWAS. These thresholds represent the midpoint 

between “hazardous” and “harmful” drinking, as set out in UK Government guidelines.[22]  

Individual-level data for approximately 6.2M genetic variants were available in the version 3 UKB 

imputed genetic dataset, after exclusion of variants with: a) minor allele frequency <1%; b) gross 

deviation from the Hardy Weinberg equilibrium (p<1.0 x 10-7); c) imputation information score <0.8; 

d) high level missing data (>10%); and e) non-biallelic or duplicate variants. Using PLINK v1.9, we 

determined the association between each of these 6.2M variants, and five distinct surrogate liver 

phenotypes. These were: APRI; FIB-4; Forns Index (all defined using standard formulas; see 

Appendix A); ALT and AST. Phenotypes were log10 transformed to achieve approximate normality 

and were analysed as continuous variables in a linear regression framework assuming an additive 

genetic model (see Supplementary Table 1). In addition, sensitivity analyses were undertaken where 

we analysed each surrogate phenotype as a categorical variable, comparing participants whose 

phenotype value was in the top quintile (i.e. top 20%) with participants whose phenotype value was in 

the bottom quintile (i.e. bottom 20%) via logistic regression. This is tantamount to an “extreme 

phenotyping” approach. All discovery analyses were adjusted for age, sex, BMI, diagnosis of 
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diabetes, current alcohol consumption and the first five principal components of genetic ancestry. The 

analyses were performed on the University of Strathclyde’s Archie West High Performance 

Computing platform.  

The resultant GWAS summary statistics were then uploaded onto the FUnctional Mapping and 

Annotation of GWAS tool (FUMA; version 1.3.5),[23] in order to identify a set of independent 

genomic risk loci for each phenotype. In broad terms, independent genomic risk loci are defined by 

three main characteristics: a) association with the corresponding phenotype at genome wide 

significance level (P<5.0 x 10-8); b) a lower p-value than all other variants in the nearby genomic 

region; c) independence from other independent genomic risk loci for that phenotype (at r2<0.1). 

More detailed specifics around how these loci were selected by FUMA are outlined in Appendix B.  

In total, the base-case discovery analysis generated five sets of independent genomic risk loci - one 

per phenotype - which were then pooled to produce a final combined set of loci. Duplicate variants 

were removed. 

PHASE 1 REPLICATION ANALYSES  

The associations between each independent genomic risk locus (identified in our discovery cohort) 

and the presence of alcohol-related liver cirrhosis, was ascertained in three case-control datasets; as 

follows: 

1) UK cohort from the Buch et al. GWAS [9]: comprises a) 302 cases with alcohol-related cirrhosis 

recruited at the Centre for Hepatology, The Royal Free Hospital, London; and b) 346 controls with 

a history of excess alcohol consumption but without evident liver disease. All participants were of 

European Caucasian descent. Genotyping was performed using the Illumina BeadChip array. 

Cirrhosis was defined through clinical evidence (complications of cirrhosis), imaging results 

(ascites, hunched liver surface, elastography >19kPa indicating cirrhosis) and/or histology, as 

described by Buch et al.[9] Full details of the criteria used to define cases and controls can be 

found in appendix C. 



Innes et al  GWAS in alcohol-related cirrhosis 

 

11 
 

2) German cohort from the Buch et al. GWAS [9]: comprises a) 410 cases diagnosed with alcohol-

related cirrhosis recruited from several Gastroenterology and Hepatology hospitals in Germany, 

Austria and Switzerland; and b) 1080 controls, recruited from psychiatric centres in Germany and 

Switzerland specialising in addiction medicine, who had a history of excess alcohol use, but were 

without evident liver disease (vide supra). All cases and controls in this cohort are of Caucasian 

ancestry. Genotyping was again performed using the Illumina BeadChip array. Cirrhosis was again 

defined according to the diagnostic criteria set out by Buch et al.[9] (see appendix C) 

3) UK Biobank nested case-control study: Cases were defined as UKB participants with a) two or 

more hospital admission for alcohol-related cirrhosis before or after inclusion in the UKB study 

(defined as ICD 10: K70.3 in any diagnostic position); or b) death from alcohol-related cirrhosis 

(defined as ICD10: K703 in any cause-of-death position). Controls were defined as all participants 

who did not indicate that they were lifetime teetotal (UKB field IDs: 3731), and who did not have 

a hospital admission or death record indicating liver disease (ICD 10: K70-K77). As per our 

discovery analysis, we excluded cases/controls if they were: i) first or second degree relative with 

another UKB participant (kinship coefficient≥0.1); or ii) not of Caucasian British ancestry. 

Furthermore, to ensure that our discovery analysis and phase 1 replication were independent (i.e. 

non-overlapping), we excluded cases/controls if they were also included in our discovery analysis. 

In total, 178 cases and 298,248 controls satisfied these criteria, equating to an effective sample size 

of approximately 712.  

Odds ratio (OR) associations were ascertained in the three cohorts, for each independent genomic 

locus identified in our discovery analysis, under an additive genetic model. All associations were 

adjusted for differences in age, sex and the first five principal components of genetic ancestry. A 

fixed-effect meta-analysis of the OR association across the three datasets, was then performed. This 

was carried out using METAL’s inverse variance function, which weights each effect size estimate by 

its estimated standard error, in order to provide an overall p-value and effect size.[24] To remove 

residual linkage disequilibrium created by combining the genomic risk loci of different phenotypes, 

we performed a standard clumping procedure using an r2 threshold >0.1, and distance parameter of 
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100KB. For each genomic region, this resulted in retention of the locus with the lowest meta-analysis 

p-value. Finally, we applied the Benjamini-Hochberg procedure to correct for multiple 

comparisons.[25] A False Discovery Rate (FDR) of 20% was used to select variants for phase 2 

replication. 

PHASE 2 REPLICATION ANALYSES 

Loci identified in the phase 1 replication analyses were then assessed in two separate replication 

cohorts, as follows: i) German validation cohort comprising 1,272 cases with alcohol-related cirrhosis 

and 775 controls without liver disease (effective sample size: 1,926); and ii) Switzerland validation 

cohort comprising 312 individuals with alcohol-related cirrhosis and 40 individuals without (effective 

sample size: 142). Analogous to phase 1 replication, all participants in this cohort had a history of 

heavy alcohol use and were recruited from specialist liver and addiction clinics. Cirrhosis was defined 

according to the same diagnostic criteria described by Buch et al.[9] (See appendix C). Genotyping 

for selected loci was undertaken using the TaqMan assay system. The OR association between each 

locus and case-control status was determined following adjustment for age and sex in the two phase 2 

cohorts separately, under an additive allelic effect model. We also performed more extensive 

adjustment to account for potential differences in BMI and type 2 diabetes, as well as age and sex 

(albeit with a reduced sample size). Consistent with phase 1 replication, we then performed a fixed-

effect meta-analysis of the OR association across the two phase 2 datasets, using METAL’s inverse 

variance function.[24] Meta-analysis p-values were calculated using a conservative two-tailed test, 

making no assumption about the direction of association. A stringent FDR threshold of <5% was used 

at this final stage to define statistical significance. 

FUNCTIONAL CONSEQUENCES OF PHASE 2 LOCI 

BIOINFORMATIC DATABASE INTERROGATION 

The ANNOVAR annotation database was used to identify the nearest gene for each locus.[26] 

However, the nearest gene may not be causal; previous studies show that a locus can sometimes affect 

the expression and function of genes that are considerably apart on the same chromosome.[27] Thus, 
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in addition to the nearest gene, a broader set of candidate genes were identified for each locus using 

four approaches viz. (i) positional mapping was used to identify all genes within 10KB of each locus, 

or within 10KB of variants in linkage disequilibrium (r2>0.60) with each locus; (ii)The Gene-Tissue 

Expression (GTEx) database version 8 [28] was used to identify any genes whose expression is 

associated with the locus, or genes whose splicing patterns are associated with the locus (at FDR <1.0 

x 10-3); (iii) the HiC(GSE87112) liver tissue dataset was used to identify genes that, although 

physically far apart in terms of their chromosome base-pair positions, may nevertheless interact with 

the locus – e.g. via chromatin looping (at FDR <1.0 x 10-6);[29] and (iv) the GeneHancer database 

was used to assess whether the locus lies within a genomic enhancer region, and if so, we enumerated 

the gene targets of this enhancer.[30] 

The Combined Annotation Dependence Depletion (CADD) score [31] and Regulome DB score [32] 

was also determined for each locus. Finally, for nonsynonymous coding variants, we also determined: 

(i) the predicted functional impact on the corresponding protein using the Polymorphism Phenotyping 

version 2 (PolyPhen-2) HumDiv-trained model.[33]; and (ii) if the corresponding amino-acid residue 

is conserved in mammalian and non-mammalian orthologues. Protein sequences for gene orthologues 

were obtained from ENSEMBL.org and were aligned using T-Coffee tool kit.[34] 

mRNA EXPRESSION ANALYSIS 

One hundred and eleven liver tissue samples, collected in a previous study,[35] were used to assess 

mRNA expression of selected candidate genes in liver tissue, according to identified host genotyping 

factors. Liver tissue samples were obtained percutaneously for patients undergoing liver biopsy for 

suspected Non-alcoholic Fatty Liver Disease (NAFLD) (57%, n=63) or intraoperatively during 

bariatric surgery for assessment of liver histology (43%, n=48). mRNA expression levels were 

measured using the Human Gene 1.1 ST Array. The non-parametric Kruskal-Wallis test was used to 

assess the likelihood of whether differences in mRNA expression according to host genotyping factors 

were due to sampling error.  
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 CIRRHOSIS GENETIC RISK SCORE 

A cirrhosis GRS was generated based on the genetic variants considered in the phase 2 replication 

analysis. The GRS was calculated as follows:  

Cirrhosis GRS =∑ 𝑤𝑖𝑋𝑖𝑘
𝑖=1  , where k is the number of risk variants, wi is effect size (i.e. beta) of each 

variant estimated from phase 1 validation stage; Xi is the number of risk alleles carried by that 

individual for genetic variant i. More detail is provided in Appendix D.  

Conceptually, this score can be thought of as the number of risk variants each individual carries 

weighted by their effect size (that is, weighted by the extent to which each variant increases the risk of 

cirrhosis).  

GRS performance was tested on UKB participants at risk of NAFLD. This subgroup is independent of 

the discovery analysis, and thus is a non-biased group from which to gauge performance of the 

cirrhosis GRS. Risk factors for NAFLD were defined as: a BMI ≥30 and/or diagnosis of type 2 

diabetes, without evidence of any other cause of liver disease including excess alcohol (see Appendix 

E and Supplementary Table 2 for full details).  

The outcome used to assess GRS performance was time to first hospital admission for cirrhosis. A 

hospital admission for cirrhosis was defined according to Ratib et al’s validated algorithm 

incorporating appropriate ICD discharge codes and OPCS4 hospital procedure codes.[36] We 

calculated the association between GRS quintile and risk of incident cirrhosis hospitalisation using 

Cox regression in a survival analysis framework. Follow-up time was commenced at the date of UKB 

assessment and ended at first date of cirrhosis hospitalisation (if at all), date of mortality (if at all), or 

date of hospital/mortality registry completion. As well as assessing the association between GRS 

quintiles and risk/hazard of incident cirrhosis hospitalisation, we also assessed GRS performance in 

terms of Harrell’s C-statistic. In this context, the C-statistic reflects the probability that an individual 

with a higher GRS will has a shorter time to cirrhosis hospitalization versus an individual with a lower 

GRS. A GRS with no ability to differentiate individuals at high versus low risk of cirrhosis 
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hospitalisation would have a C-statistic of 0.50. Conversely, a GRS with perfect ability would have a 

C-statistic of 1.0.[37] 

The base-case GRS included risk variants significant associated with alcohol-related cirrhosis in 

phase 1 replication analyses at a FDR<20%. In subsequent sensitivity analyses, the number of risk 

variants incorporated was varied to see if performance was affected using FDRs of <10%, <30%, 

<40% and <50%, to see if performance was affected.  

 

RESULTS 

DISCOVERY ANALYSIS: 

Of the UKB participants, 35,839 participants met the inclusion/exclusion criteria for the discovery 

analysis (see Figure 1). The median (interquartile range [IQR]) age was 58 years (51-63), 63% were 

male, 3.6% had a diagnosis of type 2 diabetes, whilst the median BMI was 27.3 (24.7-30.1) (Table 1 

& Supplementary Table 3). The discovery analysis identified 68 unique genomic risk loci across the 

five phenotypes (Supplementary Table 4 & Supplementary Figure 1). Detailed information on these 

loci are provided in Supplementary Table 5. Manhattan plots for each discovery analysis are shown in 

Figure 2. The genomic inflation factor (λ) varied between 1.03 and 1.05 (see supplementary Figure 2).  

PHASE 1 REPLICATION ANALYSIS:  

The 68 loci identified in discovery analysis were reduced to 50 independent risk loci, following the 

phase 1 replication meta-analysis and subsequent clumping (Supplementary Table 6). Of these 50, 

nine loci were significantly associated with alcohol-related cirrhosis at a FDR of <20%. Four of these 

viz PNPLA3:rs738408 (in complete LD with PNPLA3:rs738409), SUGP1:rs10401969 (in strong LD 

with TM6SF2:rs5854926), SERPINA1:rs28929474; and HSD17B13:rs7694379 - are already known to 

modulate the risk for alcohol-related cirrhosis, or are in strong LD with known loci. The remaining 

five loci have not previously been associated with alcohol-related liver disease viz 

HNF1A:rs11065384; ARHGEF3:rs12485738; rs2954038 (near the TRIB1 gene); 



Innes et al  GWAS in alcohol-related cirrhosis 

 

16 
 

HNRNPUL1:rs15052; and MARC1:rs2642438. No additional significant loci were identified when 

using the extreme phenotyping discovery approach. 

PHASE 2 REPLICATION ANALYSES:  

In the independent replication cohort, six of the nine variants identified in the phase 1 replication were 

associated with cirrhosis at an FDR of <5% (Table 2 & Supplementary Table 7). Of these six, four are 

already known, or are in linkage disequilibrium with variants known to modulate cirrhosis risk 

(rs738408; rs10401969; rs28929474; rs7694379).  

The two variants remaining were: i) MARC1:rs2642438 on chromosome 1; and ii) 

HNRNPUL1:rs15052 on chromosome 19. The minor A allele of rs2642438 was associated with a 

reduced risk of cirrhosis in age/sex adjusted (OR:0.76; 95%CI:0.65-0.89; p=5.37 x 10-4) and 

age/sex/BMI/diabetes adjusted (aOR: 0.76; 95% CI:0.64-0.91; p=2.7 x 10-3) analyses, suggesting a 

protective effect. Conversely, the minor C allele of rs15052 was associated with an increased risk of 

alcohol-related cirrhosis in age/sex adjusted (OR:1.24; 95% CI: 1.02-1.52; p=3.2 x 10-2) and 

age/sex/BMI/diabetes adjusted (aOR:1.30; 95%CI:1.04-1.62; p=2.0 x 10-2) analyses, suggesting a 

detrimental effect (Figure 3). Regional association plots for MARC1:rs2642438 and 

HNRNPUL1:rs15052 are provided in Supplementary Figures 3-7.  

FUNCTIONAL CONSEQUENCES OF MARC1 AND HNRNPUL1 LOCI 

BIOINFORMATIC DATABASE INTERROGATION: 

The rs15052 risk variant lies in the 3’ untranslated region of the Heterogeneous Nuclear 

Ribonucleoprotein U Like 1 (HNRNPUL1; chromosome 19), It has a CADD score and Regulome DB 

score of 13.94 and 5, respectively (see Supplementary Table 8). The frequency of the minor 

rs15052:C allele in the UKB population is 17.8%; the ancestral allele is T, which is conserved within 

mammals (see Supplementary Figure 8). Of note, rs15052 lies within a 16.8KB enhancer region 

(GeneHancer ID: GH19J041294) that regulates expression of 27 genes, including the Transforming 

Growth Factor Beta 1 (TGFB1) gene. GTEx data indicates that rs15052:C is associated with increased 

expression of TGFB1 and Coiled-Coil Domain Containing 97 (CCDC97) in liver and/or adipose 
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tissue. In addition, chromatin interaction mapping indicates that rs15052 interacts physically with the 

CEA Cell Adhesion Molecule 21 (CEACAM21) gene.  

The rs2642438 variant is a missense variant in the Mitochondrial Amidoxime Reducing Component 1 

(MARC1) gene, resulting in a Alanine [GCC] to Threonine [ACC] substitution at amino acid position 

165 of the MARC1 protein (A165T). The PolyPhen-2 algorithm predicts that this substitution has a 

deleterious impact on MARC1 protein function with a high score of 0.958 (sensitivity: 0.78; 

specificity: 0.95). The frequency of the minor A allele is 29.7% in the UKB population; the ancestral 

allele is G, which is conserved among mammals, amphibia (clawed frog; Xenopus laevis) 

and also Actinopterygii (clownfish; Amphiprion percula) - see Supplementary Figure 9. GTEx data 

suggest that rs2642438:A is associated with reduced expression of uncharacterized Chromosome 1 

Open Reading Frame 115 (C1orf115) gene in cultured fibroblasts cells, and secondly that it is 

associated with alternative splicing of MARC1 pre-mRNA in adipose tissue (see Supplementary 

Table 8).  

mRNA EXPRESSION ANALYSIS 

mRNA expression levels were obtained in 113 liver tissues samples for: (i) TGFB1, CEACAM21, 

CCDC97, and HNRNPUL1 with respect to rs15052 genotype; and (ii) MARC1 and C1orf115 with 

respect to rs2642438 genotype. The rs15052:C allele was associated with increased expression of 

TGFB1 (p=0.026), CEACAM21 (p=0.012), but not CDC97 (P=0.52) or HNRNPUL1 (p=0.65). The 

rs2642438 locus was not associated with either MARC1 expression (p=0.95) or C1orf115 (p=0.93); 

see Supplementary Figure 10. 

GENETIC RISK SCORE PERFORMANCE:  

A total of 107,014 UKB participants met the at-risk criteria for NAFLD. These participants were 

followed up for 7.9 years on average, during which time 562 incident liver cirrhosis hospitalizations 

were observed equating to a crude incidence rate of 6.3 events per 10,000 person years of follow-up. 

There was a clear dose-response relationship between the GRS quintile and the risk of cirrhosis 

hospitalization. Participants in the highest risk quintile had more than a 3-fold higher risk versus 
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individuals in lowest quintile after adjustment for age, gender, BMI, diabetes and alcohol intake (HR: 

3.16; 95% CI: 2.38-4.21) (see Figure 4 and Table 3). The GRS C-statistic was 0.62 (95% CI: 0.59-

0.64); but increased to 0.68 (0.65-0.70) when combined with age and sex. In the sensitivity analyses, 

associations by quintile and the C-statistic was only modestly affected by the FDR selection (see 

Supplementary Table 9). 

 

DISCUSSION 

It is generally agreed that genetic factors play an important role in determining an individual’s 

susceptibility to develop alcohol-related cirrhosis.[7,8] Only a small number of associated risk factors 

have been identified to date.[9-12, 38] As a complex trait, it is highly likely that additional genetic 

modifiers exist.[39] Uncovering these variants could help to identify new therapeutic targets for 

treatment, and also improve patient risk stratification. Against this backdrop, we combined data from 

the UKB resource with data from clinical cohorts across Europe, to produce the largest, broadest and 

most comprehensive GWAS on alcohol-related cirrhosis undertaken thus far. Our findings confirm 

the key roles played by several of the known risk loci viz PNPLA3:rs738409; TM6SF2:rs58542926; 

HSD17B13:rs72613567 and SERPINA1:rs28929474.[9-12, 38] However, we were not able to validate 

the risk variant rs641738 in TMC4/MBOAT7 which was detected as a risk locus for alcoholic cirrhosis 

in our previous GWAS.[9] It was not associated with any of our discovery analysis phenotypes at the 

requisite genome-wide significance level, but it only narrowly missed this level in relation to ALT 

and AST with P=8.31 x 10-5 and P=3.49 x 10-4, respectively (see supplementary table 10).  

As well as confirming most loci known to-date, we have also discovered two additional risk variants 

for alcohol-related cirrhosis: MARC1:rs2642438, which has also been identified independently as a 

risk factor of cirrhosis regardless of etiology in another very recent publication,[40] and 

HNRNPUL1:rs15052 which has not been described so far. These two loci modify the risk of alcohol-

related cirrhosis in opposite directions. Carriage of the minor A allele of MARC1:rs2642438 is 

associated with protection from alcohol-related cirrhosis; while carriage of the minor C allele of 
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HNRNPUL1:rs15052 is associated with an increased risk of alcohol-related cirrhosis (see Figure 2). 

The identification of these additional loci in the present study, but not in others,[9-12] is likely to be 

due to: (i) high statistical power, gained by combining large discovery (N=35,839) and replication 

(Effective sample size: 4,599) cohorts; and (ii) the novel inclusion of fibrogenesis endophenotypes in 

the discovery analysis. For example, (HNRNPUL1:rs15052 would not have been identified in this 

study without including APRI or FIB-4 in the discovery analysis.  

The MARC1 gene is predominantly expressed in liver and subcutaneous adipose tissue, and the 

corresponding MARC1 protein is located in the outer mitochondrial membrane.[41] Mitochondrial 

damage is a well-described key feature of alcohol-mediated hepatocellular injury by increasing 

oxidative stress through the respiratory chain, and interference with beta-oxidation and lipogenesis 

leading to liver cell apoptosis and steatosis, respectively.[42] MARC1 protein plays an important role 

in reducing N-hydroxyl compounds, and in this way is involved in detoxification of xenobiotics. The 

crystal structure of human MARC1, its catalytic mechanism, and its ability to reduce a wide range of 

N-oxygenated compounds has recently been described.[43] However, its function is still incompletely 

understood and it is not known whether it may play a role in the metabolism of acetaldehyde, the toxic 

and mutagenic degradation product of alcohol oxidation. Acetaldehyde is generated from ethanol by 

cytosolic alcohol dehydrogenase and microsomal cytochrome P450 2E1, and further degraded to 

acetate in mitochondria through enzymatic conversion by aldehyde dehydrogenase.[44] MARC1 also 

plays a role in the regulation of nitric oxide production [45], a powerful vasodilator that alters 

intrahepatic vascular resistance in the liver [46]. Thus, there are many ways in which altered MARC1 

function could contribute to the pathophysiology of cirrhosis. At a functional level, the protective 

rs2642438:A allele results in an Alanine to Threonine amino-acid substitution at position 165 of the 

MARC1 protein, which PolyPhen-2 predicts is deleterious to MARC1 protein function. Thus, loss of 

MARC1 function appears to be beneficial with respect to lowering the risk of alcohol-related 

cirrhosis. On this basis, therapeutic inhibition/dampening of MARC1 function may be an interesting 

avenue to explore in future work if the protein can be targeted.  
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HNRNPUL1 protein has dual DNA and mRNA binding ability, and thus can regulate DNA 

transcription as well as pre-mRNA processing. In partnership with Bromodomain-containing protein 

7, HNRNPUL1 can bind to the DNA glucocorticoid response element (GRE), and activate 

transcription.[47] The GRE is present in the promoter region of multiple genes that regulate 

inflammation, and its activation may be among the mechanisms through which corticoid treatments 

for alcohol hepatitis reduce liver inflammation.[48] Data from GTEx as well as our mRNA expression 

analysis, demonstrate that rs15052:C is associated with increased expression of TGFB1 in liver tissue. 

TGFB1 is a potent profibrogenic cytokine produced by mesenchymal hepatic stellate cells and portal 

myofibroblasts, the main effector cells involved in the production of extracellular matrix components 

including collagens.[49] Increased hepatic expression of TGFB1 in vivo leads to the emergence of 

prominent liver fibrosis.[50] The presence of a GRE in the promoter region of TGFB1 may suggest 

that HNRNPUL1 can regulate TGFB1 directly.[51] However, the functional basis for the association 

between rs15052 and TGFB1 expression most probably relates to rs15052’s position within a 16.8 Kb 

enhancer genomic region (enhancer ID: GH19JO41294). This enhancer interacts with 27 distinct 

genes, including TGFB1, and contains binding sites for a wide panel of transcription factors, some of 

which – e.g. the Aryl Hydrocarbon Receptor – are known regulators of TGFB1 expression.[52] 

We were not able to validate the rs641738 risk variant in TMC4/MBOAT7 due to it narrowly missing 

the required genome-wide significance level in our discovery analysis (see supplementary table 10). 

Thus, although this study represents the largest and most comprehensive GWAS for alcohol cirrhosis 

to-date, the possibility of “false negative” results nevertheless remains. On this basis, it is likely that 

some common variants that influence risk of alcohol-related cirrhosis still remain undiscovered. On a 

related note, some variants identified in our phase 1 replication stage that did not replicate in phase 2 

may still warrant further investigation because their failure to replicate may only reflect inadequate 

statistical power (i.e. a type 2 error) as opposed to a true null association. This includes rs10401969 in 

hepatocyte nuclear factor 1 homeobox A (HNF1A) and the rs2954038 variant near the tribbles 

homolog 1 (TRIB1) gene. The same TRIB1 region was identified in a recent GWAS of NAFLD, 

lending further credibility to the relevance of this locus.[53].  



Innes et al  GWAS in alcohol-related cirrhosis 

 

21 
 

As well as providing insight into the pathobiology of alcohol-related cirrhosis, a deeper understanding 

of the underlying genetics could, in time, help clinicians differentiate the minority of liver disease 

patients at high risk of serious liver morbidity from the low risk majority. In principle therefore, host 

genetic data may help to increase earlier detection of chronic liver disease in high risk patients – thus 

addressing the issue of frequently delayed diagnosis of chronic liver disease.[17,18] A cirrhosis GRS 

was, therefore, developed based on variants identified in our phase 1 analysis. To test this score 

objectively, we were mindful of the need to assess its performance in an independent set of patients 

(i.e. a different set of participants from those used to develop the score in first place).[37] To that end, 

we examined how good this score performed at predicting first-time hospitalization for cirrhosis 

among UKB participants with risk factors for NAFLD, a disease that shows great overlap and 

multiple similarities (including the underlying host genetics) with alcohol-related liver disease.[54] 

Although individuals with a risk score in the top quintile had more than 3 times the risk of cirrhosis 

versus individuals in the lowest quintile, the C-statistic indicated that by itself, this score is unlikely to 

offer adequate discrimination for effective clinical decision making. Further validation in an 

independent population of heavy drinkers is clearly warranted. 

In summary, in addition to confirming several known genetic risk factors for alcohol-related cirrhosis, 

this GWAS, the largest and broadest to date, has identified two further risk loci: rs2642438 in MARC1 

and rs15052 in HNRNPUL1. These variants, amongst others, warrant functional investigation.  
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TABLE LEGENDS 

Table 1. Summary of the data sources and subgroups used in this study 

Table 2. Summary of the discovery analysis and phase 1-2 replication results. 

Table 3. Association between quintiles of genetic risk score and incident cirrhosis hospitalisation in 

UK biobank participants with risk factors for non-alcoholic fatty liver disease. 

FIGURE LEGENDS 

Figure 1. Derivation of discovery GWAS cohort 

Figure 2. Discovery analysis Manhattan Plots. Loci identified in our phase 1 replication analysis are 

highlighted in red if significant at P<5.0 x 10-8 with the corresponding phenotype 
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Figure 3. Association of MARC1:rs2642438 and HNRNPUL1:rs15052 with alcohol-related cirrhosis 

in phase 2 replication. All associations are adjusted for a minimum of age and sex. “Full adjustment” 

refers to adjustment for Type 2 diabetes and BMI, as well as age and sex. Phase 1 analysis also 

includes adjustment for the first five principal components of genetic ancestry. Phase 1 replication 

analysis is based on data from a previous European GWAS of alcohol-related cirrhosis,[9] plus data 

from a nested alcohol-related case-control study derived from the UK biobank (total effective sample 

size:2 546). Phase 2 replication analysis is based on two independent datasets from Germany 

(effective sample size:1926) and Switzerland (Effective sample size: 142). See main text for full 

details.  

Figure 4. Association between genetic risk score and risk of cirrhosis hospitalization among UK 

biobank participants at risk of non-alcoholic fatty liver disease. Association is adjusted for age, sex, 

BMI, diabetes and alcohol consumption. 
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APPENDICES 

APPENDIX A 

Formula used to define APRI, FIB-4 and Forns score were as follows: 

APRI= ((aspartate transaminase[U/L]/40)/platelet count[109/L]))*100 

FIB4=(Age[years]*aspartate transaminase [U/L])/(Platelet count[109/L] *alanine 

transaminase0.5[U/L]) 
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FORNS= 7.811-(3.11*ln(platelet count[109/L]))+(0.781*ln(gamma glutamyl 

transferase[U/L])+(3.467*ln(Age[years]))-(0.541*cholesterol[mmol/L])  

APPENDIX B 

Identification of independent genomic risk loci: FUMA first identifies lead SNPs as variants with 

P<5.0 x 10-8 and independence from other loci at r2<0.6. Where two or more variants are in linkage 

disequilibrium (i.e. r2>=0.6), the variant with the lower p-value is retained. This is equivalent to a 

standard clumeping procedure available, for instance via Plink. In an additional step, FUMA then 

merges lead SNPs that are physically close to each other into a single locus. It does this by generating 

linkage disequilibrium (LD) blocks for each lead SNP and merging lead SNP together if their LD 

blocks are less than 250kb apart. The end result is a set of independent genomic risk loci.  

APPENDIX C 

Phenotyping of cases and controls included in Buch et al phase 1 Replication cohorts 

United Kingdom cohort 

Subjects with self-reported English, Scottish, Welsh or Irish descent were recruited from the Centre for 

Hepatology at the Royal Free Hospital, London. All had a history of prolonged and sustained alcohol 

consumption in excess of 80 g/day for men and 50g/day for women for periods in excess of 10 years. 

The clinical history, as recorded with particular attention paid to earlier encounters with medical 

practitioners, previous laboratory and radiological investigations and hospitalizations and clinical 

episodes suggestive of liver injury or decompensation including jaundice, variceal haemorrhage, fluid 

retention and neuropsychiatric disturbance. All patients were examined by two experienced, senior 

clinicians for signs of alcohol misuse and liver injury. Blood was taken at the time of presentation for 

standard liver function tests), full blood count, prothrombin time and the internationalized standardized 

ratio (INR); serological testing was undertaken for antibodies to hepatitis B and C,; mitochondrial, 

nuclear, smooth muscle and liver kidney antibodies; iron, total iron binging capacity, ferritin; copper, 

caeruloplasmin; alpha one antitrypsin and tissue transglutaminase. All participants underwent 

abdominal ultrasound and/or abdominal CT/MRI, as indicated; all underwent routine upper GI 
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endoscopy; histological examination was undertaken, whenever possible, of liver biopsy material 

obtained by percutaneous, ultrasound guided or transjugular routes; or else of explant or post-mortem 

liver tissue. Participants were excluded if they had any other potential cause of liver injury such as 

chronic viral hepatitis, autoimmune liver disease; genetic haemochromatosis; Wilson’s disease; alpha 

one antitrypsin deficiency or coeliac disease or if they had a BMI >30kg/m2 or were diabetic. 

Those classified as cases had evidence of cirrhosis on histological examination of liver biopsy tissue 

while those classified as controls had no historical or clinical features suggestive of significant liver 

injury either at presentation of during prolonged follow-up; all had normal serum bilirubin and albumin 

concentrations and clotting profiles; serum ALT activity was within the laboratory reference range in 

the majority and when elevated rarely exceeded twice the upper laboratory reference level; none had 

evidence of parenchymal liver injury or portal hypertension on imaging; upper gastrointestinal 

endoscopy was normal in those in whom it was performed; the absence of significant liver disease was 

further confirmed in 35% of the control population by histological examination of liver tissue  

The protocol was approved by the institutional review board and all included subjects consented to 

inclusion into the study. 

German/Swiss/Austrian cohort 

All participants had a history of chronic alcohol misuse, defined as alcohol intakes in excess of 80g/day 

in men and 50g/day in women sustained over a period of at least 8 years. Cases with alcohol-related 

cirrhosis were recruited from gastroenterology and hepatology departments of the university hospitals 

in Dresden, Bonn, Leipzig, Kiel and Frankfurt (all Germany), Salzburg (Austria) and Bern 

(Switzerland). Controls with no evidence of alcohol-related liver disease were recruited in Munich 

(Germany) and Meiringen (Switzerland). Participants were recruited between 2000 and 2013 according 

to the same criteria across centres. Past and present alcohol consumption was quantified through 

interrogation during a face-to-face interview. All German and Swiss participants were independently 

diagnosed as alcohol dependent, according to DSM-IV criteria by two psychiatrists. All participants 

underwent careful clinical examination, standard laboratory testing and abdominal ultrasound; They 

were excluded if any other cause of liver disease other than alcohol-misuse was identified ; specifically 
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if they were positive for hepatitis B surface antigen, anti-hepatitis C immunoglobulin G, anti-nuclear 

antibodies (titer > 1:80), or anti-mitochondrial antibodies (titer > 1:40). Participants with elevated serum 

ferritin and transferring saturations were further investigated and excluded as appropriate. All 

participants were of self-reported German ancestry. 

Participants were defined as cases if they fulfilled one of the following criteria: (i). presence of cirrhosis 

on liver biopsy (Ishak fibrosis stage 5 or 6 ) or (ii) unequivocal clinical and laboratory evidence for the 

presence of cirrhosis as reflected by a combination of (a) abnormal standard ’liver‘ function tests (serum 

transaminases, gamma-glutamyl-transpeptidase, albumin, prothrombin time, INR and, platelet count), 

(b) cirrhosis-related complications including encephalopathy or ascites, (c) findings on imaging 

compatible with a diagnosis of cirrhosis (distorted liver surface, ascites, splenomegaly, collateral 

circulation), and (d) detection of oesophageal varices on upper gastrointestinal endoscopy.  

Corresponding control subjects were defined as participants with an established history of alcohol 

misuse who had no clinical, laboratory, radiological and/or histological evidence of cirrhosis. All 

participants provided written, informed consent and the study received approval from the ethics 

committees of all participating centres. 

APPENDIX D 

Specific GRS formula: The exact formula for the GRS used in our base case analysis to generate 

Figure 4 was as follows. 

GRS=(0.734*rs738408:T)+(0.678*rs10401969:C)+(0.275*rs11065384:T)+(-

0.235*rs11925835:T)+(0.561*rs28929474)+(0.160*rs2954038)+(0.222*rs15052)+(-

0.177*rs2642438:A)+(-0.166*rs72613567:TA).  

Here, rs738408:T refers to the number of copies of the T allele at the rs738408 loci carried for a given 

participant. Rs10401969:C refers to the number of copies of the C allele at the rs10401969 loci 

carried for a given participant. rs11065384:T refers to the number of copies of the T allele at the 

rs11065384 loci carried for a given participant. And so on.  

APPENDIX E 
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Derivation of UKB NAFLD risk factors group: Inclusion in the UKB NAFLD risk factor subgroup 

was based on BMI >=30 and/or self-reported type 2 diabetes. However, UKB participants were not 

asked specifically about type 2 diabetes- only about a diabetes diagnosis in general. A diagnosis of 

type 2 diabetes was therefore inferred by excluding individuals with evidence of type 1 diabetes 

and/or gestational diabetes. Individuals who had potential other causes of liver disease, including 

alcohol-related liver disease, were excluded (Supplementary Table 2). 
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Table 1: Summary of the data sources/subgroups used in this study

Number Median age, yrs 

(IQR)

Sex (% men) Median BMI (IQR) % Type 2 diabetes

Discovery analysis UK Biobank Alcohol intake: Women:>25units/week; Men >36 units/week 35 839 58 (51-63) 63 27.3 (24.7-30.1) 3.7

Cases: alcohol-related cirrhosis 302 53 (47-60) 68 24.8 (22.8-26.8) 0.0

Controls: heavy drinkers without alcohol liver disease 346 49 (42-56) 77 24.6 (22.8-26.6) 0.0

Cases: alcohol-related cirrhosis 410 53 (47-71) 71 26.2 (22.8-29.3) 24.0

Controls: heavy drinkers without alcohol liver disease 1080 42 (36-48) 100 24.8 (22.7-27.5) 4.0

Cases: alcohol-related cirrhosis 178 60 (53-63) 76 29.0 (25.5-32.8) 21.9

Controls: non-teetotal participants without evidence of liver disease 298 248 59 (51-64) 45 26.6 (24.1-29.7) 3.8

Cases: alcohol-related cirrhosis 1272 59 (52-66) 82 27.0 (24.0-30.2) 36.6

Controls: heavy drinkers, no evidence of liver disease 775 49 (41-55) 78 24.4 (21.8-27.1) 5.0

Cases: alcohol-related cirrhosis 312 64 (57-71) 85 26.0 (22.8-29.4) 34.5

Controls: heavy drinkers, no evidence of liver disease 40 63 (58-69) 58 24.8 (22.3-29.0) 13.8

Genetic risk score UK Biobank UKB NAFLD risk factor subgroup 107 014 59 (52-64) 43 32.6 (30.9-35.4) 16.9

Functional analysis Kiel University, 

Germany[35]

Liver biopsy cohort with mRNA expression data 113 46 (40-60) 43 42.4 (25.8-51.5) 21.6

* Data for BMI and type 2 diabetes is missing for >20% of participants
† 
excludes individuals included in the UK biobank discovery analysis. 

Characteristic

Phase 1 replication Rep #1. Buch et al UK 

cohort [9]*

Rep #2. Buch et al German 

cohort [9]*

Rep #3. UK Biobank
†

Cohorts

Phase 2 replication Rep#4. Germany validation 

cohort*

Rep#5. Switzerland 

validation cohort*

Analysis stage Data source
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Table 2: Summary of discovery analysis and phase 1 -2 replication results

SNP Ref:Alt   

allele

Chr Alt allele 

freq*

Nearest Gene FORNS APRI FIB4 AST ALT Beta P-value Beta P-value FDR 5% Beta P-value

rs738408 C:T 22 0.216 PNPLA3 2.21 x 10
-8

6.77 x 10
-63

8.94 x 10
-17

1.74 x 10
-78

7.51 x 10
-82

0.734 3.54 X 10
-24

0.884
ǁ 

2.42 x 10
-29 YES 0.803 2.21 x 10

-51
+++++

rs10401969 T:C 19 0.077 SUGP1 9.15 x 10
-6

3.67 x 10
-8

2.62 x 10
-1

3.50 x 10
-16

1.13 x 10
-18

0.678 5.74 X 10
-10

0.636
¶

3.95 x 10
-7 YES 0.660 1.21 x 10

-15
+++++

rs11065384 C:T 12 0.307 HNF1A 1.86 x 10
-8

2.20 x 10
-4

1.86 x 10
-3

4.12 x 10
-3

3.35 x 10
-2

0.275 7.10 X 10
-5

0.108 1.57 x 10
-1 NO 0.199 1.01 x 10

-4
++++-

rs11925835 C:T 3 0.424 ARHGEF3 5.88 x 10
-22

1.31 x 10
-14

4.40 x 10
-26

3.21 x 10
-1

1.36 x 10
-1

-0.235 7.32 X 10
-4

-0.031 6.62 x 10
-1

NO -0.134 6.64 x 10
-3

- - - - +

rs28929474 C:T 14 0.020 SERPINA1 3.20 x 10
-1

6.96 x 10
-5

1.11 x 10
-1

1.12 x 10
-6

3.67 x 10
-8

0.561 7.47 X 10
-3 1.029 5.08 x 10

-4
YES 0.717 2.77 x 10

-5
+++++

rs2954038 A:C 8 0.300 TRIB1 1.66 x 10
-1

3.52 x 10
-3

2.08 x 10
-2

2.09 x 10
-5

3.77 x 10
-20

0.160 1.29 X 10
-2

0.093
¥ 2.44 x 10

-1
NO 0.140 8.75 x 10

-3
+++++

rs15052 T:C 19 0.178 HNRNPUL1 1.14 x 10
-7

6.87 x 10
-10

6.65 x 10
-12

5.45 x 10
-5

2.25 x 10
-1

0.222 1.34 X 10
-2 0.218 3.20 x 10

-2
YES 0.220 1.06 x 10

-3
-++++

rs2642438 G:A 1 0.297 MARC1 7.28 x 10
-4

6.25 x 10
-2

2.13 x 10
-2

2.11 x 10
-4

8.87 x 10
-13

-0.177 1.97 X 10
-2 -0.273 5.38 x 10

-4
YES -0.223 4.51 x 10

-5
- - - - -

rs72613567 T:TA 4 0.279 HSD17B13 1.23 x 10
-5

6.33 x 10
-15

3.00 x 10
-5

1.44 x 10
-14

1.38 x 10
-17

-0.166 2.76 X 10
-2

-0.316 6.61 x 10
-5

YES -0.237 1.38 x 10
-5

- - - - -

* refers to the allele frequency observed in the UKBiobank Caucasian British subset, excluding related participants.

† effective sample size varies marginally for each SNP

** Data adjusted for age and sex. 

Grey shaded cells denote statistical significance in discovery analysis at the standard genome-wide significance level (P<5.0 x 10
-8

)

Abbreviations: SNP – single nucleotide polymorphism; APRI- serum aspartate transaminase /platelet ratio; FIB4 – Fibrosis-4 Index; AST – serum aspartate transaminase; ALT – serum alanine transaminase

§ "+" direction indicates that Alt allele is associated with increased risk of cirrhosis relative to the Ref allele; Vice versa, "-" direction indicates that Alt allele is associated with a reduced risk of cirrhosis relative to the Ref allele

ǁ association is based on rs738409 (r2=1.0) in replication cohort #4; ¶ association is based on rs58542926 (r2=0.91) in replication cohort #4; ; ¥ association is based on rs2980888(r2=1.0) in replication cohort #4.

Discovery analysis Phase 1 replication 

analysis**

Phase 2 replication analysis** Replication analysis Phase 1 + 2 **

VARIANT INFORMATION P_value for association (N=35 839) Pooled rep#1+#2+#3 

(N_eff
†
=2 545)

Rep#4+#5: N_eff=2068 Pooled rep#1-#5 

(N_eff
†
=4613)

Direction
§ 

(rep#1;#2;#3;

#4; #5)
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HR (95% CI) P-value HR (95% CI) P-value

1 (lowest risk) 171896 72 4.19 REF (1.00) \ REF (1.00) \

2 174261 85 4.88 1.25 (0.90-1.73) 0.180 1.30 (0.93-1.81) 0.169

3 179536 107 5.96 1.44 (1.06-1.98) 0.022 1.44 (1.04-2.00) 0.026

4 155611 103 6.62 1.75 (1.29-2.37) <0.001 1.77 (1.30-2.42) <0.001

5 (highest risk) 166357 195 11.72 3.12 (2.37-4.12) <0.001 3.16 (2.38-4.21) <0.001

*adjusted for age; gender; BMI; diabetes and units/alcohol consumed per week

Abbreviations: HR- hazards ratio; CI- confidence intervals

Table 3. Association between  quintiles of genetic risk score and incident cirrhosis hospitalisation 

in participants with risk factors for Non-Alcoholic Fatty Liver Disease

Genetic risk score 

(quintiles)

Person years of 

follow-up

Events Incident rate 

per 10,000 

PYs

UNADJUSTED ADJUSTED*


