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Abstract 13 

Plastic pollution represents one of the most salient indicators of society’s impact on the 14 

environment. The microplastic component of this is ubiquitous, however, microplastic 15 

studies are seldom representative of the locations they sample. Over 12 months we 16 

explored spatiotemporal variation in microplastic prevalence across a freshwater system 17 

and in atmospheric deposition within its catchment, in one of the most temporally 18 

comprehensive studies of microplastic pollution. Microplastics were quantified in low 19 

concentrations (max 0.4 particles L-1) at all freshwater sites, including upstream of urban 20 

areas, and on rivers that do not receive wastewater treatment plant effluent. Extrapolated 21 

microplastic abundances at each site varied by up to 8 orders of magnitude over the course 22 

of the sampling campaign, suggesting that microplastic surveys that do not account for 23 

temporal variability misrepresent microplastic prevalence. Whilst we do not wish to 24 

underplay the potential impacts of microplastic particles in the environment, we argue that 25 

microplastic pollution needs to be placed in a more critical context, including assessment 26 

of temporal variability, to appropriately inform legislators and consumers. 27 

Capsule 28 

The main findings of this research are the extent to which freshwater microplastic 29 

concentrations are shown to vary with time, and the influence of this on flux calculations. 30 

Keywords 31 
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1. Introduction 33 

Microplastic particles (<5 mm) are an environmental pollutant of substantial public and 34 

scientific concern. Functioning as pollutants in contemporary environmental systems, and 35 

demarking human activity for centuries to come as techno-fossils, microplastic particles 36 

are a widespread form of plastic waste. Their prevalence in the marine environment has 37 

been reported since the early 1970s (Carpenter et al. 1972; Carpenter and Smith, 1972), 38 

and their presence in estuarine systems (Zhao et al. 2015; Gallagher et al, 2016; Gray et 39 

al. 2018) and freshwater environments (Zhang et al. 2015; Klein et al. 2015; Peng et al. 40 

2018; Mani et al. 2019; Watkins et al. 2019) has also been documented. However, whilst 41 

microplastics are thought to be ubiquitous beyond these systems (Rochman, 2018), 42 

records of microplastic pollution are often reported at low spatial and temporal resolutions. 43 

Freshwater catchments are a key pathway in the transport of microplastic debris, which 44 

accumulates in marine environments (Wagner et al. 2014). Sources of freshwater 45 

microplastic pollution are known to be varied, including wastewater treatment plants 46 

(WWTPs), urban centres and road runoff (Horton et al. 2017), industry (Lechner and 47 

Ramler, 2015), the atmosphere (Dris et al. 2016), and the degradation of larger items of 48 

plastic waste. However, the predominate focus of freshwater microplastic studies has been 49 

on downstream reaches of large, highly developed rivers in China, Europe, and North 50 

America (Figure 1). Understanding how microplastic concentrations vary along a river’s 51 

course is lacking, yet it is critical to understanding this key source and pathway of 52 

microplastic particles. 53 

  54 
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Figure 1: The number of sample sites (a), number of sampling occasions (b), and 55 

location (c) of 79 freshwater microplastic studies (see methods for Web of 56 

Knowledge search parameters used to identify relevant publications).  57 

Freshwater sampling campaigns also rarely account for temporal variability in their 58 

sampling campaigns (Figure 1) (Schmidt et al. 2017), limiting the extent to which 59 

measurements are representative of that site beyond the time of sample collection. Whilst 60 

studies that quantify microplastics in different freshwater environments are of great value, 61 

they are not able to further our understanding of microplastic sources and distributions 62 

a 

b 

c 
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without careful consideration of the intra-site variability over representative time periods 63 

(Prata et al. 2019). 64 

A comprehensive understanding of the sources and vectors of freshwater microplastic 65 

pollution is further limited by a lack of consideration of atmospheric deposition to what is 66 

a largely open system. Atmospheric deposition is a known source of anthropogenic 67 

particles found in both the benthic and suspended sediments of freshwater systems, 68 

including Spheroidal Carbonaceous Particles and Inorganic Ash Spheres (Rose et al. 2012). 69 

However, the study of airborne microplastic particles is limited to a few records of their 70 

presence in urban (Dris et al. 2016; Cai et al. 2017; Bergman et al. 2019; Stanton et al. 71 

2019), and remote (Allen et al. 2019; Bergman et al. 2019) atmospheric deposition. 72 

To address these research gaps, this study presents the findings of 12 months of 73 

freshwater and atmospheric sampling across the River Trent catchment, UK (Figure 2). 74 

We sampled the upstream reaches of the River Trent (RT), and the entire length of two of 75 

its tributaries, the River Leen (RL), and River Soar (RS), as well as atmospheric deposition 76 

within the Trent catchment. By sampling sites upstream of urban centres and at points 77 

without WWTP inputs, we assess the contribution of these previously cited sources of 78 

microplastic pollution to freshwater microplastic loads, and highlight the importance of 79 

accounting for temporal variation when disseminating microplastic findings. 80 
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 81 

Figure 2: Locations of freshwater (numbered) and atmospheric (lettered) 82 

sampling sites within the Trent Catchment, UK. Green areas represent the urban 83 

areas of Stoke-on-Trent (River Trent), Nottingham (River Leen), Leicester (River 84 

Soar upstream) and Loughborough (River Soar downstream). The exact location 85 

of each sample site is provided in Table S1. 86 

2.  Methods 87 

2.1 Literature search protocol for freshwater microplastic studies 88 

Figure 1 was collated from the results of a Web of Knowledge publication search conducted 89 

on 24/07/2019 with the aim of collating the number of sampling sites, number of sampling 90 
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occasions, and location of freshwater microplastic studies. This search was conducted 91 

using the following parameters: 92 

Topic search for: 93 

- Freshwater microplastic 94 

OR 95 

- River Microplastic 96 

OR 97 

- Lake Microplastic 98 

Though these search terms are unlikely to have provided a complete coverage of all 99 

freshwater microplastic studies, they yielded 343 results from 2012 to 2019. All review 100 

articles and laboratory studies were excluded, leaving 93 studies (supplementary 101 

references), of which the authors had access to 79 that contained the necessary 102 

information to meet the above aim. 103 

2.2 Sample sites, and sample collection and processing 104 

Sample site locations (Figure 2), and the procedure for contamination control, sample 105 

collection and processing are described in detail in Stanton et al. (2019). In brief, every 106 

four weeks from 20/11/2017 to 23/10/2018 (12 months) 30 L of freshwater was collected 107 

from each of the 10 sites across three rivers within the Trent catchment (Figure 2). 108 

Samples were collected from the riverbank using a metal bucket on a telescopic pole. Each 109 

sample was concentrated onto a 63 µm sieve in the field, and the retained material was 110 

transferred into a glass sample bottle using distilled water. The location of freshwater 111 

sampling sites enabled this study to assess microplastic pollution near the source of rivers, 112 

up- and downstream of urban centres, and at locations that do and do not receive WWTP 113 

effluent. Exact locations were determined by site accessibility. 114 

Atmospheric samples were collected using a scaled-down adaptation of the methods used 115 

by Dris et al. (2016). Atmospheric deposition was collected in 2.5 L amber glass bottles 116 

using a 12 cm diameter (0.0113 m2) glass funnel. Where Dris et al. (2016) used a sampling 117 
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surface area of 0.325 m2, more recent research of microplastic deposition has favoured 118 

smaller sampling apparatus with a sampling surface area of 0.0177 m2 (Cai et al. 2017), 119 

0.014 m2 (Allen et al. 2019), and 0.0113 m2 (Klein and Fisher, 2019; Stanton et al. 2019). 120 

Atmospheric samples were collected fortnightly for 12 months from 23/11/2017 to 121 

25/10/2018. To assess the potential influence of intra-site variation additional sampling 122 

was also conducted at site D, in which five replicate samples were collected from the same 123 

rooftop between 04/12/2018 and 11/12/2018. All buildings were 2 storeys (three floors) 124 

high. 125 

Freshwater samples were treated with 30% H2O2 to remove organic matter before being 126 

vacuum filtered onto gridded cellulose nitrate filter papers with a 0.45 µm pore size 127 

(Whatman ME 25/41). The contents of the amber glass bottles used to collect atmospheric 128 

deposition was concentrated onto a 38 µm sieve in the laboratory, and the bottles triple 129 

rinsed with distilled water. The retained material was vacuum filtered onto the same 130 

gridded filter papers as the freshwater samples. Due to the mesh apertures of the sieves 131 

used to reduce the sample volumes, this methodology was unable to isolate all particles 132 

smaller than 63 µm for the freshwater samples, or smaller than 38 µm for the atmospheric 133 

samples. 134 

2.3 Microplastic identification 135 

Samples were initially visually inspected under a dissection microscope (Medline Scientific 136 

CETI Varizoom-10, Chalgrove, UK). Textile fibres were categorised according to Stanton 137 

et al. (2019), and the grid reference for all suspected non-fibrous microplastic particles 138 

was recorded. This grid reference aided the subsequent FTIR spectroscopy of these 139 

particles. Analysed particles were subjected to one of the following FTIR spectroscopy 140 

techniques: Attenuated total reflectance (ATR) FTIR spectroscopy (Bruker Tensor 27 FTIR 141 

spectrometer [Bruker Optics, Coventry, UK] equipped with a Golden Gate ATR accessory 142 

[Specac, Orpington, UK]), reflectance FTIR microscopy (Bruker Hyperion 2000 microscope 143 

[Bruker Optics, Coventry, UK]), or using an ATR-FTIR objective (Bruker Lumos microscope 144 
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[Bruker Optics, Coventry, UK]). Spectra were identified using Bruker’s demonstration 145 

library. 146 

2.4 Statistical analysis 147 

Non-parametric tests were carried out on the freshwater dataset. Kruskal-Wallis tests 148 

were performed to determine whether microplastic concentrations over the sampling 149 

period were significantly different between sites on each river. Mann-Whitney U tests 150 

were performed to determine whether microplastic concentrations were significantly 151 

different between any two sites on the same river. A Levene’s test was performed to 152 

assess the similarity of the variability between sites on each river. 153 

3. Results and Discussion 154 

3.1 Microplastic particles in the River Trent and its tributaries 155 

Throughout the 12 month freshwater sampling campaign microplastic particles were 156 

identified at every site, including the most upstream sites. Identified microplastic particles 157 

included fragments, films and spherical beads, as well as extruded textile fibres. Extruded 158 

fibres include microplastic fibres (e.g. polyester) and regenerated cellulose fibres (e.g. 159 

rayon). Limitations of the analytical techniques available to this study, detailed in Stanton 160 

et al. (2019), meant that it was not possible to definitively categorise extruded fibres as 161 

plastic. It is possible that all of the extruded fibres identified were microplastics, and the 162 

data presented here assumes this for clarity and to present a worst case scenario. 163 

However, we recognise that as it was beyond the scope of this investigation to characterise 164 

extruded fibres this might not be the case. 165 

A total of 178 plastic particles were identified in the freshwater samples collected for this 166 

study. 79 particles were identified as extruded textile fibres, and were present in similar 167 

concentrations at sites that do and do not receive WWTP effluent (Figure 2). Though 168 

WWTPs are widely cited as a source of textile fibres (Napper and Thompson 2016; 169 

Ziajahromi et al. 2017), by considering temporal variation, we show here that they do not 170 

always inflate textile fibre concentrations. 171 
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The remaining 99 plastic fragments included 95 microplastic particles and four plastic 172 

particles ≥5 mm, of which FTIR spectra were generated for 96. The use of ATR-FTIR 173 

spectroscopy is a common technique for the analysis of particles >500 µm in size 174 

(Biginagwa et al. 2016), but can be challenging for smaller particles. Alternative methods 175 

of FTIR spectroscopy, including the reflectance FTIR spectroscopy available to this study, 176 

can provide spectra for particles too small to handle for FTIR spectroscopy. By 177 

characterising a subsample of microplastic particles and extrapolating based on levels of 178 

error determined from this subsample, it is possible to infer the composition of microplastic 179 

populations within a study (e.g. Dris et al. 2016). Whilst this is a valid approach, we opted 180 

to attempt to identify each microplastic particle that was visually preselected using FTIR 181 

spectroscopy. However, the quality of reflectance FTIR spectra of particles <500 µm is 182 

often poor. The majority of microplastic particles were smaller than 500 µm in their largest 183 

dimension (Figure 3), but of the particles analysed, 21 (21%) could be identified by FTIR 184 

spectroscopy. Of these 21 particles, 20 were confirmed as plastic particle. Twelve were 185 

polyethylene, three were polypropylene, two were polystyrene, two were polyvinyl acetate 186 

(PVA), and one was identified as urethane alkyd (UA) (Figure 4). The PVA and UA particles 187 

may represent fragments of polymer-based paints. The remaining 77 spectra were too 188 

noisy to be identified confidently, but are thought likely to be plastic given the success of 189 

the visual identification of particles that could be confidently characterised. 190 

 191 

 192 

 193 
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Figure 3: Distribution of non-fibrous microplastic particle sizes across all 194 

freshwater samples. 77% of particles had a largest dimension <500 µm. 195 

 196 
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Figure 4: ATR-FTIR spectra of two of the microplastic particles identified during 197 

the twelve month sampling campaign. 198 

The incidence of microplastic particles increased in both concentration and variability along 199 

the sampled reaches of the rivers Trent and Leen (Figures 5 and S1). The sampled reaches 200 

of these rivers do not receive WWTP effluent, but flow through the urban centres of Stoke-201 

on-Trent and Nottingham, respectively. 202 
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 203 

Figure 5: Box and whisker plots illustrating the median and range of microplastic 204 

concentrations at each of the ten freshwater sites sampled. Outlying points are 205 

more than 1.5 times the interquartile range above the upper quartile. 206 

Across the 12 month sampling campaign, Kruskal-Wallis tests showed that the 207 

concentration of microplastic particles between sites on the same river was not 208 

significantly different for the River Trent (p=0.88) or the River Soar (p=0.936). Despite 209 

the WWTP input at sites RS2-4, this dataset shows that WWTP effluent does not always 210 

significantly increase microplastic and fibre concentrations. However, microplastic 211 

concentrations were significantly different between sites on the River Leen (p=0.015). 212 

Levene’s tests showed that the variability of microplastic concentrations between sites on 213 

each river was significant for the River Trent (p=0.027), the River Leen (p=0.026), and 214 

the River Soar (p=0.019). 215 

Mann-Whitney U tests were carried out to identify significant differences in microplastic 216 

concentrations between any two sites on the same river (Table S2). Significant differences 217 

were only found between sites RT1 and RT3 (p=0.045), RL1 and RL2 (p=0.007), and RL1 218 

and RL3 (p=0.022). Therefore, the urban areas of Stoke-on-Trent, Nottingham, Leicester 219 

and Loughborough (Figure 2) did not significantly increase microplastic concentrations in 220 

the rivers that flow through them on the sampling occasions. 221 

However, though not significant, mean microplastic concentrations (±SD) were almost 222 

four times greater downstream of Stoke-on-Trent at site RT3 (  = 0.075 ±0.11 particles 223 
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L-1) than upstream of it at site RT2 (  = 0.019 ±0.04 particles L-1). The influence of the 224 

Nottingham urban area on the microplastic concentrations of the River Leen was less stark. 225 

Mean microplastic concentrations (±SD) were comparable at site RL2 (  = 0.076 ±0.06 226 

particles L-1) and RL3 (  = 0.083 ±0.10 particles L-1). On the River Leen, the greatest 227 

increase in microplastic concentration was observed between site RL1 (  = 0.019 ±0.03 228 

particles L-1) and site RL2 (Figure 5). Though located where the River Leen enters the 229 

urban area of Nottingham, anthropogenic activity near to site RL2 is extensive, highlighting 230 

the immediacy with which plastic debris associated with anthropogenic activity can enter 231 

the aquatic system. 232 

Of the three rivers sampled in this study, the River Soar represented the largest system. 233 

There was no significant increase in microplastic concentration between any two sites 234 

sampled along the River Soar (Table S2). However, comparable microplastic 235 

concentrations between sites along the course of a river do not equate to comparable 236 

microplastic abundances, with water volume increasing along the river’s course. 237 

Many microplastic studies collect samples by trawling a net through surface waters (Rivers 238 

et al. 2019). Whilst this enables the sampling of large volumes of water, its application to 239 

freshwater systems imposes various limitations on the ability of studies to produce a 240 

comprehensive assessment of microplastic pollution within the surveyed catchment. The 241 

restrictions associated with coarse mesh apertures have been discussed previously (see 242 

Hidalgo-Ruz et al. 2012), however, the use of nets also limits the size of the system that 243 

can be sampled. Research that uses common Manta and Neuston nets to collect samples 244 

precludes itself from sampling small freshwater systems. The approach taken in the 245 

present study enabled the sampling of small, upstream sites to report microplastic 246 

pollution from close to the sources of the sampled systems (Figure S2). Moreover, 247 

concentrating samples onto a 63 µm sieve enable this work to account for smaller particle 248 

sizes than is normally possible using a net, as well as increasing the likelihood of fibre 249 

capture. In order to enable comparison between sites, this approach had to be followed at 250 

all sample sites, including those large enough that a net could have been used. The low 251 
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concentration of microplastic particles recorded throughout the sampling campaign is not 252 

thought to be an artefact of the sample size, within which natural and extruded textile 253 

fibres were consistently reported and documented in Stanton et al. (2019). 254 

3.2 Atmospheric deposition of microplastic particles 255 

Throughout the 12 month atmospheric sampling campaign, microplastic deposition was 256 

sporadic and consistently low, with a total of 27 extruded textile fibres and eight 257 

microplastic fragments quantified across all four sites (Figure 6). Mean daily deposition 258 

(±SD) ranged from 1.14 ±2.4 to 3.16 ±4.9 particles m-2 day-1, and the modal value for 259 

each site was 0 particles m-2 day-1. Natural textile fibres were observed consistently across 260 

all sites throughout the sampling campaign (see Stanton et al. 2019). The additional 261 

sampling at site D showed little intra-site variation (Figure S3). 262 

 263 

Figure 6: Microplastic deposition across the four atmospheric sampling sites 264 

throughout the 12 month sampling campaign 265 

The atmospheric deposition of microplastic particles recorded in the present study is much 266 

lower than those reported previously. The sample sites in the present study represent 267 
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areas of lower population density and urbanisation than those sampled by Dris et al. 268 

(2016), Cai et al. (2017), and some of those sampled by Bergmann et al. (2019), which 269 

is likely to contribute to the abundance of airborne particles. However, though the surface 270 

area of the atmospheric sampling device (0.0113 m2) was similar to the largest device 271 

used by Allen et al. (2019) (0.014 m2), they reported much higher mean microplastic 272 

concentrations (±SD) of 365 ±69 particles m-2 day-1 at their remote sampling sites. 273 

Multiple environmental and methodological factors could have influenced this discrepancy, 274 

including sampling height. The sampling reported here was undertaken on rooftops, as 275 

opposed to the sampling closer to ground level undertaken by Allen et al. (2019). 276 

Here we show that atmospheric deposition is a source of microplastic particles in both rural 277 

and urban reaches of the freshwater system. However, the negligible deposition recorded 278 

throughout this sampling campaign indicates that atmospheric deposition it is not a major 279 

contributor to microplastic pollution at the sites of deposition sampled. 280 

3.3 Temporal variation of freshwater and atmospheric microplastic particles 281 

Microplastic particles are known to be present in the freshwater system from source to sea 282 

(Miller et al. 2017). However, freshwater and atmospheric microplastic concentrations 283 

varied considerably throughout the sampling campaign, and were absent from 41% (51 284 

of 123) of samples collected across the 12 month sampling campaign. The modal 285 

microplastic concentration was 0 particles L-1 at six of the 10 freshwater sites samples 286 

(Figure S1).  287 

Though recorded freshwater and atmospheric microplastic concentrations did vary at 288 

different points in time, no seasonal variation in microplastic concentration was observed 289 

(Figures 6 and S1). On sample occasion five (12th and 13th March 2018) samples were 290 

collected during a storm event (Table S3) which saw suspended microplastic 291 

concentrations increase at some sites (Figure S1). This increase can be explained by the 292 

in wash of microplastic particles via surface runoff (Wagner et al. 2014; Li et al. 2018), 293 

and the resuspension of sedimentary microplastic particles within the broader increase of 294 
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the river’s suspended solid loads during such an event (Hurley et al. 2018). However, the 295 

influence of this precipitation varied in the freshwater system, with microplastic 296 

concentrations at some sites also being present in similar, or lower, concentrations than 297 

their site average. Five of the 10 freshwater sites even recorded microplastic 298 

concentrations of 0 particles L-1 during this event. We therefore postulate that storm 299 

events can also dilute freshwater microplastic concentrations. 300 

This temporal variation and inconsistent relationship between particle concentration and 301 

flow can lead to considerable misrepresentation of findings when particle fluxes are 302 

calculated. Microplastic fluxes were extrapolated at sites RT2, RL3, and RS4, which are 303 

located in close proximity to UK National River Flow Archive gauging stations. At site RS4 304 

this flux extrapolation ranged from 0 to 643 000 000 particles depending on the sampling 305 

occasion (Table 1). These flux extrapolations are detailed for each sampling occasion 306 

throughout the sampling campaign in Table S3. 307 

Table 1: Microplastic flux estimates, presented to three significant figures, at 308 

sites in close proximity to UK NRFA gauging stations. Numbers in brackets 309 

represent the codes for the NRFA gauging station used. Mean flow for each 310 

station is as stated by the NRFA on 31/07/2019, and was used to calculate mean 311 

microplastic flux from the mean microplastic concentration quantified for each 312 

site in the present study. Maximum microplastic flux was calculated using the 313 

mean flow rate for the day of sampling, as detailed in Table S3.  314 

Site 

Mean 

flow 

(m3s-1) 

Mean microplastic 

flux (particles / 

day) 

Minimum 

microplastic flux 

(particles / day) 

Maximum 

microplastic flux 

(particles / day) 

RT2 

(28040) 
0.624 1 050 000 0 2 550 000 

RL3 

(28035) 
0.684 4 920 000 0 88 400 000 

RS4 

(28074) 
11.729 69 900 000 0 643 000 000 

 315 

 316 
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3.4 Implications for our understanding of microplastic pollution 317 

Microplastic particles are ubiquitous in many environmental systems (Rochman, 2018). 318 

They are likely to be the most abundant form of plastic debris in the marine environment 319 

(Law and Thompson, 2014), with the freshwater system being a major source of marine 320 

plastic debris (Lebreton et al. 2017; Schmidt et al. 2017). However, the freshwater 321 

samples collected at discrete time points are not representative of the four weeks that 322 

separated them and, therefore, this 12 month dataset is not to be interpreted as a 323 

representation of the annual variation in microplastic concentrations at the sites sampled. 324 

Moreover, whilst microplastic particles are identified at every site, the consistently low 325 

concentrations at some sites and the repeated dominance of non-plastic anthropogenic 326 

particles in the form of natural fibres raises important questions about the relative risk 327 

that microplastics pose across some freshwater and atmospheric systems. 328 

These systems are highly spatially and temporally variable, and by not considering this 329 

variability the findings of microplastic research risk being interpreted beyond the 330 

spatiotemporal context that they represent. Without such consideration, the subsequent 331 

public dissemination of such findings risks distracting attention from more pressing 332 

environmental concerns, including those whose harm has a stronger evidence base than 333 

that of microplastics. 334 

4. Conclusion 335 

The freshwater system is an important pathway for microplastic pollution to marine and 336 

lacustrine environments and it is concerning that microplastics have been found in even 337 

the most remote environments (e.g. Bergman et al. 2019). However, whilst the presence 338 

of microplastic particles is widespread, their abundance in the environment is harder to 339 

quantify. Here we show a clear need to increase temporal resolution of sampling 340 

campaigns, and for complementary work to assess the similarity of this variability in 341 

sedimentary and biotic matrices. Extrapolation from few samples in space or time, is likely 342 

to lead to substantial errors in assessment. This research also raises important questions 343 
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about sources of microplastics to environments given its observation of plastic particles, 344 

including fibres, upstream of both the urban areas and WWTPs that are often thought to 345 

represent major sources of such particles. To this end, the findings of this work bring the 346 

authors to recommend that future research into the impacts of microplastic pollution 347 

generate longer term, high temporal resolution, records of microplastics in the 348 

environment, and that they assess risk at environmentally representative concentrations. 349 

Acknowledgements 350 

The authors would like to acknowledge the source of the river flow data used in this study, 351 

obtained from the UK National River Flow Archive. We also thank the University of 352 

Nottingham Estates Office for access to the roofs of University of Nottingham Buildings, 353 

and  Dr Owen Wilkin of Bruker for the analysis of particles using the Bruker Lumos FTIR 354 

microscope. Stanton was supported by the University of Nottingham Sir Francis Hill 355 

Scholarship during this research. This research did not receive any specific grant from 356 

funding agencies in the public, commercial, or not-for-profit sectors. 357 

Author contributions 358 

T.S. conducted all field sampling, and all laboratory processing and analysis. W.M. assisted 359 

in the FTIR spectroscopy. All authors contributed to the interpretation of the presented 360 

data and the writing of the manuscript. 361 

Bibliography 362 

Allen, S., Allen, D., Phoenix, V.R., Le Roux, G., Jiménez, P.D., Simonneau, A., Binet, S. 363 

and Galop, D., 2019. Atmospheric transport and deposition of microplastics in a remote 364 

mountain catchment. Nature Geoscience, 12(5), p.339. 365 

Bergmann, M., Mützel, S., Primpke, S., Tekman, M.B., Trachsel, J. and Gerdts, G., 2019. 366 

White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science 367 

Advances, 5(8), p.1157. 368 



20 

 

Biginagwa, F.J., Mayoma, B.S., Shashoua, Y., Syberg, K. and Khan, F.R., 2016. First 369 

evidence of microplastics in the African Great Lakes: recovery from Lake Victoria Nile perch 370 

and Nile tilapia. Journal of Great Lakes Research, 42(1), 146-149. 371 

Cai, L., Wang, J., Peng, J., Tan, Z., Zhan, Z., Tan, X. and Chen, Q., 2017. Characteristic 372 

of microplastics in the atmospheric fallout from Dongguan city, China: preliminary 373 

research and first evidence. Environmental Science and Pollution Research, 24(32), 374 

pp.24928-24935. 375 

Carpenter, E.J. and Smith, K.L., 1972. Plastics on the Sargasso Sea surface. Science, 376 

175(4027), pp.1240-1241.Zhao et al. 2015;  377 

Carpenter, E.J., Anderson, S.J., Harvey, G.R., Miklas, H.P. and Peck, B.B., 1972. 378 

Polystyrene spherules in coastal waters. Science, 178(4062), pp.749-750. 379 

Dris, R., Gasperi, J., Saad, M., Mirande, C. and Tassin, B., 2016. Synthetic fibers in 380 

atmospheric fallout: a source of microplastics in the environment? Marine Pollution 381 

Bulletin, 104(1-2), pp.290-293. 382 

Gallagher, A., Rees, A., Rowe, R., Stevens, J. and Wright, P., 2016. Microplastics in the 383 

Solent estuarine complex, UK: an initial assessment. Marine Pollution Bulletin, 102(2), 384 

pp.243-249. 385 

Gray, A.D., Wertz, H., Leads, R.R. and Weinstein, J.E., 2018. Microplastic in two South 386 

Carolina Estuaries: Occurrence, distribution, and composition. Marine Pollution Bulletin, 387 

128, pp.223-233. 388 

Hidalgo-Ruz, V., Gutow, L., Thompson, R.C. and Thiel, M., 2012. Microplastics in the 389 

marine environment: a review of the methods used for identification and 390 

quantification. Environmental Science & Technology, 46(6), 3060-3075. 391 

Horton, A.A., Svendsen, C., Williams, R.J., Spurgeon, D.J. and Lahive, E., 2017. Large 392 

microplastic particles in sediments of tributaries of the River Thames, UK–Abundance, 393 



21 

 

sources and methods for effective quantification. Marine Pollution Bulletin, 114(1), pp.218-394 

226. 395 

Hurley, R., Woodward, J. and Rothwell, J.J., 2018. Microplastic contamination of river beds 396 

significantly reduced by catchment-wide flooding. Nature Geoscience, 11(4), p.251. 397 

Klein, S., Worch, E. and Knepper, T.P., 2015. Occurrence and spatial distribution of 398 

microplastics in river shore sediments of the Rhine-Main area in Germany. Environmental 399 

Science & Technology, 49(10), pp.6070-6076. 400 

Klein, M. and Fischer, E.K., 2019. Microplastic abundance in atmospheric deposition within 401 

the Metropolitan area of Hamburg, Germany. Science of the Total Environment, 685, 96-402 

103. 403 

Law, K.L. and Thompson, R.C., 2014. Microplastics in the seas. Science, 345(6193), 404 

pp.144-145. 405 

Lebreton, L.C., Van der Zwet, J., Damsteeg, J.W., Slat, B., Andrady, A. and Reisser, J., 406 

2017. River plastic emissions to the world’s oceans. Nature Communications, 8, p.15611. 407 

Lechner, A. and Ramler, D., 2015. The discharge of certain amounts of industrial 408 

microplastic from a production plant into the River Danube is permitted by the Austrian 409 

legislation. Environmental Pollution, 200, pp.159-160. 410 

Li, J., Liu, H. and Chen, J.P., 2018. Microplastics in freshwater systems: A review on 411 

occurrence, environmental effects, and methods for microplastics detection. Water 412 

Research, 137, pp.362-374. 413 

Mani, T., Blarer, P., Storck, F.R., Pittroff, M., Wernicke, T. and Burkhardt-Holm, P., 2019. 414 

Repeated detection of polystyrene microbeads in the lower Rhine River. Environmental 415 

Pollution, 245, pp.634-641. 416 

Miller, R.Z., Watts, A.J., Winslow, B.O., Galloway, T.S. and Barrows, A.P., 2017. Mountains 417 

to the sea: river study of plastic and non-plastic microfiber pollution in the northeast USA. 418 

Marine Pollution Bulletin, 124(1), pp.245-251. 419 



22 

 

Napper, I.E. and Thompson, R.C., 2016. Release of synthetic microplastic plastic fibres 420 

from domestic washing machines: effects of fabric type and washing conditions. Marine 421 

Pollution Bulletin, 112(1-2), pp.39-45. 422 

National River Flow Archive, 2018. https://nrfa.ceh.ac.uk, NERC CEH, Wallingford. 423 

Peng, G., Xu, P., Zhu, B., Bai, M. and Li, D., 2018. Microplastics in freshwater river 424 

sediments in Shanghai, China: a case study of risk assessment in mega-cities. 425 

Environmental Pollution, 234, pp.448-456. 426 

Prata, J.C., da Costa, J.P., Duarte, A.C. and Rocha-Santos, T., 2018. Methods for sampling 427 

and detection of microplastics in water and sediment: a critical review. TrAC Trends in 428 

Analytical Chemistry, 110, pp.150-159. 429 

Rivers, M.L., Gwinnett, C. and Woodall, L.C., 2019. Quantification is more than counting: 430 

Actions required to accurately quantify and report isolated marine microplastics. Marine 431 

Pollution Bulletin, 139, 100-104. 432 

Rochman, C.M., 2018. Microplastics research—from sink to source. Science, 360(6384), 433 

pp.28-29. 434 

Rose, N.L., Jones, V.J., Noon, P.E., Hodgson, D.A., Flower, R.J. and Appleby, P.G., 2012. 435 

Long-range transport of pollutants to the Falkland Islands and Antarctica: Evidence from 436 

lake sediment fly ash particle records. Environmental Science & Technology, 46(18), 437 

pp.9881-9889. 438 

Schmidt, C., Krauth, T. and Wagner, S., 2017. Export of plastic debris by rivers into the 439 

sea. Environmental Science & Technology, 51(21), pp.12246-12253. 440 

Stanton, T., Johnson, M., Nathanail, P., MacNaughtan, W. and Gomes, R.L., 2019. 441 

Freshwater and airborne textile fibre populations are dominated by ‘natural’, not 442 

microplastic, fibres. Science of The Total Environment, 666, pp.377-389. 443 

Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., 444 

Fries, E., Grosbois, C., Klasmeier, J., Marti, T. and Rodriguez-Mozaz, S., 2014. 445 



23 

 

Microplastics in freshwater ecosystems: what we know and what we need to know. 446 

Environmental Sciences Europe, 26(1), p.12. 447 

Watkins, L., McGrattan, S., Sullivan, P.J. and Walter, M.T., 2019. The effect of dams on 448 

river transport of microplastic pollution. Science of The Total Environment, 664, pp.834-449 

840. 450 

Zhang, K., Gong, W., Lv, J., Xiong, X. and Wu, C., 2015. Accumulation of floating 451 

microplastics behind the Three Gorges Dam. Environmental Pollution, 204, pp.117-123. 452 

Zhao, S., Zhu, L. and Li, D., 2015. Microplastic in three urban estuaries, China. 453 

Environmental Pollution, 206, pp.597-604. 454 

Ziajahromi, S., Neale, P.A., Rintoul, L. and Leusch, F.D., 2017. Wastewater treatment 455 

plants as a pathway for microplastics: development of a new approach to sample 456 

wastewater-based microplastics. Water Research, 112, pp.93-99. 457 


