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Abstract We present a phase field based MITC4+1

shell element formulation to simulate fracture propa-2

gation in thin shell structures. The employed MITC4+3

approach renders the element shear- and membrane-4

locking free, hence providing high-fidelity fracture sim-5

ulations in planar and curved topologies. To capture the6

mechanical response under bending-dominated frac-7

ture, a crack-driving force description based on the8

maximum strain energy density through the shell-9

thickness is considered. Several numerical examples10

simulating fracture in flat and curved shell structures11

are presented, and the accuracy of the proposed formu-12

lation is examined by comparing the predicted critical13

fracture loads against analytical estimates.14

Keywords Mindlin shell elements · Shear and15

membrane locking · MITC4+ formulations · Phase-16

field implementation · Brittle fracture17

1 Introduction18

Thin shell structures find numerous applications in a19

wide range of industries within the aerospace, auto-20

motive, and construction sectors. Thin composite lami-21

nates in particular are being deployed in aircraft struc-22

tures and comprise the chassis of automotive vehicles.23

Hence, high-fidelity simulation of damage processes per-24

tinent to thin-shells is vital for estimating their critical25

load bearing capacities while at the same time reducing26

the number of high-cost experimental test.27
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Numerical simulation of evolving damage in thin28

shell-like structures is often performed using Reissner-29

Mindlin shell elements which allow efficient modelling of30

both in-plane (membrane) and out-of-plane (bending)31

deformations at a reduced computational cost. Espe-32

cially when using an explicit time-integration scheme,33

shell elements do not penalize the stable time-increment34

even when the thickness is extremely small [60]. This35

makes Mindlin shells an ideal candidate for modelling36

computationally complex fracture problems involving,37

e.g., impact driven damage scenarios.38

Damage modelling methods can be broadly catego-39

rized onto two types, i.e., Discrete or Smeared/Diffuse.40

In discrete methods, a crack is treated either explicitly41

as a geometrical entity or implicitly as a discontinu-42

ity in the displacement field. In diffuse methods, the43

crack is smeared over the surrounding domain and the44

stress degradation effects are incorporated by means of45

a damage variable embedded directly into the constitu-46

tive formulations.47

Discrete crack approaches primarily rely on modi-48

fying an existing finite element mesh in the locations49

where crack propagates, see, e.g., the robust remesh-50

ing algorithms developed by Ingraffea and Saouma51

[35], Bouchard et al [18, 19], Rethore et al [52], Sha-52

hani and Fasakhodi [57]. The extended finite element53

method (XFEM), first introduced in Belytschko and54

Black [13] [, see, also, 24], eliminates the need of expen-55

sive mesh-updating algorithms for tracking crack paths56

by decoupling the crack topology from the underlying57

finite-element mesh. The XFEM models cracks by intro-58

ducing a set of additional (enriched) degrees of freedom59

and corresponding discontinuous basis functions. Over60

the past fifteen years, the method has evolved onto the61

industrial standard for resolving crack-tip stress singu-62

larities without the requirement of very fine discretiza-63
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tions. However, the XFEM is not free from computa-64

tional complexities pertinent to the the number of ad-65

ditional DOFs; furthermore, it relies on the definition66

of ad-hoc assumptions vis-a-vis the stress field at the67

crack-tip. Furthermore, the extension of XFEM to 3-D68

problems is not straightforward and poses challenges in69

specifying the crack propagation increment in 3-D [27].70

Cohesive Zone Modelling (CZM) is a discrete71

method [25, 10, 34] that simulates fracture propaga-72

tion by redistributing the stresses ahead of the crack-tip73

over a finite fracture process zone (FPZ). The consti-74

tutive behaviour of the FPZ is defined on the basis of75

a traction-separation law. With the exception of the76

Cohesive Segments Method (CSM) [51], CZM relies on77

the pre-definition of the crack surfaces. Hence, it can-78

not predict arbitrary crack propagation scenarios and79

is mostly applied in cases where crack path is known80

a-priori, e.g., in composite delamination.81

Diffuse damage modelling approaches such as the82

Phase-field method (PFM) [29, 20] and the thick level83

set method [43], overcome these challenges and have84

been proven robust in treating complex crack patterns,85

e.g., branching, merging, and curvilinear crack paths.86

The PFM emerged from the step-changing works of87

Francfort and Marigo [29], Bourdin et al [20] and has88

garnered much attention in the past 10 years. The main89

advantage of the PFM is that the crack initiation loca-90

tion and crack-paths do not need to be predefined, but91

naturally emerge from the solution of a PDE that is92

derived on the basis of energy-minimisation principles93

and solved over the entire computational domain. The94

PFM relies on replacing the sharp crack edges with a95

diffusive crack interface represented by the phase field96

and hence resolves difficulties of numerically tracking97

discontinuities in the displacement field during crack98

propagation. To this point, the PFM has been extended99

to treat brittle fracture [41, 40, 44], ductile fracture100

[4, 17], hydraulic fracture [62, 33, 28, 47], and has also101

been applied within material-point method (MPM) [37]102

and virtual-element method (VEM) setting [1].103

Despite the significant advantages provided by shell104

elements in resolving three dimensional surfaces in a105

robust and efficient manner, there have been only lim-106

ited efforts to apply the PFM for simulating shell107

damage problems; a detailed review is provided in108

[63]. The PFM has been used to modelling thin-109

shell fractures based on the Kirchoff-Love shell the-110

ory [7, 61, 38]. Kiendl et al [38] adopted higher order111

smooth basis functions (NURBS), whereas Amiri et al112

[7] employed maximum entropy meshfree approxima-113

tions based on C1 continuous basis functions. Reinoso114

et al [50] extended the PFM for brittle fracture in large-115

deformation solid shell elements based on enhanced as-116

sumed strain (EAS) formulations.117

An important challenge to address when using thin118

Mindlin shell elements is that they display membrane119

and transverse shear locking [39], which significantly af-120

fects the evolution the simulated crack path. Transverse121

shear locking occurs purely due to the displacement-122

based interpolation that is also used for the calculation123

of strains. This leads to a significant over-prediction124

of the bending stiffness and an under-prediction of the125

transverse deformations which may become lower than126

the theoretical estimates by orders of magnitude [26]. In127

addition, when the shell elements are curved or become128

overly distorted during nonlinear deformation, spurious129

coupling may occur between membrane and transverse130

shear strains; this also increases the element stiffness131

and leads to membrane locking [39]. Since in thin shells132

the membrane stiffness can be significantly larger than133

the bending stiffness, membrane locking leads to the ex-134

clusion of the desired bending modes from the overall135

element response [23].136

To this point, several approaches have been pro-137

posed to alleviate locking in shell elements. Selec-138

tive/reduced integration schemes have been employed139

[15, 14, 64], that however result in spurious zero en-140

ergy modes necessitating additional hourglass stabiliza-141

tion techniques. More notably, the precise prediction142

of crack paths using elements based on reduced inte-143

gration necessitates an even finer mesh discretisation144

in the critical regions which adds up to the computa-145

tional complexity. The assumed strain approach based146

on the Mixed Interpolation of Tensorial Components147

(MITC) formulation proposed in the works of Dvorkin148

and Bathe [26], Bathe and Dvorkin [12], Bathe [11],149

and more recently the MITC4+ approach proposed by150

Ko et al [39] has been successful in alleviating both151

transverse shear and membrane locking issues and also152

pass all basic patch tests in an optimal convergence be-153

haviour for both uniform and distorted meshes.154

In this work, we extend the phase-field modelling155

framework to simulate brittle fracture in MITC4+156

based thin Mindlin shell elements, wherein damage ini-157

tiates and evolves due to coupled membrane/bending158

deformations. We restrict our implementation to thin159

4-noded shell elements subjected to small strain defor-160

mations; however, the approach is general and can be161

straight-forwardly extended to higher order shell ele-162

ments. We use the proposed formulation to examine the163

post-fracture response of 3D surfaces and establish its164

accuracy by comparing against analytically predicted165

critical fracture loads.166

The paper is structured as follows: In Sec. 2, the ge-167

ometrical and kinematic considerations for the Mindlin168
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shell element based on small-strain theory and coupled169

bending/membrane deformations are discussed. This is170

followed by a brief review of MITC4/MITC4+ formula-171

tions in Sec. 2.3. In Sec. 3 the combined constitutive re-172

lations extending brittle phase-field theory to MITC4+173

shells are proposed, followed by numerical validations174

in Sec. 4.175

2 The MITC4+ Reissner-Mindlin shell element176

2.1 Geometrical considerations177

Point of departure for the formulation presented herein178

is the Reissner-Mindlin degenerated 4-node shell ele-179

ment [23]. The element comprises 6 local degrees of180

freedom (DOF), i.e., 3 translations and 3 rotations, as181

shown in Fig. 1.182

The vector of the local nodal DOF at each node i183

is di = [ui, vi, wi, αi, βi, γi] (Fig. 1b). The translational184

DOF, i.e., [ui, vi, wi] are defined with respect to the185

global coordinate system xyz. The rotational DOF, i.e.,186

[αi, βi, γi] are aligned with the local shell vectors, i.e.,187

V1i, V2i, and V3i, respectively. The vector V3i is nor-188

mal to the shell midsurface; the coplanar vectors V1i,189

and V2i are perpendicular to V3i.190

The coordinates of any arbitrary point x within the

shell element are expressed in terms of the mid-surface

nodal coordinates according to Eq. (1)

x =

4∑
i=1

Nixi +

4∑
i=1

Niζ
ti
2
V3i (1)

where, ti is the shell thickness, Ni and xi = [xi yi zi]
T

191

are the shape functions and coordinate vector for mid-192

surface nodes, respectively. Furthermore, ζ is the para-193

metric coordinate along the thickness direction (ζ ∈194

[−1, 1]), see, also, Fig. 1a.195

2.2 Kinematics196

The displacement at any point P lying above or below

the shell mid-surface (Fig. 1a) is derived with respect

to the mid-surface according to Eq. (2) [23].

uP =

uv
w

 =
∑

Ni

uivi
wi

+ ζ
ti
2

[µi]

αiβi
γi

 (2)

where µi contains the direction cosines of the shell vec-

tors V1i and V2i and assumes the following form (Eq.

(3))

[µi] =
[
− V2i

|V2i|
,

V1i

|V1i|
,0
]

=

 −l2i l1i 0

−m2i m1i 0

−n2i n1i 0

 . (3)

Mid-surface

(a)

V3i

V2i

x

y

z

vi

wi

(b)

Fig. 1: A degenerated 4-noded Reissner-Mindlin shell

element: (a) shell mid-surface (b) degrees of freedom

and local coordinate system

The strain tensor [ε]xyz in the global cartesian sys-

tem is defined according to Eq. (4) below.

[ε]xyz =
[
εxx εyy εzz γxy γyz γzx

]T
=

4∑
i=1

[Bu
i ]di (4)

where [Bu
i ] is the 6 × 6 strain-displacement matrix at197

each shell node i. The detailed definition of matrix [Bu
i ]198

can be referred from Cook et al [23].199

Remark 1 The drilling DOF γi have no stiffness as-200

sociated with them. Hence, when coplanar elements201

share a common structural node, the drilling rotation202

about the shell normal V3i at that node is not resisted203

and the system matrix becomes singular. On the con-204

trary when not all elements surrounding a structural205

node are coplanar, the normal rotation of any element206

at the shared node has a component which gets re-207

sisted by the bending stiffness of adjacent elements.208

This means that in flat-shell geometries, the drilling209

rotation DOFs γi can be omitted from the list of over-210

all structural DOFs. However when the shell geometry211

is curved, any such suppression of γi would lead to an212

over-constrained model and unwarranted stiffening of213

the structure [23]. Keeping this in view, in this work all214

6 DOFs [ui, vi, wi, αi, βi, γi] are retained at nodes which215

are shared by non-coplanar elements; they are however216

omitted for nodes shared by coplanar elements.217
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To conveniently describe the kinematics of the shell218

element, the following coordinate systems are intro-219

duced (Fig. 2), i.e.,220

1. Global Cartesian coordinate-system [x, y, z]221

2. Parametric coordinate-system [ξ, η, ζ] used for222

defining parametric space of the master element.223

3. Shell-aligned local coordinate system [1, 2, 3] based224

on mid-surface nodal vectors [V1, V2, V3] which are225

used to define the directions of rotational DOFs226

{α, β, γ}.227

4. Convective coordinate system [r, s, t] in which228

MITC4+ modifications are performed. This can be229

given as r = g1/|g1| , s = g2/|g2| , t = g3/|g3|. Here,230

gi = x,ζi are the tangent vectors to the shell-surface231

at any arbitrary point having position vector x,232

where ζi ∈ {ξ, η, ζ} represents the parametric di-233

rections.234

r

s

t

V1i

V2i

V3i

x

y

z

Fig. 2: Illustration of the different coordinate systems

used in the formulation of the Reissner-Mindlin shell

element

2.3 MITC4/MITC4+ formulations235

In this section, the modified formulations for the trans-236

verse shear strain components based on the MITC4+237

approach [26, 39] are briefly presented. The 4-noded238

flat shell element shown in Fig. 2 is considered, with239

it’s convected and shell-aligned local coordinate sys-240

tems represented by [r, s, t] and [1, 2, 3], respectively.241

In the original MITC4 formulations [26], the trans-242

verse shear strains εst and εrt are considered constant243

along the edges perpendicular to the r and s axes, re-244

spectively (Fig. 3a). Furthermore, instead of using the245

displacement based interpolations shown in Eq. (4),246

the transverse shear strain components at any arbi-247

trary point inside the element are interpolated based248

on the strain values at a pre-defined set of tying points249

{A,B,C,D} ( Fig. 3a) using Eq. (5).250

εrt =
1

2
(1 + η)ε

(A)
rt +

1

2
(1− η)ε

(B)
rt

εst =
1

2
(1 + ξ)ε

(C)
st +

1

2
(1− ξ)ε(D)

st

(5)

The transverse shear strains at these tying points,

i.e., {ε(A)
rt , ε

(B)
rt , ε

(C)
st , ε

(D)
st }, are calculated using the

standard approach in Eq. (4)

ε
(TP )
rt = (εrt)atTPusingDI

ε
(TP )
st = (εst)atTPusingDI

(6)

where TP ∈ {A,B,C,D} denotes the tying points, and251

DI denotes the direct displacement-based interpolation252

analogous to Eq. (4).253

Similarly, in the MITC4+ formulations the mem-254

brane strain components {εrr, εss, εrs} are interpo-255

lated using Eq. (5) using the membrane tying points256

{A,B,C,D,E} shown in Fig. 3b. The detailed expres-257

sions are omitted herein and can be found in [39].258

2.4 Coordinate transformations259

To formulate the local element matrices and the con-

stitutive relations, the strain tensor in Eq. (4) must be

transformed into the shell-aligned local coordinate sys-

tem [1, 2, 3] using the strain-transformation matrix Tε
according to Eq. (7)

[ε]123 = [ε11 ε22 ε33 γ12 γ23 γ13]
T

= Tε [ε]xyz (7)

A general definition for Tε involving strain-260

transformation between any two arbitrary coordinate261

systems is provided in Appendix B for completeness.262

The assumed strains introduced in Eq. (5) are

defined in the convected coordinate system [r, s, t],

whereas the strains in Eq. (7) are expressed with re-

spect to the shell-aligned local system [1, 2, 3]. Hence,

to impose the MITC4+ modification, the shell-aligned

local strains [ε]123 must be first transformed into the

convective strains [ε]rst. Due to the planar geometry

of the 4-noded Mindlin shell elements, the in-plane di-

rections for both coordinate systems [r, s] and [1, 2] are

co-planar, but rotated with respect to each other. The

rotation for transverse shear strains [γ13, γ23]
T

into the

convected coordinates [r, s, t] is performed according to

Eq. (8)

[γrt γst]
T = [R] [γ13 γ23]T (8)



Phase-field modelling of brittle fracture in thin shell elements based on the MITC4+ approach 5

r

s

-1

-1 1

1

Transverse-shear strain
tying points

(a)

r

s

-1

-1 1

1

Membrane strain
tying points

0

(b)

Fig. 3: Location of tying points used for assumption of (a) transverse-shear strains [26] (b) membrane strains

within MITC4+ approach [39]

where

[R] =

[
sin β −sinα
−cos β cosα

]−1
. (9)

In Eq. (9), α and β are the angles between the r263

and V1 axes and s and V1 axes respectively.264

The in-plane convective strain components

[εrr, εss, γrs] is derived according to Eq. (10)

[εrr, εss, γrs]
T

= [T ′ε ] [ε]123 (10)

where [ε]123 is provided in Eq. (7). The transformation265

matrix T ′ε is directly derived from Tε in Appendix B266

using only the elements of the 1st, 2nd, and 4th rows of267

Tε that correspond to the in-plane strain components268

[εrr, εss, γrs].269

After performing the MITC4+ modifications on the270

convective transverse shear strains {γst, γrt} and in-271

plane membrane strains {εrr, εss, γrs}, the total con-272

vected strain tensor [ε]rst is transformed back into the273

shell-aligned local coordinate system [ε]123 by apply-274

ing the inverse of linear transformations shown in Eq.275

(8)-(10).276

The overall shell-aligned local strain tensor can then

be expressed according to Eq. (11).

[ε]123 =

ε11 ε12 ε13ε12 ε22 ε23
ε13 ε23 ε33

 ≡ [ε11 ε22 ε33 γ12 γ23 γ13]
T

(11)

In the MITC4+ shell element, plane-stress assump-

tions hold, i.e. the out-of-plane tensile stress σ33 = 0 in

the shell-aligned local coordinate system [1, 2, 3]. Hence,

the expression for the out-of-plane tensile strain ε33 is

derived according to Eq. (12)

ε33 = − ν

1− ν
(ε11 + ε22) (12)

where ν is the material Poisson’s ratio. We further drop277

the subscript for local strains [ε]123, and denote it as [ε]278

for the remainder of this paper.279

As discussed in Sec. 2, the translational DOFs

[ui, vi, wi] are defined with respect to the the global

Cartesian vectors [x, y, z]. However, the rotational

DOFs [αi, βi, γi] are defined in the direction of shell-

local vectors [V1, V2, V3]. Therefore, the local DOF vec-

tor dloci = [ui, vi, wi, αi, βi, γi] is transformed to the

global coordinate system according to Eq. (13) below

dglob = [Trot]T dloc (13)

with,

Trot =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 l1 m1 n1
0 0 0 l2 m2 n2
0 0 0 l3 m3 n3


where dglob = [uxi, vyi, wzi, θxi, θyi, θzi] is the global280

vector of DOF and the expressions for the direction281

cosines {li,mi, ni} with i ∈ {1, 2, 3} are provided in B.282
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3 Constitutive phase-field model283

Griffith’s theory of brittle fracture [32] derives from the

assumption that the total potential energy of a frac-

tured solid is additively decomposed into the bulk strain

energy depending on the elastic deformations and the

crack surface energy (Eq. (14))

Π (u, Γ ) =

∫
Ω

ψe(ε(u)) dΩ +

∫
Γc

Gc dΓc −Wext

with, Wext =

∫
Ω

b · u dΩ +

∫
∂Ω

t · u d ∂Ω

(14)

In Eq. (14), and also Fig. 4, u is the displacement vector

at any arbitrary point within the domain Ω, b and t

represent the body forces within Ω and surface-traction

forces on external boundary ∂Ω respectively, Γc is the

internal discontinuous boundary, ψe is the elastic en-

ergy density and Gc is the critical fracture energy den-

sity. The linearised strain tensor ε(u) is

ε(u) =
∇u +∇Tu

2
(15)

Fig. 4: Illustration of general shell-domain Ω containing

(a) Internal sharp crack, and (b) Diffused crack, and

subjected to body force b and surface traction forces t

In the variational phase-field formulation, the sharp

crack surface energy term in Eq. (14) is replaced by

the regularized volume integral of a diffuse crack term

shown in Eq. (16), i.e.,∫
Γc

GcdΓc ≈
∫
Ω

Gcγ(φ,∇φ)dΩ (16)

where, φ ∈ [0, 1] is the phase-field variable. For a

quadratic fracture surface energy approximation intro-

duced in Ambrosio and Tortorelli [6, 5], the phase-field

function γ(φ,∇φ) assumes the following form, i.e.,

γ(φ,∇φ) =

[
(φ− 1)

2

4lo
+ lo|∇φ|2

]
(17)

where lo is the length-scale parameter controlling the284

width of phase-field diffusion zone. Using the functional285

definition of Eq. (17) it is straight-forward to show that286

φ = 0 and φ = 1 correspond to the fully-cracked and287

fully-intact states of the material, respectively.288

As a crack evolves, the elastic strain energy and in-

duced stresses of the solid must decrease to compensate

for the fracture energy required to generate new crack

surfaces. This degradation mechanism is achieved by

means of a degradation function g(φ) ∈ [0, 1] so that

the elastic strain energy becomes

ψe(ε, φ) = g(φ)ψe(ε). (18)

Combining Eqs. (14)-(18), the following expression

for the regularized potential energy of a cracked solid

is obtained

Π (ε, φ,∇φ) =

∫
Ω

[g(φ)ψe(ε) +Gcγ(φ,∇φ)] dΩ

−
∫
Ω

biui dΩ −
∫
∂Ω

tiui d ∂Ω (19)

with ui, bi and ti as the vector components of dis-289

placement u, body-force b and surface traction force290

t respectively. Eq. (19) corresponds to the phase-field291

model with an isotropic energy split; this however re-292

sults also in cracks evolving under pure compression.293

To address the issue of non-physical crack evolution

under pure compression, phase-field models based on

an anisotropic energy-splitting have been proposed, see,

e.g., [8, 41, 3]. In the current work, we employ the spec-

tral decomposition of the strain tensor as introduced in

Miehe et al [41] to facilitate comparisons with published

results. To effectively impose plane-stress assumptions

and calculate the in-plane and out-of-plane contribu-

tions of the strain energy density accurately, an addi-

tional 2-D strain tensor [ε]
′

comprising only in-plane

strain components [ε11, ε22, ε12] is defined, i.e.,

[ε]
′

=

ε11 ε12 0

ε12 ε22 0

0 0 ε33

with, ε33 =
−ν

1− ν
(ε11 + ε22) (20)
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The effective Cauchy stress vector is defined accord-

ingly as

σ = [σ11, σ22, σ33, τ12, τ23, τ13]T (21)

Remark 2 To effectively impose the plane-stress as-294

sumption after damage has initiated, the in-plane mem-295

brane stress components [σ11, σ22, τ12]
T

and their corre-296

sponding contributions to the total strain energy den-297

sity must be calculated based on the 2-D strain ten-298

sor ε′ in Eq. (20), whereas the out-of-plane components299

[τ23, τ13]
T

and their strain-energy contributions calcu-300

lated using the complete 3-D strain tensor ε in Eq. (11).301

In addition, the out-of-plane tensile stress σ33 can be ex-302

plicitly set to zero to achieve optimal convergence char-303

acteristics and ensure that the plane-stress assumptions304

hold even post-initiation of damage.305

The tensile and compressive components of the 2-D

and 3-D strain tensors {ε′, ε} defined in Eq. (20) and

(11) respectively, can be obtained using Eqs. (22) and

(23) below.

ε =

3∑
i=1

λini ⊗ ni ; ε′ =

3∑
i=1

λ′in
′
i ⊗ n′i (22)

[ε]± =

3∑
i=1

〈λi〉±ni⊗ni ; [ε′]± =

3∑
i=1

〈λ′i〉±n′i⊗n′i (23)

where λi/λ
′
i are eigenvalues (principal stretches), ni/n

′
i306

are eigenvectors (principal stretch directions), and307

{ε±, ε′±} are the tensile/compressive strain components308

for the strain tensors {ε, ε′} respectively. The expres-309

sion 〈·〉± denote Macaulay brackets 〈·〉± = [(·)±|(·)|]/2,310

where 〈λi〉± and 〈λ′i〉± contain only positive/negative311

eigenvalues of the strain tensors {ε, ε′} respectively.312

Based on the spectral strain decomposition for the

2-D strain tensor [ε′] in Eq. (23), we define the in-plane

components of strain energy density ψIP and its corre-

sponding tensile/ compressive parts ψIP± in Eq. (24)

ψIPe (ε′, φ) = g(φ)ψIP+ (ε′+) + ψIP− (ε′−)

ψIP± (ε′±) =
λ

2
〈tr(ε′)〉2± + µtr

[(
ε′±
)2] (24)

with λ and µ as the Lamé constants, and I as 2x2

identity tensor. The corresponding split stress tensor

definitions σIP± are provided in Eq. (25) as

σIP =

[
σ11 τ12
τ12 σ22

]
= g(φ)σIP+ (ε′+) + σIP− (ε′−)

σIP± (ε′±) =

[
(σ11)± (τ12)±
(τ12)± (σ22)±

]
= λ〈tr(ε′)〉±I + 2µ

(
ε′±
)

(25)

The stress tensor σIP is expressed in Voigt notation as313

σIP =
[
σ11 σ22 τ12

]T
.314

According to Eqs. (24) and (25), only the posi-

tive tensile parts of the strain energy density and the

Cauchy stress tensor, resepctively are multiplied by the

degradation function g(φ). In this work, we employ the

quadratic degradation function originally introduced in

Pham and Marigo [45], Miehe et al [42], i.e.,

g(φ) = (1− ηr)φ2 + ηr (26)

where the parameter ηr was first defined in Ambrosio315

and Tortorelli [5] and denotes the residual stiffness to316

prevent ill-conditioning of system matrices when dam-317

age has fully propagated.318

To similarly obtain the out-of-plane Cauchy stress

σOP and corresponding strain energy density terms

{ψOPe , ψOP± }, the tensile/ compressive components of

full 3-D strain tensor [ε] provided in Eq. (23) are used,

as shown in Eq. (27)

ψOPe (ε, φ) = g(φ)ψOP+ (ε+) + ψOP− (ε−)

ψOP± (ε±) = 2µ
[
(ε23)2± + (ε13)2±

] (27)

and Eq. (28)

σOP =

[
τ23
τ13

]
= g(φ)σOP+ (ε+) + σOP− (ε−)

σOP± (ε±) =

[
(τ23)±
(τ13)±

]
= 2µ

[
(ε23)±
(ε13)±

] (28)

, respectively, where {(ε23)±, (ε13)±} are the transverse319

shear components in the tensile/ compressive 3-D strain320

tensors {ε±} previously defined in Eq. (23).321

In the standard Mindlin shell theory, the transverse

shear stresses along the shell thickness are not constant;

rather they follow a parabolic distribution. To account

for this effect, the transverse shear strains in Eq. (28)

are scaled by a factor of 5/6 as also highlihgted in Cook

et al [23].

τ23 = (5/6) τ23

τ13 = (5/6) τ13
(29)

Based on the in-plane and out-of-plane contribu-

tions given in Eq. (24) and (27), the overall tensile and

compressive components of the total strain energy den-

sity can be given as in Eq. (30).

ψ± = ψIP± (ε′±) + ψOP± (ε±) (30)

and hence, the expression for the total potential energy

in Eq. (19) can be modified to naturally suppress crack
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growth in the regions under pure compression.

Π (ε, φ,∇φ) =

∫
Ω

[
g(φ)ψ+(ε+) + ψ−(ε−)+

Gcγ(φ,∇φ)] dΩ −
∫
Ω

biui dΩ −
∫
∂Ω

tiui d ∂Ω (31)

The strong form of the governing linear momentum

and phase-field evolution equations are henceforth ob-

tained by minimizing the total potential energy in Eq.

(31) with respect to the field variables {u, φ}.

∇σ + b = 0, on Ω(
4l0 (1− k)ψ+

Gc
+ 1

)
φ− 4l20∆φ = 1, on Ω

(32)

where the boundary conditions satisfy,

u = ū, on ∂Ωu

∂φ

∂xi
ni = 0, on ∂Ωφ

(33)

with ni, i ∈ {1, 2, 3, ...r} being the outward pointing322

normal vectors at the crack boundary.323

To facilitate crack-irreversibility, a history variable

(also referred to as crack-driving force D) proposed by

[41], based on maximum strain energy density through-

out the deformation history is adopted in the current

formulations. The expression for D can be given as:

D = max
(t>t0)

ψ+ (34)

and the second of Eqs. (33) is re-written as(
4l0 (1− k)D

Gc
+ 1

)
φ− 4l20∆φ = 1, on Ω (35)

Using the history variable to impose crack irre-324

versibility produces acceptable and accurate results in325

cyclic loading scenarios. It must be emphasized how-326

ever that it also disrupts the original variational for-327

mulation, see also [31, 30] for alternative techniques to328

impose crack irreversibility.329

3.1 Effective material tangent operator330

The undamaged material elastic constitutive law for

homogeneous materials is expressed in the local shell-

aligned coordinate system [1, 2, 3] as

σ = Co ε

⇒



σ11
σ22
σ33
τ12
τ23
τ13

 =



E′ νE′ 0 0 0 0

νE′ E′ 0 0 0 0

0 0 0 0 0 0

0 0 0 G 0 0

0 0 0 0 5G/6 0

0 0 0 0 0 5G/6





ε11
ε22
ε33
γ12
γ23
γ13


(36)

where E′ = E/(1−ν2) with E and ν as Young’s modu-331

lus and Poison’s ratio respectively, and G = 0.5G/(1 +332

ν) is the shear modulus of the material [23].333

Eq. (36) is derived on the basis of a plane-stress334

state and indicates that the in-plane components of335

the elastic Cauchy stress [σ11, σ22, τ12]
T

are obtained336

only using the corresponding in-plane components of337

undamaged material tangent Co, whereas the trans-338

verse shear stress components [τ23, τ13]
T

are obtained339

using out-of-plane shear components of Co.340

To achieve optimal convergence rates even with the

modified stress definitions in Eq. (25) and (28), plane-

stress assumptions must hold even when the material

is undergoing damage. To achieve this, we consider a

split of the damaged tangent stiffness matrix Cd into

its corresponding components as shown in Eq. (37) and

(40), which are based on in-plane {σIP , ε′} or out-of-

plane {σOP , ε} stresses and strains, respectively.

[Cd]IP =
∂σIP

∂ε′
= g(φ)[Cd]IP+ + [Cd]IP− (37)

where341

[Cd]IP± =
∂σIP±
∂ε′

(38)

The in-plane material tangent operator [Cd]IP can

also be represented as the 4x4 tensor shown in Eq. (39).

[Cd]IP =



C1111d C1122d 0 C1112d

C2211d C2222d 0 C2212d

0 0 0 0

C1211d C1222d 0 C1212d


; Cijkld =

∂σIPij
∂ε′kl

(39)

The out-of-plane component of material tangent op-

erator can be similarly given as Eqs. (40) and (41).

[Cd]OP =

C2323d 0

0 C1313d

 = g(φ)[Cd]OP+ + [Cd]OP− (40)
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[Cd]OP± =


∂(τ23)±
∂(ε23)±

0

0
∂(τ13)±
∂(ε13)±

 (41)

where {(τ23)±, (τ13)±} and {(ε23)±, (ε13)±} are the ten-342

sile/ compressive components of the 3-D transverse343

shear stresses and strains defined in Eq. (28) and (23)344

respectively.345

The combined damaged material tangent tensor [Cd]
can finally be expressed as

[Cd]6∗6 =

[Cd]IP 0

0T [Cd]OP

 (42)

where 0 corresponds to the 2× 4 null tensor.346

3.2 Crack driving force variation along shell-thickness347

The 3-D kinematics of Mindlin shell elements are de-348

fined with respect to the kinematics of the mid-surface.349

Furthermore, damage evolution as manifested by the350

evolution of the phase field is obtained only at the mid-351

surface nodes as a 2-D field. Hence, achieving an accu-352

rate and realistic stress degradation along the thickness353

becomes a challenging task [see, e.g., 38].354

Driven by the observation that, especially in thin

shell structures, crack propagation through all thickness

layers is often sudden and brutal, we employ a maxi-

mum through the thickness driving force rule to control
the evolution of the phase field. Within this setting, the

crack driving forces are evaluated at each through the

thickness integration point according to Eq. (34) as

Dij = max
(t>t0)

ψ+,ij (43)

where i = 1 . . . nthick and j = 1 . . . nGP with nthick de-355

noting the number of thickness layers and nGP the num-356

ber of integration points per layer, respectively. Hence,357

the crack-driving force is evaluated based on the 3-D358

stress state at its individual integration point.359

The crack-driving force at all thickness integration360

points corresponding to a particular mid-surface lo-361

cation is then set equal to the maximum of driving362

forces prevalent at those integration points and phase-363

field evolution Eq. (35) is integrated at each Gauss-364

point over the entire shell-element volume, thus caus-365

ing phase-field (or damage) to evolve based on the366

max crack-driving force description. The procedure367

is schematically illustrated in Fig. 5 for the case of368

Dam = max(D1a,D2a,D3a)

Dbm = max(D1b,D2b,D3b)

Dcm = max(D1c,D2c,D3c)

Ddm = max(D1d,D2d,D3d)

Top thickness layer

Mid thickness layer

Bottom thickness layer

D1a

D1d D1c

D1b

D2a D2b

D2cD2d

D3a D3b

D3cD3d

Dam

Dam

Dam

Dbm

Dbm

Dbm

Dcm

Dcm

Dcm

Ddm

Ddm

Ddm

Fig. 5: Schematic illustration of the procedure employed

to evaluate the crack-driving force D based on the max-

imum through the thickness rule employed. The case of

3 thickness layers and 4 integration point per thickness

layer is considered.

nthick = 3 thickness layers and nGP = 4 integration369

points per layer.370

Our extensive numerical experiments have shown371

that this assumption captures the physical cracking372

phenomena through the shell thickness and leads to373

highly accurate critical fracture strength predictions,374

especially during bending dominated failure scenarios,375

as also shown in the benchmark numerical examples.376

Remark 3 To accurately capture the phase field varia-377

tion through the thickness, in the case of multi-layered378

composite sections, see for e.g. [49], where a signifi-379

cant variation of the fracture toughness is expected, one380

would stack a number of shell elements along the thick-381

ness (see, e.g., [36, 59, 56]). Such aspects are beyond382

the scope of this work.383

3.3 Discretization and solution procedure384

The coupled strong-form evolution Eqs. (32) are dis-

cretized via a Galerkin approximation. The test S and

weighting W function spaces for the displacement field

are defined as

Su =
{

u ∈
(
H1(Ω)

)d ∣∣∣u = ū on ∂Ω
}

(44)

Wu =
{
δu ∈

(
H1(Ω)

)d ∣∣∣δu = δ̄u on ∂Ω
}
. (45)

The corresponding spaces for the phase field are

Sφ =
{
φ ∈

(
H1(Ω)

)}
(46)

Wφ =
{
δφ ∈

(
H1(Ω)

)}
. (47)
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Multiplying the strong form Eqs. (32), integrating

by parts and performing the necessary algebraic ma-

nipulations eventually leads to the the following conve-

nient nodal residual form for the equilibrium equation

at node i,

Ru
i = Fu

ext −Fu
int

=

∫
V

Nibi dV −
∫
V

[Trot]T [Tε Bu
i ]
T
σ dV (48)

and the phase-field evolution equation at node i

Rφi = −Fφint =

∫
V

(
4l0 (1− k)D

Gc
+ 1

)
Niφ dV

+

∫
V

4l20

[
Bφ
i

]T [
Bφ
i

]
φi dV −

∫
V

Ni dV

, (49)

respectively. In Eqs. (48) and (49), V is the element385

volume, Ni is the 2-D shape function and [Bu
i ] is the386

strain-displacement matrix as expressed in Eq. (4), and387

[Trot], [Tε] are the rotation and strain-transformation388

tensors defined in Eqs. (13) and (7), respectively, which389

facilitate the calculation of the internal forces Fu
int in390

the local shell coordinate system [1, 2, 3] and their sub-391

sequent rotation into global [x, y, z] system.392

The explicit expressions for Ni and [Bu
i ] can be ob-

tained from [23]. Furthermore,
[
Bφ
i

]
is defined with re-

spect to shell-local system [1, 2, 3] as shown in Eq. (50).

[
Bφ
i

]
= [Ni,1, Ni,2, Ni,3]

T
(50)

Remark 4 In practice, the components of
[
Bφ
i

]
can be393

effectively obtained by choosing the relevant compo-394

nents of locally transformed strain-displacement tensor395

[Tε Bu
i ]. Since in Mindlin shell theory, the kinematics of396

the shell-element is represented using 2-D shape func-397

tions at the mid-surface, Ni,3 can be effectively set as398

zero.399

Assembling the contributions from each element400

shown in Eqs. (48) and (49) into the overall residual401

vectors Ru and Rφ, the solution {u, φ} to the com-402

bined system of equations (32) can be obtained by set-403

ting Ru → 0 and Rφ → 0.404

In the current work, the solution is obtained us-405

ing the staggered or alternating minimization approach406

based on [41]. To ensure accuracy of the obtained solu-407

tion, either both equations must be solved using stag-408

gered iterations [2] or the analysis must be solved using409

small incremental steps [41].410

3.4 Integration procedure411

For the MITC4+ shell element analyzed in the cur-

rent work, a full-integration technique is employed with

4 Gauss integration points defined at each parametric

thickness layer within the element. The integral expres-

sions in Eqs. (48) and (49) are expressed in terms of

parametric coordinates [ξ, η, ζ] according to Eq. (51)

∫
V

(I) dV =

1∫
−1

1∫
−1

1∫
−1

(I) det [J] dξdηdζ (51)

where I is evaluated at each integration point through

the shell-volume and the definition for Jacobian [J ] is

provided in Appendix A. The in-plane integration over

{ξ, η} within each thickness layer ζ is performed using

the Gauss-integration rule,

1∫
−1

1∫
−1

(I) det [J] dξdη =

4∑
i=1

(Ii) det [J ]iwi (52)

where i ∈ {1, 2, 3, 4} are the in-plane integration points

and wi ∈ {1, 1, 1, 1} are the weights associated with

each of these points. The out-of-plane integration for all

thickness layers is performed using the Simpson’s rule,

which can be expressed as in Eq. (53) for any integrand

I ′.

1∫
−1

I ′dζ =
∆h

3
(I ′0 + 2I ′1 + 4I ′2 + 2I ′3 + ...+ ...+ I ′n)

(53)

where ∆h = 2/n, and{I ′0, I ′1, ..., I ′n} are the values412

of the integrand I ′ evaluated at the different shell-413

thickness layers ζ ∈ [−1, 1] starting with the value of414

I ′0 at the bottom-most layer ζ = −1.415

While performing through-thickness integration of416

the phase-field evolution equation (49), the value of417

crack-driving force D at any Gauss-point within a spe-418

cific thickness layer is obtained based on the maximum419

crack-driving force rule detailed in Sec. 3.2 and Fig. 5.420

4 Numerical examples421

In all the test cases examined in this Section, a displace-422

ment controlled analysis has been employed. Unless ex-423

plicitly stated, a one-pass staggered (alternating min-424

imization) approach with a very small time-increment425

size ( 1.e−06− 1.e−05) has been used for the solution of426

the coupled displacement- phase-field problem, and the427

residual stiffness ηr is set to 0.428



Phase-field modelling of brittle fracture in thin shell elements based on the MITC4+ approach 11

4.1 Notched square plate subjected to in-plane tension429

The standard benchmark of the notched square plate430

shown in Fig. 6 under tension is examined herein.431

The material properties considered are E = 210 GPa,432

ν = 0.3, and Gc = 0.0027 kN/mm. The mesh-size is433

he = 0.0025 mm in the central strip where the crack is434

expected to propagate and the length scale parameter is435

lo = 0.0075 mm. A displacement control analysis is per-436

formed with an equilibrium tolerance of tolu = 1.e−08.437

It is interesting to note that the length-scale param-438

eter l0 adopted by Miehe et al [41] is twice the size of439

l0 used by Borden et al [16]. This implies that the for-440

mulation detailed in [41] requires the minimum value441

of l0 to be at-least twice the mesh-size he (l0 ≥ 2he),442

whereas on the other hand, the minimum value of l0443

should be l0 ≥ he for the formulations provided in [16].444

Indeed both the definitions of l0 are equivalent, and one445

must be careful while appropriately choosing the value446

of l0 when comparing results from the two formulations.447

The current work uses the formulations from [16], and448

hence the definition l0 ≥ he consistently hold for all the449

numerical simulations performed in this paper.450

The resulting crack-path and load-displacement re-451

sponse are shown in Fig. 7 and Fig. 8, respectively.452

The crack initiates at a critical fracture force Fcrit =453

0.7052kN . Both the crack-path and the fracture force454

prediction are in perfect agreement with the results re-455

ported in the literature [see, e.g., 42].456

1

0.5

0.5

0.5

u

t=1

Fig. 6: Geometry and boundary conditions for square

plate with horizontal notch subjected to in-plane ten-

sion (All dimensions in mm)

4.2 Notched square plate subjected to in-plane shear457

The square plate specimen examined in Sec. 4.1 is sub-458

jected to horizontal in-plane tractions. Due to the na-459

ture of the loading and boundary conditions in this460

case, the specimen attains a bi-axial strain state which461

leads to the propagation of crack at an angle of 45o462

to the horizontal direction. An equilibrium tolerance463

of tolu = 1.e−06 is used for the displacement con-464

trolled analysis. Fig. 10 and Fig. 11 display the develop-465

ment of crack with each subsequent load-increment and466

the load-displacement response, respectively. The pre-467

dicted crack-path and the critical fracture load Fcrit =468

0.5248kN are in good agreement with the results re-469

ported in [41].470

4.3 1-D beam subjected to transverse bending471

A simply-supported rectangular plate subjected to a472

uniformly distributed pressure over the entire top face473

is considered as shown in Fig. 12. The aim of this ex-474

ample is to verify the proposed formulation predictions475

under bending-dominated fracture scenarios. The mate-476

rial and fracture properties are E = 1.e10 MPa, ν = 0,477

Gc = 3 N/mm, and lo = 0.01 mm. The mesh is refined478

with he = 0.003 mm in the entire mid-span of the plate479

where the crack propagation is expected. The thickness480

of the beam t = 0.01 mm is very small in comparison to481

the other two plate-dimensions (l = 8 mm and w = 1482

mm) so that the effects of transverse shear and mem-483

brane locking on the critical fracture characteristics can484

be monitored.485

The vertical displacement is monitored at the486

centre-node of the plate, and the total applied dis-487

tributed load is analysed with tolu = 1.e−06. The crack488

initiates at the plate’s mid-span which is also the loca-489

tion of maximum transverse deformation uz, as shown490

in Fig. 13. The load-displacement response is shown in491

Fig. 14 where a brittle fracture response under pure492

bending is indeed recovered.493

Since the Poisson’s ratio is null, the transverse

bending stiffness and the critical fracture loads should

be identical to those predicted by the classical Eu-

ler/ Bernoulli beam theory. According to the Eu-

ler/ Bernoulli beam theory, the analytical elastic stiff-

ness/length of the beam is established in Eq. (54) as

k = P/δ =
384EI

5 l4
(54)

where δ is the maximum transverse deformation ob-494

tained at the centre-span, E is the Young’s modulus,495

I = wt3/12 is the area moment of inertia for the beam,496
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Fig. 7: Notched plate under in-plane tension: phase field evolution with increasing load-increments [φ = 1 and

φ = 0 intact and cracked states of the material]

Vertical displacement [mm]
×10

-3
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0.8

X: 0.006257

Y: 0.7052

Fig. 8: Notched plate under in-plane tension: Load-

displacement response

1

0.5

0.5

0.5

u

t=1

Fig. 9: Geometry and boundary conditions for square

plate with horizontal notch subjected to in-plane shear

(All dimensions in mm)

and P = F/l is the total distributed applied load-497

/length on the beam with units in N/mm, wherein F498

is the total applied load in N .499

For the current case, the analytical elastic stiff-500

ness of the beam can be calculated using Eq. (54) as501

k = P/δ ≈ 15.625 N/mm2. The slope of the pre-502

dicted elastic load-displacement response in Fig. 14b503

(k′ = 0.06249/0.004 = 15.6225 N/mm2) is in close504

agreement with this analytical estimate.505

Considering the case of isotropic phase field frac-

ture, i.e., fracture initiating both at tension and com-

pression, the critical fracture load of the beam can be

evaluated as

Pcr = 8Mcr/L
2 (55)

where, Mcr is the critical bending moment required for

crack initiation

Mcr = σcrwt
2/6 (56)

and σcr is the critical fracture stress. Based on deriva-

tions in [16], the critical fracture stress can be evaluated

as Eq.(57).

σcr =
9

16

√
EGc
6lo

(57)

For the given material and fracture properties, the crit-506

ical stress in Eq. (57) is σcr = 3.9775 · 105 N/mm
2
.507

This can be inserted into Eq. (55) to obtain the critical508

fracture load Pcr = 0.8286 N/mm.509

Comparing the load-displacement responses in510

Fig. 14a, it is evident that the maximum crack-driving511

force description through thickness (detailed in Sec. 3.2)512

produces good agreement with the analytical fracture513

force estimated by Eq. (55) for the isotropic phase-field514

model. This reinstates the validity of the assumption515

that in thin shells, all transverse thickness layers at a516

given location would fracture simultaneously as soon as517

the crack is initiated in any one of these layers. Hence518

to incorporate this effect, the material stiffness degra-519

dation at that shell location must start as soon as the520

crack-driving force in any one of the associated thick-521

ness layers attains a critical limit. Such a description of522
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Fig. 10: Notched plate under in-plane shear: phase field evolution with increasing load-increments [φ=1 and φ=0

represent intact and cracked states of the material]
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Fig. 11: Notched plate under in-plane shear: Load-

displacement response

1

8

P

t=0.01

Fig. 12: Geometry and boundary conditions for rectan-

gular 1-D beam subjected to transverse unidirectional

bending under uniformly distributed pressure load P

(All dimensions in mm)

crack-driving force D enables a 3-D description of crack523

topology and stress-degradation effects, albeit using a524

2-D phase-field, refer to Sec. 3.2 for details.525

Solving the phase-field evolution Eq. (32) using the526

spectral split proposed in [41] and with the same crack-527

driving force definition (Fig. 5) results in the load-528

displacement response in Fig. 14b. The corresponding529

critical fracture load is higher than the one provided by530

the isotropic model as the in this case material degra-531

dation occurs only on the part of the shell undergoing532

tension. The accuracy of the predicted critical force for533

the spectral-split case [41] is verified against the ana-534

lytical estimates and XFEM results in Sec. 4.4.

Fig. 13: 1-D beam under transverse unidirectional bend-

ing: Plan-view of (a) Crack-path φ and, (b) Vertical dis-

placement uz represented at the shell mid-surface [φ=1

and φ=0 represent intact and cracked states of the ma-

terial]

535

4.4 Regtangular plate with a through crack subjected536

to pure bending moments537

The rectangular plate specimen with a through crack538

shown in Fig. 15 is subjected to pure bending moments539

on its opposite edges and the accuracy of predicted peak540

moments are compared with the corresponding analyt-541

ical values obtained using the stress-intensity factors542

in [58]. This example has been examined previously in543

Rouzegar and Mirzaei [53], where a comparison between544

SIFs obtained with XFEM and the analytical SIFs was545

performed. Herein, In this example, we attempt a com-546

parison between the critical fracture loads predicted by547
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Fig. 14: 1-D beam under transverse unidirectional bending: Load-displacement response at beam’s centre-node for

a) Isotropic phase-field formulations b) Anisotropic phase-field formulations with spectral decomposition [41]
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2a=20

70

86

t=1

Fig. 15: Geometry and boundary conditions for the

rectangular plate subjected to pure bending moments

(All dimensions in mm)

the proposed phase-field model and the analytical for-548

mulations provided in Sih et al [58]. The material prop-549

erties are E = 210, 000 MPa and ν = 0.33.550

The rotational increment ∆θX is monitored at the

top-right corner node, and the plate is analysed with

respect to varying sizes of ∆θX until the peak criti-

cal bending-moment is converged. An equilibrium tol-

erance of tolu = 1.e−06 is used in each case. According

to [58], the analytical expression for the critical stress-

intensity factor (SIF) for a centrally-cracked plate with

infinite width and subjected to remotely applied pure

bending moment is evaluated as

K1c =
6M0,crit

t2
√
a ; K2c = 0

⇒ Kc =
√
K2

1c +K2
2c

(58)

where Kc is the equivalent critical SIF, t is the plate

thickness, M0,crit is the critical bending moment and a

is half-length of the central crack. The analytical value

of critical SIF for this example is provided in [53] as

K1c = 189.74 MPa mm−1/2. (59)

Assuming plane-stress conditions, the correspond-

ing critical energy release rate Gc is

Gc =
K2
c

E
= 0.171435 N/mm. (60)

Substituting the value of K1c from Eq. (59) into (58)

and considering the edge length l = 70 mm, the critical

bending moment/edge-length is derived as

M0,crit

l
=
K1c t

2

6l
√
a

= 10.0002 N-mm/mm (61)

In our phase-field simulations, the mesh is refined in

the central region with the element size he = 0.25 mm

where the crack is expected to propagate. The length-

scale parameter and residual stiffness are chosen as

l0 = 0.25 mm and ηr = 1.0e−3, respectively. In the

original variational formulation proposed by Bourdin

et al [20], it was shown that the fracture energy is over-

estimated depending on the size of finite element dis-

cretization. To compensate for this amplification, an

effective critical energy release rate was proposed for

the purpose of phase-field simulations, see also [46].

Geffc =
Gc

1 + (he/4l0)
(62)

Considering Gc = 0.171435 N/mm, he = 0.25 mm551

and l0 = 0.25 mm, the effective critical energy re-552

lease rate Geffc for the current analysis is Geffc =553

0.13715 N/mm.554

The moment versus edge rotation response is il-555

lustrated in Fig. 16. The resulting crack topology is556
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shown in Fig. 17. The crack originates simultaneously557

at both notch-tips and propagates horizontally towards558

the ends of the plate.559

Furthermore, to demonstrate that the obtained re-560

sults are independent of the magnitude of chosen time-561

increments, a comparison of moment-rotation responses562

for varying sizes of moment-increments ∆M0 is per-563

formed in Fig. 16. The converged value for the criti-564

cal moment/length in Fig. 16 is M0,PFM = 10.83 N-565

mm/mm, which is in close agreement with the analyt-566

ical bending moment/length derived in Eq. (61). This567

example further establishes the validity of assumptions568

made in Sec. 3.2 for the phase-field model based on569

anisotropic spectral strain decomposition, and verifies570

the accuracy of the proposed phase-field formulations571

in characterising realistic bending-dominated fracture572

scenarios.573
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Fig. 16: Regtangular plate under pure-bending mo-

ments: Moment vs edge-rotation response

4.5 Simply supported plate subjected to bi-directional574

bending loads575

To demonstrate cracking phenomena under bi-576

directional bending loads, a simply supported plate577

with a uniformly distributed surface load is examined.578

The material and fracture properties are E = 1.9e5579

MPa, ν = 0.3, lo = 0.01 mm, Gc = 0.295 N/mm,580

and the boundary conditions are as shown in Fig. 18.581

The mesh is refined along the plate’s diagonals with582

he = 0.005 mm. Only a quarter section of the plate is583

analyzed due to symmetry. The quarter-section is sim-584

ply supported on the outer edges of the plate, whereas585

the internal shared edges are subjected to symmetric586

boundary conditions. A uniformly distributed load is587

applied over the entire top face until complete fracture588

of the plate, and the vertical displacement is monitored589

at the centre node of the plate. The analysis is run until590

a convergence tolerance of tolu = 1.e−06 is reached.591

The crack-path is shown in Fig. 19 which is consis-592

tent with the results reported previously in [38, 9]. The593

load-displacement curve is illustrated in Fig. 20.594

4.6 Cylinder with/without spherical closing cap595

subjected to uniform pressure loads596

A cylindrical shell geometry with small axial notches597

placed on diametrically opposite ends and uniformly598

applied pressure load on its inner surface is considered.599

Owing to the problem symmetry across the xy and xz600

planes, only the quarter part of the full cylinder is an-601

alyzed as shown in Fig. 21.602

To examine the robustness of the approach, two603

different cases are examined, i.e. with and without a604

spherical cap at the two ends of the cylindrical shell.605

The latter is expected to give rise to crack branching606

at the spherical cap. The material and fracture prop-607

erties are E = 7.0e4 MPa, ν = 0.3, lo = 0.125 mm,608

Gc = 1.5 N/mm. The mesh is refined with the size609

he = 0.1 mm in all the cylindrical and spherical cap610

regions where the crack is expected to propagate. A611

displacement controlled analysis is performed with an612

equilibrium tolerance of tolu = 1.e−05. For the cylinder613

specimen without spherical cap (Fig. 21a), the vertical614

circular arc BC is fixed along the x and z directions,615

whereas symmetric boundary conditions are imposed616

on horizontal edges AB, CD, and AD. The specimen617

with spherical closing cap (Fig. 21b) is subjected to618

symmetric boundary conditions on all free edges, i.e.619

the vertical circular arc AD towards the notch is sub-620

jected to y-symmetric and horizontal edges AB, BC and621

CD are subjected to z-symmetric boundary conditions.622

The example demonstrates the capability of proposed623

phase-field formulations in simulating damage for thin624

curved geometries which displays significant membrane625

as well as transverse shear locking.626

The responses between the total applied pressure627

load and the displacement-norm measured at the notch-628

tip are compared in Fig. 22 for both the uncapped and629

capped specimens.630

The crack-path at increasing load-increments for the631

uncapped and capped cylinders are shown in Figs. 23632

and 24, respectively. In the former case, the crack ini-633

tiates at the notch-tip and propagates along the lon-634

gitudinal direction of the shell. In the latter, the spec-635

imen demonstrates a similar response (Fig. 24), how-636

ever, in this case the crack initiates at a slightly lower637
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Fig. 17: Regtangular plate under pure-bending moments: phase field evolution with increasing load-increments

[φ=1 and φ=0 represent intact and cracked states of the material]

2

2

0.01

P

(a) Full-plate

1

1

Symmetric 

BCs

Simply 

supported

P

(b) Quarter-part of the plate

Fig. 18: Geometry and boundary conditions of simply-

supported plate subjected to bidirectional bending un-

der uniformly distributed pressure load P (All dimen-

sions in mm)

critical fracture load (Fig. 22). Over the spherical cap638

region, the crack first propagates linearly, but subse-639

quently splits into two symmetric crack branches; these640

further evolve simultaneously.641

4.7 Assymetric hyperboloid subjected to uniform642

internal pressure643

To further demonstrate the robustness of proposed for-644

mulations in analysing curved shell problems, an as-645

symetric hyperboloid geometry is considered which is646

subjected to a uniform internal pressure applied in the647

direction normal to its surface. The thin-shell assump-648

tions apply as the thickness of the geometry t = 0.1649

mm is significantly smaller than the other dimensions650

of the tower. A notch is introduced at the mid-height651

along the longitudinal direction of the shell. Due to the652

model symmetry only half part of the complete model653

as shown in Fig. 25 is analysed. To reduce the effect654

of bending at the boundary, the hyperboloid geometry655

is supported by an elastic shell structure, displayed as656

ABFE in Fig. 25 in which the evolution of phase-field657

(or damage) is restricted.658

The material and fracture parameters for the hy-659

perboloid are E = 210 GPa, ν = 0.3, Gc = 0.0027660

kN/mm, lo = 0.75 mm, and a uniform mesh size with661

he = 0.5 mm is used. The material properties for the662

elastic base-support is E = 21000 GPa, ν = 0.3 with663

the Young’s modulus chosen as 100 times higher than664

the hyperboloid.665

Furthermore, the translational DOFs at the bottom-666

most part of the elastic base-support is completely fixed667

(ux = uy = uz = 0) while the rotational DOFs are kept668

free. For the curved side-edges BC and AD, z-symmetric669

boundary conditions are imposed whereas the top-edge670

CD is unrestrained. The internal distributed load is ap-671

plied only on the hyperboloid region EFCD in the di-672

rection of outward-pointing normals to its surface. The673

elastic support ABFE is unloaded. The radial displace-674

ment is monitored at the bottom notch-tip shown by P675

in Fig. 25, and tolu = 1.e−05. The crack initiates at the676
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Fig. 19: Simply-supported plate under bidirectional bending: phase field evolution with increasing load-increments

[φ=1 and φ=0 represent intact and cracked states of the material] (Full-plate assembled for better visualization)
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Fig. 20: Simply-supported plate under bidirectional

bending: Load-displacement response at the centre

node of the plate

bottom notch-tip P as shown in Fig. 26, and propagates677

vertically downwards followed by a second branch that678

initiates at the top notch-tip Q. The two cracks propa-679

gate simultaneously and crack-branching is eventually680

observed at the bottom crack due to the shell-curvature681

at which point the shell loses all bearing capacity. The682

response between the vertical z-displacement at the683

bottom notch-tip P and the total applied load is shown684

in Fig. 27.685

5 Conclusion686

A phase-field driven shell element formulation is pre-687

sented for of brittle fracture in Reissner-Mindlin shells.688

We employ an MITC4+ approach to alleviate shear and689

membrane locking. Our method is based on the assump-690

tion of a maximum through the thickness crack driving691

force rule definition. Considering an anisotrpic split for692

damage evolution, we impose the plane stress assump-693

tions directly on the tangent constitutive matrix; this694

y

x

z

A

B

C

D

(a)

A

B

C

D

(b)

(c)

Fig. 21: Geometry and boundary conditions of cylindri-

cal shell with notch (a) without (b) with spherical cap

at the end, and subjected to uniform internal pressure

p (All dimensions in mm)

approach has been found to provide optimum conver-695

gence rates.696
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Fig. 22: Notched cylinder with/without spherical cap

under uniform internal pressure: Applied pressure load

vs norm of the displacement unorm =
√
u2x + u2y + u2z

measured at the notch-tip

The accuracy of the proposed model is demon-697

strated by a set of illustrative numerical examples. Our698

solutions are verified against the analytical estimates699

both in the isotropic and anisotropic phase field case.700

The validity of the proposed model is further estab-701

lished by obtaining realistic and accurate fracture pre-702

dictions in curved shell geometries, which display sig-703

nificant membrane and transverse shear locking due to704

the coupling of membrane and bending deformations.705

The inclusion of rotational degrees of freedom in the706

MITC4+ formulation would naturally raise an imple-707

mentational challenge vis-à-vis the modelling of multi-708

layered composite profiles where delamination is a pos-709

sible failure mode [22, 48]. In this case, coupling with,710

e.g., a cohesive zone model would require the evaluation711

of displacements at the interface based on the Reissner-712

Mindlin kinematical assumptions and the definition of713

multi-point constraints coupling the degrees of freedom714

associated with the shell and cohesive elements at the715

interface [54, 55, 21].716

Whereas the proposed model highlights the capa-717

bilities of brittle fracture phase field modelling to har-718

ness the advantages of MITC4+ formulations, research719

should be directed to account for more complex re-720

sponses as,e .g., the case of finite strain ductile fracture.721

In the near future, we aim to extend the capabilities of722

the proposed phase-field model in simulating diverse723

anisotropic fracture scenarios.724
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Appendices994

A Jacobian for coordinate transformation995

The Jacobian [J] for coordinate transformation map-

ping in a Reissner-Mindlin shell element and its first

column are defined as in Eq. (63) and (64). Eq. (64)

can be subsequently used to derive expressions for sec-

ond and third column in a similar manner.

[J ] =

x,ξ y,ξ z,ξx,η y,η z,η
x,ζ y,ζ z,ζ

 (63)

where,

x,ξx,η
x,ζ

 =


∑
Ni,ξ

(
xi +

ζtil3i
2

)
∑
Ni,η

(
xi +

ζtil3i
2

)
∑
Ni

( til3i
2

)
 (64)

where, x = [x, y, z] is the position vector of any arbi-996

trary point within the shell element, {ξ, η, ζ} are the997

shell parametric coordinates, ti is the shell thickness998

and {l3i,m3i, n3i} are the direction cosines of normal999

vector V3i to the shell mid-surface at any node i.1000

B Coordinate-transformation matrix for1001

rotation of strain tensors1002

The strains can be rotated from any one coordinate sys-

tem (say C1 with normalized basis vectors ē) to another

coordinate system (C2 with normalized basis vectors ê)

by multiplying with the strain-transformation matrix

Tε shown in eq. (65).

Tε =

[
T11 T12
T21 T22

]
(65)

with,

T11 =

l21 m2
1 n

2
1

l22 m
2
2 n

2
2

l23 m
2
3 n

2
3

 (66)

T12 =

l1m1 m1n1 n1l1
l2m2 m2n2 n2l2
l3m3 m3n3 n3l3

 (67)

T21 =

2l1l2 2m1m2 2n1n2
2l2l3 2m2m3 2n2n3
2l3l1 2m3m1 2n3n1

 (68)

T22 =

l1m2 + l2m1 m1n2 +m2n1 n1l2 + n2l1
l2m3 + l3m2 m2n3 +m3n2 n2l3 + n3l2
l3m1 + l1m3 m3n1 +m1n3 n3l1 + n1l3

 (69)

where, the terms [l1,m1, n1], [l2,m2, n2] and [l3,m3, n3]

correspond to the direction cosines of the shell nodal-

vectors V1i, V2i and V3i respectively, defined according

to Eq. (70) [11].

l1 = cos[ēx, êx] ; m1 = cos[ēy, êx] ; n1 = cos[ēz, êx]

l2 = cos[ēx, êy] ; m2 = cos[ēy, êy] ; n2 = cos[ēz, êy]

l3 = cos[ēx, êz] ; m3 = cos[ēy, êz] ; n3 = cos[ēz, êz]

(70)

The resulting Tε is a (6× 6) matrix which can be mul-1003

tiplied to (6 × 1) strain vector (expressed in Voigt no-1004

tation) to transform it from coordinate system C1 to1005

coordinate system C2.1006
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