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Abstract 7 

Railway systems are now facing an increasing number of threats such as aging infrastructures and climate 8 

changes. The identification of critical network sections provides infrastructure managers with the ability to 9 

understand the impact of a disruption and creates a suitable preventive strategy to counter such threats. To 10 

this end, various vulnerability analysis methods have been proposed for railway networks. Two main types 11 

of methods, network topological analysis and network flow-based analysis, have been developed. Both 12 

approaches are constructed based on macroscopic models which take only some railway properties such as 13 

network structure, train and passenger flow into account. Thus, the results obtained are high level 14 

approximations. This study proposes a new analysis method which is developed based on the stochastic-15 

microscopic railway network simulation model. The method can be applied to identify the critical sections 16 

of a railway network. The effect of impact levels and occurrence times of a disruption on the network section 17 

criticality are presented. An application of the proposed model is demonstrated using the Liverpool railway 18 

network in the UK. 19 

 20 
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1 Introduction 23 

Railways are considered as the backbone of the transportation system in various countries [1]. However, 24 

disruptive events, either planned or unplanned disruptions, can lead to a reduction in system performance, 25 

such as delays and service cancellations. In the UK, these events cause approximately 640 train journey 26 

cancellations and significant delays (more than 30 minutes) daily, and the percentage of this number to the 27 

total number of planned train services tends to increase every year as can be seen in Figure 1 [2]. 28 

 29 

Figure 1 – The percentage of service cancellations of the last 8 financial years [2].  30 

To mitigate this problem, improving the robustness of a railway network (RN) is a key to withstand the 31 

impact of disruptions. However, changes to the network are limited through physical barriers (e.g. restricted 32 

access) and budget constraints. Infrastructure managers need to decide on the effectiveness and priority of 33 

any improvements or added protection. This creates a need to identify the critical sections of a RN to 34 

prioritise enhancement features to be incorporated into the network. 35 

This paper presents an analysis method for identifying the critical sections of a RN. A critical section is 36 

defined as a railway link connecting between stations, junctions, or a station and a junction, that if it fails, 37 
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causes large negative impacts on the network [3]. The method is developed based on a microscopic railway 38 

network simulation model to evaluate the network vulnerability [4]. This enables the significant 39 

characteristics of a RN (e.g. train movement and passenger behaviour) to be considered and allows the 40 

effect of the different impact durations and the occurrence times of a disruption on the network section 41 

criticality to be analysed. The method also considers the type and the likelihood of disruptive events. Thus, 42 

the risk-based criticality of network sections can be evaluated.  43 

The next section provides an overview of the relevant literature and highlights the research gap. Then, the 44 

following sections describe the modelling framework and its application using the real-world case study. 45 

2 Railway network capability modelling 46 

2.1 The concepts of robustness, vulnerability and criticality 47 

Robustness is defined as the ability of a system to resist the impacts of disruptions [5]. Even when exposed 48 

to disruptions, a highly robust system can continue functioning without the need for adaptions or 49 

implementations of mitigation strategies [6]. The identification of critical components can provide system 50 

managers with significant information to improve the robustness of a system (e.g. adding redundancy and 51 

increasing system tolerance) [3]. 52 

In contrast to the robustness concept [7], vulnerability is defined as the degree of negative consequences 53 

for a system suffering from a disruption [8]. Negative consequences can be expressed in terms of structural 54 

damage (e.g. length of track failure) or functional losses (e.g. train delays) [9]. This study focuses on the 55 

functional losses to a RN. The higher the losses, the greater the vulnerability.  56 

Finally, criticality refers to the importance of components to a system. Criticality directly relates to both the 57 

vulnerability of a system and the probability of component disruptions [10]. If the probability of a component 58 

disruption is high and its consequences are substantial, the component is critical. Nevertheless, if the 59 
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occurrence probability of a component disruption is very low, the criticality can be examined with only the 60 

vulnerability of a system [11]. 61 

2.2 An overview of critical component analysis methods for railway networks  62 

In recent years, various analysis methods for identifying the critical components (track sections and 63 

stations) of RNs have been proposed and can be classified into two main groups:  64 

2.2.1 Network topological analysis methods 65 

Network topological analysis methods apply the concept of complex network theory to assess the 66 

vulnerability of railway systems. The methods define a RN as a set of nodes and links. Nodes represent 67 

stations and junctions, while links represent track sections in a network. Disruptions of these components 68 

are simulated by removing them from the network. The indicators predicted are, for example, global 69 

efficiency (i.e. the ability of a network to transfer the flow), average path length (i.e. the average value of 70 

all path lengths between all pairs of nodes) and maximal connected subgraph (i.e. the maximum number of 71 

connected nodes in the network after disruptions) [12] - [13]. These indicators are suitable for a large-scale 72 

network because they can provide a quick solution from the structural point of view to robustness 73 

improvement [14]. Recent research has attempted to combine complex network theory with some 74 

characteristics of RNs. Yin et al. [15] adapted the betweenness concept, which refers to the number of 75 

shortest paths between all pairs of nodes that pass a specified node or link, to identify the importance of 76 

stations and railway lines. The study created a more realistic measure by taking the number of passengers 77 

on the shortest path into account. 78 

2.2.2 Network flow-based methods 79 

Network flow-based methods consider the functional vulnerability of a RN. The network is still modelled 80 

as a set of nodes and links. However, more system characteristics (e.g. the number of passengers and trains) 81 

are considered. This enables the performance of a RN during a disruption to be predicted and used to 82 
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provide the vulnerability indicators. For example, Ouyang et al. [16] constructed a train flow model by 83 

considering the number of trains operating daily on each link. Two performance metrics: the number of 84 

stations that could be reached from a station and the number of services that could still operate after a station  85 

disruption, were calculated for the station criticality analysis. Hong et al. [17] used a Monte-Carlo 86 

simulation model to evaluate the impact of a flood on a RN. The model comprised three main parts: 87 

generating the flood scenario, evaluating the vulnerability of individual railway links and calculating the 88 

vulnerability of the whole network. The method proposed by Ouyang et al. [16] was applied to evaluate the 89 

performance indicator (the number of cancelled trains). 90 

Other studies were based on passenger flow models. For instance, an application of an all-or-nothing 91 

approach was used to predict passenger demand on each railway link after a disruption [18]. Two indicators 92 

proposed were: the number of passengers that are unable to reach their destinations and the increase in 93 

passenger travel time during a disruption (link removal). Zhang et al. [19] built a gravity model to predict 94 

the movement of passengers between stations for evaluating the criticality of railway links. This model was 95 

constructed based on the number of passengers, the distance between stations and economic factors such 96 

as the gross domestic products. Sun et al. [20] investigated station criticality using the passenger Origin and 97 

Destination (O-D) ratio. Some passenger movement characteristics such as interchange times and route 98 

selection based on the shortest travel time were considered. The indicators were the total passenger flow 99 

volume after a station disruption and the passenger volume at station during a certain period. 100 

Another vulnerability model was introduced by Pant et al. [21]. Timetable information was considered to 101 

estimate passenger trips lost during a disruption. The interdependency between a railway system and other 102 

infrastructures, such as electricity substations and telecommunication equipment, was analysed. Disruption 103 

types considered were the failure of the different infrastructures and the flood likelihood in the UK. 104 

M’Cleod et al. [22] estimated passenger delays as an indicator. A RN was modelled using a directed graph 105 

weighted by travel time on links and waiting time and transfer time at stations. When a node disruption 106 
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occurred, the number of passengers between each pair of nodes was estimated using a multinomial logit 107 

discrete choice model. Then, the criticality of a station was calculated by the product of the sum of delays 108 

and the number of passengers on all routes. 109 

2.3 Discussion 110 

The concepts of robustness, vulnerability and criticality are connected and are extensively applied for 111 

identifying the critical sections and stations of RNs. Network topological and network flow-based analysis 112 

methods are commonly developed to evaluate the vulnerability of RNs during a disruption. Both methods 113 

are constructed based on macroscopic models. A RN is considered as a set of nodes and links. Disruptive 114 

events are simulated using the node and link removal approach. The time of occurrence and duration of 115 

disruptions are not incorporated into the analysis. In particular, the network topological analysis studies 116 

only use complex network theory to provide indicators. Their results do not reflect the functional 117 

vulnerability of RNs. Hence, they might be too simplistic to support actual policy actions [14]. Although 118 

the network flow-based methods attempt to overcome the limitations of network topological analysis 119 

methods by considering more railway properties such as train and passenger flow, the results obtained 120 

disregard other significant characteristics of RNs such as the conditions of train movement and passenger 121 

behaviour when a disruption occurs. Therefore, this paper aims to introduce an analysis method using a 122 

microscopic railway network simulation model. This modelling approach is able to predict the functional 123 

vulnerability of RNs to reflect the consequences of a disruption as in reality and identify the critical sections 124 

of RNs in terms of risk-based criticality. 125 

3 Critical track section analysis framework 126 

The railway network simulation model by Meesit and Andrews [4] was applied in this study. The model 127 

was developed using a stochastic-discrete event simulation technique. The significant properties of a RN 128 
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and the uncertainty of model parameters, such as the duration of disruptions and the number of passenger 129 

arrivals at stations, were considered. The model can be used to predict the performance of RNs during 130 

disruptions. Thus, this paper intends to use the capability of this model to identify the critical sections of 131 

RNs in terms of risk-based criticality. For the methodology produced, the critical sections of a RN can be 132 

investigated using four main steps: assigning a disruption to a section, assessing the vulnerability, 133 

evaluating the risk-based criticality and ranking the critical sections of a RN. 134 

3.1 Assigning a disruption to track sections 135 

The first step is to assign a disruptive event to each tested track section one at a time. A disruptive event can 136 

be simulated by setting the occurrence time and the impact duration of a disruption and changing the state of 137 

the tested section to ‘unavailable’. This generates a line blockage for a specific period affecting the 138 

movement conditions of trains. Then, the vulnerability of a RN due to the section disruption is calculated 139 

using the railway network simulation model. Basically, the use of a short or a large-impact disruption can 140 

be considered. The impact of the different occurrence times of a disruption on the criticality of network 141 

sections can be analysed, using the capability of the microscopic model. 142 

3.2 Assessing the vulnerability of a railway network 143 

3.2.1 Train service vulnerability 144 

Train service vulnerability takes both train delay and cancellation into account. Train delay (TD) is 145 

calculated by the summation of the difference between the actual arrival time (TAT) and the expected planned 146 

arrival time (TPT) of all trains (T) at all stations (S), Equation (1). 147 

 TD = ∑ ∑ (TATs,t - TPTs,t)

T

t

S

s

 (1) 
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Train service cancellations (TC) are necessary when a high impact disruption happens in order to prevent the 148 

propagation of delays throughout the network. For example (Figure 2), after the system recovers, the trains 149 

at terminal stations (trains T1 and T3) take the next service based on the original timetable and the missed 150 

services are counted as cancellations. Meanwhile, the trains facing a disruption (T2) will continue their 151 

services as soon as possible (considered as delayed trains). In this study, train service cancellations are 152 

presented as the number of departure services that needs to be cancelled at all stations along the route (DSC). 153 

In this example, there are 6 full-service cancellations (3 DSCs per 1 full service). Thus, the total DSC is equal 154 

to 18 services. 155 

 156 

Figure 2 – Train cancellation rule set in the model. 157 

The train service vulnerability (VT) can then be calculated by a weighted summation of the train delay (TD) 158 

and the number of departure service cancellations (DSCs) on each route (r), Equation (2). The weighting 159 

factors in the equation, ωr
td and  ωr

dsc represent the penalty for delay and cancellation of train services on 160 
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each route. These factors can be specified based on the type of service routes (e.g. the penalty for cancelling 161 

inter-city trains should be higher than that of local train services). 162 

 VT = ∑ (ωr
td∙TDr + ωr

dsc∙DSCr)

R

r

 (2)  

3.2.2 Passenger vulnerability 163 

Passenger vulnerability (Vp) describes the vulnerability of a RN from the perspective of rail users. It can be 164 

calculated by a weighted summation of the total passenger delay (PD) and the number of passenger journey 165 

cancellations (PC), see Equation (3). The weighting factors, ωpd and ωpc are the delay and cancellation 166 

penalty of passengers in the network respectively. 167 

 VP = ωpd∙PD + ωpc∙PC (3) 

Passenger delay (PD) can be determined by the summation of the difference between the actual arrival time 168 

(PAT) and the expected arrival time (PET) of all passengers (P) at their destination stations, Equation (4). 169 

Passenger journey cancellations (PC) are defined as the number of passengers who cancel their journeys 170 

when the expected travel time during a disruption exceeds the defined threshold. This threshold can be set 171 

based on the experience of train operators. However, in this study, we assumed that the acceptable delay 172 

for all passengers in the network follows a Normal distribution with mean of 3,600 seconds and 300 seconds 173 

standard deviation. 174 

 PD = ∑ (PATp - PETp)

P

p

 (4) 

After assessing the vulnerability of all testing sections, the highest vulnerability of a section can be 175 

normalised to 1. Then, the vulnerability of other sections can be determined as its proportion of the highest 176 
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value. This method enables the vulnerability of track sections to be presented in the range of 0 to 1, which 177 

is easier to compare the criticality. 178 

3.3 Evaluating risk-based criticality  179 

Risk-based criticality (RC) is determined by the product of the vulnerability (VT or VP) and the frequency 180 

(FD
S ) or the probability (P𝐷

S ) of section disruption, Equation (5). The vulnerability can be evaluated as 181 

described previously, while the frequency/probability of section disruption can be obtained from historical 182 

data. This data can be specific to events of interest such as flooding or landslides, if the focus is on a 183 

particular disruption type, or it can be the overall frequency/probability of all disruptive events on the track 184 

section. 185 

 RC = VT or VP ×  FD
S  or P𝐷

S   (5) 

In Table 1, there are three main causes that can potentially lead to a disruption of a railway section: technical 186 

failures, natural disasters and man-made disasters. Technical failures refer to the failure of sub-systems or the 187 

absence of essential support systems. The failure of sub-systems (e.g. control systems and railway 188 

infrastructures) is mainly due to aging components. The absence of essential support systems relates to the 189 

failure or inoperability of systems such as electrical powers or telecommunications. This type of disruption 190 

might not only affect a particular railway link but tends to impact a widespread area on a RN. The second 191 

cause of a disruption is natural disasters. Basically, natural disasters are considered as rare events. However, 192 

when they happen, their impacts are substantial. Three common events in the UK are taken into account: 193 

floods, landslides and strong winds. Finally, man-made disasters describe the disruptions caused by human 194 

actions. Three issues are considered: accidents, trespasses/suicides and terrorist attacks. Accidents, such as 195 

derailments and bridge strikes, are mostly unintentional events, and the others generally are intentional events 196 

that have a low chance of occurrence but can be considered in the list. 197 
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Table 1 – The causes of a railway section disruption. 198 

Consequence 
Main 

causes 
Sub-causes Descriptions 

R
ai

lw
ay

 s
ec

ti
o

n
 d

is
ru

p
ti

o
n
 

Technical 

failures (TF) 

Control system failure 

(CF) 

A: Signal components fail (e.g. signals, axle 

counters, track circuits and other lineside 

equipment). 

Electrification system 

failure (EF) 

B: Electrification components fail (e.g. 

overhead line or third rail equipment faults). 

Infrastructure failure 

(IF) 

C: Track failures (e.g. rails, fastening 

components, sleepers and foundations). 

D: Point failures (switches and crossings). 

E: Level crossing failures. 

F: Bridge collapses. 

G: Tunnel collapses. 

Dependant system 

failure (DF) 

H: Power supply shortage. 

I: Telecommunications failures. 

J: Other related systems such as water 

networks. 

Natural 

disasters 

(ND) 

Landslides (LS) K: Relate to earthworks and embankment 

failures. 

Flood events (FE) L: E.g. flood risk from the sea and rivers or 

surface water. 

Strong winds (SW) M: E.g. leaves on the track or trees fall. 

Other events such as 

huge wave and snow 

(OE) 

N: Might be common in some parts of the 

network. 

Man-made 

disruptions 

(MD) 

Accidents (AC) O: E.g. derailments, bridge strikes, and 

collisions. 

Terrorist attacks (TA) P: Rare but can create substantial impacts on 

a railway network. 

Trespasses and 

suicides (TS) 

Q: Unpredictable, but their impacts are 

significant. 

 199 

3.4 Prioritising the critical sections 200 

Risk-based criticality is applied to prioritise the criticality of railway network sections. Sections with a 201 

higher predicted RC are used to prioritise the robustness improvement actions. The detail of the 202 

improvements, such as enhancement features and cost, can be obtained by considering the causes and the 203 

frequency of the disruptions on each critical section. For example, if the cause of the disruptions is 204 

vandalisms and trespasses, the strategies for both preventive, such as creating safety campaigns to make 205 
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local people aware of the dangers of trespass, and corrective enhancements such as installing fences can be 206 

established to increase the robustness of the RN. 207 

3.5 Simulation procedure 208 

The simulation procedure of the critical track section analysis model is presented in Figure 3. The process 209 

begins with the data loading step. Three new data sets, apart from the data for the RN performance model, 210 

are needed. These data sets include: a test disruption, a list of test track sections and the frequency or the 211 

probability of the section disruption as described in Section 3.3. At the next step, the section counter (SN) 212 

is initialised to “1”, and the first section on the list is considered by generating a disruption on the section 213 

and evaluating the vulnerability of the RN. After the vulnerability assessment step is completed, the RN 214 

performance prediction model is initialised, and the section counter is compared to the total number of test 215 

sections (TSN) on the list. If SN < TSN, SN is increased by one and the process is repeated by considering 216 

the next section on the list. However, if the condition is false, the vulnerability of all sections is normalised 217 

and used in the risk-based criticality calculation. Then, the results obtained will be prioritised and 218 

transformed to the robustness improvement policy. 219 
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 220 

Figure 3 – Simulation procedure of the critical track section analysis model. 221 

4 Application of the Proposed Model 222 

4.1 Case study 223 

The Liverpool railway network was selected as a case study (Figure 4). This network is an electrified system 224 

(third rail, 750V DC), serving approximately 110,000 passengers daily. The network has 67 stations, 72 225 

links (ID0 to ID71) and 4 main junctions (J0 to J3). The total length of this network is approximately 120 226 

km. On this network, two railway lines: the Northern line and the Wirral line, are operated daily from 6:00 227 

to 24:00. The Northern line is represented by a thick line. This line offers three service routes: Southport to 228 

Hunts Cross (R0), Ormskirk to Liverpool Central (R1) and Kirkby to Liverpool Central (R2). The first 229 

route is operated with 4 trains per hour throughout the whole day. The other two routes are operated with 4 230 
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trains per hours until evening (19:00), when the frequency reduces to 2 trains per hour and remains at this 231 

point until the end of operation. The Wirral line (thin line) extends the network to four terminus stations: 232 

Ellesmere Port (R3), Chester (R4), West Kirkby (R5) and New Brighton (R6). The train services from these 233 

terminus stations run to the Liverpool Central station and return to their terminus stations using the single-234 

track underground loop tunnel. Route R3 is operated with 2 trains per hour, and the service patterns of the 235 

other routes are the same as Routes 1 and 2 on the Northern line. All trains on the network are the British 236 

rail class 507/508 (3 coaches), and they stop at every intermediate station along their routes. The timetable 237 

of each service route was obtained from the Merseyrail timetable [23]. 238 



15 
 

 239 

Figure 4 – The Liverpool railway network. 240 
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4.2 Passenger data 241 

Since real passenger data was not available for the reason of commercial sensitivity, estimated passenger data 242 

was based on the Office of Rail and Road’s station usage dataset [24]. The passenger arrival rate at each station 243 

was determined by solving the proportion of the daily number of passengers at a station regarding to the times 244 

of the day. The percentage of passenger arrival rates at peak hours (7:00-10:00 and 16:00-19:00) was set to be 245 

higher than that of at off-peak hours by approximately 50 to 60 percent. Examples of the number of passenger 246 

arrivals at Liverpool central and Sandhills station from a simulation are depicted in Figures 5(a) and (b). 247 

 

a) Liverpool central station (ID39) 

 

b) Sandhills station (ID56) 

Figure 5 – The number of passenger arrivals at Liverpool central (a) and Sandhills station (b) results 248 

from a simulation. 249 

For the passenger Origin-Destination (O-D) matrix, a gravity model was applied to predict the passenger flow 250 

between stations (Ni,j), Equation (6). The daily number of passengers using a station, both entries and exits, 251 

was considered as the number of trips produced and attracted by a station. For some terminus stations, such 252 

as Liverpool Lime Street, which have a connection with other networks, the number of entries and exits cannot 253 

be directly used in the model. This is because passengers who enter, exit or change a train at these stations 254 

might not travel to or from the stations in the network. Thus, the trip production (P) and trip attraction (A) of 255 
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these stations were obtained by assuming the proportion of the number of entries (EN), exits (EX) and 256 

interchanges made (IC) at the stations as present in Equations (9) and (10).  257 

Friction factors (Fi.j) indicates the impact of travel time on the trips made between stations. Passengers are 258 

more likely to travel to a station when the friction factor between origin and destination station is high. In 259 

this study, the friction factor was assumed based on the study of Hartholt [25] to demonstrate the model. In 260 

Figure 6, the friction factor varies directly with the travel time until the point where most passengers are 261 

willing to travel on the network (set to 20 minutes). After that it decreases exponentially as the travel time 262 

increases. 263 

After calculating the passenger flow between each pair of stations, the total trip production and trip 264 

attraction of each station was calculated using Equations (7) and (8). The results obtained were compared 265 

with the actual trip production and trip attraction of each station. If the computed numbers did not match 266 

with the actual numbers - the difference was more than 1%, factoring was applied to adjust the values in 267 

the matrix. This was performed by determining the error ratio of each station (i.e. the actual number divided 268 

by the computed number of trip production/attraction) and multiplying it by all trips in each row (in the 269 

case of trip production) or each column (in the case of trip attraction) in the matrix. This process was 270 

repeated until a converged solution was achieved. Finally, the number of trips between each pair of stations 271 

was transformed into a percentage and used in the simulation to distribute passengers in the network. 272 
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 273 

Figure 6 – The relationship between friction factor and travel time used in the model.  274 

 Ni,j = Pi

AjFi,j

∑ AjFi,jj

 (6) 

 275 

 Pi = ∑ Ni,j

j

 (7) 

 276 

 Aj = ∑ Ni,j

i

 (8) 

 277 

 Pi = ENi(ai) + ICi(bi) (9) 

 278 

 Ai = EXi(ci) + ICi(di) (10) 

where: ai and ci are the proportional number of passengers who enter and exit the network at station i 279 

respectively. Meanwhile, bi and di are the proportional number of passengers who make an interchange at 280 
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station i to travel to the other stations inside and outside the network, respectively. These parameters were 281 

reasonably assumed for the stations that have a connection to other networks as shown in Table 2. 282 

Table 2 – Parameter assumptions for calculating trip production and trip attraction. 283 

Stations 
Parameter assumptions 

a b c d 

Bidston (ID7) 0.7 0.5 0.7 0.5 

Chester (ID19) 0.2 0.2 0.2 0.2 

Ellesmere Port (ID23) 0.5 0.5 0.5 0.5 

Hunts Cross (ID34) 0.5 0.5 0.5 0.5 

Kirkby (ID35) 0.6 0.5 0.6 0.5 

Liverpool Lime Street (ID41) 0.2 0.2 0.2 0.2 

Liverpool south parkway (ID42) 0.4 0.2 0.4 0.2 

Ormskirk (ID50) 0.6 0.5 0.6 0.5 

Southport (ID58) 0.5 0.5 0.5 0.5 

4.3 Results 284 

The examples of railway link criticality analysis are presented. The computational experiments were 285 

conducted using a computer with Intel i7 processor, CPU at 2.60 GHz and 16 GB of RAM running on Window 286 

10. Regarding the stochastic behaviour of the model, the vulnerability of each railway link was expressed in 287 

terms of average vulnerability from the results of 1,000 simulations, after which the statistics have converged. 288 

4.3.1 Testing with a single railway link 289 

As described in Section 3.1, the test disruption needs to be assigned to each link on the network one at a 290 

time to identify the criticality of railway links. However, due to the long distance of railway links, the 291 

location of a disruption on a railway link is important. Different locations might lead to different levels of 292 

railway link criticality. Thus, this issue needs to be addressed before testing all the links of the network. In 293 

this study, the railway link between Ainsdale (ID1) and Freshfield station (ID26) was selected as an 294 

example. This link comprises nine pairs of track sections (S0-S8). The length of each section is 295 

approximately 500 meters (Figure 7). 296 
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In this experiment, four different impact durations were used, including the recovery times of 15, 30, 60 297 

and 120 minutes (assumed to follow a Uniform distribution on the interval of -10% and +10%). Six different 298 

occurrence times at both peak and off-peak hours of the disruptions were considered. These consist of 8:00, 299 

8:05, 8:10, 12:00, 12:05 and 12:10. Then, the disruptions defined were assigned to each pair of track 300 

sections to create a blockage on the railway link. After that, the impacts on train services and passengers 301 

were estimated using Equations (2) and (3). The weighting factors set in the test were 1, 100, 1 and 60 for 302 

ωr
td ,  ωr

dsc, ωpd and ωpc, respectively. The results obtained from the simulation are presented in Tables 3 303 

and 4. 304 

 305 

Figure 7 – An example of a railway link and its track sections used in the test. 306 

It is obvious that the vulnerability of each track section varies directly with the duration of the disruptions. 307 

The larger impact duration, the greater vulnerability. Moreover, the occurrence time of the disruption has 308 

also a significant impact on the vulnerability of track sections, especially in the different periods of the day. 309 

In this case, the occurrence of a disruption at the peak hours causes higher consequences, especially for 310 

passenger vulnerability, compared to that of at the off-peak hours wherever the disruption was on the link. 311 

However, for the train service vulnerability, the consequences predicted seem to be the same at both peak 312 

and off-peak. This might be because there is no significant difference in the timetable of for these periods 313 

in the network. 314 
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In detail, both train and passenger indicators provide the similar trend of the results that the criticality of 315 

the example railway link needs to be calculated from the vulnerability of all sections. This is because the 316 

vulnerability of each section of the link fluctuated when the occurrence time and the location of the 317 

disruption were changed. A disruption that occurs at a specific times and locations created different effects 318 

to train services depending on the timetable. This phenomenon will happen with every railway link in the 319 

network due to the schedule-based nature of the railway operation. Therefore, to represent the vulnerability 320 

of the railway link, the average vulnerability of all sections of the link tested by different disruption 321 

occurrence times can be applied to perform the railway link criticality analysis. This hypothesis will be 322 

clarified in the next section.323 
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 324 

Table 3 – Train service vulnerability of the tested single railway link. 325 

*The values in the table were rounded to the nearest hundred. 326 
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15 4500 4500 4500 4500 4500 4500 4500 4500 4500 
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60 19000 19100 19000 19000 19000 19300 19000 19100 19000 

120 38800 38600 38700 39000 38600 38900 38800 38900 39000 
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15 5800 5500 5900 5800 5500 5900 5500 5800 5600 

30 11000 10900 11200 10700 11100 11200 11200 11000 10900 

60 20700 20900 20800 20700 21000 20700 20500 20900 20500 

120 40500 40200 40400 40500 40500 40000 40000 40500 40400 
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15 4600 4500 4500 4500 4800 4800 4800 4800 4700 
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 15 5600 5500 5700 5600 6100 5700 5600 5900 5500 

30 11100 11200 11000 11400 10900 11100 10900 10800 11100 

60 20400 20700 20600 20700 20200 20900 20200 20400 21200 
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1
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 15 4700 4800 4500 4500 4800 4800 4800 4800 4900 

30 10000 9800 9700 9600 10200 10500 10200 10200 10400 

60 18800 18900 19100 18900 19800 20100 19800 20200 20100 

120 38200 38500 37900 38300 40100 40500 40400 39900 40700 
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 328 

Table 4 – Passenger vulnerability of the tested single railway link. 329 

*The values in the table were rounded to the nearest hundred. 330 
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 15 9200 9500 8900 8700 9200 9100 9100 9000 9300 
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120 234500 237200 234200 236200 235300 237700 237100 234600 238600 
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4.3.2 Vulnerability evaluation of the railway links 332 

According to the previous experiment, this experiment takes the effect of disruption durations, disruption 333 

occurrence times and disruption locations on the railway links into account. Since the study is more 334 

interested in the large impact disruptions, two large impact disruptions with the approximated recovery 335 

times of 2 and 3 hours on the interval of -10% and +10% (Uniform distribution) were considered as examples. 336 

For the occurrence times of these disruptions, since the test network operated with a cyclic timetable, a certain 337 

pattern of train services repeats itself every hour. Thus, the effect of occurrence times can be analysed by 338 

considering times within a service hour. In this experiment, four different occurrence times during off-peak 339 

hours were randomly analysed, which are: 12:00PM, 12:05PM, 12:22PM and 12:54PM. These disruptions 340 

were assigned to each pair of block sections on each railway link on the Liverpool network one at a time. 341 

Then, the average vulnerability of the network when the disruption happened was estimated as the criticality 342 

indicator of the railway link. 343 

Figures 8 and 9 present the results obtained from the simulations. It seems that the trend of the results predicted 344 

from both impact durations is more likely to be the same. Although the vulnerability prediction of each railway 345 

link was slightly different when the occurrence time was changed, there was no effect on the rank of the 346 

railway link criticality. For the indicators, the results can be explained by considering the links that have 347 

similar criticality in the same group. The train service vulnerability and the passenger vulnerability tend to 348 

provide the different results for the critical link prediction. For example, the first indicator illustrates that links 349 

29, 30, 31, 32 and 40 were the most critical links in the network. However, the second indicator shows these 350 

links were only in the second group. Links 13, 14, 15 and 33 were in the most critical group for this indicator.  351 

One reason why the criticality results from these two indicators were different is due to the nature of trains 352 

and passengers. As described, large impact disruptions lead to a blockage of a railway link for a long period 353 

of time. This directly affects the train services operating through the disrupted locations. If no mitigation 354 
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strategy, such as rail replacement bus services, is implemented to keep providing services at some parts of the 355 

route, the train services need to be delayed and cancelled to avoid the propagation of delays to non-affected 356 

routes. The delay of the train is mainly based on the duration of the disruption and the number of service 357 

cancellations is dependent on the frequency of train on the route. For this network, most of the routes are 358 

operated with 4 trains per hour. Consequently, the criticality of many railway links tends to be the same as 359 

shown in Figures 8(a) and (b). The second indicator depends on the number of passengers travelling on each 360 

route and inherent passenger behaviour that they have flexibility to travel on the network. Passengers might 361 

still be able to travel to their destinations during a severe disruption. However, their journey times will 362 

significantly increase due to the limited availability of train services on the network.  363 

Although both indicators give the different results of the railway link criticality, they are still useful to create 364 

robustness improvement strategies for RNs. Train service vulnerability could be applied in the case of freight 365 

operation networks, while passenger vulnerability might be suitable for passenger-railway networks. Hence, 366 

there will be a focus on the passenger indicator in the next section. 367 
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 368 

 369 

 370 

Figure 8 – Train service vulnerability of each railway link testing with 2 hr (a) and 3 hr-disruption (b). 371 

 372 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

T
ra

in
 s

e
rv

ic
e

 v
u

ln
e

ra
b

il
it

y

Link IDs

Testing with 2 hr-disruption (a)

12:00 12:05 12:22 12:54

0

20000

40000

60000

80000

100000

120000

140000

160000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

T
ra

in
 s

e
rv

ic
e

 v
u

ln
e

ra
b

il
it

y

Link IDs

Testing with 3 hr-disruption (b)

12:00 12:05 12:22 12:54



27 
 

 373 

 374 

 375 

Figure 9 – Passenger vulnerability of each railway link testing with 2 hr (a) and 3 hr-disruption (b).376 
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4.3.3 Risk-based criticality analysis 377 

The risk-based criticality of each railway link was evaluated using the product of the normalised 378 

vulnerability and the likelihood of the railway link disruptions. The first factor was calculated from the 379 

average of the normalised vulnerability of the passenger indicator (both testing with 2 and 3 hour-380 

disruptions, Figure 10). Then, the second factor was separated into two examples: the flood risk and the 381 

overall frequency of disruptions. 382 

 Flood risk-based criticality  383 

The flood likelihood from rivers and the sea of the Liverpool network was considered. This data was 384 

obtained from the flood risk map provided by the Environment Agency [26]. The map illustrates the 385 

likelihood of the railway links exposed to flood by considering any flood defences in the area. The 386 

likelihood results (i.e. a chance of flooding in each year) are shown in four categories: high (greater than 387 

3.3%), medium (between 1.0% and 3.3%), low (between 0.1% and 1.0%) and very low (less than 0.1%). 388 

In the analysis, these likelihoods were considered as constant values. The first and the last category were 389 

assumed to be 3.3% (high) and 0.1 % (very low), and the rest were based on the median of the range which 390 

are: 2.15% (medium), 0.55% (low), respectively. 391 

The results obtained are presented in Figure 11. It was found that links 25 and 26, which connect the Old 392 

Roan, the Maghull and the Town Green station, were the highest critical links in the network. Their risk 393 

exposures were 8.462×10-3 and 8.080×10-3, which were approximately 63% higher than the next critical 394 

link which is link 63. The least critical links in this network were links 56 and 57, which connect the Little 395 

Sutton, the Overpool and the Ellesmere Port station. These railway links have a risk exposure of only 396 

4.0×10-5 and 2.6×10-5, respectively. From these results, the limited budget available for enhancing the 397 

robustness of the network, such as flood barriers, raised tracks and lineside equipment protection and 398 

drainage clearance, would be most effectively directed towards links 25 and 26, and the others could be 399 

ranged based on their risk results.400 
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 401 

Figure 10 – Average normalised vulnerability from the passenger delays indicator. 402 

 403 

Figure 11 – Flood risk-based criticality of the railway links in the Liverpool railway network.404 
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 Overall risk-based criticality 405 

The criticality of the railway links was predicted using the overall frequency of the railway link disruptions 406 

from the past five years (assumed due to the limited availability of the real data). The assumption was made 407 

based on the main causes of the disruptions explained in Section 3.3. The existence of the assets on each 408 

railway link, such as level crossings, bridges and tunnels, rivers, were taken into account based on the 409 

Railway track diagrams: Midlands and North West [27] and the Google map [28]. Only the disruptions 410 

affected the network more than 1 hour were considered in the analysis. 411 

The disruption frequency and the risk exposures of the top 10 critical links are presented in Table 5. Link 25, 412 

which is between the Old Roan and the Maghull station, is the link with the highest frequency of disruptions 413 

in the list (21 times in 5 years). The disruptions of this rail link were found due to all defined causes: technical 414 

failures (e.g. signalling failures), natural disasters (e.g. flood and landslide), and man-made disasters (e.g. 415 

accident and trespass). The other links on the list have the disruption frequency in the range of 6-13 times in 416 

5 years, and the failures of network components, such as signalling equipment (A), third rail equipment (B), 417 

tracks (C) and points (D), seem to be the main cause of the disruptions on these railway links.  418 

In terms of the risk, the order of the critical links in the network is different from the previous analysis. 419 

Link 40, which is the tunnel railway link, became the most critical link in the network. Its risk exposure 420 

was 9.610, which is approximately 38% higher than the second critical link (link 15). Links 13, 14 (between 421 

the junction and the Sandhills station) and 33 (between the Moorfields and the Liverpool Central station) 422 

were in the high ranking when only the vulnerability was considered (see Figure 11). However, only link 423 

33 was found in the top 10 (5th place) from this analysis. The least critical link in the list was link 2, which 424 

is between Hillside (ID31) and Ainsdale station (ID1). This link has a risk exposure of 3.835.  425 

Infrastructure managers can apply this information to create a plan for the network robustness improvement. 426 

The detail of the improvements, such as priority, enhancement features, and cost, can be obtained by 427 
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considering the causes and the frequency of the disruptions on each critical railway link. For instance, if 428 

the cause of the disruptions is the failures of network components such as third rail equipment (links 40, 30 429 

and 33), the strategies for both preventive (e.g. increasing inspection frequency) and corrective 430 

enhancements (e.g. replacing aging components) can be established in order to sustainably reduce the 431 

vulnerability of the RN. 432 

Table 5 – Top 10 critical links in the network based on the assumption of the disruption frequency. 433 
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401st 152nd 163rd 304th 335th 256th 07th 388th 619th 210th 
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TF 

CF A 4 3 3 3 3 8 1 1 3 2 

EF B 3 1 0 2 2 1 0 1 0 0 

IF 

C 3 1 1 1 1 5 2 1 3 2 

D 2 2 3 2 0 0 1 3 6 0 

E 0 0 0 0 0 2 1 0 0 1 

F 0 0 0 0 0 0 0 0 0 0 

G 0 0 0 0 0 0 0 0 0 0 

DF 

H 0 0 0 0 0 0 0 1 0 0 

I 1 0 0 0 0 0 1 1 0 1 

J 0 0 0 0 0 0 0 0 0 0 

ND 

LS K 0 0 0 0 0 1 0 0 1 0 

FE L 0 0 0 0 0 0 0 0 0 0 

SW M 0 0 1 0 0 1 1 0 0 0 

OE N 0 0 0 0 0 0 0 0 0 0 

MD 

AC O 0 0 0 0 0 2 1 0 0 0 

TA P 0 0 0 0 0 0 0 0 0 0 

TS Q 0 0 0 0 0 1 0 0 0 1 

Total disruption 

frequency 
13 7 8 8 6 21 8 8 13 7 

Normalised vulnerability 0.739 0.997 0.742 0.718 0.957 0.256 0.538 0.527 0.300 0.548 

Risk-based criticality 9.610 6.977 5.941 5.745 5.742 5.385 4.311 4.219 3.910 3.835 

*Remark: the codes of the main causes, sub-causes and their descriptions can be refereed to Table 1. 434 

 435 
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5 Conclusion 436 

A new analysis method for identifying the critical sections of a railway network is introduced. The method 437 

is constructed based on a stochastic-microscopic railway network simulation model. The framework of the 438 

method consists of four main parts: assigning a disruption, predicting network vulnerability, evaluating the 439 

risk-based criticality and prioritising the critical sections of a network. 440 

For the application of this proposed method, the identification of railway link criticality in the Liverpool 441 

railway network was presented. The impact of different durations and occurrence times of disruptions were 442 

analysed, and the results obtained are useful for the future research in the field of the vulnerability analysis. 443 

Moreover, the prediction of the risk-based criticality of the railway links was also performed in this paper. 444 

The examples of both flood events and all disruptive events were given along with the interpretation of the 445 

results for supporting the establishment of robustness improvement strategies for the railway network. 446 

Although the information, such as passenger data and disruption data, is assumed due to the commercial 447 

sensitivity, the users of this model are expected to be infrastructure managers. Therefore, the data will be 448 

available for them to use in the model. 449 

In the future, the application of the proposed method to investigate the criticality of other network 450 

components, such as stations and points, will be considered. The analysis of multiple simultaneous failures 451 

of network components will be analysed in order to identify the critical sets of components in railway 452 

networks.  453 

 454 

 455 

 456 

 457 
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