
A Multiobjective Computation Offloading Algorithm
for Mobile Edge Computing

Fuhong Song, Huanlai Xing, Shouxi Luo, Dawei Zhan, Penglin Dai, Rong Qu

Abstract—In mobile edge computing (MEC), smart mobile

devices (SMDs) with limited computation resources and battery
lifetime can offload their computing-intensive tasks to MEC
servers, thus to enhance the computing capability and reduce the
energy consumption of SMDs. Nevertheless, offloading tasks to
the edge incurs additional transmission time and thus higher
execution delay. This paper studies the trade-off between the
completion time of applications and the energy consumption of
SMDs in MEC networks. The problem is formulated as a
multiobjective computation offloading problem (MCOP), where
the task precedence, i.e. ordering of tasks in SMD applications, is
introduced as a new constraint in the MCOP. An improved
multiobjective evolutionary algorithm based on decomposition
(MOEA/D) with two performance enhancing schemes is proposed.
1) The problem-specific population initialization scheme uses a
latency-based execution location initialization method to initialize
the execution location (i.e. either local SMD or MEC server) for
each task. 2) The dynamic voltage and frequency scaling based
energy conservation scheme helps to decrease the energy
consumption without increasing the completion time of
applications. The simulation results clearly demonstrate that the
proposed algorithm outperforms a number of state-of-the-art
heuristics and meta-heuristics in terms of the convergence and
diversity of the obtained nondominated solutions.

Index Terms—Computation offloading, dynamic voltage and

frequency scaling, mobile edge computing, multiobjective
evolutionary algorithm.

I. INTRODUCTION

ITH the rapid development of mobile communication
technologies, smart mobile devices (SMDs) including

smartphones, tablets, laptops and smartwatches have become
the main platforms to support various mobile applications
such as banking, education, healthcare, travel, business, games,
face recognition, augmented reality, and natural language
processing, etc. [1][2]. Nowadays, although SMDs are

Manuscript received December 7, 2019; This work was supported in part by

China Postdoctoral Science Foundation (2019M663552), National Natural
Science Foundation of China (No. 61802319), the Fundamental Research
Funds for the Central Universities, China Scholarship Council, P. R. China,
and University of Nottingham, United Kingdom. (Corresponding author:
Huanlai Xing.)

F. Song, H. Xing, S. Luo, D. Zhan, and P. Dai are with the School of
Information Science and Technology, Southwest Jiaotong University,
Chengdu 611756, China (e-mail: fhs@my.swjtu.edu.cn;
hxx@home.swjtu.edu.cn; sxluo@swjtu.edu.cn; zhandawei@swjtu.edu.cn;
penglindai@swjtu.edu.cn).

R. Qu is with the School of Computer Science, University of Nottingham,
Nottingham NG8 1BB, United Kingdom (e-mail: rong.qu@nottingham.ac.uk).

becoming increasingly powerful in terms of computing
capability, they are, however, still not able to support
computing-intensive applications. On the one hand, SMDs
with limited computing capability may cause high latency,
thus failing to meet the required quality of service (QoS)
demand. On the other hand, high battery consumption by
computing-intensive applications may also significantly
degrade the quality of experience (QoE) for end users.

With more computing and storage resources in cloud
servers, mobile cloud computing (MCC) [3] has been
envisioned as a potential solution to deal with the above
mentioned problems. MCC migrates computational tasks to
cloud servers, thus to reduce the computational burden and
energy consumption of local SMDs. This is referred to as the
computation offloading problem (COP). Nevertheless, cloud
servers are usually geographically faraway from SMDs,
resulting into high transmission delay and low response speed.
Obviously, MCC is not suitable for scenarios involving
delay-sensitive applications, as QoE cannot be properly
guaranteed. Actually, the computation offloading in MCC is
only suitable for delay-tolerant and computation-intensive
applications, such as online social networks, mobile
e-commerce, remote learning, etc. On the other hand, MEC
relocates cloud computing resources to the edge of networks
in close proximity to SMDs, ensuring lower end-to-end delay
and faster response [4][5][6]. The computation offloading in
MEC is more appropriate for supporting delay-sensitive and
computation-intensive applications, such as virtual reality,
autonomous driving, and interactive online games and so on.
With the demand for delay-sensitive applications ever
increasing, it is hence more practical to study the COP
problem in MEC.

In general, MEC servers are lightweight regarding the
computing capability, because their economic and scalable
deployment should be considered. It is thus not feasible to
offload all computational tasks from SMDs to the MEC severs.
More data transmission over communication channels also
leads to higher transmission delay. To avoid overloading,
SMDs should offload appropriate amount of computational
tasks to MEC servers, which also helps to reduce the battery
consumption of SMDs.

In MEC, the completion time of applications and the energy
consumption of SMDs conflict with each other. In other words,
improving one of them would deteriorate the other. The
computational problem of reasonably offloading tasks between
SMDs and MEC servers, i.e. COP, has become one of the most
challenging research topics in the area of MEC.

W

In this paper, we model the computation offloading in MEC
as a multiobjective computation offloading problem (MCOP).
A multiobjective evolutionary algorithm based on
decomposition (MOEA/D) is adopted for solving it [7].

The main contributions are summarized as follows:
1) A MCOP problem in MEC environment is modeled,

where the average completion time of applications and
the average energy consumption of SMDs are defined
as two objectives. On each SMD, only one application,
with an ordered list of tasks, runs at a time. To our
knowledge, this is the first model in MEC considering
the task-precedence constraints within each application
in MCOP.

2) An improved MOEA/D algorithm with two
performance-enhancing schemes, namely
MOEA/D-MCOP, is proposed. The first scheme, a
problem-specific population initialization scheme
generates a set of high-quality solutions to MCOP,
where a latency-based execution location initialization
(LELI) method is designed to determine the initial
execution location (i.e. local SMD or MEC server) for
each task, guiding the exploration towards promising
regions in the search space. The second scheme, a
dynamic voltage and frequency scaling based energy
conservation scheme, aims at reducing the energy
consumption of SMDs.

3) For the new MCOP built in this paper, there exists no
benchmark instance in the literature. A set of test
instances are thus generated to verify the performance
of the proposed MOEA/D-MCOP, and presented to the
research community for further investigations on this
emerging topic. The simulation results clearly
demonstrate that the proposed algorithm obtains
high-quality nondominated solutions and outperforms
a number of state-of-the-art MOEAs and heuristic
algorithms against several evaluation criteria.

The remainder of this paper is organized as follows. The
related work is introduced in Section II. In Section III, we
present the MEC system model and formulate the bi-objective
MCOP problem. Section IV briefly reviews the multiobjective
optimization problem and the original MOEA/D. The
proposed MOEA/D-MCOP is explained in Section V. The
simulations and performance analysis are discussed in Section
VI. Section VII presents the conclusions and future work.

II. RELATED WORK

The COP problem has received an increasing research
attention from both academia and industry [8]. In general,
completion time and energy consumption are considered as
typical criteria for COP performance evaluation, i.e. as
objectives of minimizing the completion time, minimizing the
energy consumption, and minimizing both of them at the same
time.

When a SMD offloads computing-intensive tasks to a MEC
server, the completion time is one of the important criteria for
QoE evaluation. Liu et al. [9] adopted Markov decision

process to determine execution locations for tasks. A
transmission policy was devised based on the queueing state
of task buffer, the transmission unit state and the local
processing unit state. The average completion time of tasks
was minimized by an efficient one-dimensional search
algorithm. Mao et al. [10] developed a green MEC system
with energy harvesting and proposed a low complexity online
algorithm, i.e. Lyapunov optimization based dynamic
computation offloading algorithm (LODCO) to reduce the
execution latency by jointly determining the offloading
decision, the CPU-cycle frequency and the transmission power.
Yang et al. [11] investigated the scheduling problem of
multi-user computing partitioning and cloud resource
computing offloading. The average completion time of
multiple users, rather than a single user, was minimized by an
offline heuristic algorithm. Dinh et al. [12] took both fixed and
elastic CPU frequencies of SMDs into account. A semidefinite
relaxation (SDR) based approach was proposed to minimize
the execution time of all tasks.

Energy consumption of SMDs is also a main concern in
COP. Muñoz et al. [13] proposed a framework to jointly
optimize the usage of computational and radio resources,
where multiple antennas were used in SMDs and femto access
points. The energy consumption was minimized by optimizing
the communication time and the amount of data offloaded to a
femto access point. Tong et al. [14] aimed at obtaining a
trade-off between energy consumption of SMDs and QoS of
applications. An application-aware wireless transmission
scheduling algorithm was presented to minimize the energy
consumption, subject to the application deadline. Masoudi et
al. [15] considered three practical constraints, i.e. the backhaul
capacity, the maximum tolerable delay, and the interference
level. They proposed a joint power allocation and
decision-making algorithm to minimize the power
consumption of SMDs. Wang et al. [16] presented an
integrated framework for computation offloading and
interference management, where the physical resource block,
the computation offloading decision and the computation
resource allocation were taken into consideration for reducing
energy consumption. Mahmoodi et al. [17] modeled the COP
as a linear optimization problem on energy consumption,
where the communication delay, the overall application
execution time and the component precedence ordering were
taken into account. Xu et al. [18] proposed an energy-aware
computation offloading scheme, where simple additive
weighting and multiple criteria decision marking were used to
determine an optimal solution. In [19], an energy-efficient
COP problem in 5G MEC was investigated, considering
fronthaul and backhaul links. The overall energy consumption
was minimized by an artificial fish swarm algorithm, subject
to the completion time demand. In [20], a security and energy
efficient computation offloading scheme based on genetic
algorithm was presented. Guo et al. [21] formulated a
cloud-MEC collaborative computation offloading problem.
The authors presented an approximation collaborative
computation offloading scheme to minimize the energy
consumption of all mobile devices. Zhang et al. [22] proposed

a collaborative task execution scheduling algorithm to solve
the delay-constrained workflow scheduling problem in MCC.
The energy consumption of SMDs was minimized, with the
application delay deadline satisfied. Guo et al. [23] studied an
energy-efficient computation offloading management scheme
in MEC with small cell networks. A hierarchical GA and
PSO-based computation algorithm was developed to minimize
the energy consumption of all mobile devices. Kuang et al. [24]
formulated a multi-user offloading game problem in the
OFDMA communication system. The authors presented an
offloading game mechanism to maximize the number of
energy-saving devices, including a beneficial offloading
threshold algorithm and a beneficial offloading group
algorithm. It minimized the energy cost while considering the
application’s deadline and risk probability. Lin et al. [25]
applied dynamic voltage and frequency scaling (DVFS) to
minimize SMD energy consumption in MCC environment,
where task precedence requirements within any application
were satisfied. However, the authors assumed that there was a
single SMD in their MCC system, which was impractical. In
real world applications, multiple SMDs are active at the same
time, and some of them may offload their computation tasks to
cloud.

On the one hand, a smaller completion time requires more
tasks to be executed on local SMDs, which leads to higher
battery consumption. On the other hand, to keep the battery
consumption at a lower level requires more computations to be
offloaded to the edge. Some researchers hence treated the
completion time of applications and the energy consumption
of SMDs as equally important, i.e. minimizing them
simultaneously. Zhang et al. [26] considered single and
multicell MEC network scenarios, and proposed an integrated
framework for computation offloading and resource allocation.
An iterative search algorithm was developed to strike a
balance between execution time and energy consumption.
Peng et al. [27] developed an optimal task scheduling scheme
for SMDs using the DVFS technology and the whale
optimization algorithm. Considering the operating CPU-cycle
frequency, the task execution position and sequence, this
scheme could optimize both of the objectives simultaneously.
Guo et al. [28] studied energy-efficient COP subject to the
application execution latency. An energy-efficient dynamic
offloading and resource scheduling (eDors) scheme was
proposed to reduce the execution latency and the energy
consumption. Wang et al. [29] modeled an energy-efficient
M/M/n-based COP with both of the objectives. A distributed
algorithm considering transmission power allocation, strategy
selection and clock frequency control was proposed. Cui et al.
[30] investigated the tradeoff between the completion time and
the energy consumption subject to end user requirements, and
presented an improved fast and elitist nondominated sorting
genetic algorithm (NSGA-II).

In summary, considering the completion time and energy
consumption as two objectives represents one of the main
streams in the current research on MEC computation
offloading. To the best of our knowledge, however, task
precedence has not been considered in the existing MCOPs.

This presents a practical constraint in many applications. For
example, in any face recognition system, object detection
cannot be launched before the completion of video/image
collection. This motivates us to model a new MCOP with a
realistic task precedence constraint.

Most of the existing algorithms for MCOP evaluate
solutions using weighted sum of multiple objectives. The fact
that the objectives conflict with each other in MCOP has been
omitted, thus a single solution cannot be optimized against all
objectives. In research, NSGA-II has thus been employed to
solve MCOP [30]. As a multiobjective evolutionary algorithm
(MOEA), NSGA-II has unveiled promising advantage, i.e.
providing a set of nondominated solutions for decision making
in a single run. Nevertheless, as we observe in this paper,
NSGA-II not only is likely to be stuck into local optima, but
also converges slowly. MOEA/D decomposes a multiobjective
optimization problem (MOP) into a number of scalar
optimization subproblems and solves each of them at the same
time. It has been reported that MOEA/D achieves better
optimization performance with lower computational overhead,
compared with NSGA-II [31][32][33]. This motivates us to
investigate MOEA/D to address the newly modeled MCOP in
this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview

A MEC system consists of one macro eNodeB node (MeNB)
and a set of small eNodeB nodes (SeNBs) [26], as shown in
Fig. 1. MeNB is equipped with a MEC server capable of
executing multiple computing-intensive tasks in parallel. The
MEC server can dynamically allocate its computing resources
to execute tasks offloaded from different SMDs. All SeNBs
are connected to MeNB via wired lines. Each SeNB forms a
small cell, connecting to a set of SMDs via wireless channels.

Each task in an application can be run either on local SMDs
or the MEC server. Computation offloading incurs when some
tasks are offloaded from SMDs to the MEC server, and the
data delivery relies on relay of SeNB and MeNB.

Fig. 1. An example MEC system.

Fig. 2. An example DAG of an application.

There are two commonly used structural representation

methods to denote an application, namely the graph-based
method [34] and the language-based method [35]. In particular,
the graph-based method includes directed acyclic graph (DAG)
[20][25][27][28][36] and Petri Net [37]. DAG based model is
one of the most popular methods. Therefore, each application
on a SMD is modeled as a DAG task structure. Fig. 2 shows
an example DAG of an application.

In this paper, time sharing is adopted in the MEC system
and the minimum time unit is referred to as time interval (e.g.
several seconds). We assume that in any time interval, for any
SMD, there is only one application being executed. However,
any SMD is allowed to run different applications in different
time intervals, enabling co-existence of multiple applications.

B. System Model

For the MeNB, its associated MEC server is with a

computing capability of F. Denote the i-th SeNB as i, i =

1,…,S, where S is the number of SeNBs. Let SMD
iN and Ui,j be

the number of SMDs and the j-th SMD in the i-th small cell

associated with i, respectively.
Denote the application to be executed on SMD Ui,j by a

DAG Gi,j = (Vi,j, Ei,j), where Vi,j and Ei,j are the task and
precedence constraint sets, respectively, i = 1,…,S, and j =

1,…, SMD
iN . An application is also referred to as a task graph

Gi,j, which is composed of Ni,j tasks, where Ni,j = |Vi,j|. Let vi,j,k
∈ Vi,j be the k-th task in task set Vi,j, k = 1,…,Ni,j. Edge e(vi,j,k,
vi,j,l) ∈ Ei,j defines the task-precedence constraint from task vi,j,k
to task vi,j,l, meaning vi,j,l cannot be executed until vi,j,k is
completed.

Let pre(vi,j,k) and suc(vi,j,k) be the sets of the immediate
predecessors and successors of task vi,j,k, respectively. For a
task graph Gi,j, denote the start and end tasks by vi,j,start and
vi,j,end, respectively. Taking the task graph in Fig. 2 as an
example, for task v6, its associated sets of immediate
predecessors and successors are pre(v6) = {v2, v3, v4} and
suc(v6) = {v7}; v1 and v7 are the start and end tasks,
respectively.

Each task vi,j,k is modeled as a 3-tuple set vi,j,k = (ci,j,k, di,j,k,
oi,j,k), where ci,j,k is the number of CPU cycles required to
perform vi,j,k, and di,j,k and oi,j,k are the input and output data
sizes of vi,j,k, respectively. The input data of vi,j,k includes the
input parameters, the program code, and the output data

generated by all its immediate predecessors in pre(vi,j,k). The
main notations used in this paper are summarized in Table I.

TABLE I

SUMMARY OF THE MAIN NOTATIONS

Notation Definition

Btotal Total bandwidth offered by the MEC system
ci,j,k Number of CPU cycles required to perform task vi,j,k
di,j,k Input data size of task vi,j,k

e(vi,j,k, vi,j,l) Task-precedence constraint from task vi,j,k to task vi,j,l
Ei,j Set of the task precedence constraints of application Gi,j
F Computing capability of the MEC server

, ,
actual

i j hf Actual computing frequency on the h-th core of SMD Ui,j

, ,
max

i j hf Maximum computing frequency on the h-th core of SMD
Ui,j

Gi,j Application (task graph) to be executed on SMD Ui,j
gi,j Channel gain between SMD Ui,j and SeNB  i
H Number of heterogeneous cores of a SMD
Ii,j Interference at the SMD Ui,j
Li,j Execution location vector associated with application Gi,j

loci,j,k Execution location of task vi,j,k
M Number of the computing frequency levels on a core

SMD
iN

Number of SMDs in the i-th small cell associated with

SeNB i
SMD
totalN Total number of SMDs in the MEC system

task
totalN Total number of tasks in the MEC system

Nchannel Number of channels offered by the MEC system
Ni,j Total number of tasks in application Gi,j
Oi,j Execution order vector associated with application Gi,j
oi,j,k Output data size of task vi,j,k
ui,j,k The k-th task to be executed in Oi,j

, ,
actual
i j hp Actual power consumption of the h-th core of SMD Ui,j

, ,
max
i j hp Maximum power consumption of the h-th core of SMD

Ui,j

,
rxd
i jp Power consumption when SMD Ui,j receives data

,
txd
i jp Power consumption when SMD Ui,j offloads tasks

pre(vi,j,k) Set of the immediate predecessors of task vi,j,k
Ri,j Achievable uplink transmission rate of SMD Ui,j

S Number of SeNBs in the MEC system

SOL(Gi,j)
Computation offloading solution associated with
application Gi,j

SOL(i) Computation offloading solution associated with SeNB i
suc(vi,j,k) Set of the immediate successors of task vi,j,k

Ui,j
The j-th SMD in the i-th small cell associated with SeNB

i
Vi,j Set of the tasks in application Gi,j

vi,j,k The k-th task in application Gi,j
x A solution to the MCOP
αt The t-th frequency scaling factor

i The i-th SeNB in the MEC system
σ2 Noise power
ω Bandwidth of a wireless channel

C. Communication Model

When a task is selected for offloading, its associated input
data is transmitted to the MEC server via SeNB and MeNB.
The transmission delay from SeNB to MEC server via wired
connections is usually trivial, thus is ignored. The
transmission delay between the corresponding SMD and
SeNB is considered in the model.

Let Btotal and Nchannel be the total bandwidth and the number
of channels offered by the MEC system, respectively. Each

channel is of a bandwidth ω = Btotal / Nchannel. Each SMD uses
one of the Nchannel channels for data offloading. To guarantee
that all SMDs within the same small cell can perform
independent computation offloading, it is assumed that Nchannel
is no less than the maximum number of SMDs allowed in a
small cell. If two SMDs from neighboring small cells use the
same channel to transmit data, interference occurs and the
transmission rate is reduced.

According to the Shannon-Harley theorem, it is possible
that no errors occur in a channel with limited bandwidth and
Gaussian white noise interference if transmitting information
at the theoretical maximum transmission rate. In this paper, we
set the achievable uplink transmission rate in a channel to the
theoretical maximum transmission rate of that channel.
Assume each wireless channel is symmetric, i.e. the
achievable uplink and downlink transmission rates are the
same. When SMD Ui,j offloads tasks to the MEC server, the
achievable uplink transmission rate Ri,j is calculated using Eq.
(1).

, ,

, 2 2
,

log 1
txd
i j i j

i j

i j

p g
R

I




 
    

 (1)

where ω is the channel bandwidth. ,
txd
i jp is the power

consumption of Ui,j when tasks are offloaded to the MEC

server. gi,j is the channel gain between SMD Ui,j and SeNB i.
σ2 is the noise power. Ii,j is the interference parameter
associated with SMD Ui,j indicating how severe the channel
sharing is, as defined in Eq. (2).

, (,),(,) , ,(,)
1, 1

SMD
lNS

txd
i j i j l k l k i l k

l l i k

I p g
  

   (2)

where λ(i,j),(l,k) ∈ {0,1} is a channel sharing coefficient. λ(i,j),(l,k)
= 1 represents that the same channel is being shared by both

Ui,j and Ul,k, and λ(i,j),(l,k) = 0 otherwise. ,
txd
l kp is the power

consumption of Ul,k when offloading tasks, and gi,(l,k) is the

channel gain between Ul,k and i, where Ul,k is associated with

SeNB l, l, i ∈ {1,…,S} and l ≠ i.

D. Local Computing

In this paper, the local computing model is based on the
local scheduling model in MCC [25], where the DVFS
technique is enabled. For each SMD in the MEC system,
assume there are H heterogeneous cores in its processor. This
enables the processor execute its tasks in parallel if there are
no task-precedence constraints among them. All cores are
DVFS enabled, allowing each core to run at different
frequency levels at different times. An arbitrary SMD Ui,j can

be defined as a 4-tuple set , , , , , , ,(, , ,)max max txd rxd
i j i j h i j h i j i jU f p p p ,

where , ,
max

i j hf is the maximum computing frequency on the

h-th core of Ui,j, h = 1,…,H, , ,
max
i j hp is the maximum power

consumption when the h-th core is working at frequency

, ,
max

i j hf , ,
txd
i jp is the power consumption of Ui,j when offloading

tasks, and ,
rxd
i jp is the power consumption of Ui,j when

receiving data from its associated SeNB.
Assume there are M frequency scaling factors, i.e. α1,…,αM,

for an arbitrary core in an arbitrary SMD, where
0<α1<…<αt<…<αM = 1 [25]. The actual computing frequency
that the h-th core of SMD Ui,j is working at can be defined as

, , , ,
actual max

i j h t i j hf f  , t = 1,…,M. The actual power consumption

of the h-th core of Ui,j, , ,
actual
i j hp , is equal to , , , ,()actual

i j h i j ha f  ,

where γ is a constant in the range of [2, 3] and , ,i j ha is a

coefficient associated with the chip structure.

Let , , ,()min
SMD h i j kT v denote the minimum execution time of

task vi,j,k if vi,j,k is executed on the h-th core of SMD Ui,j, at the

maximum computing frequency , ,
max

i j hf . , , ,()min
SMD h i j kT v depends

on the number of CPU cycles required to perform vi,j,k, ci,j,k,

and the maximum computing frequency, , ,
max

i j hf . Then, the

actual execution time of vi,j,k on the h-th core , , ,()SMD h i j kT v is

obtained using Eq. (3) [25].

, , , , , ,

, ,

, ,

() () /min
SMD h i j k SMD h i j k t

i j k

max
i j h t

T v T v

c

f










 (3)

If task vi,j,k is executed locally on the h-th core of SMD Ui,j,

its actual energy consumption , , ,()actual
SMD h i j kE v is obtained via

Eq. (4), according to [25].

, , , , , , , ,

, , , , , , ,

, , , , , , ,

() ()

() (() /)

() (() /)

()

actual actual
SMD h i j k i j h SMD h i j k

actual min
i j h i j h SMD h i j k t

max min
i j h t i j h SMD h i j k t

t

E v p T v

 a f T v

 a f T v









 



 

  

   

 1
, , , , , , ,

1
, , ,

1
, , , , ,

() ()

() ()

() ()

max min
i j h i j h SMD h i j k

max
t SMD h i j k

max min
t i j h SMD h i j k

a f T v

 E v

 p T v

















  

 

  

 (4)

where , , ,()max
SMD h i j kE v is the maximum energy consumption if

task vi,j,k is executed on the h-th core of SMD Ui,j at the
maximum computing frequency.

Before executing task vi,j,k, execution of all its immediate
predecessors must be completed. If vi,j,k is to be launched on a
core of SMD Ui,j, the ready time for executing it is related to
the completion times of its immediate predecessors in pre(vi,j,k).

That is, the ready time for executing vi,j,k, , ,()exe
SMD i j kRT v ,

depends on the maximum completion time of all tasks in
pre(vi,j,k). Assume vi,j,l ∈ pre(vi,j,k) is an immediate predecessor
of vi,j,k which can be executed on either the local SMD or the

MEC server. Let , ,()exe
SMD i j lCT v be the completion time of task

vi,j,l if it is executed on SMD Ui,j. Let , ,()rxd
SMD i j lCT v be the

completion time that Ui,j finishes receiving the output data of
vi,j,l from wireless channel if vi,j,l is executed on the MEC

server. The definition of , ,()exe
SMD i j kRT v is expressed in Eq. (5).

 
, , , ,

, ,

, , , ,
()

()

max max (), ()
i j l i j k

exe
SMD i j k

exe rxd
SMD i j l SMD i j l

v pre v

 RT v

CT v CT v



 (5)

where , ,() 0exe
SMD i j lCT v  means vi,j,l is offloaded to the MEC

server and , ,() 0rxd
SMD i j lCT v  means vi,j,l is executed locally. So,

in any case, between , ,()exe
SMD i j lCT v and , ,()rxd

SMD i j lCT v , one of

them is set to 0.
If task vi,j,k is selected to run on a core of Ui,j, its execution

cannot start before its ready time , ,()exe
SMD i j kRT v . It is possible

that vi,j,k is executed sometime after , ,()exe
SMD i j kRT v , because

that core may be busy with executing other tasks at that time.

Let the start time for executing vi,j,k denoted by , ,()exe
SMD i j kST v ,

, , , ,() ()exe exe
SMD i j k SMD i j kST v RT v [25].

E. Edge Computing

The edge computing model in this paper is based on the
cloud scheduling model in [25]. However, the authors assume
there is only one active SMD in the MCC network, which is
not realistic. We assume there are multiple SMDs in the MEC
system, which mimics the demands from the real world.

To model the offloading task vi,j,k to the MEC server, let

, ,()txd
SMD i j kRT v be the ready time for transmitting vi,j,k from Ui,j

via wireless channel. If vi,j,k is to be offloaded to the MEC

server, the ready time for transmitting it, , ,()txd
SMD i j kRT v ,

depends on the maximum completion time of all tasks in

pre(vi,j,k). Let , ,()txd
SMD i j lCT v be the completion time that Ui,j

finishes transmitting vi,j,l ∈ pre(vi,j,k) to the MEC server. The

expression of , ,()txd
SMD i j kRT v is presented in Eq. (6) [25].

 
, , , ,

, ,

, , , ,
()

()

max max (), ()
i j l i j k

txd
SMD i j k

exe txd
SMD i j l SMD i j l

v pre v

 RT v

CT v CT v



 (6)

where , ,() 0exe
SMD i j lCT v  if vi,j,l is offloaded to the MEC server

and , ,() 0txd
SMD i j lCT v  if vi,j,l is executed locally.

Let the time duration required to transmit vi,j,k to the MEC

server be , ,()txd
SMD i j kT v , as defined in Eq. (7).

, ,

, ,

,

()
i j ktxd

SMD i j k

i j

d
T v

R
 (7)

where di,j,k and Ri,j are the input data size of vi,j,k and the
achievable uplink transmission rate, respectively.

If task vi,j,k is offloaded to the MEC server, the energy

consumption of Ui,j for transmitting this task, , ,()txd
SMD i j kE v , is

expressed in Eq. (8).

, , , , ,() ()txd txd txd
SMD i j k i j SMD i j kE v p T v  (8)

Let , ,()exe
MEC i j lCT v be the completion time of vi,j,l ∈ pre(vi,j,k)

if vi,j,l is executed on the MEC server. The ready time for

executing vi,j,k on the MEC server, , ,()exe
MEC i j kRT v , is defined in

Eq. (9).

, , , ,

, ,

, , , ,
()

()

max{ (), max ()}
i j l i j k

exe
MEC i j k

txd exe
SMD i j k MEC i j l

v pre v

 RT v

CT v CT v



 (9)

Let , ,()exe
MEC i j kT v denote the execution time of vi,j,k on the

MEC server, as defined in Eq. (10).

, ,

, ,()
i j kexe

MEC i j k

c
T v

F
 (10)

where ci,j,k is the number of CPU cycles required to execute
vi,j,k, and F is the computing capability of the MEC server.

The MEC server can start to transmit the output data of vi,j,k
back to Ui,j, immediately after the completion of vi,j,k. Let

, ,()txd
MEC i j kRT v be the ready time for the MEC server to

transmit back the output data of vi,j,k, as defined in Eq. (11).

, , , ,() ()txd exe
MEC i j k MEC i j kRT v CT v (11)

Let the time duration required to receive the output data of

vi,j,k from the MEC server, denoted by , ,()rxd
SMD i j kT v , as defined

in Eq. (12).

, ,

, ,

,

()
i j krxd

SMD i j k

i j

o
T v

R
 (12)

where oi,j,k is the output data size after the execution of vi,j,k.
In [25], the cloud scheduling model does not consider the

energy consumption of SMD Ui,j incurred when receiving the
output data of task vi,j,k, which is not practical. In contrast, our
edge computing model takes the energy consumption of
receiving the output data from MEC server into consideration,
which helps to accurately estimate the energy consumption.
The energy consumption of Ui,j for receiving the output data of

vi,j,k, , ,()rxd
SMD i j kE v , is defined in Eq. (13), according to

[22][38].

, , , , ,() ()rxd rxd rxd
SMD i j k i j SMD i j kE v p T v  (13)

Taking the task graph in Fig. 2 as an example, we briefly
explain the process of local and edge computing. In the MEC

system, there is one SeNB, namely 1, and one SMD

associated with 1, namely U1,1. The application G1,1 has seven
tasks, i.e. v1,1,k, k = 1,…,7, to be run on U1,1. Suppose U1,1
owns three cores (i.e. h = 1,2,3). Table II shows the execution
time of each task on different cores and the actual execution
locations of all tasks. Let loc1,1,k ∈ {1,2,3,4} be the execution
location of v1,1,k, k = 1,…,7. If 1 ≤ loc1,1,k ≤ 3, v1,1,k is executed
on the loc1,1,k-th core of U1,1. If loc1,1,k = 4, v1,1,k is offloaded to
the MEC server. For simplicity, we set the time duration
required to transmit each task to the MEC server,

1,1,() 3txd
SMD kT v  , the time duration required to receive the

output data of each task from the MEC server , 1,1,() 1rxd
SMD kT v  ,

and the execution time of each task on the MEC server,

1,1,() 1exe
MEC kT v  , k = 1,…,7.

TABLE II

EXECUTION TIMES AND LOCATIONS OF ALL TASKS

Task ,1
min

SMDT ,2
min

SMDT ,3
min

SMDT Location

v1 1 3 4 3
v2 3 4 5 1
v3 1 2 4 4
v4 3 5 7 1
v5 2 5 6 2
v6 2 4 6 3
v7 1 3 4 4

Fig. 3. Task scheduling plan.

Fig. 3 shows the task scheduling plan according to Table II.

The start time and completion time of task v6 are

6() 10exe
SMDST v  and 6() 16exe

SMDCT v  , respectively. The

completion time of 1,1G , 1,1 7() ()rxd
SMDCT G CT v , is 21.

F. Problem Formulation

The new MCOP model aims to simultaneously minimize
the average completion time of applications and the average
energy consumption of SMDs in the above MEC system.

Let , ,()exe
SMD i j endCT v and , ,()rxd

SMD i j endCT v be the completion

time for executing the end task vi,j,end in application Gi,j on
SMD Ui,j and that for receiving the output data of vi,j,end via

wireless channel, respectively. Let , ,i j end be a binary

variable indicating if vi,j,end is executed on Ui,j or the MEC

server. , , 1i j end  means vi,j,end is executed on Ui,j, and

, , 0i j end  otherwise. The completion time of application Gi,j

on SMD Ui,j, ,()i jCT G , is defined in Eq. (14), which is equal

to the completion time of the end task vi,j,end in Gi,j. If vi,j,end is

offloaded to the MEC server, ,()i jCT G equals to the time

when the output data of vi,j,end is fully received. Otherwise,

,()i jCT G equals to the time when the execution of vi,j,end is

over.

,

, , , , , , , ,

 ()

() (1) ()

i j

exe rxd
i j end SMD i j end i j end SMD i j end

CT G

CT v CT v 



   
 (14)

With the obtained completion times of all applications on
all SMDs, the average completion time (ACT) of applications
in the MEC system can be calculated using Eq. (15).

,
1 1

1
()

SMD
iNS

i jSMD
i jtotal

ACT CT G
N  

   (15)

where
1

SSMD SMD
total ii

N N


  is the total number of SMDs in the

MEC system.
The average energy consumption (AEC) of all SMDs in the

MEC system can be obtained by Eq. (16).

,

, ,
1 1 =1

1
()

SMD
i ji

NNS

i j ktask
i j ktotal

AEC E v
N  

    (16)

where

, , , , , , ,

, , , , , ,

() ()

 (1) (() ())

actual
i j k i j k SMD h i j k

txd rxd
i j k SMD i j k SMD i j k

E v E v

E v E v





  

  
 (17)

,1 1

SMD
iS Ntask

total i ji j
N N

 
   is the total number of tasks in the

MEC system. i,j,k = 1 if vi,j,k is executed on SMD Ui,j; i,j,k = 0,
otherwise.

The MCOP can be defined as a bi-objective MOP problem,
minimizing ACT in Eq. (15) and AEC in Eq. (16) subject to all
task precedence constraints as defined in Eq. (18).

, ,,
Minimize (,)

i j i jL O
ACT AEC

s.t.

, , , , , , , , ,

, , , , , , , ,

, , , , , , , ,

, ,

C1: () (), if (,)

C2 : () (), ()

C3 : () (), ()

C4 : ()

i j k i j l i j k i j l i j

exe exe
SMD i j l SMD i j k i j l i j k

rxd exe
SMD i j l SMD i j k i j l i j k

txd e
SMD i j k MEC

 order v order v e v v E

 CT v RT v v pre v

 CT v RT v v pre v

 CT v RT

 

  

  



, , , ,

, ,

, , , ,
()

, ,

()

C5 : max () ()

C6 : {0,1,..., }, , ,

i j l i j k

xe
i j k

exe exe
MEC i j l MEC i j k

v pre v

i j k

v

 CT v RT v

 loc H i j k




 

(18)

where, constraint C1 is the execution order constraint between

two tasks, i.e. if , , , , ,(,)i j k i j l i je v v E , task , ,i j lv cannot be

executed before the completion of task , ,i j kv . Constraints C2

and C3 are the local task-precedence constraints, ensuring that

, ,i j kv cannot be executed before all its immediate

predecessors are completed. Constraints C4 and C5 are the

edge task-precedence constraints, indicating that , ,i j kv cannot

be executed before it is completely offloaded to the MEC
server and all its immediate predecessors are completed on the
MEC server. Constraint C6 is a computation offloading

execution location constraint, specifying where , ,i j kv is

executed, i.e. which core of ,i jU or the MEC server.

IV. OVERVIEW OF MOP AND MOEA/D

A. MOP

A MOP can be defined as Eq. (19).

1Minimize () ((),..., ())

Subject to

T
m F f f

 




x x x

x
 (19)

where 1= (,...,)nx xx is an n-dimension decision vector in

search space Ω. There are m objective functions in objective
vector F(x), where f1(x),…,fm(x) conflict with each other [39].

Given two different solutions x1, x2 ∈ Ω, x1 is said to
dominate x2, if fi(x1) ≤ fi(x2) for all i ∈ {1,…,m}, and fj(x1) <
fj(x2) for at least one j ∈ {1,…,m}. A solution x* ∈ Ω is known
as Pareto optimal if no other solution in Ω dominates it. The
set of all Pareto optimal solutions is known as the Pareto
optimal set, of which the mapping in the objective space is
known as the Pareto optimal front (PF).

There are mainly two methods to handle a MOP. One is to
convert it to a single-objective optimization problem (SOP) by
objective aggregation. In this case, the commonly used
method is weighted sum, where each objective, e.g. the ACT
and AEC in this paper, is assigned a weight. However, weight
values should be set in advance. Heuristics and metaheuristics
(including EAs) are often used to address a SOP. By running
them once, a single solution is output. If system demands
change, the weight values need to be re-set. Hence, the first
method only obtains a compromised solution, which cannot
reflect the conflicting features between objectives. The other
method to tackle MOP is to use MOEAs. Any MOEA is
capable of obtaining a set of nondominated solutions in a
single run. These solutions reflect the Pareto-dominance
relation among them. This is what a decision maker expects to
know. Even if the system demands change, the nondominated
solutions obtained by MOEAs are still valid. This is why
MOEAs are more appropriate to address the MCOP problem.

Currently, MOEAs have attracted increasingly more
research attention and been successfully applied to address
various MOP problems, such as computation offloading
[27][30], workflow scheduling [20], function optimization
[7][40], feature selection [41], and job shop scheduling [42].

Pareto-dominance based MOEAs are the mainstream
optimizers in the literature, such as, NSGA-II. Nevertheless,
they usually suffer from prematurity and local optima. On the
other hand, compared with them, MOEA/D has been reported
to achieve better global exploration ability with lower
computational overhead [31][40]. This motivates us to adapt
MOEA/D for the new MCOP.

B. Original MOEA/D

MOEA/D has been applied to various MOPs due to its high
effectiveness yet low computational cost [31][32][33][40][43]
[44]. MOEA/D decomposes a MOP into a number of scalar
optimization subproblems (SOSPs) that are simultaneously
optimized in a collaborative and time efficient manner. It
employs genetic operators to generate new solutions and
obtain a set of nondominated solutions through an evolution
process. Three basic methods have been employed in the
literature for decomposition, among which the Tchebycheff
method is the mostly used, and adopted in our proposed
algorithm.

Let 1,..., PN  be a set of uniformly spread weighted

vectors, where NP is the number of SOSPs. 1(,...,)i i i
m 

is the weight vector associated with the i-th SOSP, i = 1,…,NP,

where m is the number of objectives, and
1

1
m i

jj



 . Let

* * *
1(,...,)mz zz be the reference point,

where * min{ () | }j jz f x x , and j = 1,…,m. Based on the

Tchebycheff method, the i-th SOSP is defined by Eq. (20).

* *

1
Minimize (| ,) max{ | () }

Subject to

te i i
j j j

j m
 g f z |


 

  




x z x

x


 (20)

V. THE PROPOSED MOEA/D FOR MCOP

This paper proposes an improved MOEA/D to address the
new MCOP, namely MOEA/D-MCOP. This section first
introduces the solution representation and evaluation. Two
specially devised performance enhancing schemes, i.e. a
problem-specific population initialization scheme, and a
DVFS-based energy conservation scheme are then explained.
Then, the overall procedure of MOEA/D-MCOP is given in
detail. The complexity of MOEA/D-MCOP is analyzed at last.

A. Solution Representation and Evaluation

As mentioned in Section III, for application Gi,j on SMD Ui,j,
the execution locations and the execution orders of all tasks in
Gi,j need to be determined in the MCOP. Let

,, , ,1 , ,{ ,..., }
i ji j i j i j NV v v denote the set of tasks in Gi,j. Let

,, , ,1 , , , ,(,..., ,...,)
i ji j i j i j k i j NL loc loc loc denote the execution

location vector of all tasks in Gi,j, where

, , {1,..., , 1}i j kloc H H  is the execution location of task vi,j,k,

and H is the number of cores in Ui,j. If , ,1 i j kloc H  , vi,j,k is

executed on the loci,j,k-th core of Ui,j. If , , 1i j kloc H  , vi,j,k is

offloaded to the MEC server. Let

,, , ,1 , , , ,(,..., ,...,)
i ji j i j i j k i j NO u u u denote the execution order

vector of all tasks in Gi,j, where , , ,i j k i ju V denotes the k-th

task to be executed in ,i jO , e.g. , ,1 , ,i j i j startu v and

,, , , ,i ji j N i j endu v .

Fig. 4. Solution representation in the MCOP.

Let , , ,() (,)i j i j i jSOL G L O be a computation offloading

solution (SOL) for application Gi,j, i = 1,…,S, 1,..., SMD
ij N .

Let ,1 ,
() ((),..., ())SMD

i
i i i N

SOL SOL G SOL G  be a SOL for all

applications on all SMDs associated with SeNB πi, i = 1,…,S.

A solution to the MCOP, 1((),..., ())SSOL SOL x , consists

of all SOLs associated with all SeNBs in the MEC system. Fig.
4 shows an example solution to the MCOP.

Given a solution x, its objective function values, F(x) =
(fACT(x), fAEC(x)), can be calculated using Eqs. (15) and (16) in
Section III-F.

B. Problem-Specific Population Intialization Scheme

The problem-specific population initialization scheme is
based on two methods, including a latency-based execution
location initialization method and a commonly used execution
order initialization method.

1) Latency-Based Execution Location Initialization

Initial population usually has a significant impact on the
optimization performance of a MOEA. An effective
population initialization scheme helps to guide a MOEA
towards promising areas in the search space [40]. Randomly
generated initial population may have better diversity, they are,
however, not always helpful for the search to quickly locate
areas with high-quality solutions in exponential search spaces.
In particular, for highly constrained optimization problems,
misleading search directions of a MOEA might lead to serious
deterioration on the optimization performance [31].

To the best of our knowledge, most of EAs for COP
problems initialize execution locations for all tasks in a
random manner [20][27]. For most of small scale COP
problems, random location generation helps to diversify the
population and has a positive influence on the optimization
performance. However, this method is no longer applicable to
the highly constrained large scale MCOP problem concerned
in this paper, due to the large number of tasks involved and the
task precedence constraints.

The proposed latency-based execution location initialization
(LELI) method decides if a task is executed locally or
offloaded to the MEC server by comparing its average

computing time if it is executed on SMD, and its task
offloading time if it is executed on the MEC server. As
aforementioned, a solution to the MCOP problem, x, contains
all execution locations of all tasks in the MEC system and the
execution orders among them. By reducing the completion
time of each task in a greedy manner, this method reduces the
completion time of each application, which also helps to
reduce the average completion time of all applications in the
MEC system, i.e. ACT.

Let , ,()avg
SMD i j kT v and , ,()ofld

MEC i j kT v be the average execution

time and the task offloading time of vi,j,k, respectively. For an
arbitrary application Gi,j, the procedure to determine the
execution locations of all tasks is described as below.

For each vi,j,k in Gi,j, , ,()avg
SMD i j kT v and , ,()ofld

MEC i j kT v are

calculated. , ,()ofld
MEC i j kT v is the summation of , ,k()txd

SMD i jT v ,

, ,k()exe
MEC i jT v and , ,k()rxd

SMD i jT v (see Eqs. (7), (10) and (12)). If

, , , ,() ()avg ofld
SMD i j k MEC i j kT v T v , vi,j,k is executed on a randomly

selected core of Ui,j; otherwise, vi,j,k is offloaded to the MEC
server. The execution location initialization for all tasks in Gi,j
is shown in Algorithm 1, where randInt(1, H) is an integer
randomly generated in the range [1, H].

Algorithm 1. Latency-Based Execution Location Initialization

Input: application Gi,j.

Output: execution location vector ,i jL .

1. Initialize vector
,, , ,1 , ,(,...,)

i ji j i j i j NL loc loc ;

2. for k = 1 to Ni,j do

3. Calculate a
, , , , , ,1

() (1 /) /
Hvg max

SMD i j k i j k i j hh
T v H c f


  ;

4. Calculate , , , , , , , ,() () () ()ofld txd exe rxd
MEC i j k SMD i j k MEC i j k SMD i j kT v T v T v T v   ;

5. if , , , ,() ()avg ofld
SMD i j k MEC i j kT v T v then

6. Generate a random integer randInt(1, H);

7. Set , ,i j kloc = randInt(1, H); // local computing

8. else

9. Set , ,i j kloc = H + 1;. // edge computing

2) Random-Selection-Based Execution Order Initialization

In [20], an efficient execution order initialization method
based on random selection is proposed, i.e.
random-selection-based execution order initialization (RSEOI),
where a task set, Ψ, maintains all those tasks which are not
sorted but their immediate predecessors are sorted. A task vi,j,r
is randomly selected from Ψ and added to the end of execution
order vector Oi,j. After that, vi,j,r is removed from Ψ, and its
immediate successors, whose immediate predecessors are all
sorted, are inserted into Ψ. Once all tasks in Gi,j are sorted, the
task selection process stops and Oi,j is returned as the output.

By running the RSEOI method multiple times, a set of
different execution order vectors for Gi,j can be obtained.
RSEOI is thus incorporated into the PSPI scheme to diversify
the initial population. The execution order initialization for all
tasks in Gi,j is shown in Algorithm 2.

Algorithm 2. Random-Selection-Based Execution Order Initialization

Input: application Gi,j.

Output: execution order vector ,i jO .

1. Initialize vector
,, , ,1 , ,(,...,)

i ji j i j i j NO u u ;

2. Set the sortable task set Ψ = ∅;
3. Set the sorted task set Ζ = ∅;
4. Set Γ = Vi,j – {vi,j,start };

5. Set ui,j,1 = vi,j,start and Ζ = Ζ ∪ {vi,j,start};
6. Set index = 1; // index of the current task in Oi,j
7. while Γ ≠ ∅ do
8. for vi,j,k ∈ Γ do
9. if pre(vi,j,k) ⊂ Z and vi,j,k ∉ Ψ then
10. Set Ψ = Ψ ∪ {vi,j,k};
11. Randomly select a task vi,j,r from Ψ;
12. Set Ψ = Ψ – {vi,j,r}, Z = Z ∪ {vi,j,r} and Γ = Γ – {vi,j,r};
13. Set index = index + 1 and ui,j,index = vi,j,r;

3) Overall Procedure of the Problem-Specific Population
Initialization Scheme

The problem-specific population initialization (PSPI)
scheme is based on LELI and RSEOI. The pseudocode of
PSPI is shown in Fig. 5, where randInt(1, H+1) is an integer
randomly generated in the range [1, H+1].

The execution locations of all tasks are initialized by
random execution location generation in half of the initial
population, and LELI (i.e. Algorithm 1) for the other half of
the initial population. The random execution location
generation introduces certain level of population diversity
while LELI provides high-quality solutions for the evolution.
The execution order vector associated with each application
Gi,j is initialized by Algorithm 2.

1. Set POP = ∅ and index = 1; // POP: population
2. while index ≤ NP do // NP: population size
3. Initialize solution xindex = (SOL(π1),…,SOL(πS));
4. for i = 1 to S do // for each SOL(πi)

5. for j = 1 to SMD
iN do // for each SOL(Gi,j)

6. if index ≤ NP/2 then
7. for k = 1 to Ni,j do
8. Generate a random integer randInt(1, H+1);
9. Set loci,j,k = randInt(1, H+1);
10. else Obtain Li,j by Algorithm 1;
11. Obtain Oi,j by Algorithm 2;
12. Set SOL(Gi,j) = (Li,j, Oi,j);
13. Set POP = POP ∪ xindex and index = index + 1;
14. Output population POP.

Fig. 5. Pseudocode of the PSPI scheme.

C. DVFS-Based Energy Conservation Scheme

For a given SMD, if a high-performance core and a
low-performance core achieve similar computing performance
when executing a given task, then executing it on the latter can
reduce the energy consumption. The DVFS technique can be
utilized to reduce the computing frequency of
high-performance cores of SMDs, for energy conservation
purpose.

Recently, DVFS has been widely used as a promising power
management solution to reduce energy consumption of SMDs
in mobile cloud computing [25][27][45][46][47][48]. However,
to the best of our knowledge, there is a lack of research

applying DVFS to COP and MCOP problems in mobile edge
computing. As mentioned in Section III-D, there are H
heterogeneous cores in each SMD, where each core can run at
M different computing frequency levels. This paper introduces
a DVFS-based energy conservation (DVFS-EC) scheme in the
proposed algorithm to further decrease the energy
consumption of SMDs.

In [25], a DVFS algorithm is presented for a COP in mobile
cloud computing. By dynamically tuning the computing
frequency level of each core, this algorithm can significantly
reduce the energy consumption of the associated mobile
device.

Algorithm 3. DVFS Based on SOL(Gi,j)

Input: task scheduling plan associated with SOL(Gi,j).
Output: new task scheduling plan with new computing

frequency level assignment for local tasks.
1. for k = 1 to Ni,j do
2. if 1 ≤ loci,j,k ≤ H then // local tasks
3. Set flag = 0 and t = 1;
4. while flag == 0 and t < M do

5. Calculate a new completion time ,
, ,()exe new

SMD i j kCT v if

vi,j,k is executed using the t-th computing frequency level;

6. if there exists next task , ,i j nextv on the same core then

7. Set limit1 = , ,()exe
SMD i j nextST v ;

8. else if vi,j,k is the last task on this core then
9. Set limit1 = CT(Gi,j);
10. if vi,j,k is not end task then

11. Set limit2 =
, , , ,

, ,
()

min ()
i j l i j k

exe
SMD i j l

v suc v
ST v


;

12. else Set limit2 = CT(Gi,j);

13. if ,
, ,()exe new

SMD i j kCT v ≤ limit1 and ,
, ,()exe new

SMD i j kCT v ≤ limit2 then

14. Assign the t-th computing frequency level to vi,j,k;
15. Set flag = 1;
16. Set t = t+1;

The DVFS algorithm in [25] is adapted for the MCOP

formulated in this paper, as shown in Algorithm 3. Given
application Gi,j with its computation offloading solution
SOL(Gi,j), the associated computation offloading is calculated,
including the start time and the completion time of vi,j,k,

, ,()exe
SMD i j kST v and , ,()exe

SMD i j kCT v , and the completion time of

Gi,j, CT(Gi,j), according to Sections III-D, III-E, and III-F.
Algorithm 3 reduces the energy consumption of SMD Ui,j by
iteratively tuning the computing frequency levels of local
cores that are used to execute task(s). The resulting task
scheduling plan with a new computing frequency level
assignment consumes less energy. Different from the DVFS
algorithm in [25] that might lead to a higher completion time,
Algorithm 3 does not require additional time for completing
Gi,j.

The pseudocode of the DVFS-EC scheme is shown in Fig. 6.
For each application Gi,j with a certain SOL(Gi,j), Algorithm 3
obtains a new computing frequency level assignment. The
DVFS-EC scheme aims at reducing the average energy
consumption of all SMDs in the MEC system, i.e. AEC, which
helps to improve quality of solutions to the MCOP.

1. Given a solution x, calculate its associated ACT and AEC values,

fACT(x) and fAEC(x); // see Eqs. (15) and (16)
2. for i = 1 to S do

3. for j = 1 to SMD
iN do

4. Run Algorithm 3 based on the task scheduling plan
associated with SOL(Gi,j);

5. for k = 1 to Ni,j do
6. if 1 ≤ loci,j,k ≤ H then // local tasks

7. Update energy consumption , , ,()actual
SMD h i j kE v ;

8. Update fAEC(x).

Fig. 6. Pseudocode of the DVFS-EC scheme.

D. Overall Procedure of MOEA/D-MCOP

The proposed MOEA/D is based on the original MOEA/D
(see Section IV-B). Denote the number of neighbors of each
SOSP by W. The set of neighbors of the i-th SOSP, φ(i),
contains W closest neighbors, where the closeness between
any two SOSPs is measured by the Euclidean distance
between the two corresponding weight vectors. Let EP
represent the external population storing the nondominated
solutions obtained during the evolution.

The overall procedure of the proposed MOEA/D is
presented as below.

MOEA/D-MCOP Procedure:
Input:

 Np: the number of subproblems;

 1 ,..., PN  : uniformly spread weight vectors;

 W: the number of neighbors for each subproblem;

 Stopping condition.
Output:

 EP: an external population storing the nondominated
solutions obtained during the evolution.

Step 1) Initialization:
Step 1.1) Set EP = ∅.

Step 1.2) For each i , i = 1,…,NP, obtain W closest

weight vectors based on Euclidean distance, 1 , ..., Wii  ,

and set 1() { ,..., }Wi i i  .

Step 1.3) Generate an initial population, 1 ,...,
PNx x , by

using the PSPI scheme in Section V-B and evaluate the
objective functions for each solution.

Step 1.4) Initialize reference point * * *
1(,...,)mz zz .

Step 2) Repeat:
for i = 1 to NP do
Step 2.1) Reproduction: Apply crossover (see
Algorithm 5) and mutation (see Algorithm 7) operators
to generate a new solution y based on xk and xl, where k,
l ∈ φ(i) and k ≠ l.
Step 2.2) DVFS-EC: Apply the DVFS-EC scheme (see
Section V-C) to reduce the AEC value of y, fAEC(y).

Step 2.3) Update of z*: If *()j jf zy , then set

* ()j jz f y , j = 1,…,m.

Step 2.4) Update of neighboring solutions: For each

()q i , if (| ,) (| ,)te q * te q *
qg g xy z z  , then set

q x y and () ()j q jf fx y , j = 1,…,m.

Step 2.5) Update of EP: Remove from EP those
solutions dominated by y, and add y to EP if no solution
in EP dominates y.

Step 3) Stopping condition: If stopping condition is met,
then stop and output EP. Otherwise, go to Step 2.

In Step 2.1, crossover and mutation are applied to xk and xl

(two neighbors of xi) to generate a new solution y. By
combining selected portions from two parent solutions, the
crossover operator is regarded as the main evolutionary force
for offspring production. Offspring solutions inherit some
features from their parents. Yet, they are capable of exploring
new areas in the search space as long as their parents are not
similar to each other.

As mentioned in Section V-A, a solution

1((),..., ())SSOL SOL x is composed of all SOLs

associated with all SeNBs in the MEC system, where

,1 ,
() ((),..., ())SMD

i
i i i N

SOL SOL G SOL G  , i = 1,…,S.

Let xpar1 and xpar2 be two parent solutions. Let
1 1 1

, , ,() (,)par par par
i j i j i jSOL G L O and 2 2 2

, , ,() (,)par par par
i j i j i jSOL G L O

be the SOLs for Gi,j in xpar1 and xpar2, respectively. The

crossover operator is applied to each 1
,()par

i jSOL G and

2
,()par

i jSOL G pair, i = 1,…,S, j = 1,…, SMD
iN , to obtain two

offspring SOLs for Gi,j, namely 1
,()off

i jSOL G and

2
,()off

i jSOL G , as described in Algorithm 4, where randInt(1,

Ni,j) in step 2 is an integer randomly generated in the range [1,

Ni,j]. To be specific, for pair 1
,()par

i jSOL G and 2
,()par

i jSOL G ,

single-point crossover is applied to the corresponding

execution location vector pair, i.e. 1
,

par
i jL and 2

,
par
i jL , and the

execution order vector pair, i.e. 1
,
par

i jO and 2
,
par

i jO ,

respectively.
First, we introduce the execution location (EL) crossover.

For each pair (1 2
, ,,par par

i j i jL L), we randomly generate a crossover

point ,
loc

i jCPT (see steps 2-3 in Algorithm 4) and swap the

corresponding portions of 1
,

par
i jL and 2

,
par
i jL before ,

loc
i jCPT .

Then, we obtain two offspring execution location vectors
1

,
off
i jL and 2

,
off
i jL . According to the task graph in Fig. 2, we

present an example of the EL crossover operation in Fig. 7.
In the execution order (EO) crossover, all task precedence

constraints must be met. A simple crossover is very likely to
produce infeasible execution order vectors for each application,
as repetitive tasks may be created. In [20], an effective task
execution order crossover operator ensures that all task
precedence constraints are always satisfied. This operator is
adopted as the EO crossover in MOEA/D-MCOP, as described
below.

Algorithm 4. EL and EO Crossovers on Two SOLs Associated with Gi,j

Input: two parent SOLs for Gi,j, e.g. 1 1 1
, , ,() (,)par par par

i j i j i jSOL G L O and

2 2 2
, , ,() (,)par par par

i j i j i jSOL G L O .

Output: two offspring SOLs for Gi,j, e.g. 1
,()off

i jSOL G and 2
,()off

i jSOL G .

 // the EL crossover

1. Initialize
,

1 1 1
, , ,1 , ,(,...,)

i j

off off off
i j i j i j NL loc loc and

,

2 2 2
, , ,1 , ,(,...,)

i j

off off off
i j i j i j NL loc loc ;

2. Generate a random integer randInt(1, Ni,j);

3. Set ,
loc

i jCPT = randInt(1, Ni,j);

4. for k = 1 to ,
loc

i jCPT do Set 1 2
, , , ,

off par
i j k i j kloc loc and 2 1

, , , ,
off par
i j k i j kloc loc ;

5. for k = ,
loc

i jCPT +1 to Ni,j do Set 1 1
, , , ,

off par
i j k i j kloc loc and 2 2

, , , ,
off par
i j k i j kloc loc ;

 // the EO crossover
6. Generate a random integer randInt(1, Ni,j);

7. Set ,
ord

i jCPT = randInt(1, Ni,j) and , , ,
temp ord
i j i j i jN CPT N  ;

8. Generate two ,
temp
i jN -dimension temporary vectors, e.g.

,

1 1 1
, , ,1 , ,

(,...,)temp
i j

temp temp temp
i j i j i j N

O u u and
,

2 2 2
, , ,1 , ,

(,...,)temp
i j

temp temp temp
i j i j i j N

O u u ;

9. for k = 1 to ,
ord

i jCPT do Set 1 2
, , , ,

temp par
i j k i j ku u and 2 1

, , , ,
temp par
i j k i j ku u ;

10. Set index = 1;

11. for k = ,
ord

i jCPT +1 to ,
temp
i jN do

12. Set 1 1
, , , ,

temp par
i j k i j indexu u , 2 2

, , , ,
temp par
i j k i j indexu u and index = index +1;

13. Delete repetitive tasks from 1
,
temp
i jO and 2

,
temp
i jO , respectively;

14. Set two offspring EO vectors, 1 1
, ,
off temp
i j i jO O and 2 2

, ,
off temp
i j i jO O ;

 // two offspring SOLs for Gi,j are generated

15. Set 1 1 1
, , ,() (,)off off off

i j i j i jSOL G L O and 2 2 2
, , ,() (,)off off off

i j i j i jSOL G L O .

Fig. 7. An example of the EL crossover.

For each pair 1 2
, ,(,)par par

i j i jO O , a crossover point ,
ord

i jCPT is

randomly selected. Each parent EO vector is divided into two

portions by ,
ord

i jCPT . The two portions before ,
ord

i jCPT are

swapped and then concatenated to 1
,
par

i jO and 2
,
par

i jO ,

respectively, resulting into two temporary vectors. All
repetitive tasks in the temporary vectors are then removed,
reserving the order of the remaining tasks, resulting into two

feasible execution order vectors, namely 1
,
off
i jO and 2

,
off
i jO . An

example of the EO crossover operation applied to the task
graph in Fig. 2 is shown in Fig. 8.

Based on Algorithm 4, we design the crossover operator on
two parent solutions in Algorithm 5.

Mutation plays an important role in introducing diversity to
the evolution. Bitwise mutation is applied to the execution

location vector ,
par
i jL , and single-point mutation is applied to

the execution order vector ,
par

i jO in each ,()par
i jSOL G , i =

1,…,S, j = 1,…, SMD
iN , to obtain an offspring SOL for Gi,j,

namely ,()off
i jSOL G . This is described in Algorithm 6, where

random(0,1) is a number randomly generated in the range (0,
1). A mutation probability for all applications in the MEC
system, MPapp, is used to decide if SOL(Gi,j) is mutated, i =

1,…,S, j = 1,…, SMD
iN .

In the EL mutation, a mutation probability for ,
par
i jL , ,

loc
i jMP ,

is adopted to decide if each execution location in ,
par
i jL is

mutated. If an execution location , ,
par
i j kloc in ,

par
i jL is chosen for

mutation, a random integer number from {1,…,H+1} is used

to replace , ,
par
i j kloc . After mutation, an execution location

vector ,
off
i jL is generated. For the task graph in Fig. 2, an

example of the EL mutation operation is presented in Fig. 9.

Fig. 8. An example of the EO crossover applied to the task graph in Fig. 2.

Algorithm 5. Crossover Procedure on Two Solutions

Input: two parent solutions, e.g. xpar1 and xpar2.
Output: two offspring solutions, e.g. xoff1 and xoff2.
1. Initialize xoff1 = (SOLoff1(π1),…,SOLoff1(πS)) and

xoff2 = (SOLoff2(π1),…,SOLoff2(πS));
 // for each SOL par1(πi) and SOL par2(πi) pair
2. for i = 1 to S do
 // for each SOL par1(Gi,j) and SOL par2(Gi,j) pair

3. for j = 1 to SMD
iN do

4. Obtain two offspring SOLs, 1
,()off

i jSOL G and 2
,()off

i jSOL G ,

by running Algorithm 4 on 1
,()par

i jSOL G and 2
,()par

i jSOL G ;

In the proposed MOEA/D, the EO mutation in [20] is

adopted, where all task precedence constraints are met. Let

,, , ,1 , , , ,(,..., ,...,)
i j

par par par par
i j i j i j k i j NO u u u be the parent execution order

vector associated with Gi,j chosen for mutation. , ,
par
i j ku is the

k-th task to be executed in ,
par

i jO , , , ,
par
i j k i ju V , , ,1 , ,

par
i j i j startu v ,

and
,, , , ,i j

par
i j N i j endu v .

Algorithm 6. EL and EO Mutation Procedures

Input: parent SOL for Gi,j, e.g. , , ,() (,)par par par
i j i j i jSOL G L O .

Output: offspring SOL for Gi,j, e.g. ,()off
i jSOL G .

1. Generate a random number random(0, 1);

2. Set app
rndMP = random(0, 1);

3. if app
rndMP ≤ MPapp then // SOLpar(Gi,j) is to be mutated

 // the EL mutation

4. Initialize the offspring EL vector
,, , ,1 , ,(,...,)

i j

off off off
i j i j i j NL loc loc ;

5. for k = 1 to Ni,j do
6. Generate a random number random(0, 1);

7. Set loc
rndMP = random(0, 1);

8. if loc
rndMP ≤ ,

loc
i jMP then

9. Generate a random integer randInt(1, H+1);

10. Set , ,
off
i j kloc = randInt(1, H+1);

11. else Set , , , ,
off par
i j k i j kloc loc ;

 // the EO mutation

12. Initialize the offspring EO vector
,, , ,1 , ,(,...,)

i j

off off off
i j i j i j NO u u ;

13. Randomly select a task , ,
par
i j ru from ,

par
i jO , where , ,

par
i j ru

cannot be the start task nor the end task;

14. Carry out forward search until the last predecessor of , ,
par
i j ru ,

e.g. , ,
par
i j au , is found;

15. Include the visited tasks in vector , ,1 , ,(,...,)par par
i j i j au u ;

16. Carry out backward search until the last successor of , ,
par
i j ru ,

e.g. , ,
par
i j bu , is found;

17. Include the visited tasks in vector
,, , , ,(,...,)

i j

par par
i j b i j Nu u ;

18. Generate a temporary vector , , 1 , , 1(,...,)par par
i j a i j btemp u u  ;

19. Randomly select a location in temp and move , ,
par
i j ru there;

20. Set
,, , ,1 , , , , , ,(,...,) (,...,)

i j

off par par par par
i j i j i j a i j b i j NO u u temp u u   ;

21. Set , , ,() (,)off off off
i j i j i jSOL G L O ;

22. else // SOLpar(Gi,j) is not mutated

23. Set , ,() ()off par
i j i jSOL G SOL G .

A task in ,
par

i jO , , ,
par
i j ru , is first randomly selected, where r ∈

{2,…,Ni,j-1}. Task , ,
par
i j ru can be neither the start task nor the

end task. Next, a forward search from , ,1
par
i ju to the last

predecessor of , ,
par
i j ru , e.g. , ,

par
i j au , is implemented on ,

par
i jO .

The visited tasks are included in a vector , ,1 , ,(,...,)par par
i j i j au u .

Similarly, a backward search from
,, , i j

par
i j Nu is implemented on

,
par

i jO . When the last successor of , ,
par
i j ru , e.g. , ,

par
i j bu , is found,

the search terminates. The visited tasks are included in a

vector
,, , , ,(,...,)

i j

par par
i j b i j Nu u . Let , , 1 , , 1(,...,)par par

i j a i j btemp u u  denote a

temporary vector between the two vectors of visited tasks. A

location other than the current location of , ,
par
i j ru is randomly

selected in temp, where , ,
par
i j ru is then moved to.

The EO mutation produces

,, , ,1 , , , , , ,(,...,) (,...,)
i j

off par par par par
i j i j i j a i j b i j NO u u temp u u   , where “∘”

concatenates the above produced three vectors. An example of
the EO mutation operation applied to the task graph in Fig. 2
is illustrated in Fig. 10.

Based on Algorithm 6, Algorithm 7 presents how a parent
solution is mutated.

Fig. 9. An example of the EL mutation.

Fig. 10. An example of the EO mutation applied to the task graph in Fig. 2.

Algorithm 7. Mutation Procedure on One Solution

Input: parent solution, e.g. xpar.
Output: offspring solution, e.g. xoff.
1. Initialize xoff = (SOLoff(π1),…,SOLoff(πS));
2. for i = 1 to S do // for each SOL par(πi)

3. for j = 1 to SMD
iN do // for each SOL par(Gi,j)

4. Obtain the offspring SOL ,()off
i jSOL G by running

Algorithm 6 on ,()par
i jSOL G ;

E. Complexity Analysis

Let O(f) be the time complexity for evaluating a solution to

the MCOP. Let task
totalN and M be the total number of tasks in

the MEC system and the number of the computing frequency
levels on a core, respectively. Let the number of objectives
and that of neighbors for subproblem represented by m and W,
respectively. Let the size of the external population (EP)
denoted by |EP|.

First, we analyze the complexity of each step in the loop.

As the encoding length of each solution is task
totalN , Step 2.1

(simple crossover and mutation) has a time complexity of

()task
totalO N . There are two operations in Step 2.2 (namely the

DVFS-EC scheme), including solution evaluation and solution
improvement. In the first part, O(f) is the time complexity as
defined above. In the second part, a solution is improved in
terms of energy consumption. The DVFS technique is applied

to each locally executed task, resulting into a time complexity
of O(M). In the worst case, all tasks are executed on SMDs,

which corresponds to a time complexity of ()task
totalO N M .

Hence, Step 2.2 has a time complexity of ()task
totalO f N M  .

Steps 2.3, 2.4 and 2.5 update the reference point, the neighbors
of each subproblem and EP, leading to time complexities of

()O m , ()O m W and 2(| |)O m EP , respectively. As the

MCOP problem is highly complicated, solution evaluation is
the most time-consuming operation in the loop. Compared
with it, other steps are trivial. Hence, the time complexity of
the loop (Step 2) is reduced to O(f).

Then, we analyze the complexity of MOEA/D-MCOP.
Compared with the loop, the time complexity of the
initialization is trivial and thus can be ignored. Hence,
MOEA/D-MCOP is only dependent on the complexity of the
loop, the number of subproblems, Np, and the predefined
number of iterations, Gmax, leading to a time complexity of

()p maxO f N G  .

VI. EXPERIMENTS AND RESULTS ANALYSIS

A. Test Instances

In this paper, we consider a centralized MEC system with a
radius of 100 m. The network parameter setup method in [30]
is adopted. A system with five small cells is regarded as a
medium-scale MEC scenario, which meets most of the users’
requirements. Therefore, we also use the five-small-cell MEC
network to conduct all experiments. The cells are evenly
scattered, each with a radius of 50 m. The number of channels
in the MEC system is fixed to 10 for simplicity purpose. To
guarantee there is no channel interference between SMDs
within any small cell, we randomly generate the number of
SMDs in each small cell in the range of [3, 9].

For an arbitrary SMD Ui,j, the maximum computing

frequency of the 1st core, , ,1
max

i jf , is randomly generated in the

range [0.5, 1] GHz. The maximum computing frequencies of

the 2nd and 3rd cores are set to , ,2 , ,1 0.1max max
i j i jf f  and

, ,3 , ,1 0.25max max
i j i jf f  , respectively. Assume the power

consumption of the 1st, 2nd, and 3rd cores at the maximum
computing frequency is 4 W, 2 W, and 1 W, respectively.
According to [25], we assume each core has 4 computing
frequency levels with scaling factors α1 = 0.2, α2 = 0.5, α3 =
0.8, and α4 = 1, respectively, and constant γ is set to 2. The
problem characteristics are shown in Table III.

For the application generation, we first randomly generate
the number of tasks, and then randomly generate their data
size and the number of CPU cycles required to perform them.
The task-precedence constraints between tasks are randomly
generated based on the task generation method introduced in
[20]. To be specific, we randomly generated the number of
tasks in an application using six different ranges to control the
scale of the MCOP problem, as shown in Table IV. In each
instance, the number of tasks is randomly generated according
to the corresponding range.

TABLE III
PROBLEM CHARACTERISTICS

Parameter Value

Number of SeNBs in the MEC system (S) 5
Total bandwidth offered by the MEC system (Btotal) 20 MHz

Number of channels offered by the MEC system
(Nchannel)

10

Noise power (σ2) 176 dBm
Computing capability of the MEC server (F) 4 GHz

Number of heterogeneous cores of a SMD (H) 3
Number of the computing frequency levels on a

core (M)
4

Number of SMDs in the i-th small cell (SMD
iN) 3-9

Power consumption when Ui,j offloads tasks (,
txd
i jp) 0.5 W

Power consumption when Ui,j receives data (,
rxd
i jp) 0.1 W

Number of CPU cycles required to perform vi,j,k (ci,j,k) [0.1, 0.5] GHz
Input data size of vi,j,k (di,j,k) [5000, 6000] Kb

Output data size of vi,j,k (oi,j,k) [500, 1000] Kb

TABLE IV

SIX TEST INSTANCES

Instance
No.

Number of tasks in an
application

Total number of tasks in
the MEC system

1 10-20 349
2 15-25 566
3 20-30 647
4 25-35 948
5 30-40 1230
6 10-40 630

B. Experiment Setup

We ran the experiments on a computer with Windows 10
OS, Intel(R) Core(TM) i7-8700 CPU 3.2 GHz and 16 GB
RAM. All algorithms were implemented using Python 3.6.
The parameters of the proposed MOEA/D-MCOP are listed in
Table V. The results are obtained by running each algorithm 20
times, from which the statistics are collected and analyzed.

TABLE V

PARAMETERS OF MOEA/D-MCOP

Parameter Value
Population size (Np) 100

Predefined number of iterations 100
Number of neighbors for each subproblem (W) 10

Probability for mutating a SOL associated with Gi,j

(MPapp)
1/ SMD

totalN

Probability for mutating an EL associated with Gi,j

(,
loc

i jMP)
1/ ,i jN

C. Performance Measures

Four widely recognized performance metrics in the
literature [31][32] are used to thoroughly evaluate the
performance of MOEA/D-MCOP. Let PFref and PFknown denote
the reference PF approximating the true PF and the PF
obtained by an algorithm, respectively.

For the new MCOP problem concerned in this paper, the
true PF is not known. A widely used method in the research is
to collect the best so far solutions found by all algorithms in
all runs and obtain the PF associated with those nondominated
ones as PFref.

 Inverted generational distance (IGD)
IGD as defined in Eq. (21) can simultaneously measure the

convergence and diversity of a given PF. For an algorithm, a
smaller IGD value reflects better overall performance.

(,)
ref ref

ref known
PF

ref

d PF

IGD
PF









 (21)

where |PFref| is the number of points in PFref and d(τref, PFknown)
is the Euclidean distance between point τref in PFref and its
nearest point in PFknown.

 Generational distance (GD)
GD as defined in Eq. (22) can measure how closely PFknown

converges to PFref.

(,)
known known

known ref
PF

known

d PF

GD
PF









 (22)

where |PFknown| is the number of points in PFknown and d(τknown,
PFref) is the Euclidean distance between point τknown in PFknown
and its nearest point in PFref.

 Student’s t-test
In this paper, two-tailed t-test with 38 degrees of freedom at

a 0.05 level of significance [49] is utilized to compare two
algorithms Alg.1 and Alg.2 based on the IGD values obtained
in 20 runs. The results show whether performance of Alg.1 is
significantly better than, significantly worse than, or
statistically equivalent to that of Alg.2, respectively.

 Friedman test
The Friedman test [50] is a non-parametric test for detecting

the differences among different algorithms in terms of IGD
and GD. All algorithms under comparisons are ranked and
their average ranks explicitly indicate how well they perform.

D. Effectiveness of Two Performance Enhancing Schemes

To demonstrate the effectiveness of the two new schemes,
namely PSPI in Section V-B and DVFS-EC in Section V-C, in
the proposed MOEA/D-MCOP, the following three variants of
MOEA/D are tested on the six test instances in Table IV.

 MOEA/D: the original MOEA/D [7].

 MOEA/D-PSPI: MOEA/D with the PSPI scheme.

 MOEA/D-MCOP: MOEA/D-PSPI with the DVFS-EC
scheme.

For the three algorithms above, the population size and the

predefined number of iterations are set to 100, respectively.
The results of mean and standard deviation (SD) of IGD

and GD are collected in Tables VI and VII, respectively. It is
obvious that MOEA/D-PSPI outperforms MOEA/D against
the two performance measures in all instances. This is due to

that the problem specific knowledge incorporated in the PSPI
scheme is able to guide the search to start from promising
areas. Moreover, MOEA/D-MCOP achieves better mean value
than the other two in terms of IGD and GD in each instance.
This shows that the DVFS-EC scheme helps to reduce the
energy consumption of SMDs without sacrificing completion
time, thus enhances the local exploitation ability of the search.

Fig. 11 shows the PFs obtained by the three algorithms. It
can be seen clearly that both the PSPI and DVFS-EC schemes
contribute to performance improvement of MOEA/D.

TABLE VI

RESULTS OF IGD (BEST RESULTS ARE IN BOLD)

Instance No. MOEA/D MOEA/D-PSPI MOEA/D-MCOP

1 7.86(0.16) 7.64(0.15) 0.19(0.21)
2 4.88(0.25) 4.19(0.11) 0.47(0.14)
3 3.14(0.16) 3.11(0.24) 0.81(0.29)
4 8.91(0.39) 7.06(0.19) 1.14(0.30)
5 11.60(0.39) 11.23(0.25) 1.68(0.55)
6 5.74(0.22) 5.48(0.16) 0.55(0.21)

TABLE VII

RESULTS OF GD (BEST RESULTS ARE IN BOLD)

Instance No. MOEA/D MOEA/D-PSPI MOEA/D-MCOP

1 2.84(0.04) 2.74(0.03) 0.31(0.29)
2 1.73(0.04) 1.58(0.03) 0.56(0.10)
3 1.15(0.04) 1.09(0.04) 1.03(0.15)
4 2.00(0.08) 1.69(0.03) 0.89(0.26)
5 1.90(0.06) 1.81(0.04) 1.63(0.17)
6 1.70(0.04) 1.60(0.02) 0.52(0.11)

E. Overall Performance Evaluation

MOEA/D-MCOP is compared against the following eight
state-of-the-art algorithms, i.e. five MOEAs and three
heuristic algorithms, in six test instances in Table IV.

 NSGA-II: the modified fast and elitist nondominated
sorting genetic algorithm [30] used to achieve a trade-off
between the average energy consumption and the average
completion time in a MEC network.

 MOWOA: the multiobjective whale optimization
algorithm [27] applied to address the multiobjective task
workflow scheduling problem, where weighted sum is
used to aggregate workflow completion time and energy
consumption into one objective function.

 MOFOA: the knowledge-guided multiobjective fruit fly
optimization algorithm [51] developed to tackle the
multi-skill resource-constrained project scheduling
problem, where the completion time and the total cost are
minimized at the same time.

 HGPCA: the hierarchical GA and PSO-based
computation algorithm [23] proposed to solve the
multi-user offloading game problem in MCC, where the
energy consumption of SMDs is minimized.

 MOEA/D: the multiobjective evolutionary algorithm
based on decomposition [7] with the Tchebycheff
method.

 TSDVFS: the task scheduling with dynamic voltage and
frequency scaling algorithm [25] developed to minimize
the energy consumption of SMDs in MCC, where the
application completion time constraint and the
task-precedence constraints are satisfied.

 CTESA: the collaborative task execution scheduling
algorithm [22] devised to address the delay-constrained
workflow scheduling problem in MCC network. CTESA
minimizes the energy consumption of SMD(s) while
meeting the application completion time deadline.

 eDors: the energy-efficient dynamic offloading and
resource scheduling algorithm [28] presented to reduce
the energy consumption and shorten the application
completion time, where the task-dependency requirement
and application completion time deadline are constrained.

 MOEA/D-MCOP: the proposed MOEA/D with the PSPI
and DVFS-EC schemes in this paper.

For all MOEAs under comparison, the population size and

the predefined number of iterations are set to 100, respectively.
To make a fair comparison, we directly adopt the parameter
settings in NSGA-II [30], MOWOA [27], MOFOA [51],
HGPCA [23], and MOEA/D [7]. To be specific, in NSGA-II,
the crossover and mutation probabilities are set to 0.8 and 0.3,
respectively. In MOWOA, the upper and lower bounds of the
search range are set to 4.4 and 0.5, respectively. For MOFOA,
we set the sub-swarm size, the learning rate of the experience,
and the number of elite fruit flies to 5, 0.1, and 3, respectively.
In HGPCA, the crossover probability, the mutation probability,

the inertia weight, and the acceleration instant are set to 0.6,
0.01, 0.4, and 1.5, respectively. In MOEA/D and
MOEA/D-MCOP, the number of neighbors for each
subproblem is set to 10.

Note that each of three heuristics only obtains a single
solution after each run. To make a fair comparison, each
heuristic should obtain a set of nondominated solutions for
performance comparison. Hence, we repeatedly run a heuristic
with incrementally increased application completion time
deadline as a constraint. Each deadline results into a solution
with explicit application completion time and energy
consumption. By doing so, each heuristic can obtain a set of
nondominated solutions after a number of runs.

We first compare the average completion time of
applications, i.e. ACT, and the average energy consumption of
SMDs, i.e. AEC, obtained by the nine algorithms. Figs. 12 and
13 depict the box plots of the nine algorithms in terms of ACT
and AEC, respectively. In Fig. 12, one can observe that
MOEA/D-MCOP performs better than the other eight
algorithms in most of the test instances (except Instances 3
and 4). This is because the PSPI scheme in MOEA/D-MCOP
adopts the latency-based execution location initialization
method (LELI). By reducing the completion time of each task
in a greedy manner, LELI can reduce the completion time of
each application, which also helps to reduce the ACT in the
MEC system.

 (a) Instance 1 (b) Instance 2 (c) Instance 3

 (d) Instance 4 (e) Instance 5 (f) Instance 6
Fig. 11. PFs obtained by the three algorithms.

 (a) Instance 1 (b) Instance 2 (c) Instance 3

 (d) Instance 4 (e) Instance 5 (f) Instance 6
Fig. 12. Box plots of the nine algorithms in terms of ACT.

 (a) Instance 1 (b) Instance 2 (c) Instance 3

 (d) Instance 4 (e) Instance 5 (f) Instance 6
Fig. 13. Box plots of the nine algorithms in terms of AEC.

In Fig. 13, there is no doubt MOEA/D-MCOP is the best.
This is because the DVFS-EC scheme can significantly
reduce the AEC by dynamically adjusting the frequency

level of each core. Besides, eDors and TSDVFS are the
second- and third-best algorithms, respectively. The two
algorithms decrease the energy consumption of SMDs

thanks to DVFS. Meanwhile, eDors always overweighs
TSDVFS with respect to the AEC. The reason behind it is
that eDors takes advantage of transmission power control
mechanism, which further reduces the energy consumption.
However, both eDors and TSDVFS are not good at
obtaining a decent tradeoff between ACT and AEC, i.e.
improving one objective harms the other. On the other hand,
if we consider ACT and AEC together, MOEA/D-MCOP
achieves the best overall performance.

The mean and SD values of IGD and GD obtained by all
algorithms are shown in Tables VIII and IX, respectively.

Firstly, if taking all algorithms into account, one can
observe that MOEA/D-MCOP performs the best with
respect to IGD and GD in all instances. IGD reflects the
diversification and convergence of nondominated solutions
simultaneously. GD reveals how far the obtained PF is from
the reference PF. Results in Tables VIII and IX show that
MOEA/D-MCOP always obtains the set of nondominated
solutions closest to the reference PF, which indicates
MOEA/D-MCOP achieves a better trade-off between global
exploration and local exploitation.

Secondly, it is easily seen that MOEA/D outperforms all
MOEAs except MOEA/D-MCOP in almost all instances,
showing that MOEA/D is highly effective for the MCOP

problem. On the one hand, NSGA-II, MOWOA, MOFOA
and HGPCA are Pareto-dominance based. If parameters are
not set appropriately, they are likely to get stuck into local
optima and converge slowly. On the other hand, MOEA/D
is decomposition-based, addressing a number of scalar
optimization subproblems in parallel. Compared with those
Pareto-dominance based MOEAs, MOEA/D is featured
with stronger global exploration capability. Therefore,
MOEA/D performs better than NSGA-II, MOWOA,
MOFOA, and HGPCA. This also justifies why MOEA/D is
chosen for addressing the MCOP problem.

Thirdly, among heuristics, TSDVFS is the winner as it
outperforms CTESA and eDors in most test instances
except Instances 3 and 4 in terms of IGD and GD. TSDVFS
first adopts the initial scheduling algorithm to generate the
minimal-delay schedule. Then, it applies DVFS technology
to reduce the energy consumption of SMDs. However,
TSDVFS cannot strike a balance between the application
completion time and the energy consumption of SMDs.
This is why TSDVFS is beaten by MOEA/D-MCOP. On the
other hand, eDors and CTESA also have obvious drawbacks.
eDors is not good at reducing of the application completion
time. CTESA schedules the tasks on the partial critical path
rather than considering the task graph as a whole.

TABLE VIII
RESULTS OF IGD (BEST RESULTS ARE IN BOLD)

Algorithm Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6
NSGA-II 8.71(0.24) 5.37(0.29) 5.07(0.24) 9.22(0.41) 10.77(0.44) 5.93(0.19)
MOWOA 9.94(0.16) 7.21(0.25) 6.42(0.32) 11.88(0.31) 13.32(0.47) 8.24(0.34)
MOFOA 10.39(0.16) 6.97(0.20) 5.15(0.16) 10.40(0.23) 13.80(0.24) 8.93(0.26)
HGPCA 10.47(0.32) 7.92(0.35) 8.29(0.54) 8.66(0.39) 11.07(0.52) 8.45(0.34)

MOEA/D 7.86(0.16) 4.88(0.25) 3.14(0.16) 8.91(0.39) 11.60(0.39) 5.74(0.22)
TSDVFS 6.40(0) 2.78(0) 3.64(0) 4.45(0) 5.79(0) 2.22(0)
CTESA 9.80(0) 6.14(0) 4.63(0) 4.16(0) 7.99(0) 6.51(0)
eDors 8.33(0) 3.93(0) 3.22(0) 3.56(0) 10.33(0) 8.25(0)

MOEA/D-MCOP 0.19(0.21) 0.47(0.14) 0.81(0.29) 1.14(0.30) 1.68(0.55) 0.55(0.21)

TABLE IX
RESULTS OF GD (BEST RESULTS ARE IN BOLD)

Algorithm Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6
NSGA-II 2.99(0.05) 1.84(0.05) 1.53(0.07) 2.25(0.10) 2.12(0.08) 1.75(0.04)
MOWOA 3.30(0.03) 2.44(0.04) 2.07(0.11) 2.77(0.10) 2.73(0.15) 2.49(0.07)
MOFOA 3.24(0.03) 2.14(0.04) 1.36(0.03) 2.30(0.04) 2.12(0.03) 2.18(0.04)
HGPCA 3.24(0.05) 2.36(0.07) 2.14(0.10) 2.28(0.13) 2.31(0.11) 2.21(0.07)

MOEA/D 2.84(0.04) 1.73(0.04) 1.15(0.04) 2.00(0.08) 1.90(0.06) 1.70(0.04)
TSDVFS 2.56(0) 1.21(0) 1.17(0) 1.78(0) 1.78(0) 1.34(0)
CTESA 3.32(0) 2.09(0) 1.70(0) 0.91(0) 1.93(0) 1.93(0)
eDors 3.47(0) 2.56(0) 2.46(0) 3.25(0) 2.17(0) 2.46(0)

MOEA/D-MCOP 0.31(0.29) 0.56(0.10) 1.03(0.15) 0.89(0.26) 1.63(0.17) 0.52(0.11)

The results of Student’s t-test based on IGD are shown in
Table X. MOEA/D-MCOP is clearly the best among all
algorithms. Friedman test is also utilized to rank algorithm
performance. Based on the IGD and GD values, the average

rankings of the nine algorithms are shown in Table XI. The
PFs obtained by the nine algorithms are shown in Fig. 14.
Table XI and Fig. 14 both demonstrate the superiority of
MOEA/D-MCOP over the rest of the algorithms.

TABLE X

RESULTS OF STUDENT’S T-TEST BASED ON IGD

Alg.1 ↔ Alg.2 Instance 1 Instance 2 Instance 3 Instance 4 Instance 5 Instance 6
MOEA/D-MCOP ↔ NSGA-Ⅱ + + + + + +
MOEA/D-MCOP ↔ MOWOA + + + + + +
MOEA/D-MCOP ↔ MOFOA + + + + + +
MOEA/D-MCOP ↔HGPCA + + + + + +

MOEA/D-MCOP ↔ MOEA/D + + + + + +
MOEA/D-MCOP ↔ TSDVFS + + + + + +
MOEA/D-MCOP ↔ CTESA + + + + + +
MOEA/D-MCOP ↔ eDors + + + + + +

Symbol “+” indicates Alg.1 performs significantly better than Alg.2.

TABLE XI
RANKINGS OF ALL ALGORITHMS ON IGD AND GD

Algorithm
IGD GD

Average rank Position Average rank Position
NSGA-Ⅱ 5.33 6 4.50 4
MOWOA 7.67 7 8.00 8
MOFOA 8.00 9 5.67 6
HGPCA 7.67 8 7.00 7

MOEA/D 4.17 4 3.00 3
TSDVFS 2.67 2 2.33 2
CTESA 4.67 5 5.00 5
eDors 3.83 3 8.50 9

MOEA/D-MCOP 1.00 1 1.00 1

 (a) Instance 1 (b) Instance 2 (c) Instance 3

 (d) Instance 4 (e) Instance 5 (f) Instance 6
Fig. 14. PFs obtained by the nine algorithms.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper models a new multiobjective computation
offloading problem (MCOP) in mobile edge computing (MEC)
environment, where two objectives, namely the average

completion time of applications and the average energy
consumption of all smart mobile devices (SMDs), are
minimized simultaneously. This new MCOP model, for the
first time, considers the task-precedence constraints within
each application in MEC, where an ordered list of tasks should
be executed one by one.

To address the new problem, an improved MOEA/D with
two extensions, namely MOEA/D-MCOP is proposed. The

first extension is a problem-specific population initialization
scheme that generates high-quality initial population. The
second extension is a DVFS-based energy conservation
scheme that improves the quality of a given solution by
reducing the energy consumption of SMDs. Simulation results
demonstrate that the proposed MOEA/D-MCOP performs
better than the five state-of-the-art MOEAs and three
heuristics in terms of the average completion time, the average
energy consumption, inverted generational distance,
generational distance, t-test, and Friedman test.

B. Future Work

The MCOP problem modeled in this paper is a static
optimization problem in MEC network, where the number of
SMDs remains unchanged and SMDs do not move during
computation offloading. However, in the real world, dynamic
and uncertainty are key features in MEC networks, such as
mobility, ever-changing wireless channel and number of
SMDs. We will study the MCOP problem in a dynamic MEC
environment, taking the three issues above into consideration.
In this case, MOEA/D-MCOP cannot respond within a short
time to the dynamic MEC network, especially when SMDs
move quickly. Therefore, we will concentrate on developing
online algorithms and models in future work, e.g.
problem-specific heuristics, and deep reinforcement learning
based models.

The computing resources on MEC servers and the spectrum
resources in wireless channels are both limited in MEC
environment. Therefore, it is of significance to study how the
computing and spectrum resources are reasonably allocated
between SMDs in MEC networks. Moreover, we will jointly
consider computation offloading, resource allocation, content
caching, and task-precedence constraints among tasks to meet
the requirements of various applications. To be specific, we
will study a centralized MEC scenario with limited computing
and spectrum resources, jointly taking computation offloading,
resource allocation, content caching, and task-precedence
constraints into account. We will model this complicated
scenario as a new multiobjective optimization problem (MOP).
There are three objectives for minimization at the same time,
including the completion time of applications, the energy
consumption of SMDs and the resource cost of SMDs. The
resource cost includes the cost for renting computing
resources from MEC servers, and that for leasing spectrum
resources from small cell. In addition, we will propose an
efficient multiobjective optimization algorithm to address the
problem.

REFERENCES

[1] E. Novak, Z. Tang, and Q. Li, “Ultrasound proximity networking on
smart mobile devices for IoT applications,” IEEE Internet Things J., vol.
6, no. 1, pp. 399–409, Feb. 2019.

[2] D. Mazza, A. Bernaus, D. Tarchi, A. A. Juan, and G. Corazza,
“Supporting mobile cloud computing in smart cities via randomized
algorithms,” IEEE Syst. J., vol. 12, no. 2, pp. 1598–1609, Jun. 2018.

[3] D. Yao, C. Yu, L. Yang, and H. Jin, “Using crowdsourcing to provide
QoS for mobile cloud computing,” IEEE Trans. Cloud Comput., vol. 7,
no. 2, pp. 344–356, Apr. 2019.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Commun. Surv. Tut., vol. 19, no. 4, pp. 2322–2358, Aug. 2017.

[5] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, vol. 5, pp. 6757–6779, Mar. 2017.

[6] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet Thing J., vol. 5, no. 1, pp. 450–465,
Sep. 2018.

[7] Q. Zhang and H. Li, “MOEA/D: A multi-objective evolutionary
algorithm based on decomposition,” IEEE Trans. Evol. Comput., vol. 11,
no. 6, pp. 712–731, Nov. 2007.

[8] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Commun. Surv. Tut., vol.
19, no. 3, pp. 1628–1656, Mar. 2017.

[9] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. IEEE Int.
Symposium on Information Theory (ISIT), Barcelona, Spain, Jul. 2016,
pp. 1451–1455.

[10] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J. Sel.
Area. Comm., vol. 34, no. 12, pp. 3590–3605, Sep. 2016.

[11] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation
partitioning for latency sensitive mobile cloud applications,” IEEE Trans.
Comput., vol. 64, no. 8, pp. 2253–2266, Nov. 2015.

[12] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, Apr. 2017.

[13] O. Muñoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp.
4738–4755, Oct. 2015.

[14] L. Tong and W. Gao, “Application-aware traffic scheduling for workload
offloading in mobile clouds,” in Proc. IEEE 35th Int. Conf. on Computer
Commun. (INFOCOM), San Francisco, CA, USA, Apr. 2016, pp. 1–9.

[15] M. Masoudi, B. Khamidehi, and C. Cavdar, “Green cloud computing for
multi cell networks,” in Proc. IEEE Wireless Commun. and Networking
Conf. (WCNC), San Francisco, CA, USA, Mar. 2017, pp. 1–6.

[16] C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, “Joint computation
offloading and interference management in wireless cellular networks
with mobile edge computing,” IEEE Trans. Veh. Technol., vol. 66, no. 8,
pp. 7432–7445, Mar. 2017.

[17] S. E. Mahmoodi, R.N. Uma, and K. P. Subbalakshmi, “Optimal joint
scheduling and cloud offloading for mobile applications,” IEEE Trans.
Cloud Comput., vol. 7, no. 2, pp. 301–313, Apr. 2019.

[18] X. Xu, Y. Li, T. Huang, Y. Xue, K. Peng, L. Qi, and W. Dou, “An
energy-aware computation offloading method for smart edge computing
in wireless metropolitan area networks,” J. Netw. Comput. Appl., vol.
133, pp. 75–85, May 2019.

[19] L. Yang, H. Zhang, M. Li, J. Guo, and H. Ji, “Mobile edge computing
empowered energy efficient task offloading in 5G,” IEEE Trans. Veh.
Technol., vol. 67, no. 7, pp. 6398–6409, Jan. 2018.

[20] B. Huang, Z. Li, P. Tang, S. Wang, J. Zhao, H. Hu, W. Li, and V. Chang,
“Security modeling and efficient computation offloading for service
workflow in mobile edge computing,” Future Gener. Comp. Sy., vol. 97,
pp. 755–774, Aug. 2019.

[21] H. Guo and J. Liu, “Collaborative computation offloading for
multiaccess edge computing over fiber–wireless networks,” IEEE Trans.
Veh. Technol., vol. 67, no. 5, pp. 4514–4526, Jan. 2018.

[22] W. Zhang and Y. Wen, “Energy-efficient task execution for application
as a general topology in mobile cloud computing,” IEEE Trans. Cloud
Comput., vol. 6, no. 8, pp. 708–719, Jul. 2018.

[23] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. Leung, “An efficient
computation offloading management scheme in the densely deployed
small cell networks with mobile edge computing,” IEEE ACM/Trans.
Network., vol. 26, no. 6, pp. 2651–2664, Oct. 2018.

[24] Z. Kuang, Y. Shi, S. Guo, J. Dan, and B. Xiao, “Multi-user offloading
game strategy in OFDMA mobile cloud computing system,” IEEE Trans.
Veh. Technol., vol. 68, no. 12, pp. 12190–12201, Dec. 2019.

[25] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with
dynamic voltage and frequency scaling for energy minimization in the
mobile cloud computing environment,” IEEE Trans. Serv. Comput., vol.
8, no. 2, pp. 175–186, Dec. 2015.

[26] J. Zhang, X. Hu, Z. Ning, E. C. H. Ngai, L. Zhou, J. Wei, J. Cheng, and
B. Hu, “Energy-latency trade-off for energy-aware offloading in mobile
edge computing networks,” IEEE Internet Things J., vol. 5, no. 4, pp.
2633–2645, Dec. 2018.

[27] H. Peng, W. Wen, M. Tseng, and L. Li, “Joint optimization method for
task scheduling time and energy consumption in mobile cloud
computing environment,” Appl. Soft Comput., vol. 80, pp. 534–545, Jul.
2019.

[28] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud
computing,” IEEE Trans. Mobile Comput., vol. 18, no. 2, pp. 319–333,
Apr. 2019.

[29] Q. Wang, S. Guo, J. Liu, and Y. Yang, “Energy-efficient computation
offloading and resource allocation for delay-sensitive mobile edge
computing,” Sustain. Comput. Infor., vol. 21, pp. 154–164, Mar. 2019.

[30] L. Cui, C. Xu, S. Yang, J. Huang, J. Li, X. Wang, Z. Ming, and N. Lu,
“Joint optimization of energy consumption and latency in mobile edge
computing for Internet of things,” IEEE Internet Things J., vol. 6, no. 3,
pp. 4791–4803, Sep. 2019.

[31] H. Xing, Z. Wang, T. Li, H. Li, and R. Qu, “An improved MOEA/D
algorithm for multi-objective multicast routing with network coding,”
Appl. Soft Comput., vol. 59, pp. 88–103, Oct. 2017.

[32] W. Xu, C. Chen, S. Ding, and P. M. Pardalos, “A bi-objective dynamic
collaborative task assignment under uncertainty using modified
MOEA/D with heuristic initialization,” Expert Syst. Appl., vol. 140, pp.
1–24, Feb. 2020.

[33] C. Wang, W. Zhao, W. Li, and L. Yu, “Multi-objective optimisation of
electro–hydraulic braking system based on MOEA/D algorithm,” IET
Intell. Transp. Sy., vol. 13, no. 1, pp. 183–193, Jan. 2019.

[34] C. Shu, Z. Zhao, Y. Han, G. Min, and H. Duan, “Multi-user offloading
for edge computing networks: A dependency-aware and latency-optimal
approach,” IEEE Internet Things J., pp. 1–12, 2020, doi:
10.1109/JIOT.2019.2943373.

[35] Y. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Comput. Surv., vol. 31,
no. 4, pp. 406–471, Dec. 1999.

[36] Y. Liu, S. Wang, Q, Zhao, S. Du, A. Zhou, and X. Ma,
“Dependency-aware task scheduling in vehicular edge computing,”
IEEE Internet Things J., pp. 1–11, 2020, doi:
10.1109/JIOT.2020.2972041.

[37] W. Aalst and K. Hee, “Workflow management: Models, methods, and
systems,” The MIT Press, 2004.

[38] T. Zhu, T. Shi, J. Li, Z. Cai, and X. Zhou, “Task scheduling in
deadline-aware mobile edge computing systems,” IEEE Internet Things
J., vol. 6, no. 3, pp. 4854–4866, Jun. 2019.

[39] L. Antonio and C. C. Coello, “Coevolutionary multiobjective
evolutionary algorithms: Survey of the state-of-the-art,” IEEE Trans.
Evol. Comput., vol. 22, no. 6, pp. 851–865, Oct. 2018.

[40] A. Trivedi, D. Srinivasan, K. Sanyal, and A. Ghosh, “A survey of
multiobjective evolutionary algorithms based on decomposition,” IEEE
Trans. Evol. Comput., vol. 21, no. 3, pp. 440–462, Sep. 2017.

[41] B. H. Nguyen, B. Xue, P. Andreae, H. Ishibuchi, and M. Zhang,
“Multiple reference points-based decomposition for multiobjective
feature selection in classification: Static and dynamic mechanisms,”
IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 170–184, Feb. 2020.

[42] G. Zhang, Y. Hu, J. Sun, and W. Zhang, “An improved genetic algorithm
for the flexible job shop scheduling problem with multiple time
constraints,” Swarm Evol. Comput., vol. 54, pp. 1–15, May 2020.

[43] M. Wu, K. Li, S. Kwong, Q. Zhang, and J. Zhang, “Learning to
decompose: A paradigm for decomposition-based multiobjective
optimization,” IEEE Trans. Evol. Comput., vol. 23, no. 3, pp. 376–390,
Aug. 2019.

[44] H. Li, J. Deng, Q. Zhang, and J. Sun, “Adaptive epsilon dominance in
decomposition-based multiobjective evolutionary algorithm,” Swarm
Evol. Comput., vol. 45, pp. 52–67, Mar. 2019.

[45] H. Liu, J. Pu, L. Yang, M. Lin, D. Yin, Y. Guo, and X. Chen, “A holistic
optimization framework for mobile cloud task scheduling,” IEEE Trans.
Sus. Comput., vol. 4, no. 2, pp. 217–230, Oct. 2019.

[46] W. Kang and J. Chung, “Power-and time-aware deep learning inference
for mobile embedded devices,” IEEE Access, vol. 7, pp. 3778–3789, Dec.
2019.

[47] S. Srichandan, T. Kumar, and S. Bibhudatta, “Task scheduling for cloud
computing using multi-objective hybrid bacteria foraging algorithm,”
Future Comput. Inform. J., vol. 3, no. 2, pp. 210–230, Dec. 2018.

[48] T. Wu, H. Gu, J. Zhou, T. Wei, X. Liu, and M. Chen, “Soft error-aware
energy-efficient task scheduling for workflow applications in
DVFS-enabled cloud,” J. Syst. Architect., vol. 84, pp. 12–27, Mar. 2018.

[49] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, “Probability and
statistics for engineers and scientists,” Pearson Educ., 2007.

[50] M. Friedman, “A comparison of alternative tests of significance for the
problem of m rankings,” Ann. Math. Stat., vol. 11, no. 1, pp. 86–92, Mar.
1940.

[51] L. Wang and X. Zheng, “A knowledge-guided multi-objective fruit fly
optimization algorithm for the multi-skill resource constrained project
scheduling problem,” Swarm Evol. Comput., vol. 38, pp. 54–63, Feb.
2018.

Fuhong Song received the M.Eng. degree from
Southwest Jiaotong University, Chengdu, China, in 2018.
He is currently pursuing the Ph.D. degree at the School
of Information Science and Technology, Southwest
Jiaotong University, Chengdu, China.

His current research interests include mobile edge
computing, multiobjective optimization, and machine
learning.

Huanlai Xing received the B.Eng. degree in
communications engineering from Southwest Jiaotong
University, Chengdu, China, in 2006, the M.Eng. degree
in electromagnetic fields and wavelength technology
from Beijing University of Posts and
Telecommunications, Beijing, China, in 2009, and the
Ph.D. degree in computer science from University of
Nottingham, Nottingham, U.K., in 2013.

He is currently an Associate Professor with the
School of Information Science and Technology,

Southwest Jiaotong University, Chengdu, China. His current research interests
include mobile edge computing, network function virtualization, software
defined networks, and evolutionary computation.

Shouxi Luo received the bachelor’s degree in
communication engineering and the Ph.D. degree in
communication and information systems from the
University of Electronic Science and Technology of
China, Chengdu, China, in 2011 and 2016,
respectively.

He is currently a Lecturer with the School of
Information Science and Technology, Southwest
Jiaotong University, Chengdu, China. His current
research interests include data center networks,

software-defined networking, and networked systems.

Dawei Zhan received the B.Eng. degree and the Ph.D.
degree in School of Naval Architecture and Ocean
Engineering from Huazhong University of Science and
Technology, Wuhan, China, in 2012 and 2018,
respectively.

His current research interests include evolutionary
algorithms, surrogate modeling, and surrogate-based
optimization.

Penglin Dai received the B.S. degree in mathematics
and applied mathematics and the Ph.D. degree in
computer science from Chongqing University,
Chongqing, China, in 2012 and 2017, respectively.

He is currently an Assistant Professor with the
School of Information Science and Technology,
Southwest Jiaotong University, Chengdu, China. His
current research interests include intelligent
transportation systems and vehicular cyber-physical

systems.

Rong Qu received the B.Sc. in Computer Science and
Its Applications from Xidian University, Xian, China
in 1996 and Ph.D. in Computer Science from The
University of Nottingham, Nottingham, U.K., in 2003.

She is an associated editor at IEEE Computational
Intelligence Magazine, IEEE Transactions on
Evolutionary Computation, Journal of Operational
Research Society and PeerJ Computer Science. She is
a Senior IEEE Member since 2012 and the Vice-Chair
of Evolutionary Computation Task Committee at

IEEE Computational Intelligence Society. Her current research interests
include the modeling and automated design of optimization algorithms for
combinatorial optimization problems including logistics transport scheduling,
personnel scheduling, network routing, portfolio optimization and timetabling
by using evolutionary algorithms, mathematical programming, constraint
programming in operational research and artificial intelligence. The hybrid
techniques integrated with knowledge discovery and machine learning provide
intelligent decision support for real-world complex problems at SMEs,
hospitals, education and industry.

