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Abstract 

The short-range attractive forces between hydrophobic surfaces are key factors in a wide 

range of areas such as protein folding, lipid self-assembly, and particle-bubble interaction such 

as in industrial flotation. Little is certain about the effect of dissolved (well-controlled) gases 

on the interaction forces, in particular in those systems where the formation of surface 

nanobubble bridges is suppressed. Here we probe the short-range attractive force between 

hydrophobized silica surfaces in aqueous solutions with varying but well-controlled isotherms 

of gas solubility. The first contact approach force measurement method using AFM shows that 

decreasing gas solubility results in a decrease of the force magnitude as well as shortening of 

its range. The behavior was found to be consistent across all four aqueous systems and gas 

solubilities tested. Using numerical computations, we corroborate that attractive force can be 

adequately explained by a multilayer dispersion force model, which accounts for an interfacial 

gas enrichment (IGE), resulting in the formation of a dense gas layer (DGL) adjacent to the 

hydrophobic surface. We found that the DGL on the hydrophobic surface is affected only by 

the concentration of dissolved gases and is independent of the salt type, used to control the gas 

solubility which excludes the effect of electrical double-layer interactions on the hydrophobic 

force.  
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1. Introduction 

Hydrophobic interactions are known to be critical in a wide range of areas, including 

protein folding and aggregation, a lipid assembly, particle-bubble interactions in both 

biological systems, and industrial processes such as froth flotation separation of hydrophobic 

particles1. In most systems under normal atmospheric conditions, the nucleation of surface 

nanobubbles can hardly be avoided, resulting in a large range attraction force with a span of up 

to several hundred nanometres as measured by the conventional AFM (Atomic Force 

Microscopy) technique using the AFM colloid probes. In this conventional technique, the solid 

particle on the probe was first brought into contact with the solid substrate to establish the 

“zero” inter-surface separation distance and then cyclically separated from the contact and 

brought to the contact for a few times to allow an averaging of the actual data for the force 

curve which is expected to be statistically representative. This cyclical measurement of forces 

between hydrophobic surfaces is linked to the mechanical cavitation process, producing 

nanobubble bridges between the hydrophobic surfaces which have generated the key 

controversy over the long-ranged hydrophobic forces. The nature of these long-ranged forces 

is essentially capillary associated with the formation of a gas bridge between the surfaces 

(which can be eliminated as achieved in this paper).  

Several mechanisms have been proposed to explain the origin of interaction between 

hydrophobic surfaces. Some of the most important existing theories include; the entropic origin 

originating from the configurational rearrangement of the vicinal water molecules between the 

hydrophobic surfaces2-4, cavitation or separation induced phase transition5-8, fluctuation 

correlation mechanisms, whereby confinement induces large density fluctuations that may 

result in anomalous hydrodynamic pressure9, aqueous charge10-11, or dipole correlations12-13, 

Anomalous polarization of vicinal water molecules14-15, and bridging of submicron bubbles 

also referred to the nanobubble bridging capillary force16-17. 
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The proposed theories have been discussed by many researchers, but no consensus has 

been reached to date. Meyer et al.18 compared the hydrophobic interactions between a 

symmetric system and an asymmetric system. The hydrophobic interactive forces were 

measured between two hydrophobic surfaces in the symmetric system, and between a 

hydrophobic and hydrophilic surface in an asymmetric system. The measured forces in both 

systems were found to be attractive and long-range, stronger than van der Waals. They reported 

the long-range attractive force can be explained by an electrostatic origin due to the alignment 

of oppositely charged surfaces in aqueous solutions, however, the attraction at the short-range, 

referred to as “truly hydrophobic” could not be explained. Tabor et al.19 reviewed the 

application of common force measurement methods used in analyzing hydrophobic 

interactions. They reported that different measurement methods have evolved to allow the 

distinguishment of a true hydrophobic interaction from other interactions that can cause strong 

attractions. They highlighted that the true hydrophobic interaction at short range can be 

explained by the orientation of water molecules at hydrophobic surfaces but only at a very short 

range with a decay length of 3 Å. They discussed various origins can explain the interactions 

at large range such as nanobubbles, charge rearrangement correlations, and Hofmeister-type 

specific ion effects.  

The long-range interaction between hydrophobic surfaces can be complicated by several 

factors such as contaminations, measurement methods, and other experimental conditions. 

Furthermore, other mechanisms, that are not directly associated with the short-range 

hydrophobic interaction, such as nanobubble bridging capillary force or cavitation can create 

uncertainty in studying the mechanism of interactions between hydrophobic surfaces. 

Therefore, researchers have attempted to minimize these uncertainties in experiments to probe 

the short-range hydrophobic interactions more accurately. Meyer et al.20 studied the effect of 

dissolved gas removal on the attractive forces between hydrophobic surfaces. They discussed 
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the presence of two distinct long-range and short-range forces over the distance of 1000 Å 

down to contact between hydrophobic surfaces. No evidence of pre-existing surface 

nanobubbles was reported to account for the long-range attraction in this work. It was suggested 

the data were more consistent with cavitation and electrostatic origin mechanisms. The long-

range attraction disappeared after the removal of the dissolved gases, however, the short-range 

attractive force still remained, which indicated the presence of two different mechanisms to 

account for this behavior. Ishida et al.21 studied the interaction forces between hydrophobic 

surfaces in degassed aqueous solutions. They reported the presence of a short-range attractive 

force between the surfaces in the absence of bridging bubbles, that was stronger than the van 

der Waals attraction. The range of this force was estimated to be approximately 10-25 nm. The 

authors discussed this force to have a true hydrophobic origin which was affected by the surface 

hydrophobicity and was independent of bridging nanobubbles effect. The change in solution 

temperature and ionic strength showed a minimum effect on the attractive force, while the 

change in surface hydrophobicity changed the range and magnitude of the force considerably. 

To explain the origin of this force, Ishida et al.21 discussed the possibility of the mechanism 

that involves dissolved gasses that reduce the density of water molecules around the surface 

and molecular vibration of solutions which can result in attractive force near the hydrophobic 

surface. The effect of salt on gas solubility in the bubble system has also been studied22-23, 

however, the question about the origin of a distinctive short-range attractive force between 

hydrophobic surfaces remains open. Recent results suggest that thorough removal of dissolved 

gas results in surface interactions being in close agreement with the classic van der Waals 

model24. Indirectly, these findings propose that the origin of additional attractive force between 

hydrophobic surfaces should lie with the dissolved gas. In our previous study, it was shown 

that saturating aqueous salt solutions with gas results in an increased range of attractive forces 

even in the absence of nanobubble bridges25. It is, however, very challenging to precisely 
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control gas concentration by degassing or supersaturating, as it takes the system outside of 

thermodynamic equilibrium. Under such dynamic conditions, the measured forces may be 

strongly implicated by non-equilibrium gas concentration gradients associated with the non-

zero mass transfer between the surface layer, bulk solution, and atmosphere. This uncertainty 

of controlling different constant levels of gas solubility in water by degassing in the force 

measurements using AFM can be amplified by the experimental practicalities which usually 

require a finite time for setting up, fine-tuning, and thermal equilibrium. Therefore, it is desired 

to avoid the degassing technique and to replace it by equilibrium control of gas solubility for 

the experiments.  

To control the desired gas solubility in the aqueous solution for a long time and at 

equilibrium, in this paper, we have used salt solutions that are known to contain different 

concentrations of dissolved gases at equilibrium as a function of salt type and salt 

concentration. This work aims to examine the role of the dissolved gas on the attractive forces 

between hydrophobic surfaces by controlling the gas solubility using concentrated aqueous 

solutions of several 1:1 salts. The approach enables one to single out the effect of the dissolved 

gas and disentangle it from possible contributions from surface adsorption of ions. 

2. Materials and Method 

2.1 Materials 

Silicon wafer surfaces (Silicon Valley Microelectronics, USA) and silica spheres of 20 

μm in diameter (Fuso Chemicals Co. Ltd., Japan) were used as test surfaces. Glassware was 

cleaned using potassium hydroxide, ethanol, and water (1:8:1 ratio by weight) solutions with 

15 min soaking and washing with pure (deionized, DI) water. AR grade ethanol was obtained 

from Crown Scientific (Australia). NH4OH (AR grade) was purchased from Lab Services 

(Australia) and H2O2 (GR grade) from Merck. Sodium chloride (99.5%), Potassium Chloride, 
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Caesium Chloride, and Lithium Chloride were obtained from Sigma-Aldrich (Australia). The 

salts were baked for 6 hours before preparing salt solutions to avoid the possibility of 

contamination. DI water was freshly purified using a setup consisting of a reverse osmosis 

RIO’s unit and an Ultrapure Academic Milli-Q system (Millipore, USA).  

2.2 Surface hydrophobization 

Esterification26 with 1-octanol (Merck, Australia) was used to produce stable 

hydrophobic surfaces. The surfaces were first cleaned using acetone, ethanol, and water in an 

ultrasonic bath then soaked for 15 min in 5H2O:1NH4OH:1H2O2 solution (RCA-SC1) at 75C 

and rinsed with copious amounts of water, and dried under nitrogen gas stream27. The cleaned 

silica substrates were then immersed in boiling 1-octanol solution for 4h under reflux, 

rendering it hydrophobic. The silica particles were cleaned in the RCA-SC1 solution, washed 

with copious amounts of water, and dried in a desiccator, followed by esterification in 1-octanol 

for 4h, washed with acetone, and dried in a laminar flow cabinet. The advancing and receding 

water contact angles of hydrophobized surfaces, as measured by the sessile drop method using 

a PAT-1 pendant drop tensiometer system (SInterface Technologies, Germany), were 85◦ and 

60◦, respectively. 

2.3 Equilibrium control of gas solubility in aqueous solutions 

Figure 1 shows the equilibrium solubility of dissolved oxygen as a function of salt 

concentration for NaCl, LiCl, KCl, and CsCl aqueous solutions. As can be seen, the gas 

solubility is decreased with increasing the salt concentration. Different sets of salt 

concentrations can be chosen to provide a similar gas solubility. Likewise, each of the salts 

with the same concentration can give different four concentrations of dissolved gases. Here, 

we have selected four sets of salt concentrations as shown in Figure 1 to cover the whole range 

of dissolved oxygen and nitrogen of ambient clean air. The salt solutions were prepared by 
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dissolving the required amount of baked salts, equilibrated at room temperature (about 22 oC) 

for many days, and aerated using the nitrogen gas (purity 99.99 %) overnight before use. 

Dissolved oxygen (DO) was measured using a WTW Multi 3410 DO meter with WTW FDO 

925® probe, which had been calibrated (calibration relative slope: 0.98 and FDO check: 

99.3%). Incorporated into the WTW Multi 3410 meter is digital processing and data transfer, 

or stability control function, which allows the measurements to be very precise. 

 

Figure 1. Experimental results for solubility of oxygen in salt solutions vs salt concentration28. 

C and Co describe the concentration of dissolved oxygen in the salt solutions and DI water, 

respectively. Circles show the different salt concentrations with similar gas solubility, which 

were selected for the four sets of experiments. 

 

2.4 Force measurements 

Force measurements and AFM imaging were performed using an MFP-3D Asylum AFM 

(Asylum Research, USA). Force measurements were carried out using the colloidal probe 

technique29-30 to determine the interaction forces between the hydrophobized silica particle and 

the hydrophobized silicon wafer substrates. Triangular cantilevers (BudgetSensors, Bulgaria) 
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with a nominal spring constant of 40 N/m were used. The actual spring constant was 

determined by the thermal method. The cantilevers were cleaned with piranha acid treatment, 

washed with DI water before use. AFM imaging was performed in liquid AC (tapping) mode.  

To prevent the effect of mechanical cavitation by cyclical contacting and separating of 

hydrophobic surfaces and to capture the “short-range” attraction between hydrophobic surfaces 

in the absence the nanobubble bridges, we used the first contact approach force measurement 

method, in which we recorded and considered the first particle-substrate contact force curve.  

2.5 Force analysis using the dense gas layer and multilayer dispersion theories 

The measured force, F, was analyzed using the sum of the multilayer dispersion (van 

der Waals,  vdW) and electrostatic double-layer (edl) forces as per the DLVO theory as 

follows:  2/ 6p edlF AR h F   , where is the particle radius and h is the separation distance 

(i.e., the shortest thickness of the intervening liquid film between the surfaces). edlF  as a 

function of h was numerically calculated from the numerical solution of the Poisson-Boltzmann 

equations (PBE). The details of the calculations are described in the supplementary 

information. Likewise, the van der Waals force as described by the first term on the right-hand 

side of the equation shown above was numerically calculated using the multilayer dispersion 

theory31.  The Hamaker function, A, is not a constant but depends on separation distance due 

to the effect of the finite speed of light (known as the retardation or Casimir-Folder effect32). 

As described in the SI, here we consider a 7-layer system which consists of the water layer at 

the center, two dense gas layers (DGLs), two simple surfactant layers of esterification, and two 

silicon wafer materials. Each of the two DGLs is sandwiched between the solid surface 

hydrophobized by esterification using ethanol and the aqueous phase33-34. A brief discussion 

about DGLs is given in the next section.  

pR



 

9 
 

3 Results and discussion  

In force-distance measurements, the salt concentrations were chosen to have matching 

gas solubility as described in the experimental section. Specifically, the four salt concentrations 

used for the experiments are shown by red circles in Figure 1. The results of force 

measurements in the aqueous solutions at four levels of gas solubility are shown in Figure 2. 

For each of the salts, decreasing the content of dissolved gases results in a decrease in the 

magnitude of the attractive force as well as shortening of its range. Still, the range of the 

attractive force is considerably larger than that expected for vdW attraction between octanol-

esterified silicon wafer surfaces in the solutions. The results of AFM measurements for 

different salt types and concentrations are summarised in Table 1. We note that the attractive 

force in different salts with the same concentration is different, which excludes the possibility 

that the observed changes are dominated by non-linear polarizability effects observed in the 

concentrated 1:1 salt solutions. In such a case, one would expect the force to be the strong 

function of the salt concentration. 

Furthermore, the concentration of dissolved oxygen for the different salt solutions and 

concentrations, used in the AFM measurements, were measured using the dissolved oxygen 

probe. The experimental measurements of dissolved oxygen show a decrease in the gas content 

for the different salt solutions and concentrations, as presented in Table 1. It was observed that 

the attraction range between hydrophobic surfaces is decreased with increasing the salt 

concentration in the absence of the nanobubble bridges. This suggests that the dissolved gases, 

the content of which decreases with the increase in salt concentration, affect the attraction 

between hydrophobic surfaces. 
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Figure 2. Comparison of the force curves at different concentrations of different aqueous 

solutions of NaCl, KCl, CsCl, and LiCl as chosen per Figure 1. The force is normalized by 

dividing the measured force by the particle radius.  

 

 

Table 1. Summary and results of the force measurements and measured dissolved oxygen.  

 

Salt types and 

concentrations 

 

C/C0 

Measured 

dissolved 

oxygen (μM) 

Calculated DGL 

thickness (nm) 

Measured 

attraction range 

(nm) 

0.1 M NaCl 

0.11 M KCl 

0.14 CsCl 

0.16 LiCl 

 

0.970446 

 

256.3±0.5 

244.7±0.7 

248.2±0.6 

261.6±0.5 

4.88±0.20 

4.84±0.081 

5.1±0.08 

5.14±0.16 

 

15-19 

1 M NaCl 

1.07 M KCl 

1.36 M CsCl 

 

0.740818 

 

213.4±0.5 

208.7±0.5 

201.1±0.7 

2.38±0.05 

2.28±0.04 

2.34±0.04 

 

11-14 
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1.58 LiCl 205.4±0.8 2.38±0.04 

2 M NaCl 

2.14 M KCl 

2.73 M CsCl 

3.16 M LiCl 

 

0.548812 

 

178.1±0.6 

185.8±0.9 

171.2±0.7 

167.4±0.6 

1.4±0.06 

1.25±0.05 

1.3±0.1 

1.3±0.06 

 

9-11 

4M NaCl 

4.29 M KCl 

5.45 M CsCl 

6.32 M LiCl 

 

0.301194 

 

131.3±0.6 

116.8±0.9 

128.1±0.8 

121.8±0.6 

1.24±0.07 

1.4±0.08 

1.3±0.03 

1.4±0.04 
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Dissolved gases can preferentially accumulate and enrich at the hydrophobic surfaces in 

water as interfacial nanobubbles and nanopancakes which are nowadays known as gaseous 

domains on immersed hydrophobic solid surfaces in water and can survive for days35. These 

gas domains were first discussed in the context of strong attraction between hydrophobic 

surfaces in aqueous solutions as measured by the surface force apparatus, based on the 

discontinuities of the Newton rings (the fringes used to measure separation distances 

spectroscopically) by spontaneous cavitation occurring at contacting hydrophobic surfaces6, 18. 

The interfacial nanobubbles were then connected with the stepwise features in measured force 

curves, now known as the nanobubble bridging capillary force36, and confirmed by AFM 

imaging on a variety of hydrophobic surfaces and many other non-AFM techniques37. In this 

paper, we have eliminated the nanobubble bridging force experimentally and have considered 

the effect of interfacial gas enrichment (IGE) of dissolved gases at the hydrophobic surface on 

the measured force. The IGE covering the entire area of the hydrophobic solid-water interface 

is responsible for the unexpected stability of interfacial gaseous domains38. Also, the molecular 

attraction between the gas molecules of IGE and the hydrophobic surface forms a dense gas 

layer (DGL) adjacent to the hydrophobic surface, providing the molecular stability of the 

interfacial gaseous domains33. The DGL has been included in analyzing the dispersion force as 

described in Section 2.5. Figure 3 shows the comparison of the measured force curve in 4M 
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NaCl solution with the theory with the inclusion of the 7-layer (silica-octanol-DGL-aqueous 

solution-DGL-octanol-silica) dispersion force model. The model agrees well with the 

measurements, which supports the possibility of a gas layer formation on the hydrophobic 

surfaces, extending the surface interactions to a larger range and magnitude 

 

Figure 3. Measured force (red circles) in 4 M NaCl solution versus theoretical force (black 

line) with the 7-layer dispersion model as described in Section 2.5. The forces are normalized 

by dividing by the particle radius. The DGL thickness is 1.2 nm.  

 

Figure 4 shows the predicted DGL thickness versus salt concentration as calculated by 

comparing the force model with the measured force curves for different salt solutions. It was 

observed that the predicted thickness of DGLs was thicker for lower salt concentrations, while 

a smaller thickness of DGLs was observed for higher salt concentrations. We predict that in 

higher salt concentrations, with lower gas solubility, the formation of a gas layer on the surface 

is more limited, and hence a thinner gas layer is formed. In the solutions with lower salt 

concentrations and higher gas solubility, the possibility of the formation of a larger gas layer 

is higher. Comparison of the predicted DGL thickness for different salt types at salt 

concentrations with similarly dissolved gas solubilities shows that at salt concentrations with 
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similar gas solubilities, a similar length of gas layers has been observed for different salts, as 

shown in Figure 4. These results agree with the hypothesis that the dissolved gas content, 

affected by the salt concentration, is a crucial factor for controlling the attractive force between 

the hydrophobic surfaces, in the absence of nanobubble bridging capillary force. They are also 

supported by the recent literature which has pointed to the critical role of dissolved gases in 

aqueous thin films affecting dispersion forces in a wide range of important phenomena39-40. 

However, a few issues remain to be solved, including the effect of salts on the water dielectric 

function (or polarizability) that affects the calculation of dispersion forces as shown in the SI, 

where the salt effect is only accounted for by the zero-frequency term. 

 

Figure 4. Predicted DGL thickness versus salt type and concentrations. The salt concentrations 

used for measurements with similar gas solubilities as shown in Figure 1.  

 

4. Conclusions 

We have successfully studied the short-range attractive force between hydrophobized 

silica surfaces in aqueous solutions of well-controlled solubility of dissolved gases. We have 

employed the first contact approach of the AFM colloid probe force measurements and, 

therefore, have eliminated the nanobubble bridge capillary force. Choosing four sets of 
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different salts (NaCl, KCl, CsCl, and LiCl) and different concentrations have provided four 

consistent levels of dissolved gas solubility, uniformly spanning between the gas solubilities in 

DI water and salt-saturated solutions. We have observed that the range and magnitude of the 

short-range force between the hydrophobic surfaces decreased with decreasing concentration 

of dissolved gases in the aqueous solutions. However, this dependency did not scale with salt 

concentration. Instead, we have found that across all four salt types the force scaled with 

dissolved gas concentration, so that the measured attraction between hydrophobic surfaces in 

solutions with different salt concentrations but matching the gas solubility was very similar. 

When analyzing the experimental results, we have applied a multilayer (silica-octanol-DGL-

aqueous solution-DGL-octanol-silica) dispersion force model. The water dielectric function 

was numerically calculated using the latest experimental data for the real and imaginary parts 

of the complex dielectric function of liquid water (up to the frequency of 100 eV). A good 

agreement with the experimental results was achieved by evoking IGE concept that results in 

the formation of DGL at the hydrophobic surface. It is corroborated that the DGL thickness 

decreases with decreasing gas solubility up to a length of ca. 14 Å beyond which it remains 

constant. These findings agree with the hypothesis that dissolved gases control the attractive 

force between hydrophobic surfaces. 
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Supplementary information 

Numerical calculation of model forces 
 

For multilayer silica-octanol-DGL-aqueous solution-DGL-octanol-silica system, the Hamaker 

function can be calculated applying the multilayer dispersion force theory1 which gives: 

         
0

3
' ln 1 1  d

2

x xB
mL n mR n mL n mR n

n xn

k T
A x i i e i i e x   


 



        
              (1) 

where x is the integration dummy,  is the Boltzmann constant and is the absolute 

temperature. The prime against the summation in n indicates that the zero-frequency (n = 0) 

term is divided by 2. The Matsubara (sampling, discrete equally spaced) frequencies are 

described by 2 /n Bn k T   where  is the Planck constant (divided by 2, while in are the 

imaginary frequencies.  2 /n n m nx h i c   , where c is the speed of light and  m ni   is the 

dielectric function of the liquid medium (the aqueous salt solution) between the two 

multilayered structures. mL  and mR  describe the diamagnetic reflection coefficients of a 

photon passing across the multilayered structure between the liquid medium and the semi-

infinite substrate (L) on the left, and the multilayered structure between the medium and the 

semi-infinite substrate (R) on the right, respectively. If the left multilayer consists of N layers 

of thickness ih  with 1,2,...,i N  (the 1st layer is next to the substrate and the last layer N is 

next to the liquid medium), we have  

   

   
1 2 1

1 2 1

, ,..., exp /

1 , ,..., exp /

mN NL N N N
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h h h xh s ph

h h h xh s ph





     
     

   (2) 

where the diamagnetic reflection coefficient for the multilayered structure of the sequentially 

reduced number of layers can be calculated using a recursion equation as follows: 

       

       

1 2 2 1 11 1
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   

   

     
 

     

 for , 1,...,2j N N   (3) 

Bk T



 

19 
 

The zeroth layer is the substrate L on the left. For nonmagnetic materials considered in this 

paper, the diamagnetic reflection coefficient of a photon passing across a single interface 

between two materials “j” and “k” which is required in Eqs. (2) and (3) is calculated as follows: 

  j k
jk

j k

s s
i

s s



 


  (4) 

The retardation coefficients in Eq. (4) are defined by 

     2 1 /j j ms i p i i         (5)  

where  j i   is the dielectric function of the material “j”. The parameter p is defined by 

 2 m

xc
p

h i  
  (6) 

For the multilayered structure on the right, mR  can be calculated using similar equations. 

In Eq. (1), mL  and mR  describe the dielectric reflection coefficients of a photon passing 

across the multilayered structures on the left and the right sides of the medium, respectively. 

They can be calculated using Eqs. (2) and (3) with the symbol “” being replaced by  , and 

the dielectric reflection coefficient of a photon passing across a single interface being 

calculated as follows: 

  j j k k
jk

j j k k

s s
i

s s

 


 


 


 (7) 

We also accounted for the effect of screening of the vdW interactions by salts by 

adjusting the zero-frequency term, 0A , as follows: 

       0 0 0 1 2 exp 2A A h h      (8) 

The Debye constant in Eq. (8) is defined by: 
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 2

02000 /A BN e I k T   (8) 

where I is the solution ionic strength in mol/L (M), NA is the Avogadro number,   is the 

permittivity of the vacuum, 0 78  is the dielectric constant of water,  is the charge on the 

electron. 

The required spectrum of dielectric function of liquid water was calculated by 

numerically integrating the Kramers-Kronig equation using the latest experimental data for the 

real and imaginary parts of the complex dielctric function of liquid water (up to the frequency 

of 100 eV) 2, i.e., not using the data obtained by the oscillator model approximation. Spectral 

data for octanol could not be located so they were approximated using “Cauchy plots” 3 using 

absorption parameters for octane 4 (the alkane portion of octanol). The thickness of the octanol 

layer was assumed to be 1 nm. The dielectric functions for dense gas layers and air are assumed 

to be 1 in the calculation.    

The numerical integration of Eq. (1) was best carried out using quadratures with high-

degree polynomial fitting such as the Gauss-Laguerre formulas for the infinite interval5. The 

computational results reported here were obtained using the values of the zeros of the Laguerre 

polynomial and the respective weights of the 30th order Gauss-Laguerre quadrature. The 

computation of the outer summation included about 3000 or more terms for satisfactory 

convergence and accuracy (with a relative error smaller than 0.001% for the summation). 

The edl force was calculated using the numerical solution of the Poisson-Boltzmann 

equations (PBE) together with the assumption of either constant surface potential or constant 

surface charge5. Specifically, PBE for two flat surfaces was first numerically solved employing 

the collocation method for a system of differential equations subject to nonlinear, two-point 

boundary conditions at the surfaces. Together with the boundary conditions, the discretized 

equations on a uniform 1D mesh form a system of nonlinear algebraic equations for the 

electrical potential between the two surfaces and its gradient (first derivative), which can be 

solved iteratively by linearization employing the linear equation solvers of Matlab. The 

approximate Debye-Hückel solution of PBE was used to initialize the numerical solution by 

the collocation method. After obtaining the electrical potential,  , between the flat surfaces 

and its gradient /d dx , the edl disjoining pressure as a function of the separation between the 

surfaces was calculated using the Langmuir equation described by 

e
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   
2

0exp / 1 / / 2edl B i i Bk T n z e k T d dx         , where  in  the number 

concentration of the salt ions “i” with charge iz  and the summation is considered for all types 

of ions in solution. The Langmuir equation is valid at all points between the surfaces, but was 

conveniently evaluated using the potential and its gradient at one of the surfaces here. Knowing 

the disjoining pressure as a function of separation distance, the edl interaction force between 

the colloid probe and the flat surface was calculated by applying the Derjaguin approximation 

as follows:    

   2edl p

h

F h R d  


   (8) 

The integration was carried out using the function Quad of MATLAB. In the integration, the 

pressure as a function of separation distance was approximated using the numerical values and 

the interpolation function of MATLAB. The integration limit at infinity was replaced by a finite 

distance (typically of 20/) and the superposition solutions of PBE (for analytically evaluating 

the integral from the finite distance to infinity)5.  
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