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Abstract 

Grain and soil were sampled across a large part of Amhara, Ethiopia in a study motivated 

by prior evidence of selenium (Se) deficiency in the Region’s population. The grain samples (teff,  

Eragrostis tef, and wheat,  Triticum aestivum) were analysed for concentration of Se and the soils 

were analysed for various properties, including Se concentration measured in different extractants. 

Predictive models for concentration of Se in the respective grains were developed, and the 

predicted values, along with observed concentrations in the two grains were represented by a 

multivariate linear mixed model in which selected covariates, derived from remote sensor 

observations and a digital elevation model, were included as fixed effects. In all modelling steps 

the selection of predictors was done using false discovery rate control, to avoid over-fitting, and 

using an  -investment procedure to maximize the statistical power to detect significant 

relationships by ordering the tests in a sequence based on scientific understanding of the 

underlying processes likely to control Se concentration in grain. Cross-validation indicated that 

uncertainties in the empirical best linear unbiased predictions of the Se concentration in both 

grains were well-characterised by the prediction error variances obtained from the model. The 

predictions were displayed as maps, and their uncertainty was characterized by computing the 

probability that the true concentration of Se in grain would be such that a standard serving would 

not provide the recommended daily allowance of Se. The spatial variation of grain Se was 

substantial, concentrations in wheat and teff differed but showed the same broad spatial pattern. 

Such information could be used to target effective interventions to address Se deficiency, and the 
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general procedure used for mapping could be applied to other micronutrients and crops in similar 

settings. 

Keywords: Selenium; Micronutrients; Hidden hunger; Teff; Wheat; Geostatistics 

   

1. Introduction 

Mineral micronutrient deficiencies (MNDs) are widespread in sub-Saharan Africa (SSA), 

especially among women and children (Joy et al., 2014; Kumssa et al., 2015; Schmidhuber et al., 

2018; Smith et al., 2016). These deficiencies, sometimes called ‘hidden hunger’, are a critical 

obstacle to the United Nations’ second Sustainable Development Goal (SDG2, ‘Zero Hunger’), to 

‘achieve food security and improved nutrition’ by 2030 (Gödecke et al., 2018). 

There are multiple and complex causes of MNDs, including poor dietary intake and 

bioavailability as well as nutrient losses due to factors such as infection (Caulfield et al, 2006). In 

SSA many mineral MNDs arise from restricted soil-to-crop transfer of micronutrients, due to soil 

conditions, exacerbated by poor dietary diversity including a paucity of animal-source foods 

(Hurst et al., 2013; Joy et al., 2014, 2015; Manzeke et al., 2019; Phiri et al., 2019). 

There are various interventions available to address MNDs, including biofortification 

through crop breeding. There have been notable successes by HarvestPlus and the Consultative 

Group for International Agricultural Research (CGIAR) to develop staple crops with increased 

grain concentration of iron (Fe) in SSA, and zinc (Zn) in South Asia (Gregory et al., 2017; 

Khokhar et al., 2018; Velu et al., 2012). However, the alleviation of multiple mineral MNDs in 

SSA is likely to require combined approaches including dietary diversification, food fortification, 

and the use of micronutrient-enriched fertilisers (agronomic biofortification). There are precedents 

for using Se containing fertilisers at national scale in Finland, where Se agronomic biofortification 

has been continually used in crop production since 1984 (Chilimba et al., 2012). 

Effective intervention to address MNDs requires reliable information to support decision 

making at national and subnational scales. Such information is relatively scarce in SSA. Little is 

known about how soil-to-crop transfers of minerals and intake of minerals into food systems vary 

spatially, and there is a lack of reliable biomarkers of micronutrient status to identify where 

particular micronutrients are in deficit and where they are adequate. It has been shown that 

considerable efficiencies could be achieved if particular interventions were targeted and tailored to 

local conditions (Vosti et al., 2015), and so this lack of information limits the ability of policy 

makers to design effective responses. 

Some of the richest disaggregated data for Se in SSA are found in Ethiopia and Malawi 

although even these data are relatively sparse. In both countries the variation of population nutrient 

status can be attributed in part to local soil conditions, and to other landscape and socio-economic 

factors (Gashu et al., 2016a,b; Hurst et al., 2013; Phiri et al., 2019, 2020). In Malawi, Phiri et al. 

(2019, 2020) showed marked spatial national-scale variation in the Se status of women of 

reproductive age, and the spatial patterns were consistent with previous surveys of the Se 

concentration in soil and maize grain (Chilimba et al., 2011), and with smaller cross-sectional 

studies of Se intake and status (Hurst et al., 2013). 

Comparable information on the spatial variation of Se status among the Ethiopian 

population, and contributing factors, have not yet been reported at national scale. The overall 

prevalence of Se deficiency is likely to be large. For example, Gashu et al. (2016a) identified 

widespread Se deficiency, based on a large-scale survey of the serum Se status of children in the 

Amhara Region (east Gojjam and west Gojjam, south and north Wollo, north Gonder and Waghera 

Districts). Approximately 55% of these were deficient. They hypothesised that Se deficiency risks 
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were linked to soil and/or landscape features (Gashu et al., 2016a). Reliable data on the Se status of 

soils and crops in Ethiopia, and elsewhere in SSA, are lacking (Ligowe et al., 2020). Sillanpää and 

Jansson (1992) reported the Se status of 126 soils and co-located plants (wheat or maize) in 

Ethiopia. However, their sampling was not designed to provide spatial coverage, and did not 

include the important staple crop teff. Sillanpää and Jansson (1992) concluded that the Se status of 

crops in Ethiopia was generally satisfactory but that localized deficiency may exist. Ligowe et al. 

(2020) re-analysed these data. Topsoil Se concentration, following acid ammonium acetate-EDTA 

universal extraction, ranged from < 5 – 32 μ  g L 1 , and there was no evidence for relationships 

between concentrations of Se in soil and concentrations in maize or wheat. In summary, there is 

evidence for Se deficiency in parts of Amhara Region, and preliminary evidence of variation in Se 

concentration in soil, but further focussed sampling is necessary to understand this variation, and 

its possible relationship to Se concentration in crops. On the basis of the results of Gashu et al. 

(2016a), who show that there are substantial rates of Se deficiency among children in Amhara 

Region, this is an appropriate area in which to undertake such a study. 

The objective of the study reported here was to examine evidence for the spatial variation 

of Se concentration in cereal staple crops across part of the Amhara Region of Ethiopia. In 

particular we wished to examine how field surveys of crop and soil, along with additional spatial 

information, could be used to make reliable spatial predictions of Se concentration in grain, with 

attached measures of uncertainty. Our hypothesis was that at least some of the observed variation 

in Se status of grain can be accounted for by the effects of variation in soil properties, and so that 

soil information can be used, along with direct measurements of Se in grain, to make better spatial 

predictions of grain Se concentration than could otherwise be produced. Such maps could provide 

a basis for understanding patterns of Se deficiency in the population, and for identifying areas 

where such deficiencies might be expected, and where particular interventions might be most 

appropriate because of the poor local Se status of staple crops. From previous dietary data analyses 

(Gashu et al., 2016b), teff ( Eragrostis tef) and wheat ( Triticum aestivum) are the two dominant 

cereal crops in this region. Teff was the most widely-consumed cereal, eaten by 76% of children in 

the previous 24 h. We therefore focus in this study on mapping the concentration of Se in teff and 

in wheat grain. 

This mapping task is a substantial challenge for several reasons. First, data on grain Se 

status, even in a focussed survey, are inevitably sparse, and there is likely to be considerable 

variation in these data at multiple scales. Second, while soil properties can be measured at any 

sample site, grain Se can only be measured from sites where that particular grain was growing. We 

therefore have a mixture of collocated observations of soil properties and the target grain, and 

non-collocated observations of soil properties and the non-target grain. Covariates, including 

remotely sensed data, may help the process of spatial prediction, but we require robust methods to 

select appropriate covariates for any prediction task. Finally, the predictions that are made have 

inevitable uncertainty. If they are to be useful then we must be able to quantify this uncertainty and 

to communicate it appropriately to the relevant stakeholders. Given these considerations we 

decided to use the spatial linear mixed model (LMM) for the analysis and prediction of data on 

grain Se, soil properties and associated covariates (Cressie, 1993). Specifically we considered a 

multivariate version of the model (Marchant and Lark, 2007) which allows us to combine 

collocated and non-collocated data. The empirical best linear unbiased prediction (E-BLUP), 

based on the fitted model, has an associated prediction error distribution, and on the basis of this 

we were able to quantify uncertainties in the prediction relative to threshold concentrations of 

interest, and to use strategies to communicate this uncertainty which have been used elsewhere 
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(Lark et al., 2014, 2019; Mastrandrea et al., 2010). 

   

2. Materials and Methods 
   

2.1 Sampling 

 

The objective of field sampling was to support spatial prediction of grain Se concentration. 

To this end it was neither necessary nor desirable to sample independently and at random. The 

objective was to obtain samples that gave reasonable spatial coverage over the target sample 

frame, with a proportion of sample points at a short distance from the basic sample set to support 

the estimation of a spatial LMM (Lark and Marchant, 2018). The sample frame was defined in 

terms of the objectives and constraints of the task. First, the sample frame was constrained to sites 

within Amhara Region where the probability that the land was in agricultural use equalled or 

exceeded 0.9. This was based on predictions produced on a 500-m grid by the AfSIS project 

(Walsh et al., 2019) using a combination of interpretation of high-resolution satellite imagery by 

trained observers and machine learning methods applied to multiple covariates derived from 

remote sensor data and digital elevation models (AfSIS, 2015). The mapped probabilities of 

cropping used here are shown in Figure S1 of the supplementary material. Second, the frame was 

constrained to include only those sites from a 500-m grid, that fell within 2.5 km of a known road. 

A map indicating nodes on a 500-m grid (with the same origin as the agricultural land use grid) 

which met this requirement was prepared. Information on the distribution of roads was taken from 

OpenStreetMap (OpenStreetMap contributors, 2017). It is acknowledged that this constraint 

introduces a possible bias into predictions made at sites outside the defined sample frame, and the 

predictions must be interpreted with it in mind. However, without such a constraint it would not 

have been possible to visit all sample sites across the region of interest in the time available. 

Having defined the sampling frame, a total of 475 sample locations were selected with 

every 500-m grid node within the sampling frame allocated an equal prior inclusion probability. 

This was done using the lcube package from the BalancedSampling library for the R platform (R 

Core Team, 2017; Graftström and Lisic, 2016). This implements the cube method of Deville and 

Tillé (2004), which allows one to sample honouring specified inclusion probabilities while aiming 

for balance and spread with respect to specified covariates. In this case sample sites were selected 

for spatial balance, which entails that the mean coordinates of sample sites are close to the mean 

coordinates of all points in the sample frame) and spatial spread (which ensures that the 

observations are spread out rather than clustered with respect to spatial coordinates), see 

Graftström and Schelin (2014). Once these sites were chosen a subset of 25 was selected, again to 

achieve spatial spread. Each of these 25 sites were earmarked for a second field sample site at a 

nearby location (see next section). As stated above, the inclusion of these extra close-paired sites 

was done to support estimation of parameters of the spatial LMM, following Lark and Marchant 

(2018). 

   

 

2.2 Field Sampling 

 

Sampling was done by teams who undertook initial training to standardize procedures. 

Each team aimed to visit around 5 sample sites per day. The day’s sample sites were uploaded onto 

a tablet PC and a GPS device as a waypoint list. They were also printed on a paper map. The team 
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would navigate to the target sampling point using the paper map, and then using the GPS over the 

last few kilometres. At the sample site the team would find the nearest field with a mature cereal 

crop within a 1-km radius, and would request permission to sample from the farmer. If a field with 

a standing mature cereal crop was not present then the team would talk with local farmers to 

identify a field where the crop had recently been harvested. If permission could be obtained to 

sample both this field and the stored grain which had been harvested from it, then the field would 

be selected. If this procedure failed then the team would look further than 1 km from the target site 

for an alternative. If one could not be found then the target site was abandoned. In practice it was 

possible in all cases to sample a standing crop, grain from field stacks or, in a few cases, grain 

which had been moved from the field to a store. 

Samples were taken from a 100-m 2  (0.01-ha) circular plot in the selected field. This was 

centred as close as possible to the middle of the field unless this appeared unrepresentative with 

respect to disease or crop damage. Five sub-sample sites were located, the first at the centre of the 

plot. Two sub-sample points were selected at locations on a line through the plot centre along the 

crop rows, and two on a line orthogonal to the first through the plot centre (see Figure S2 in the 

supplementary material). Note that these four sub-sample points lie on the circumferences of 25-m
2 , 50-m 2 , 75-m 2  and 100-m 2  subplots with a common centre where the first sub-sample was 

collected. The central sampling location was fixed between crop rows, and the ‘long’ axis of the 

sample array (with sample locations at 5.64 and 4.89 m) was oriented in the direction of crop rows 

with the ‘short axis’ perpendicular to the crop rows (see Figure S2 in the Supplementary Material). 

A single soil subsample was collected at each of the five sub-sample points with a Dutch 

auger with a flight of length 150 mm and diameter 50 mm. The teams were trained to take care to 

insert the auger vertically and to the precise depth of one flight. Any plant material adhering to the 

auger was carefully removed, and the five sub-samples stored in a single bag. 

Crop samples were taken close to each augering position. A grain sub-sample was 

collected at each site, taking care to avoid any contamination of the grain with soil. If the crop was 

in field stacks then a sub-sample, comprising five heads of grain, was taken from each available 

stack, taking material from the centre of the stack to minimize contamination by dust and soil. 

At sample sites earmarked for a second ‘close-pair’ sample a duplicate field was identified 

where possible. Ideally this was within 500 m of the primary sample site, but a close-pair site could 

lie within 100 – 1000 m of the primary site. If such a site could not be found, then an attempt was 

made to find a close-pair site at the next sample location not already earmarked for a close-pair. 

Photographs of sample bags and the sample site were recorded for quality assurance along 

with site GPS locations. 

The distribution of sample points is shown on a map of Ethiopia in Figure S3 in the 

supplementary material. 

   

2.3 Sample Preparation and Laboratory Analysis 

   

2.3.1 Sample preparation. The soil samples were oven-dried in their sample bags at 40 o C 

for 24 or 48 hours depending on the moisture content of the soil. Preparation took place in a soil 

laboratory to avoid cross-contamination with grain samples in which concentrations are smaller. 

Any fresh plant material was removed from each sample which was then disaggregated and sieved 

to pass 2 mm. This material was then coned and quartered to produce sub sample splits. One such 

150-g subsample was poured into a self-seal bag, labelled and shipped to the UK for analysis in the 

laboratories at Rothamsted Research and University of Nottingham as described below. 
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Grain samples were air-dried in their sample bags. All preparation was done away from 

sources of contamination by soil or by dust. Each sample was then ground in a coffee grinder 

which was wiped clean before use and after each sample with a non-abrasive cloth. A 20-g 

subsample of the ground material was then bagged and labelled for shipping to the University of 

Nottingham. 

   

2.3.2 Laboratory analysis. 

 

Crop samples were analysed for elemental composition by inductively coupled plasma 

mass spectrometry (ICP-MS) following microwave-assisted acid digestion in Primar Plus TM  

grade HNO 3  as described by Kumssa et al. (2017). 

A soil sequential fractionation procedure was adapted from Mathers et al. (2017) and 

Shetaya et al. (2012) to provide three fractions of Si, S, Se and I nominally identified as ‘Soluble’ 

(0.01 M KNO 3 ), ‘Adsorbed’ (0.016 M KH 2 4PO ) and ‘Organic’ (10% TMAH). Analysis was by 

ICP-MS (Thermo Fisher iCAP Q) in H 2  cell mode (Si and Se) or He cell mode with kinetic 

energy discrimination (I and S). 

Soil pH was measured with a Jenway 3540 meter, with a temperature-compensated 

combination pH electrode, where the soil:water suspension ratio was 1:2.5, with 60 minutes 

equilibrating time. 

Acid oxalate extractable Fe, Al, Mn and P were extracted with a mixed solution of 

ammonium oxalate and oxalic acid at a soil: solution ratio of 1:100 (Schwertman, 1964). Samples 

were shaken in the dark (4 h, 20 o C) using a reciprocal shaker, filtered then acidified and analysed 

by inductively coupled plasma optical emission spectrometry (ICP-OES; Perkin Elmer Life and 

Analytical, Shelton, USA). 

Total carbon was determined by dry combustion (Tiessen et al., 1981) using a Leco 

TruMac CN Combustion analyser and Inorganic C by Inorganic Carbon Analyser- Skalar Primacs 

(Skalar Analytical BV, Breda, Netherlands). 

Available phosphorus ( OlsenP ) was extracted by the sodium bicarbonate method as 

described by Olsen et al. (1954). Phosphorus in the bicarbonate solution was determined by the 

phospho-molybdenum blue method on the Skalar SAN PLUS  System (continuous colorimetric flow 

analysis). 

The phosphorus buffer index, a measure of the soil’s ability to fix phosphorus, (PBI) was 

measured with the method of Rayment and Lyons (2011). A single addition of phosphorus (KH

2 4PO  in 0.1 M CaCl 2 ) at 1000 mg P kg 1  was added to the soil at a 1:10 soil to solution ratio. The 

soil solution was shaken, filtered and then analysed with a Skalar San++ Colorimetric, Continuous 

Flow Analyser. The PBI index calculation was performed following Rayment and Lyons (2011) 

using the equation 

  

 s Olsen

c

4.59
= ,

0.41

P P
PBI

P


 (1) 

  

where sP  is the P sorbed (mg P kg 1  soil) and cP  is the final solution P concentration (mg P L 1

). 
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2.4 Exhaustive covariates 

 

In addition to the measurements of Se concentration in grain and soil, and associated soil 

properties, at each sample site, we made use of several environmental covariates, for which values 

could be extracted at sample sites and which were known at all points on a grid across the study 

area for spatial mapping. These were the CHELSA downscaled mean annual temperature and 

precipitation (Karger et al., 2017a,b), the Enhanced Vegetation Index (EVI) derived from the 

MODIS remote sensor platform (Justice et al., 1997), the original reflectance data from the 

MODIS satellite in Bands 1, 2, 3 and 7, slope derived from the 30-s resolution MERIT Digital 

Elevation Model (DEM) of Yamazaki et al. (2017) and topographic index derived from the same 

DEM, a measure of the tendency for water to accumulate at a site due to surface flow. The values 

for these covariates were extracted from the grid cells including all the soil–crop sampling sites 

described in sections 2.1 and 2.2 above. 

   

2.5 Statistical Analysis 

 

2.5.1 The spatial linear mixed model and the associated spatial predictor. The objective of 

this analysis is to obtain spatial predictions of the Se concentration in grain in the dominant crops 

(wheat and teff) across the study region. To do this we use a spatial multivariate linear mixed 

model (LMM). In this presentation we assume that the target grain for mapping is teff, but the 

same approach was used to map Se concentration in wheat grain. In the LMM measured Se 

concentration in teff grain, the concentration in wheat grain and a site-specific prediction of Se 

concentration in the target grain from measured soil properties are treated as jointly spatially 

correlated random variables, they are the vectors of variables 1y  (Se concentration in teff grain), 

2y  (Se concentration in wheat grain) and 3y  (predicted concentration) in the following 

expression: 

  

 

1 1 1 1

2 2 2 2

3 3 3 3

= .

 

 

 

       
       

 
       
              

y

y X

y







 (2) 

  

On the right-side of this equation, the matrix X  contains covariates (the variables referred to in 

section 2.4), the terms 1 2 3, ,    are sets of regression coefficients which can be used to predict 

the expected values of the variables from the covariates. The two remaining sets of terms are 

random variables, which model the variation in the measured variables unexplained by the 

covariates. The first set, 1 2 3, ,    are spatially correlated random effects, which show spatial 

dependence and are also mutually correlated (representing, for example, correlation between 

concentrations of Se in grain of teff and wheat). The second set, 1 2 3, ,   , are spatially 

uncorrelated random effects, but may be mutually correlated, representing that variation which 

occurs at finer spatial scales than is resolved by sampling. 

A fuller account of this spatial multivariate LMM is given by Marchant  et al.  (2009) and 

by Orton  et al.  (2014) and more details are in section S.1 of the Supplementary Materials to this 

paper. Parameters of the model, specifically the variances of the random effects, and parameters 

which describe the spatial dependence of the spatially correlated random effects, are estimated by 
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maximum likelihood (ML) or residual maximum likelihood (REML) as described in S.1. The 

fixed effects coefficients can then be estimated by a generalized least-squares procedure. 

Predictions of the primary variable (e.g. Se concentration at teff grain) can then be computed at 

unsampled sites where only the values of the covariates are known. These predictions are known 

as the empirical best linear unbiased predictor (E-BLUP), and have an associated prediction error 

variance (PEV) which quantifies their uncertainty. What makes this approach powerful for our 

task is that wheat grain Se concentration (when teff grain Se concentration is the target variable for 

prediction), and the soil observations at sites where no teff was sampled can contribute to the 

prediction of Se concentration in teff grain by a cokriging process, in so far as the variables are 

found to be mutually spatially correlated. 

2.5.2 Implementing the model. The implementation of the spatial LMM is summarized in 

Figure 1. It entails a combination of the LMM with a variable selection procedure. This is 

summarized below. 

To make the assumption that the random terms in the LMM were normally distributed, the 

grain Se concentrations were transformed to natural logarithms. Summary statistics were also 

computed for the soil properties measured at sample sites (Table 1), and those showing 

pronounced skewness were also transformed to natural logarithms. 

The first modelling step was to generate the third variable, 3y , in the multivariate set, 

which is predicted Se concentration in the grain of interest (teff in this example), derived from soil 

data. This can be computed for every sample site including those where teff was not observed. This 

prediction was obtained from a linear mixed model in which soil properties were included as fixed 

effects. To select soil properties for prediction of grain Se concentration we fitted by maximum 

likelihood (ML) an initial ‘null’ model to sample data in which the only fixed effect for the target 

grain concentration was a constant mean. We then added soil properties as fixed effects to the 

model one-by-one, (based on a pre-determined sequence, discussed below) at each step using a 

log-likelihood ratio test (Section S.2 in the Supplementary Material). If the null hypothesis was 

rejected then the soil property was retained in the model and the process was repeated, considering 

the next-listed predictor. 

This sequential procedure comprises multiple hypothesis testing which we addressed by 

controlling the False Discovery Rate (FDR) at 0.05 (Benjamini and Hochberg, 1995). To maintain 

statistical power, we used the  -investment method of Foster and Stine (2008), as implemented 

by Lark (2017). This requires that the tests are conducted in an  a priori order under which the 

least plausible null hypotheses (i.e. effects thought most likely to be significant) are tested first. 

This initial process of ordering must be done without reference to the data on grain Se 

concentration. However, we did examine correlations among the soil properties themselves, 

because one reason to rank a predictor low in the order is if it is substantially correlated with a 

predictor already included, and so is unlikely to add much additional information. The ordering 

was decided through discussion with soil chemists and crop nutritionists on the project team. At 

this stage we also considered the uncertainty in the determination of soil properties, as judged from 

detection limits. It should be noted that the validity of the resulting model, and the success of false 

discovery rate control do not depend on the ordering, which serves simply to improve the 

probability of detection of a valid predictor given the use of FDR control to avoid over-fitting. 

The same variable selection procedure was then used to select the covariates used for 

prediction, which appear in the matrix X  in Eq [2] and Figure 1. This resulted in a set of 

candidate environmental covariates for the final LMM. However, it was recognized that such 

covariates may show spatial variation at nested spatial scales, and it is not necessarily the case that 
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the variation at all scales is predictive of the soil property of interest. For this reason the selected 

covariates were all subject to factorial kriging analysis (Matheron, 1982) which decomposes a 

spatial variable into additive components at different spatial scale, see section S.3 in the 

Supplementary Material. The selected covariates were substituted with their factorial kriging 

components in the LMM, and those components were retained only if their standardized 

coefficients fell outside the interval [ 2,2] . 

2.5.3 Model validation We used a cross-validation procedure to evaluate the PEVs of the 

E-BLUP. To do this, the E-BLUP of grain Se concentration at each location, and its PEV, were 

computed in turn after first deleting the measurement of grain and the predicted grain Se 

concentration at that site. The cross-validation prediction therefore depended only on the grain Se 

concentration (both crops) observed at neighbouring sites, and the values of the selected 

environmental covariates (and factorial kriging components of these) at the sample site. The cross 

validation procedure was also done using ordinary kriging for prediction from the observations on 

the Se concentration in grain in the target crop only. The median standardized squared prediction 

errors were then examined and compared with the 95% confidence interval for the statistic 

assuming valid PEVs (see supplementary material section S.4; Lark, 2009). 

  2.5.4 Mapping The cross-validated models were then used, along with the observed grain 

Se concentrations, predictions at all sample sites and the environmental covariates to compute the 

E-BLUP of Se grain concentration for teff and for wheat, separately, on the regular grid of 

locations at which the environmental covariates were recorded. In addition to the prediction at 

each location we used the E-BLUP PEV to compute the probability, assuming normal prediction 

errors, that the grain Se concentration fell below 0.183 mg kg 1 , the concentration such that a 

300-g daily intake of the grain would provide the recommended daily allowance (RDA) for adults 

of 55 μ  g day 1  Se (Institute of Medicine of the National Academies, 2002). 

   

3. Results 
   

3.1 Summary statistics, orderings of predictors and variable selection 

 

The basic summary statistics of soil properties (Table 1) showed that several were 

markedly positively skewed. Those for which the skewness coefficient exceeded 1 were 

transformed to natural logarithms. 

The selected order for testing soil properties for prediction of grain Se concentration at a 

site is shown in Table 2. The rationale for the ordering is summarized in Section S.5 of the 

Supplementary Material. The process of variable selection for prediction of teff grain Se 

concentration from soil properties, based upon this ordering, is shown in Figure 2. The solid 

symbols in Figure 2(b) show the threshold p-value for the sequential testing procedure for FDR 

control, and the open symbols show the p-values obtained. On this basis we can see that Soluble Se 

(nitrate extraction), Exchangeable Se (phosphate extraction), soil pH and Exchangeable I 

(phosphate extraction) were selected as predictors in the case of teff. The comparable plot for 

wheat grain teff is shown in Figure S4 in the supplementary material, where Organic Se (TMAH 

extraction) and soil pH were selected because their p-values in the sequential fitting fell below the 

threshold for FDR control. The parameters for these fitted models, along with the null model in 

each case (fixed effect a constant mean only) are presented in Table 3. 

The predicted concentrations of Se in teff grain were then computed for each site from the 

soil information. They are plotted in Figure 3 (a) against the measured Se concentration in grain at 
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each site. The solid symbols correspond to sites where the observed grain was teff, and so these 

points give a visual impression of the goodness of fit of the model fitted with FDR control. The 

open symbols correspond to the sites where the observed grain was wheat. Conversely Figure 3 (b) 

shows a plot of the predicted Se concentrations in wheat grain at each site against the observed Se 

concentration in grain at each site, with solid symbols at sites where the observed grain was wheat, 

and open symbols where it was teff. 

For those sites where wheat was grown, the predicted Se concentration for teff grain with 

the same model is plotted against the observed wheat Se concentration. The comparable plot for 

predicted Se concentration in wheat grain is shown in Figure 3 (b), where the solid symbols are 

used for the observed concentrations in wheat grain and the open symbols. 

The selected order of environmental covariates for spatial prediction of Se concentration in 

grain is shown in Table 2. The rationale for this ordering is summarized in section S.6 of the 

Supplementary Material. 

Figure 4 shows the output of the sequential testing of predictors for teff grain Se 

concentration from among the environmental covariates. Downscaled mean annual precipitation 

and temperature and slope, the first three covariates in the sequence, were selected because their 

p-values were below the threshold for FDR control with  -investment. The comparable results 

for wheat grain are shown in Figure S5 in the supplementary material. The plot shows that the 

p-values for none of the covariates was smaller than the corresponding threshold, so none were 

selected. The model parameters for both grains are presented in Table 4. 

   

3.2 Linear mixed model fitting and cross-validation 

 

For the LMM to predict teff Se concentration, the smoothness parameter,  , of the 

spatially correlated random effects was set at a value of 2.0 based on the profile likelihood for a 

model with all predictors included (Figure S6 in the supplementary material). The environmental 

covariates, slope and mean annual temperature were decomposed into short-range and long-range 

components by factorial kriging. In the initial fitting of the model the standardized coefficient for 

the short-range components of these variables were small, and they were dropped, indicating that 

the evidence for a relationship between these variables and teff grain Se concentration at the 

variable selection stage arose from the long-range variability of these variables. The fitted model 

parameters for the final LMM for each variable, including the correlation matrices for the random 

components, are shown in Table 5(a,b). These tables include the correlations between the random 

components in the respective models, both the spatially correlated random effects ( 1 , 2 , 3 ) and 

the uncorrelated or ‘nugget’ components,( 1 , 2 , 3 ). Note that, for the spatially correlated 

components, there are moderate correlations between the random effects for wheat and teff Se, and 

between the observed grain Se concentration and that predicted from soil properties. Figure 5 

shows the empirical variograms for the marginal residuals of Se concentration in teff and wheat 

grain and the predicted concentration in teff grain from soil data (all on a log-scale) in the fitted 

LMM, with the corresponding variogram models from the parameters of the LMM. Note that the 

models are not fitted to the empirical variograms as such, and that differences are expected due to 

both the bias in the empirical variogram in the presence of a non-constant fixed effect (Cressie, 

1993) and the constraints of the multivariate LMM (Webster and Oliver, 2007). In the case of the 

LMM for prediction of wheat grain Se concentration a smaller value of  , 0.5, was selected 

(Figure S7 in the supplementary material), the empirical variogram and fitted LMCR for the 

random component of the model are shown in Figure S8 in the supplementary material. 
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The distributions of cross-validation errors for prediction of grain Se by ordinary kriging 

are shown in Figures S9 and S10 of the supplementary material. The cross-validation errors for the 

E-BLUP from the multivariate LMM results are shown in Figures 6 and 7. The assumption of 

normal prediction errors appears to be plausible, and the summaries of the standardized squared 

prediction errors in Table 6, support the validity of the models. The plots of the prediction error 

variances for the two predictions (Figure 6(d) and 7(d)) show the advantages of incorporating the 

covariates and the coregionalized variables into the model through the reduction of the kriging 

variance. 

   

3.3 Spatial predictions of Se concentration in grain   

 

Figure 8 shows the spatial predictions of teff Se concentration across the study area. There 

are clear trends, with larger concentrations in general in the east of the region, and some marked 

variations over shorter distances, consistent with the variograms in Figure 5. Figure 9 shows that, 

over most of the region, the probability that grain Se concentration is insufficient to provide the 

RDA of Se from a 300-g intake is large. The interpretation of these probabilities is facilitated by 

representing them on a scale which represents the probability in terms of the calibrated verbal 

phrases of Mastrandrea et al. (2010) in Figure 10. The maps for wheat Se concentration (Figures 

11 – 13) show comparable spatial patterns, which is not surprising, given the moderate correlation 

between the spatially correlated random effects for Se concentration in the two grains reported in 

Tables 5(a) and 5(b). 

   

4. Discussion and Conclusions 
 

This study shows how joint sampling of soil and grain, with an appropriate sampling 

design and model-based statistical analysis, allows us to examine the spatial variation of cereal 

composition with respect to micronutrient concentration over large regions and to represent it as a 

map. We are not aware of any previous study that has shown the spatial variation of a key 

determinant of a population’s micronutrient supply with comparable spatial resolution. 

It appears that the risk of Se deficiency, resulting from a diet in which wheat or teff is a 

staple, is largest in the west of Amhara Region. There are differences between the crops, however, 

with wheat less likely to provide sufficient Se intake than teff across the whole area. In small parts 

of the east of the study area it is judged ‘unlikely’ that a 300-g daily intake of teff would fail to 

provide the RDA of Se. Such spatial information on potential intake of Se from staple crops could 

clearly be used to improve the targeting of interventions to address deficiency. 

A map of Se concentration in grain is of greater use for the identification of regions at risk 

of deficiency than maps of soil properties alone, as no assumptions must be made about 

soil-to-crop transfer. That said, our approach made use of soil measurements at sites collocated 

with the target grain samples, as well as at sampling sites where other crops were grown, by 

integrating predicted grain Se concentration from these data into the multivariate LMM. The 

predictive models for Se concentration were based on soil properties selected with false discovery 

rate control to avoid over-fitting, and so they merit examination. Soil pH was a selected predictor 

for Se concentration in both teff and wheat grain, with a positive coefficient implying that, other 

factors remaining constant, less Se is expected in grain over more acid soils. This is consistent with 

results found in Malawi (Chilimba et al., 2011) and elsewhere in Africa (Ligowe et al., 2020). The 

interpretation of linear models and their coefficients must always be cautious because of 
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correlations among the predictors, but on the basis of this result it would be worth examining 

whether liming the more acid soils would improve grain Se concentration. It should be noted, 

though, that these soils are not particularly acid. The median pH is 6.84, the first quartile is 5.98 

and 90% of the samples had a pH in excess of 5.49. Similarly, extractable Se in the soil appeared in 

both predictive models, although Se obtained with different extractants were selected for 

prediction of Se in wheat and teff grain. This suggests that a soil test could be developed to make 

site-specific predictions of Se concentration in grain. 

Despite the use of methods for variable selection that avoid over-fitting, and the fact that 

our predictions are optimal in the sense of being the best linear unbiased prediction, there is 

inevitable residual uncertainty in the predictions. Our cross-validation procedure suggests that this 

uncertainty is well-characterized by the prediction error variance supplied by the model, and so we 

can quantify the residual uncertainty. In this study we used established methods to represent this 

uncertainty in the spatial predictions — while a data-user interested in a particular location can 

obtain a prediction of Se concentration in grain there, they can also obtain the probability that the 

true value falls below a threshold of interest to nutritionists, and this can be expressed on a verbal 

scale which may facilitate communication to a wider audience. 

This study has demonstrated some innovative approaches to spatial modelling for 

prediction. First, by using false-discovery rate control with  -investment we were able to select 

variables for Se prediction from soil properties with confidence that we are not over-fitting, while 

at the same time maintaining statistical power by testing hypotheses in a sequence determined by 

prior knowledge and informed hypothesizing about underlying processes. The fitted model may 

therefore merit further examination for insight into soil factors influencing grain Se concentration, 

as noted above. One should bear in mind, of course, that the failure to select a variable does not 

necessarily mean that it has no bearing on the process of interest. One underlying reason that a 

variable might be rejected is because it is strongly correlated with one already in the model, or 

because it is measured with substantial error. 

Second, we can be confident that we are not over-fitting covariates, and indeed none were 

selected for the prediction of Se concentration in wheat grain. By filtering covariates, where 

appropriate, by factorial kriging, and testing the predictive value of the different components 

separately, we also avoided introducing spurious short-range variation into our predictions. It 

would clearly be wrong, for example, to allow short-range variation in down-scaled precipitation 

to induce comparable variation in predicted grain Se concentration when the two variables are 

related because of regional-scale climatic covariation. We avoided this by factorial kriging 

analysis (FKA). There was no evidence that the short-range component of this covariate extracted 

by FKA was related to grain Se concentration, and only the long-range component was included in 

the predictive model. 

Finally, our multivariate LMM had smaller prediction error variances than did ordinary 

kriging (Fig 6(d) and 7(d)). This improved prediction can be attributed to the covariates used in the 

model, and to the cross-coregionalization with the site information and grain Se concentration at 

sites where the non-target crop was grown. In this way the multivariate LMM allows us to make 

maximum predictive use of relationships among variables measured in the field sampling, even 

when these are not collocated with the particular target variable of interest. 

There is scope for further development of the work reported in this paper. First, the 

sampling and statistical methodology can be extended to other mineral micronutrients that may be 

deficient both in this region and elsewhere. Second, there is potential to combine the predicted 

concentrations of micronutrients in grain with food consumption data to improve estimates of 
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dietary mineral intakes and, potentially, to target future investments to alleviate deficiencies. 

Finally, one might compare these inferences about spatial variation in intake with spatial data on 

human biomarkers for nutrient deficiency to validate the implict hypothesis that spatial variations 

in staple food micronutrient concentrations will, via intake, induce comparable spatial variations 

in micronutrient status. Again, this information could help policy makers identify and target 

efficient interventions. 

To conclude, joint sampling of the crop and soil in an appropriate design allowed us to map 

the spatial variation of grain Se concentration across a large region of Ethiopia, making use of both 

site-specific soil and grain observations and exhaustive covariates derived from remote sensor data 

and a digital elevation model. A cross-validation procedure showed that the best linear unbiased 

predictor and its prediction error variance gave predictions with robust characterization of their 

uncertainty, and this allowed us to quantify and communicate uncertainty in terms of predicted 

grain Se concentration and the concentration required to provide the RDA from a standard serving 

of grain. There is substantial spatial variability in the supply of Se from staple cereal crops, which 

could be relevant to the design of efficient interventions 
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Table 1. Summary statistics of soil properties proposed as predictors of grain Se concentration. 

Variable Original units log*-transformed  

 Units Mean Median Standard Skewness Mean Median Standard Skewness Transformed? 

    deviation   deviation    

Se Nit  μ  g kg 1  2.54 2.02 1.63 1.86 0.77 0.71 0.55 0.41 Y 

Se Pho  μ  g kg 1  5.46 5.11 2.34 1.09 1.61 1.63 0.44 -0.34 Y 

Se TMAH  μ  g kg 1  272.86 277.62 145.52 0.30 5.43 5.63 0.66 -0.75 N 

pH  6.74 6.84 0.92 -0.14     N 

Total oxides mg kg 1  13469.61 13149.13 5623.90 0.55 9.42 9.48 0.44 -0.21 N 

S Nit  mg kg 1  37.86 40.14 11.02 -0.62 3.58 3.69 0.36 -1.24 N 

S TMAH  mg kg 1  5.79 4.75 4.04 2.14 1.56 1.56 0.63 -0.24 Y 

I Pho  μ  g kg 1  181.53 134.33 132.16 1.15 4.94 4.90 0.75 -0.13 Y 

SOC % 1.46 1.48 0.64 0.46 0.27 0.39 0.51 -0.75 N 

Oxalate P mg kg 1  574.50 351.85 609.34 1.97 5.85 5.91 1.14 -0.65 Y 

PBI  45.88 41.11 27.49 1.68 3.66 3.72 0.59 -0.25 Y 

*Natural logarithms in all cases 

The subscripts Nit, Pho and TMAH denote the soluble (nitrate extraction), exchangeable (phosphate extraction) and organic (TMAH 

extraction) fractions in all cases, as described in section 2.3.2. SOC denotes soil organic carbon, and PBI phosphorus buffer index. 
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Table 2. Sequence of predictors for grain Se concentration (both soil properties and 

environmental covariates) for testing with  -investment. 

Order  Soil Property  Environmental covariate 

1 Se Nit   Downscaled mean annual precipitation  

2 Se Pho   Downscaled mean annual temperature  

3 Se TMAH   Slope  

4 pH  Topographic index  

5 Sum of oxalate-extractable Fe, Al and Mn oxides  Enhanced vegetation index  

6 S Nit   MODIS Band 7  

7 S TMAH   MODIS Band 1  

8 I Pho   MODIS Band 2  

9 SOC  MODIS Band 4  
10 Oxalate extractable P   

11 PBI    

 

The subscripts Nit, Pho and TMAH denote the soluble (nitrate extraction), exchangeable 

(phosphate extraction) and organic (TMAH extraction) fractions in all cases, as described in 

section 2.3.2. SOC denotes soil organic carbon, and PBI phosphorus buffer index. Environmental 

covariates are described in section 2.4. 

 

 

Table 3. Fitted models for soil properties and grain Se concentration in teff and wheat. The 

symbols used for soil variables are as in Tables 1 and 2. 

Predictand  Predictor and coefficient 2

adjR
(

   2  
2    

  
0  1  2  3  4       

Teff Se            

 Null model       0.5 0.664 1.052 133.77 

   Soil Se Nit  Soil Se Pho  pH Soil I Pho       

  -2.820 0.924 -0.221 0.316 -0.496 0.58 0.5 0.500 0.223 30.63 

Wheat Se            

 Null model       0.5 0.562 0.816 16.00 

   Soil Se TMAH  pH        

  -6.66 -0.001 0.546   0.27 0.5 0.596 0.407 11.53 
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Table 4. Fitted models for covariates and grain Se concentration in teff and wheat. The covariates are described in section 2.4.2. 

NB The model presented for wheat was not selected under the control of marginal false discovery rate, but is included for 

comparison. 

Predictand  Predictor and coefficient 2

adjR
(

   2  
2    

  
0  1  2  3  4       

Teff Se            

 Null model       0.5 0.664 1.052 133.77 

   Precipitation Mean annual Slope       

    temperature        

  -4.227 -0.001 0.016 0.073  0.49 0.5 0.568 0.310 47.02 

Wheat Se            

 Null model       0.5 0.562 0.816 16.00 

   EVI MODIS Band 7        

  -0.435 -0.0005 -0.0014   0.18 0.5 0.559 0.565 14.76 
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Table 5a. Linear mixed model parameters 

1. With selected covariates for Se concentration in teff grain. 

Fixed effects parameters 

Dependent Fixed effect Coefficient Standard error 

variable    

Teff Se Constant 1.64 0.94 

 Precipitation -0.0037 0.0008 

 (long-range)   

Wheat Se Constant -3.54 0.23 

Predicted teff Constant -2.61 0.94 

Se    

 Temperature 0.0088 0.0026 

 Precipitation -0.0014 0.0005 

 (long-range)   

Random effects parameters 

   2.0   

   14.92  

Nugget  Teff Se 0.62   

variances  Wheat Se 0.92   

 Predicted Teff 0.21  

 Se   

Correlated Teff Se  0.39  

variances Wheat Se  0.54  

 Predicted teff  0.25  

 Se   

 

Correlation matrices (linear model of coregionalization with grain Se concentration and 

predicted teff Se concentration) 

 

Nugget    

 Teff Se Wheat Se Predicted 

   Teff Se 

Teff Se 1.00   

Wheat Se  0.00  1.00  

Predicted teff  0.43  0.20  1.00 

Se    

Spatially    

correlated    

 Teff Se  Wheat Se  Predicted 

    Teff Se 

Teff Se  1.00   

Wheat Se  0.44  1.00  

Predicted teff  0.52  0.42  1.00 

Se    
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Table 5b. Linear mixed model parameters 

1. With selected covariates for Se concentration in wheat 

grain. 

Fixed effects parameters 

Dependent Fixed effect Coefficient Standard error 

variable   Teff Se 

Teff Se  Constant  -2.66  0.29 

Wheat Se  Constant  -3.14  0.34 

Predicted wheat  Constant  -3.26  0.17 

Se    

Random effects parameters 

    0.5   

    49.29  

Nugget  Teff Se  0.63   

variances  Wheat Se 0.73   

 Predicted wheat 0.08   

 Se   

Correlated  Teff Se  0.69   

variances  Wheat Se  0.89  

 Predicted wheat  0.27  

 Se   

 

Correlation matrices (linear model of coregionalization with grain Se concentration and 

predicted wheat Se concentration) 

 

Nugget    

 Teff Se  Wheat Se  Predicted 

    Wheat Se 

Teff Se  1.00   

Wheat Se  0.00  1.00  

Predicted wheat  0.19  0.14  1.00 

Se    

Spatially    

correlated    

 Teff Se  Wheat Se  Predicted 

    Wheat Se 

Teff Se  1.00   

Wheat Se  0.64  1.00  

Predicted wheat  0.53  0.80  1.00 

Se    
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Table 6. Cross-validation results for final predictive models, and ordinary kriging for 

comparison 

Predictand  Predictor    Mean SSPE a   Median SSPE b  

Teff Se     

 OK c     1.00  0.35 

 LMCR–    1.09  0.47 

 E-BLUP d     

Wheat Se     

 OK    1.01  0.41 

 LMCR–    1.00  0.36 

 E-BLUP    
a Standardized square prediction error 
b The 95% confidence interval for the Teff set is {0.28,0.63}  and for the wheat set it is 

{0.26,0.65}  
c The ordinary kriging predictor 
d The empirical best linear unbiased predictor conditional on the multivariate linear mixed model  
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   Figure captions. 
  

    1.  Schematic diagram showing the linear mixed model used in this study and the steps 

to set up the dependent and independent variables. Note that the model as set out here is for 

prediction of Se concentration in teff. 

 

    2.  Ordered tests for site (soil) variable selection, teff grain Se. The sequence of 

predictors is as given in Table 2. The graph at the top (a) shows the  -wealth over the sequence of 

tests and the lower graph (b) shows the p-values for successive tests (open symbols) and the 

corresponding threshold values with marginal false discovery rate control. 

 

    3.  Plot of grain Se concentration predicted with a model for (a) teff and (b) wheat for 

all observations at all sites, against the measured grain Se concentration at the site. In each plot a 

solid symbol represents a site where the observed grain concentration is for the same crop species 

for which the model was fitted – e.g. an observed teff grain Se concentration and predicted teff 

grain Se concentration at the site in (a); and an open symbol represents a site where the observed 

grain Se concentration is for the species other than the one for which the mode was fitted – e.g. an 

observed wheat grain Sec concentration and the predicted teff grain concentration for that site in 

(a). 

 

    4.  Ordered tests for covariate selection, teff Se. The sequence of predictors is as given 

in Table 2. The graph at the top (a) shows the  -wealth over the sequence of tests and the lower 

graph (b) shows the p-values for successive tests (open symbols) and the corresponding threshold 

values with marginal false discovery rate control 

 

    5.  Autovariograms from teff Se LMCR. 

 

    6.  Cross-validation plots (CoK) for teff Se LMCR. 

 

    7.  Cross-validation plots (CoK) for wheat Se LMCR.  

    8.  Median unbiased prediction of Se concentration in teff grain across the study 

region.  

    9.  Probability that Se concentration in wheat grain < 0.183 mg kg 1 .  

    10.  Probability that Se concentration in teff grain < 0.183 mg kg 1  using a verbal 

scale of calibrated phrases from Mastrandrea et al. (2010).  

    11.  Median unbiased prediction of Se concentration in wheat grain across the study 

region.  

    12.  Probability that Se concentration in wheat grain < 0.183 mg kg 1 .  

    13.  Probability that Se concentration in wheat grain < 0.183 mg kg 1  using a verbal 

scale of calibrated phrases from Mastrandrea et al. (2010).  
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Graphical abstract 

 

Highlights 

 Joint soil and crop sampling was undertaken across Amhara Region, Ethiopia. 

 Statistical modelling of the resulting data incorporated extensive covariates. 

 Spatial predictions were made of grain selenium concentration. 

 These predictions, and their uncertainties, are presented as maps. 

 The maps show the probability that grain provides adequate dietary Se. 
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