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Abstract We present a phase field based MITC4+ 2
shell element formulation to simulate fracture propa- 2o
gation in thin shell structures. The employed MITC4+ 3
approach renders the element shear- and membrane- x
locking free, hence providing high-fidelity fracture sim- »
ulations in planar and curved topologies. To capture the 33
mechanical response under bending-dominated frac-ss
ture, a crack-driving force description based on thess
maximum strain energy density through the shell- 36
thickness is considered. Several numerical examples s
simulating fracture in flat and curved shell structures ss
are presented, and the accuracy of the proposed formu-
lation is examined by comparing the predicted critical 4,
fracture loads against analytical estimates. "

42
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1 Introduction i
48
Thin shell structures find numerous applications in a4
wide range of industries within the aerospace, auto-
motive, and construction sectors. Thin composite lami- 5
nates in particular are being deployed in aircraft struc- s2
tures and comprise the chassis of automotive vehicles. 53
Hence, high-fidelity simulation of damage processes per- 5
tinent to thin-shells is vital for estimating their critical s
load bearing capacities while at the same time reducing s

the number of high-cost experimental test. 57
58
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Numerical simulation of evolving damage in thin
shell-like structures is often performed using Reissner-
Mindlin shell elements which allow efficient modelling of
both in-plane (membrane) and out-of-plane (bending)
deformations at a reduced computational cost. Espe-
cially when using an explicit time-integration scheme,
shell elements do not penalize the stable time-increment
even when the thickness is extremely small [60]. This
makes Mindlin shells an ideal candidate for modelling
computationally complex fracture problems involving,
e.g., impact driven damage scenarios.

Damage modelling methods can be broadly catego-
rized onto two types, i.e., Discrete or Smeared /Diffuse.
In discrete methods, a crack is treated either explicitly
as a geometrical entity or implicitly as a discontinu-
ity in the displacement field. In diffuse methods, the
crack is smeared over the surrounding domain and the
stress degradation effects are incorporated by means of
a damage variable embedded directly into the constitu-
tive formulations.

Discrete crack approaches primarily rely on modi-
fying an existing finite element mesh in the locations
where crack propagates, see, e.g., the robust remesh-
ing algorithms developed by Ingraffea and Saouma
[35], Bouchard et al [18, 19], Rethore et al [52], Sha-
hani and Fasakhodi [57]. The extended finite element
method (XFEM), first introduced in Belytschko and
Black [13] [, see, also, 24], eliminates the need of expen-
sive mesh-updating algorithms for tracking crack paths
by decoupling the crack topology from the underlying
finite-element mesh. The XFEM models cracks by intro-
ducing a set of additional (enriched) degrees of freedom
and corresponding discontinuous basis functions. Over
the past fifteen years, the method has evolved onto the
industrial standard for resolving crack-tip stress singu-
larities without the requirement of very fine discretiza-
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tions. However, the XFEM is not free from computa-is
tional complexities pertinent to the the number of ad-ur
ditional DOFs; furthermore, it relies on the definition;;s
of ad-hoc assumptions vis-a-vis the stress field at the;,
crack-tip. Furthermore, the extension of XFEM to 3-D,,,
problems is not straightforward and poses challenges in,,,
specifying the crack propagation increment in 3-D [27].,,,

Cohesive Zone Modelling (CZM) is a discrete™
method [25, 10, 34] that simulates fracture propaga-*
tion by redistributing the stresses ahead of the crack-tip*®®
over a finite fracture process zone (FPZ). The consti-*
tutive behaviour of the FPZ is defined on the basis of”
a traction-separation law. With the exception of the®
Cohesive Segments Method (CSM) [51], CZM relies on'
the pre-definition of the crack surfaces. Hence, it can-"*
not predict arbitrary crack propagation scenarios and™*
is mostly applied in cases where crack path is known'*

a-priori, e.g., in composite delamination. 1
134

Diffuse damage modelling approaches such as the,
Phase-field method (PFM) [29, 20] and the thick level,s
set method [43], overcome these challenges and have
been proven robust in treating complex crack patterns
e.g., branching, merging, and curvilinear crack paths.
The PFM emerged from the step-changing works of,,
Francfort and Marigo [29], Bourdin et al [20] and has
garnered much attention in the past 10 years. The main ,,
advantage of the PFM is that the crack initiation loca-,
tion and crack-paths do not need to be predefined, but,
naturally emerge from the solution of a PDE that is
derived on the basis of energy-minimisation principles
and solved over the entire computational domain. The,,,
PFM relies on replacing the sharp crack edges with a,,,
diffusive crack interface represented by the phase field
and hence resolves difficulties of numerically tracking,,
discontinuities in the displacement field during crack,,
propagation. To this point, the PFM has been extended,,,
to treat brittle fracture [41, 40, 44], ductile fracture,
[4, 17], hydraulic fracture [62, 33, 28, 47], and has also,
been applied within material-point method (MPM) [37]
and virtual-element method (VEM) setting [1].

138

155
156

Despite the significant advantages provided by shells?
elements in resolving three dimensional surfaces in arss
robust and efficient manner, there have been only lim-s
ited efforts to apply the PFM for simulating shellso
damage problems; a detailed review is provided imne:
[63]. The PFM has been used to modelling thin-s
shell fractures based on the Kirchoff-Love shell the-ss
ory [7, 61, 38]. Kiendl et al [38] adopted higher orderze
smooth basis functions (NURBS), whereas Amiri et ales
[7] employed maximum entropy meshfree approxima-ss
tions based on C' continuous basis functions. Reinososr
et al [50] extended the PFM for brittle fracture in large-es

deformation solid shell elements based on enhanced as-
sumed strain (EAS) formulations.

An important challenge to address when using thin
Mindlin shell elements is that they display membrane
and transverse shear locking [39], which significantly af-
fects the evolution the simulated crack path. Transverse
shear locking occurs purely due to the displacement-
based interpolation that is also used for the calculation
of strains. This leads to a significant over-prediction
of the bending stiffness and an under-prediction of the
transverse deformations which may become lower than
the theoretical estimates by orders of magnitude [26]. In
addition, when the shell elements are curved or become
overly distorted during nonlinear deformation, spurious
coupling may occur between membrane and transverse
shear strains; this also increases the element stiffness
and leads to membrane locking [39]. Since in thin shells
the membrane stiffness can be significantly larger than
the bending stiffness, membrane locking leads to the ex-
clusion of the desired bending modes from the overall
element response [23].

To this point, several approaches have been pro-
posed to alleviate locking in shell elements. Selec-
tive/reduced integration schemes have been employed
[15, 14, 64], that however result in spurious zero en-
ergy modes necessitating additional hourglass stabiliza-
tion techniques. More notably, the precise prediction
of crack paths using elements based on reduced inte-
gration necessitates an even finer mesh discretisation
in the critical regions which adds up to the computa-
tional complexity. The assumed strain approach based
on the Mixed Interpolation of Tensorial Components
(MITC) formulation proposed in the works of Dvorkin
and Bathe [26], Bathe and Dvorkin [12], Bathe [11],
and more recently the MITC4+ approach proposed by
Ko et al [39] has been successful in alleviating both
transverse shear and membrane locking issues and also
pass all basic patch tests in an optimal convergence be-
haviour for both uniform and distorted meshes.

In this work, we extend the phase-field modelling
framework to simulate brittle fracture in MITC4+
based thin Mindlin shell elements, wherein damage ini-
tiates and evolves due to coupled membrane/bending
deformations. We restrict our implementation to thin
4-noded shell elements subjected to small strain defor-
mations; however, the approach is general and can be
straight-forwardly extended to higher order shell ele-
ments. We use the proposed formulation to examine the
post-fracture response of 3D surfaces and establish its
accuracy by comparing against analytically predicted
critical fracture loads.

The paper is structured as follows: In Sec. 2, the ge-
ometrical and kinematic considerations for the Mindlin
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shell element based on small-strain theory and coupled
bending/membrane deformations are discussed. This is
followed by a brief review of MITC4/MITC4+ formula-
tions in Sec. 2.3. In Sec. 3 the combined constitutive re-
lations extending brittle phase-field theory to MITC4+
shells are proposed, followed by numerical validations
in Sec. 4.

2 The MITC4+ Reissner-Mindlin shell element
2.1 Geometrical considerations

Point of departure for the formulation presented herein
is the Reissner-Mindlin degenerated 4-node shell ele-
ment [23]. The element comprises 6 local degrees of
freedom (DOF), i.e., 3 translations and 3 rotations, as
shown in Fig. 1.

The vector of the local nodal DOF at each node ¢
is d; = [ui, vi, wi, oy, Bi,vi] (Fig. 1b). The translational
DOF, i.e., [u;,v;,w;] are defined with respect to the
global coordinate system xyz. The rotational DOF, i.e.,
[ai, Bi,v:] are aligned with the local shell vectors, i.e.,
V1, Va;, and V3, respectively. The vector V3; is nor-
mal to the shell midsurface; the coplanar vectors Vy;,
and Vy; are perpendicular to Vg;.

The coordinates of any arbitrary point x within the
shell element are expressed in terms of the mid-surface
nodal coordinates according to Eq. (1)

1 1
U
x = ZNiXi + ZNz‘Cgvsz‘
i=1 i=1

where, t; is the shell thickness, N; and x; = [z; y; 2T
are the shape functions and coordinate vector for mid-1
surface nodes, respectively. Furthermore, ¢ is the para-1%
metric coordinate along the thickness direction (¢ €

[—1,1]), see, also, Fig. la. 2

(1)

0
201
202

2.2 Kinematics 203

204
The displacement at any point P lying above or below,,

the shell mid-surface (Fig. 1a) is derived with respect,,
to the mid-surface according to Eq. (2) [23]. .

208

U U; t Q;
up= |v| = ZNl v; | + Cé[#l} 61 (2)209
w W Vi e

211
where p; contains the direction cosines of the shell vec- |
tors Vi; and Vo; and assumes the following form (Eq.213

(3))

—l2; li; O 215
0] = [ —Myg; M1, 0
—ng; ni; 0 2w

B V2i Vli
Vol [Vl

) = |

Mid-surface

(b)

Fig. 1: A degenerated 4-noded Reissner-Mindlin shell
element: (a) shell mid-surface (b) degrees of freedom
and local coordinate system

The strain tensor [¢] sy» 1D the global cartesian sys-
tem is defined according to Eq. (4) below.

4

T
[Ezz Eyy €22 Yoy Vyz ’Yzz} = Z[Bmdl
i=1

(4)

[E)ay =

where [BY] is the 6 x 6 strain-displacement matrix at
each shell node i. The detailed definition of matrix [B}]
can be referred from Cook et al [23].

Remark 1 The drilling DOF ~; have no stiffness as-
sociated with them. Hence, when coplanar elements
share a common structural node, the drilling rotation
about the shell normal V3; at that node is not resisted
and the system matrix becomes singular. On the con-
trary when not all elements surrounding a structural
node are coplanar, the normal rotation of any element
at the shared node has a component which gets re-
sisted by the bending stiffness of adjacent elements.
This means that in flat-shell geometries, the drilling
rotation DOFs ~; can be omitted from the list of over-
all structural DOFs. However when the shell geometry
is curved, any such suppression of ; would lead to an
over-constrained model and unwarranted stiffening of
the structure [23]. Keeping this in view, in this work all
6 DOF's [u;, v;, w;, o, By, i) are retained at nodes which
are shared by non-coplanar elements; they are however
omitted for nodes shared by coplanar elements.
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To conveniently describe the kinematics of the shellqs
element, the following coordinate systems are intro-
duced (Fig. 2), i.e., 248

1. Global Cartesian coordinate-system [z, y, 2] *

2. Parametric coordinate-system [£,7,¢] used for
defining parametric space of the master element.

3. Shell-aligned local coordinate system [1,2, 3] based
on mid-surface nodal vectors [Vi, Vo, V3] which are
used to define the directions of rotational DOFs
{o, 8,7}

4. Convective coordinate system [r,s,t] in which
MITC4+ modifications are performed. This can be
given as r = g1/[g1|, s = g2/|g2|, t = g3/|gs|. Here,
gi = X ¢, are the tangent vectors to the shell-surface
at any arbitrary point having position vector =z,
where (; € {&,n,(} represents the parametric di-

rections.
251

252
y 253
254
255
256
257

258

259

Fig. 2: Illustration of the different coordinate systems
used in the formulation of the Reissner-Mindlin shelly,
element 261

262

2.3 MITC4/MITC4+ formulations

In this section, the modified formulations for the trans-

verse shear strain components based on the MITC4+

approach [26, 39] are briefly presented. The 4-noded
flat shell element shown in Fig. 2 is considered, with
it’s convected and shell-aligned local coordinate sys-

tems represented by [r, s,t] and [1,2, 3], respectively.

In the original MITC4 formulations [26], the trans-

verse shear strains €4 and ¢,; are considered constant

along the edges perpendicular to the r and s axes, re-
spectively (Fig. 3a). Furthermore, instead of using the

displacement based interpolations shown in Eq. (4),
the transverse shear strain components at any arbi-
trary point inside the element are interpolated based
on the strain values at a pre-defined set of tying points
{4, B,C, D} ( Fig. 3a) using Eq. (5).

1 A 1 B
ere = 5(L+me) + 50— ne) i
_ 1 © , 1 (D) (5)

est = 5(1+8&eg + 5 (1= &ey

The transverse shear strains at these tying points,
{ert ) Tt , gf), Sf)}, are calculated using the

btandard approach in Eq. (4)

TP

€£t ) = (€rt)at TP using DI (©)
TP
gt ) = (5st)at TP using DI

where TP € {A, B,C, D} denotes the tying points, and
DI denotes the direct displacement-based interpolation
analogous to Eq. (4).

Similarly, in the MITC4+ formulations the mem-
brane strain components {e,,,&ss,&rs} are interpo-
lated using Eq. (5) using the membrane tying points
{A, B,C, D, E} shown in Fig. 3b. The detailed expres-
sions are omitted herein and can be found in [39].

2.4 Coordinate transformations

To formulate the local element matrices and the con-
stitutive relations, the strain tensor in Eq. (4) must be
transformed into the shell-aligned local coordinate sys-
tem [1,2, 3] using the strain-transformation matrix 7;
according to Eq. (7)

T =T, [ (7)

A general definition for 7. involving strain-
transformation between any two arbitrary coordinate
systems is provided in Appendix B for completeness.

The assumed strains introduced in Eq. (5) are
defined in the convected coordinate system |[r, s, ],
whereas the strains in Eq. (7) are expressed with re-
spect to the shell-aligned local system [1,2, 3]. Hence,
to impose the MITC4+ modification, the shell-aligned
local strains [e];,3 must be first transformed into the
convective strains [e],,. Due to the planar geometry
of the 4-noded Mindlin shell elements, the in-plane di-
rections for both coordinate systems [r, s] and [1,2] are
co-planar, but rotated with respect to each other. The
rotation for transverse shear strains [y;3, 723]T into the
convected coordinates [r, s, t] is performed according to

Eq. (8)

h/'rt Wst]T =

[6]123 = [811 €22 €33 Y12 723 713] zyz

[R] [v13 723]" (8)
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S Transverse-shear strain
A 4 tying points
€ = constant |
; .
- ¢A
= A A
] €
3 i L
g |
©
S .
I -
ki (D) ! ©
“ | D| &g I €t |C
A =1 - S, A — _.‘...-._.>r
-1 | 1 o
/ I
! g
(B)I :
E -+
¢ 11 5
Y ® -
‘B

i €t = constant

(a)

Membrane strain

AS

R tying points
A
mA Ty
T |
1
!
1
m(D) 5 m(C)
- - l_).i:s_s ________ E __. s_s_s_ ...C._ —>T
-1 emETQ 1
1
i
!
s;"r(B)l-l
‘B

Fig. 3: Location of tying points used for assumption of (a) transverse-shear strains [26] (b) membrane strains

within MITC44 approach [39]

where

R = [sinﬁ —sina]_ll

—cos 3 cosa

)

In Eq. (9), @ and § are the angles between the r
and V; axes and s and V; axes respectively.

The in-plane convective strain

[Err) 5SS7'77"S]T = [Ts/] [5]123 (10)

where [g],,5 is provided in Eq. (7). The transformation
matrix 7. is directly derived from 7; in Appendix B
using only the elements of the 15, 2", and 4*" rows of
7. that correspond to the in-plane strain components
[Errs Esss Vrs]-

After performing the MITC4+ modifications on the
convective transverse shear strains {vs,7,+} and in-
plane membrane strains {e,,,¢ess,Vrs}, the total con-
vected strain tensor [¢],_, is transformed back into the
shell-aligned local coordinate system [e],,4 by apply-
ing the inverse of linear transformations shown in Eq.
(8)-(10).

The overall shell-aligned local strain tensor can then
be expressed according to Eq. (11).

€11 €12 €13
[elias = |€12 €22 €23
€13 €23 €33

= [e11 €22 €33 Y12 V23 713]T (11)

280
In the MITC4+ shell element, plane-stress assump-s:
tions hold, i.e. the out-of-plane tensile stress o33 = 0 ims

componentsr
[Erry €55, Yrs) 18 derived according to Eq. (10) 278

279

the shell-aligned local coordinate system [1, 2, 3]. Hence,
the expression for the out-of-plane tensile strain e33 is
derived according to Eq. (12)

v
€3 = "7, (€11 +€22) (12)

1
where v is the material Poisson’s ratio. We further drop
the subscript for local strains [¢],,5, and denote it as [¢]
for the remainder of this paper.

As discussed in Sec. 2, the translational DOFs
[w;, vi, w;] are defined with respect to the the global
Cartesian vectors [z,y,z]. However, the rotational
DOFs [a;, B;,7:] are defined in the direction of shell-
local vectors [V7, Vo, V3]. Therefore, the local DOF vec-
tor dipe, = [ug,vi,w;, oy, By, y:] is transformed to the
global coordinate system according to Eq. (13) below

dgiop = [Trot)" dioe (13)
with,

00 O

00 O
Tt = 00 O

la ma ny

0
0
1
0 ll mi Ny
0
0 13 ms3 ns

OO OO o
o O o o~ O

where dgioh = [Ugis Vyi, Weis B4, Oyi, 024] is the global
vector of DOF and the expressions for the direction
cosines {l;,m;,n;} with i € {1,2,3} are provided in B.
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3 Constitutive phase-field model

Griffith’s theory of brittle fracture [32] derives from the
assumption that the total potential energy of a frac-
tured solid is additively decomposed into the bulk strain
energy depending on the elastic deformations and the

crack surface energy (Eq. (14))
dﬂ+/9¢r Wea

1 (u, 1) (/%

with, Wezt:/b-ud(?—i—/tuda!?

2 o0 284

(14)

285

286

In Eq. (14), and also Fig. 4, u is the displacement vector
at any arbitrary point within the domain (2, b and t
represent the body forces within {2 and surface- traction
forces on external boundary 02 respectively, I, is the
internal discontinuous boundary, . is the elastic en-
ergy density and G, is the critical fracture energy den-
sity. The linearised strain tensor e(u) is

Vu+ VTu
f(w) = (15)
0

a0
289
4 290
0 201
292
203

a0

I 4

Fig. 4: Illustration of general shell-domain {2 containing
(a) Internal sharp crack, and (b) Diffused crack, and
subjected to body force b and surface traction forces t

In the variational phase-field formulation, the sharp
crack surface energy term in Eq. (14) is replaced by

the regularized volume integral of a diffuse crack term
shown in Eq. (16), i.

/Qﬂj /@7¢V¢

where, ¢ € [0,1] is the phase-field variable. For a
quadratic fracture surface energy approximation intro-
duced in Ambrosio and Tortorelli [6, 5], the phase-field
function (¢, V ¢) assumes the following form, i.e.,

(16)

16.99) = [“‘Qﬂ” LIVoP (17)

where [, is the length-scale parameter controlling the
width of phase-field diffusion zone. Using the functional
definition of Eq. (17) it is straight-forward to show that
¢ = 0 and ¢ = 1 correspond to the fully-cracked and
fully-intact states of the material, respectively.

As a crack evolves, the elastic strain energy and in-
duced stresses of the solid must decrease to compensate
for the fracture energy required to generate new crack
surfaces. This degradation mechanism is achieved by

means of a degradation function g(¢) € [0,1] so that
the elastic strain energy becomes
Ve(€, 0) = g(@)te (). (18)

Combining Eqgs. (14)-(18), the following expression
for the regularized potential energy of a cracked solid
is obtained

I1(e, 6.V 6) = / [9(6)6.() + G0,V 8)] 92

2

02 o

with wu;, b; and t; as the vector components of dis-
placement u, body-force b and surface traction force
t respectively. Eq. (19) corresponds to the phase-field
model with an isotropic energy split; this however re-
sults also in cracks evolving under pure compression.
To address the issue of non-physical crack evolution
under pure compression, phase-field models based on
an anisotropic energy-splitting have been proposed, see,
g., [8, 41, 3]. In the current work, we employ the spec-
tral decomposition of the strain tensor as introduced in
Miehe et al [41] to facilitate comparisons with published
results. To effectively impose plane-stress assumptions
and calculate the in-plane and out-of-plane contribu-
tions of the strain energy density accurately, an addi-
tional 2-D strain tensor [¢]' comprising only in-plane
strain components [e11, €22, €12] is defined, i.e.,
€11 €12 0

€12 €22 0 With, €33 —
0 0 £33

1—

€] = > (e11 +e22) (20)
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The effective Cauchy stress vector is defined accord-sis
ingly as 314

(21)

T
o= [011,022,033,7'12,7237713]

Remark 2 To effectively impose the plane-stress as-
sumption after damage has initiated, the in-plane mem-
brane stress components [011, 022, T12]T and their corre-
sponding contributions to the total strain energy den-
sity must be calculated based on the 2-D strain ten-
sor ¢’ in Eq. (20), whereas the out-of-plane components
[ng,ﬁg]T and their strain-energy contributions calcu-
lated using the complete 3-D strain tensor ¢ in Eq. (11).2*
In addition, the out-of-plane tensile stress o33 can be ex-'°
plicitly set to zero to achieve optimal convergence char-=*"
acteristics and ensure that the plane-stress assumptions®®
hold even post-initiation of damage.

The tensile and compressive components of the 2-D
and 3-D strain tensors {¢’,e} defined in Eq. (20) and
(11) respectively, can be obtained using Egs. (22) and
(23) below.

3 3
€= Z Am; @n; ;& = Z Ainj @ nj (22)
i=1 =1
3 3
e =Y ()ani@n; 5 [ =Y (N)xnj@n] (23)

=1 i=1

where \;/\} are eigenvalues (principal stretches), n; /n
are eigenvectors (principal stretch directions), and
{ex, €L} are the tensile/compressive strain components
for the strain tensors {e,&’} respectively. The expres-*
sion (-)+ denote Macaulay brackets (-)1 = [(-)£|(-)|]/2,*
where (\;)+ and (\))+ contain only positive/negative™
eigenvalues of the strain tensors {e,e’} respectively.
Based on the spectral strain decomposition for the
2-D strain tensor [¢'] in Eq. (23), we define the in-plane
components of strain energy density /* and its corre-
sponding tensile/ compressive parts ¥1f in Eq. (24)

VIR 6) = goWIT () + 1T ()
VI () = SHr(@N: + e [ ()]

with A and p as the Lamé constants, and Z as 2x2
identity tensor. The corresponding split stress tensor

definitions o1’ are provided in Eq. (25) as

(24)

P 011 T12 1P/ 1 IP/ 1
o = = g 13 +U, E_
{712 022} g(¢) + ( +) ( )

AR D it R CUCE SR ICA
(25)

The stress tensor o/F
T
IP
[o11 022 T12]

is expressed in Voigt notation as
g =

According to Egs. (24) and (25), only the posi-
tive tensile parts of the strain energy density and the
Cauchy stress tensor, resepctively are multiplied by the
degradation function g(¢). In this work, we employ the
quadratic degradation function originally introduced in
Pham and Marigo [45], Miehe et al [42], i.e.,
9(¢) = (1 = 1)¢* + np (26)
where the parameter 7, was first defined in Ambrosio
and Tortorelli [5] and denotes the residual stiffness to
prevent ill-conditioning of system matrices when dam-
age has fully propagated.

To similarly obtain the out-of-plane Cauchy stress
09" and corresponding strain energy density terms
{OF QY. the tensile/ compressive components of
full 3-D strain tensor [¢] provided in Eq. (23) are used,
as shown in Eq. (27)

b (e,0) = (@)L (e1) + 9P (e-)

27
Y2 (ex) =21 [(e23)3 + (e13)%] 0
and Eq. (28)
7 = 7] = (01027 (e1) + 027 (e-)
) (e) (2)
oP _|(723)%| €23)+
oL (ex) = {(m)J =2 [@@J

, respectively, where {(g23)+, (¢13)+} are the transverse
shear components in the tensile/ compressive 3-D strain
tensors {e1 } previously defined in Eq. (23).

In the standard Mindlin shell theory, the transverse
shear stresses along the shell thickness are not constant;
rather they follow a parabolic distribution. To account
for this effect, the transverse shear strains in Eq. (28)
are scaled by a factor of 5/6 as also highlihgted in Cook
et al [23].

To3 = (H/6) T
23 = (5/6) 723 (29)
713 = (5/6) 113
Based on the in-plane and out-of-plane contribu-
tions given in Eq. (24) and (27), the overall tensile and
compressive components of the total strain energy den-
sity can be given as in Eq. (30).
v =i () + 27 (e2) (30)
and hence, the expression for the total potential energy
in Eq. (19) can be modified to naturally suppress crack
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growth in the regions under pure compression.

I1(e, 6.V 6) = / [9(6) (€7 + ()

(9]

Gc’y((b, Vv (b)} df2 — biui df2 — tiui d 0f? (31)
oo

The strong form of the governing linear momentum
and phase-field evolution equations are henceforth ob—331
tained by minimizing the total potential energy in Eq.,
(31) with respect to the field variables {u, ¢}.

333

334

Vo+b=0,on (?

335

4l (1 — k 32 )36
<W+1>¢—413A¢_ 1, on 02 ( )337
338
where the boundary conditions satisfy, .
340
u =, on 92,
33
%ni =0, on 042 (33)

with n;,¢ € {1,2,3,...r} being the outward pointing
normal vectors at the crack boundary.

To facilitate crack-irreversibility, a history variable
(also referred to as crack-driving force D) proposed by
[41], based on maximum strain energy density through-
out the deformation history is adopted in the current
formulations. The expression for D can be given as:

D= 34
pax (34)
and the second of Egs. (33) is re-written as
4l (1 —-k)D
<°(g)+1>¢—4ng¢: 1, on 2 (35)
(&

Using the history variable to impose crack irre-
versibility produces acceptable and accurate results in
cyclic loading scenarios. It must be emphasized how-
ever that it also disrupts the original variational for-
mulation, see also [31, 30] for alternative techniques to
impose crack irreversibility.

3.1 Effective material tangent operator

The undamaged material elastic constitutive law for
homogeneous materials is expressed in the local shell-

aligned coordinate system [1,2, 3] as

c=Cg,¢
011 E' vE' 00 0 0 €11
0922 vE' E’ 00 0 0 €292
_fos| |0 000 0 0 | |exm (36)
T12 0 0 0 G 0 0 Y12
To3 0 0 00 5G/6 0 Y23
T13 0 0 00 0 b5G/6] |73

where E' = E/(1—v?) with E and v as Young’s modu-
lus and Poison’s ratio respectively, and G = 0.5G/(1 +
v) is the shear modulus of the material [23].

Eq. (36) is derived on the basis of a plane-stress
state and indicates that the in-plane components of
the elastic Cauchy stress [all,agg,Tlg]T are obtained
only using the corresponding in-plane components of
undamaged material tangent C,, whereas the trans-
verse shear stress components [7'2377'13]T are obtained
using out-of-plane shear components of C,.

To achieve optimal convergence rates even with the
modified stress definitions in Eq. (25) and (28), plane-
stress assumptions must hold even when the material
is undergoing damage. To achieve this, we consider a
split of the damaged tangent stiffness matrix Cy into
its corresponding components as shown in Eq. (37) and
(40), which are based on in-plane {¢'F &'} or out-of-
plane {UOP ,€} stresses and strains, respectively.

P _ aUIP _ ipP P 37
(Cal'” = %5 = g(@)ICalll +[Cal” (37)
where

3 IP
Cai” = gj, (38)

The in-plane material tangent operator [C4]!F can
also be represented as the 4x4 tensor shown in Eq. (39).

rr1111 1122 11121
cil cliz2 g ¢l

C§211 C§222 0 C§212 ) 9ol P
c.1'P — . kal _ ij
[Cal™ = PTd T el
0 0 0 0 kl

1211 (1222 1212
1C Ci 0 C;**]

(39)

The out-of-plane component of material tangent op-
erator can be similarly given as Eqs. (40) and (41).

Cd2323 0

[Ca]°T = = 9(0)[Ca 2" +1Ca2"  (40)

0 65313
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3(7'23)i 0
e — |1 (a1)
= 0 O(713)+
O(e13)+

where {(723)+, (T13)+ } and {(e23)+, (€13)+ } are the ten-
sile/ compressive components of the 3-D transverse
shear stresses and strains defined in Eq. (28) and (23)
respectively.

The combined damaged material tangent tensor [Cg]
can finally be expressed as

[Cd]IP 0
[Calers = (42)
OT [Cd]OP

where 0 corresponds to the 2 x 4 null tensor.

3.2 Crack driving force variation along shell-thickness
369

The 3-D kinematics of Mindlin shell elements are de-"

fined with respect to the kinematics of the mid-surface.®*
Furthermore, damage evolution as manifested by the™
evolution of the phase field is obtained only at the mid-*"
surface nodes as a 2-D field. Hence, achieving an accu-"*
rate and realistic stress degradation along the thickness™
becomes a challenging task [see, e.g., 38]. 376

Driven by the observation that, especially in thin_
shell structures, crack propagation through all thickness
layers is often sudden and brutal, we employ a maxi-_,
mum through the thickness driving force rule to control
the evolution of the phase field. Within this setting, the
crack driving forces are evaluated at each through the
thickness integration point according to Eq. (34) as

2

383

(43)

384
where i = 1...ngpier and j = 1...ngp with ngpger de-
noting the number of thickness layers and ngp the num-
ber of integration points per layer, respectively. Hence,
the crack-driving force is evaluated based on the 3-D
stress state at its individual integration point.

The crack-driving force at all thickness integration
points corresponding to a particular mid-surface lo-
cation is then set equal to the maximum of driving
forces prevalent at those integration points and phase-
field evolution Eq. (35) is integrated at each Gauss-
point over the entire shell-element volume, thus caus-
ing phase-field (or damage) to evolve based on the
max crack-driving force description. The procedure
is schematically illustrated in Fig. 5 for the case of

D;; = max ij
] (t>t0) w%w

Dam = max(Dj,,D2,,D3,)
m Top thickness layer

o Mid thickness layer
» Bottom thickness layer

Dpm = max(D1p,D2p,D3p)
Dem = max(Dy¢,Dae,D3c)

Dam = max(D14,D24,D34)

£

1 Dad " 1 :

p Dg:i'.:' """" ] D, @fi==

1 Dia %k I D,

& 1 D 1 1
D. * H ; H

saj_ I ij .

D, 4—i D8 /i
JLITE D, %

Fig. 5: Schematic illustration of the procedure employed
to evaluate the crack-driving force D based on the max-
imum through the thickness rule employed. The case of
3 thickness layers and 4 integration point per thickness
layer is considered.

N¢hick = S thickness layers and ngp = 4 integration
points per layer.

Our extensive numerical experiments have shown
that this assumption captures the physical cracking
phenomena through the shell thickness and leads to
highly accurate critical fracture strength predictions,
especially during bending dominated failure scenarios,
as also shown in the benchmark numerical examples.

Remark 3 To accurately capture the phase field varia-
tion through the thickness, in the case of multi-layered
composite sections, see for e.g. [49], where a signifi-
cant variation of the fracture toughness is expected, one
would stack a number of shell elements along the thick-
ness (see, e.g., [36, 59, 56]). Such aspects are beyond
the scope of this work.

3.3 Discretization and solution procedure

The coupled strong-form evolution Egs. (32) are dis-
cretized via a Galerkin approximation. The test S and
weighting W function spaces for the displacement field
are defined as

Su={ue ()" |u = on 00} (44)
Wa = {5u e (M ()* ’511 = Suon an}. (45)
The corresponding spaces for the phase field are

So={oe @)} (46)
W, = {5¢ e (H'()) } (47)
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Multiplying the strong form Egs. (32), integratingmu
by parts and performing the necessary algebraic ma-
nipulations eventually leads to the the following conve-
nient nodal residual form for the equilibrium equation
at node 1,

ewt int

/ Nibi dV - / Tl BN 0 av  (49)

and the phase-field evolution equation at node 4
4y (1 —k)D
i =—ff;t—/<lo( 5 ul +1>Ni¢dV

v , (49)

T
+ / Al2 {Bﬂ {Bﬂ b; dV — / N; dV
v 1%

respectively. In Eqs. (48) and (49), V is the element
volume, N; is the 2-D shape function and [B}Y] is the
strain-displacement matrix as expressed in Eq. (4), and
[Trot), [Te] are the rotation and strain-transformation
tensors defined in Eqs. (13) and (7), respectively, which
facilitate the calculation of the internal forces F}, in
the local shell coordinate system [1,2, 3] and their sub-
sequent rotation into global [z,y, z| system.

The explicit expressions for N; and [BY] can be ob-
B?] is defined with re-

spect to shell-local system [1, 2, 3] as shown in Eq. (50).

tained from [23]. Furthermore, [

{Bﬂ = [Ni1, Nig, N;s)" (50)

412
Remark 4 In practice, the components of [Bﬂ can be,

effectively obtained by choosing the relevant compo-us
nents of locally transformed strain-displacement tensorys
[Tz BY]. Since in Mindlin shell theory, the kinematics of;s
the shell-element is represented using 2-D shape func-,,
tions at the mid-surface, IV; 3 can be effectively set ass
Z€ero. 419

420
Assembling the contributions from each element

shown in Egs. (48) and (49) into the overall residual
vectors RY and R?, the solution {u,¢} to the com-,
bined system of equations (32) can be obtained by set-
ting R* — 0 and R? — 0. 422
In the current work, the solution is obtained us-w3
ing the staggered or alternating minimization approachszs
based on [41]. To ensure accuracy of the obtained solu-es
tion, either both equations must be solved using stag-s
gered iterations [2] or the analysis must be solved usingmr
small incremental steps [41]. 428

3.4 Integration procedure

For the MITC4+ shell element analyzed in the cur-
rent work, a full-integration technique is employed with
4 Gauss integration points defined at each parametric
thickness layer within the element. The integral expres-
sions in Egs. (48) and (49) are expressed in terms of
parametric coordinates [£,, (] according to Eq. (51)

1 1 1
V/ (I)dV = _/1 /1 /1 ) det [J] d¢dndcC

where 7 is evaluated at each integration point through
the shell-volume and the definition for Jacobian [J] is
provided in Appendix A. The in-plane integration over
{¢,n} within each thickness layer ¢ is performed using
the Gauss-integration rule,

(51)

4

1 1
/ / ) det [J] d&dn = > (Z;) det [J];w;
—-1-1

i=1

(52)

where i € {1,2,3,4} are the in-plane integration points
and w; € {1,1,1,1} are the weights associated with
each of these points. The out-of-plane integration for all
thickness layers is performed using the Simpson’s rule,
which can be expressed as in Eq. (53) for any integrand
7.

jf@:

-1

h
S (T)+ 2T4 + ATy + 2T + oo + .. + T,)

(53)

where Ah = 2/n, and{Z},Z7,...,Z,} are the values
of the integrand 7’ evaluated at the different shell-
thickness layers ¢ € [—1,1] starting with the value of
T), at the bottom-most layer ¢ = —1.

While performing through-thickness integration of
the phase-field evolution equation (49), the value of
crack-driving force D at any Gauss-point within a spe-
cific thickness layer is obtained based on the maximum
crack-driving force rule detailed in Sec. 3.2 and Fig. 5.

4 Numerical examples

In all the test cases examined in this Section, a displace-
ment controlled analysis has been employed. Unless ex-
plicitly stated, a one-pass staggered (alternating min-
imization) approach with a very small time-increment
size ( 1.e7% — 1.e79%) has been used for the solution of
the coupled displacement- phase-field problem, and the
residual stiffness 7, is set to 0.
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4.1 Notched square plate subjected to in-plane tensionss:

458

The standard benchmark of the notched square plate,_
shown in Fig. 6 under tension is examined herein.
The material properties considered are £ = 210 GPa,,
v = 0.3, and G. = 0.0027 kN/mm. The mesh-size is_,
he = 0.0025 mm in the central strip where the crack is,
expected to propagate and the length scale parameter is, ,
lo =0.0075 mm. A displacement control analysis is per-,,
formed with an equilibrium tolerance of tol, = 1.e=®

5

" 466

It is interesting to note that the length-scale param-""'
eter Iy adopted by Miche et al [41] is twice the size of*
lo used by Borden et al [16]. This implies that the for-"*
mulation detailed in [41] requires the minimum value™
of lp to be at-least twice the mesh-size he (o > 2h.),
whereas on the other hand, the minimum value of [
should be ly > h, for the formulations provided in [16] o
Indeed both the definitions of [y are equivalent, and one_,
must be careful while appropriately choosing the vanlue473
of lp when comparing results from the two formulations._,
The current work uses the formulations from [16], and, _
hence the definition Iy > h. consistently hold for all the476

numerical simulations performed in this paper. .

8

The resulting crack-path and load-displacement re-"

sponse are shown in Fig. 7 and Fig. 8, respectively."”

The crack initiates at a critical fracture force Feopiy =
0.7052kN. Both the crack-path and the fracture force™
prediction are in perfect agreement with the results re-**

ported in the literature [see, e.g., 42]. e
484

485
486

i u 487

488

489

490

0_5 491
0.5 492
D EEEE— | 493

t=1

0.5

II./I/././/./II.////I./I./././I.//./ f
I 1

1

Fig. 6: Geometry and boundary conditions for square
plate with horizontal notch subjected to in-plane ten-

sion (All dimensions in mm)
494

495

496

4.2 Notched square plate subjected to in-plane shear

The square plate specimen examined in Sec. 4.1 is sub-
jected to horizontal in-plane tractions. Due to the na-
ture of the loading and boundary conditions in this
case, the specimen attains a bi-axial strain state which
leads to the propagation of crack at an angle of 45°
to the horizontal direction. An equilibrium tolerance
of tol, = 1.e7% is used for the displacement con-
trolled analysis. Fig. 10 and Fig. 11 display the develop-
ment of crack with each subsequent load-increment and
the load-displacement response, respectively. The pre-
dicted crack-path and the critical fracture load F.;; =
0.5248kN are in good agreement with the results re-
ported in [41].

4.3 1-D beam subjected to transverse bending

A simply-supported rectangular plate subjected to a
uniformly distributed pressure over the entire top face
is considered as shown in Fig. 12. The aim of this ex-
ample is to verify the proposed formulation predictions
under bending-dominated fracture scenarios. The mate-
rial and fracture properties are £ = 1.e10 MPa, v = 0,
G. = 3 N/mm, and [/, = 0.01 mm. The mesh is refined
with he = 0.003 mm in the entire mid-span of the plate
where the crack propagation is expected. The thickness
of the beam ¢t = 0.01 mm is very small in comparison to
the other two plate-dimensions (I = 8 mm and w =1
mm) so that the effects of transverse shear and mem-
brane locking on the critical fracture characteristics can
be monitored.

The vertical displacement is monitored at the
centre-node of the plate, and the total applied dis-
tributed load is analysed with tol, = 1.e%%. The crack
initiates at the plate’s mid-span which is also the loca-
tion of maximum transverse deformation u,, as shown
in Fig. 13. The load-displacement response is shown in
Fig. 14 where a brittle fracture response under pure
bending is indeed recovered.

Since the Poisson’s ratio is null, the transverse
bending stiffness and the critical fracture loads should
be identical to those predicted by the classical Eu-
ler/ Bernoulli beam theory. According to the Eu-
ler/ Bernoulli beam theory, the analytical elastic stiff-
ness/length of the beam is established in Eq. (54) as

(54)

where § is the maximum transverse deformation ob-
tained at the centre-span, E is the Young’s modulus,
I = wt?/12 is the area moment of inertia for the beam,
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Fig. 7: Notched plate under in-plane tension: phase field evolution with increasing load-increments [¢ = 1 and

¢ = 0 intact and cracked states of the material]
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Fig. 8: Notched plate under in-plane tension: Load-
displacement response
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Fig. 9: Geometry and boundary conditions for square?s
plate with horizontal notch subjected to in-plane shears

(All dimensions in mm) 515
516

517
and P = F/l is the total distributed applied load-ss
/length on the beam with units in N/mm, wherein Fi.
is the total applied load in . 520

For the current case, the analytical elastic stiff-sx
ness of the beam can be calculated using Eq. (54) as

k = P/§ ~ 15.625 N/mm?. The slope of the pre-
dicted elastic load-displacement response in Fig. 14b
(k' = 0.06249/0.004 = 15.6225 N/mm?) is in close
agreement with this analytical estimate.

Considering the case of isotropic phase field frac-
ture, i.e., fracture initiating both at tension and com-
pression, the critical fracture load of the beam can be
evaluated as

P., = 8M,,/L? (55)

where, M., is the critical bending moment required for
crack initiation

M, = oowt? /6 (56)

and o, is the critical fracture stress. Based on deriva-
tions in [16], the critical fracture stress can be evaluated
as Eq.(57).

9 |EG.
oo = 15\ G 67)

For the given material and fracture properties, the crit-
ical stress in Eq. (57) is oer = 3.9775 - 105 N/mm?.
This can be inserted into Eq. (55) to obtain the critical
fracture load P., = 0.8286 N/mm.

Comparing the load-displacement responses in
Fig. 14a, it is evident that the maximum crack-driving
force description through thickness (detailed in Sec. 3.2)
produces good agreement with the analytical fracture
force estimated by Eq. (55) for the isotropic phase-field
model. This reinstates the validity of the assumption
that in thin shells, all transverse thickness layers at a
given location would fracture simultaneously as soon as
the crack is initiated in any one of these layers. Hence
to incorporate this effect, the material stiffness degra-
dation at that shell location must start as soon as the
crack-driving force in any one of the associated thick-
ness layers attains a critical limit. Such a description of
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Fig. 10: Notched plate under in-plane shear: phase field evolution with increasing load-increments [¢=1 and ¢=0

represent intact and cracked states of the material]
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Fig. 11: Notched plate under in-plane shear: Load-

displacement response

Fig. 12: Geometry and boundary conditions for rectan-ss
gular 1-D beam subjected to transverse unidirectional
bending under uniformly distributed pressure load P536

(All dimensions in mm)
537

538
crack-driving force D enables a 3-D description of crack,,

topology and stress-degradation effects, albeit using a,,
2-D phase-field, refer to Sec. 3.2 for details. s

Solving the phase-field evolution Eq. (32) using thes
spectral split proposed in [41] and with the same crack-ss
driving force definition (Fig. 5) results in the load-s«
displacement response in Fig. 14b. The correspondingsss
critical fracture load is higher than the one provided bysss
the isotropic model as the in this case material degra-ss

dation occurs only on the part of the shell undergoing
tension. The accuracy of the predicted critical force for
the spectral-split case [41] is verified against the ana-
lytical estimates and XFEM results in Sec. 4.4.

® __ 1.0e+00
Kos
L 06
L o4
— 0.2
H_0.0e+00

u,

1.1e-01
r

— 0.05

Fig. 13: 1-D beam under transverse unidirectional bend-
ing: Plan-view of (a) Crack-path ¢ and, (b) Vertical dis-
placement wu, represented at the shell mid-surface [¢=1
and ¢=0 represent intact and cracked states of the ma-
teriall

B 0.0e+00

4.4 Regtangular plate with a through crack subjected
to pure bending moments

The rectangular plate specimen with a through crack
shown in Fig. 15 is subjected to pure bending moments
on its opposite edges and the accuracy of predicted peak
moments are compared with the corresponding analyt-
ical values obtained using the stress-intensity factors
in [58]. This example has been examined previously in
Rouzegar and Mirzaei [53], where a comparison between
SIFs obtained with XFEM and the analytical SIF's was
performed. Herein, In this example, we attempt a com-
parison between the critical fracture loads predicted by
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Fig. 14: 1-D beam under transverse unidirectional bending: Load-displacement response at beam’s centre-node for
a) Isotropic phase-field formulations b) Anisotropic phase-field formulations with spectral decomposition [41]

Fig. 15: Geometry and boundary conditions for the
rectangular plate subjected to pure bending moments
(All dimensions in mm)

the proposed phase-field model and the analytical for-
mulations provided in Sih et al [58]. The material prop-
erties are £ = 210,000 MPa and v = 0.33.

The rotational increment Afx is monitored at the
top-right corner node, and the plate is analysed with
respect to varying sizes of Afx until the peak criti-
cal bending-moment is converged. An equilibrium tol-
erance of tol, = 1.e7% is used in each case. According
to [58], the analytical expression for the critical stress-
intensity factor (SIF) for a centrally-cracked plate with
infinite width and subjected to remotely applied pure
bending moment is evaluated as

M cre
Ki.= 6#2,75\/5 3 K. =0
! (58)

551
= K.=1/K} + K2, 552
553
where K. is the equivalent critical SIF, ¢ is the platess

thickness, Mo, ¢, is the critical bending moment and asss
is half-length of the central crack. The analytical valuesss

of critical SIF for this example is provided in [53] as

K1, = 189.74 MPa mm™~'/2. (59)

Assuming plane-stress conditions, the correspond-
ing critical energy release rate G, is

2

K
Ge = — = 0.171435 N/mum. (60)

Substituting the value of K. from Eq. (59) into (58)
and considering the edge length [ = 70 mm, the critical
bending moment/edge-length is derived as

Moycriv  Kio t?
N
In our phase-field simulations, the mesh is refined in
the central region with the element size h, = 0.25 mm
where the crack is expected to propagate. The length-
scale parameter and residual stiffness are chosen as
lo = 0.25 mm and 71, = 1.0e~3, respectively. In the
original variational formulation proposed by Bourdin
et al [20], it was shown that the fracture energy is over-
estimated depending on the size of finite element dis-
cretization. To compensate for this amplification, an
effective critical energy release rate was proposed for
the purpose of phase-field simulations, see also [46].

geff _ gc
T T (he/2l)
Considering G. = 0.171435 N/mm, h, = 0.25 mm
and [y = 0.25 mm, the effective critical energy re-
lease rate ggff for the current analysis is gg‘ff =
0.13715 N/mm.
The moment versus edge rotation response is il-
lustrated in Fig. 16. The resulting crack topology is

= 10.0002 N-mm/mm (61)

(62)
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shown in Fig. 17. The crack originates simultaneouslysss
at both notch-tips and propagates horizontally towardssso
the ends of the plate. 590

Furthermore, to demonstrate that the obtained re-ss
sults are independent of the magnitude of chosen time-se
increments, a comparison of moment-rotation responsesss
for varying sizes of moment-increments AM, is per-e
formed in Fig. 16. The converged value for the criti-
cal moment/length in Fig. 16 is Mo prpar = 10.83 N-
mm/mm, which is in close agreement with the analyt-
ical bending moment/length derived in Eq. (61). This
example further establishes the validity of assumptions
made in Sec. 3.2 for the phase-field model based on,,
anisotropic spectral strain decomposition, and verifies,
the accuracy of the proposed phase-field formulations,,
in characterising realistic bending-dominated fracture,
scenarios.
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Fig. 16: Regtangular plate under pure-bending mo-s17
ments: Moment vs edge-rotation response 618
619
620
621

622

4.5 Simply supported plate subjected to bi-directional 623
bending loads 624

625
To demonstrate cracking phenomena under bi-ses
directional bending loads, a simply supported plateser
with a uniformly distributed surface load is examined s
The material and fracture properties are E = 1.9¢%
MPa, v = 0.3, I, = 0.01 mm, G, = 0.295 N/mm s
and the boundary conditions are as shown in Fig. 186
The mesh is refined along the plate’s diagonals withss
he = 0.005 mm. Only a quarter section of the plate issss
analyzed due to symmetry. The quarter-section is sim-sss
ply supported on the outer edges of the plate, whereasss
the internal shared edges are subjected to symmetricsss
boundary conditions. A uniformly distributed load issr

applied over the entire top face until complete fracture
of the plate, and the vertical displacement is monitored
at the centre node of the plate. The analysis is run until
a convergence tolerance of tol, = 1.e7% is reached.
The crack-path is shown in Fig. 19 which is consis-
tent with the results reported previously in [38, 9]. The
load-displacement curve is illustrated in Fig. 20.

4.6 Cylinder with/without spherical closing cap
subjected to uniform pressure loads

A cylindrical shell geometry with small axial notches
placed on diametrically opposite ends and uniformly
applied pressure load on its inner surface is considered.
Owing to the problem symmetry across the xy and xz
planes, only the quarter part of the full cylinder is an-
alyzed as shown in Fig. 21.

To examine the robustness of the approach, two
different cases are examined, i.e. with and without a
spherical cap at the two ends of the cylindrical shell.
The latter is expected to give rise to crack branching
at the spherical cap. The material and fracture prop-
erties are £ = 7.0e* MPa, v = 0.3, [, = 0.125 mm,
G. = 1.5 N/mm. The mesh is refined with the size
he = 0.1 mm in all the cylindrical and spherical cap
regions where the crack is expected to propagate. A
displacement controlled analysis is performed with an
equilibrium tolerance of tol,, = 1.e7%. For the cylinder
specimen without spherical cap (Fig. 21a), the vertical
circular arc BC is fixed along the z and z directions,
whereas symmetric boundary conditions are imposed
on horizontal edges AB, CD, and AD. The specimen
with spherical closing cap (Fig. 21b) is subjected to
symmetric boundary conditions on all free edges, i.e.
the vertical circular arc AD towards the notch is sub-
jected to y-symmetric and horizontal edges AB, BC and
CD are subjected to z-symmetric boundary conditions.
The example demonstrates the capability of proposed
phase-field formulations in simulating damage for thin
curved geometries which displays significant membrane
as well as transverse shear locking.

The responses between the total applied pressure
load and the displacement-norm measured at the notch-
tip are compared in Fig. 22 for both the uncapped and
capped specimens.

The crack-path at increasing load-increments for the
uncapped and capped cylinders are shown in Figs. 23
and 24, respectively. In the former case, the crack ini-
tiates at the notch-tip and propagates along the lon-
gitudinal direction of the shell. In the latter, the spec-
imen demonstrates a similar response (Fig. 24), how-
ever, in this case the crack initiates at a slightly lower
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critical fracture load (Fig. 22). Over the spherical capsrs
region, the crack first propagates linearly, but subse-sn
quently splits into two symmetric crack branches; thesess
further evolve simultaneously. 676

4.7 Assymetric hyperboloid subjected to uniform
internal pressure

To further demonstrate the robustness of proposed for-
mulations in analysing curved shell problems, an as-
symetric hyperboloid geometry is considered which is
subjected to a uniform internal pressure applied in the
direction normal to its surface. The thin-shell assump-
tions apply as the thickness of the geometry ¢ = 0.1
mm is significantly smaller than the other dimensions
of the tower. A notch is introduced at the mid-height
along the longitudinal direction of the shell. Due to the
model symmetry only half part of the complete model
as shown in Fig. 25 is analysed. To reduce the effect
of bending at the boundary, the hyperboloid geometry
is supported by an elastic shell structure, displayed as
ABFE in Fig. 25 in which the evolution of phase-field
(or damage) is restricted.

The material and fracture parameters for the hy-
perboloid are £ = 210 GPa, v = 0.3, G. = 0.0027
kN/mm, [, = 0.75 mm, and a uniform mesh size with
he = 0.5 mm is used. The material properties for the
elastic base-support is £ = 21000 GPa, v = 0.3 with
the Young’s modulus chosen as 100 times higher than
the hyperboloid.

Furthermore, the translational DOF's at the bottom-
most part of the elastic base-support is completely fixed
(up = uy = u, = 0) while the rotational DOFs are kept
free. For the curved side-edges BC and AD, z-symmetric
boundary conditions are imposed whereas the top-edge
CD is unrestrained. The internal distributed load is ap-
plied only on the hyperboloid region EFCD in the di-
rection of outward-pointing normals to its surface. The
elastic support ABFE is unloaded. The radial displace-
ment is monitored at the bottom notch-tip shown by P
in Fig. 25, and tol, = 1.e7%. The crack initiates at the
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Fig. 19: Simply-supported plate under bidirectional bending: phase field evolution with increasing load-increments
[¢=1 and ¢=0 represent intact and cracked states of the material] (Full-plate assembled for better visualization)
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bottom notch-tip P as shown in Fig. 26, and propagates
vertically downwards followed by a second branch that
initiates at the top notch-tip Q. The two cracks propa-
gate simultaneously and crack-branching is eventually
observed at the bottom crack due to the shell-curvature
at which point the shell loses all bearing capacity. The
response between the vertical z-displacement at the
bottom notch-tip P and the total applied load is shown
in Fig. 27.

5 Conclusion

A phase-field driven shell element formulation is pre-
sented for of brittle fracture in Reissner-Mindlin shells.
We employ an MITC4+ approach to alleviate shear and
membrane locking. Our method is based on the assump-
tion of a maximum through the thickness crack driving
force rule definition. Considering an anisotrpic split for

damage evolution, we impose the plane stress assump-sos
tions directly on the tangent constitutive matrix; thissos

VA
X D
y A
C
A
C
B
(b)
Spherical
t=0.125 Cap
N 2
Qf’ 525 [
I 7 1
(c)

Fig. 21: Geometry and boundary conditions of cylindri-
cal shell with notch (a) without (b) with spherical cap
at the end, and subjected to uniform internal pressure
p (All dimensions in mm)

approach has been found to provide optimum conver-
gence rates.
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The accuracy of the proposed model is demon-7+
strated by a set of illustrative numerical examples. Our’*
solutions are verified against the analytical estimates™s
both in the isotropic and anisotropic phase field case.*
The validity of the proposed model is further estab-4
lished by obtaining realistic and accurate fracture pre-+
dictions in curved shell geometries, which display sig-"s
nificant membrane and transverse shear locking due to™
the coupling of membrane and bending deformations. 72

The inclusion of rotational degrees of freedom in the?
MITC4+ formulation would naturally raise an imple-*
mentational challenge vis-a-vis the modelling of multi-s
layered composite profiles where delamination is a pos-75
sible failure mode [22, 48]. In this case, coupling with/>
e.g., a cohesive zone model would require the evaluation™
of displacements at the interface based on the Reissner-%
Mindlin kinematical assumptions and the definition of®
multi-point constraints coupling the degrees of freedom™
associated with the shell and cohesive elements at the?
interface [54, 55, 21]. 763

Whereas the proposed model highlights the capa-*
bilities of brittle fracture phase field modelling to har-"6
ness the advantages of MITC4+ formulations, research’®
should be directed to account for more complex re-¢
sponses as,e .g., the case of finite strain ductile fracture.s
In the near future, we aim to extend the capabilities of'®
the proposed phase-field model in simulating diverse™

anisotropic fracture scenarios. m
772

773
Acknowledgement 74
775
The authors would like to acknowledge the funding re-z
ceived from the European Union’s Horizon 2020 re-m
search and innovation programme under the Mariems

Skltodowska-Curie SAFE-FLY project, grant agreement
No. 721455.

References

1.

10.

11.

12.

13.

Aldakheel F, Hudobivnik B, Hussein A, Wriggers P
(2018) Phase-field modeling of brittle fracture us-
ing an efficient virtual element scheme. Computer
Methods in Applied Mechanics and Engineering
341:443-466

Ambati M, Gerasimov T, De Lorenzis L (2015)
Phase-field modeling of ductile fracture. Compu-
tational Mechanics 55(5):1017-1040

Ambati M, Gerasimov T, De Lorenzis L (2015) A
review on phase-field models of brittle fracture and
a new fast hybrid formulation. Computational Me-
chanics 55(2):383-405

Ambati M, Kruse R, De Lorenzis L (2016) A phase-
field model for ductile fracture at finite strains and
its experimental verification. Computational Me-
chanics 57(1):149-167

Ambrosio L, Tortorelli V (1992) On the approxi-
mation of free discontinuity problems. BULLETIN
OF THE ITALTAN MATHEMATICAL UNION B

. Ambrosio L, Tortorelli VM (1990) Approximation

of functional depending on jumps by elliptic func-
tional via t-convergence. Communications on Pure
and Applied Mathematics 43(8):999-1036

Amiri F, Millan D, Shen Y, Rabczuk T, Arroyo
M (2014) Phase-field modeling of fracture in lin-
ear thin shells. Theoretical and Applied Fracture
Mechanics 69:102-109

Amor H, Marigo JJ, Maurini C (2009) Regularized
formulation of the variational brittle fracture with
unilateral contact: Numerical experiments. Journal
of the Mechanics and Physics of Solids 57(8):1209—
1229

Areias P, Rabczuk T (2013) Finite strain fracture
of plates and shells with configurational forces and
edge rotations. International Journal for Numerical
Methods in Engineering 94(12):1099-1122
Barenblatt GI (1962) The mathematical theory of
equilibrium cracks in brittle fracture. Advances in
applied mechanics 7:55-129

Bathe KJ (2006) Finite element procedures. Klaus-
Jurgen Bathe

Bathe KJ, Dvorkin EN (1986) A formulation of gen-
eral shell elements - the use of mixed interpolation
of tensorial components. International Journal for
Numerical Methods in Engineering 22(3):697-722
Belytschko T, Black T (1999) Elastic crack growth
in finite elements with minimal remeshing. Interna-



779

780

781

782

783

784

785

786

787

Phase-field modelling of brittle fracture in thin shell elements based on the MITC4+ approach 19

¢ 1 0e+00

—06
L 04
— 0.2
B 0.0e+00

~

Fig. 23: Notched cylinder under uniform internal pressure: phase field evolution with increasing load-increments

A\

[¢=1 and ¢$=0 represent intact and cracked states of the material]

® _ 1.0e+00
0.8
L 0.6
L 04
— 0.2
B 0.0e+00

Fig. 24: Notched cylinder with spherical cap under uniform internal pressure: phase field evolution with increasing
load-increments [¢p=1 and ¢$=0 represent intact and cracked states of the material]

b 19.5 c Boundary-conditions
g AB : u,=u,=u,=0
. // 23.0 BC & AD : u,=u,=u,=0
,-/ e Loading
Uniform internal pressure P
/ on EFCD in the direction of
20.44 @ outward-pointing surface normals
Ja60
t=0.1 P Hyperboloid
surface y
38.56
z X
E
1.02 _:: Ela§tic
A (T,I B supporting-base
(a) (b)

Fig. 25: Geometry, boundary conditions and loading on the assymetric hyperboloid tower with central notch
subjected to uniform internal surface-pressure P (All dimensions in mm)

tional journal for numerical methods in engineeringyss ical Methods in Engineering 19(3):405-419
45(5):601-620 70 16. Borden MJ, Verhoosel CV, Scott MA, Hughes T,
14. Belytschko T, Leviathan I (1994) Physical stabi-o Landis CM (2012) A phase-field description of dy-
lization of the 4-node shell element with one pointre: namic brittle fracture. Computer Methods in Ap-
quadrature. Computer Methods in Applied Me-s plied Mechanics and Engineering 217:77-95
chanics and Engineering 113(3-4):321-350 73 17. Borden MJ, Hughes TJ, Landis CM, Anvari A, Lee
15. Belytschko T, Tsay CS (1983) A stabilization pro-res 1J (2016) A phase-field formulation for fracture in
cedure for the quadrilateral plate element with one-es ductile materials: Finite deformation balance law

point quadrature. International Journal for Numer-7ss derivation, plastic degradation, and stress triaxial-



797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

20

Udit Pillai et al.

® __1.0e+00
Nos
= 0.6
04
— 0.2

& 0.0e+00

Fig. 26: Assymetric hyperboloid tower under uniform internal pressure: phase field evolution with increasing load-
increments [¢=1 and ¢$=0 represent intact and cracked states of the material] (Full geometry assembled for better
visualization)

81

)
1

81

e
3

81

4
2N

81

S
tn

81

82

82

b
w
T

82;

S
¥

82

e
=

82

82

Total applied distributed surface-load [N/mm?]
=
=

E)

0.04 0.08 0.12 0.16 0.2
Vertical displacement u, at notch-tip P

<

82

82

5

6

7

8

9

0

1

2

3

4

5

6

7

Fig. 27: Assymetric hyperboloid tower under uniformsss
internal pressure: Applied pressure load vs vertical dis-sx
placement u, measured at the bottom notch-tip P s3

18.

19.

20.

21.

83

83

83

83

0

1

2

3

4

ity effects. Computer Methods in Applied Mechan-__

ics and Engineering 312:130-166
Bouchard PO, Bay F, Chastel Y, Tovena I (2000)83
Crack propagation modelling using an advanced
remeshing technique. Computer methods in applied83
mechanics and engineering 189(3):723-742 Ny
Bouchard PO, Bay F, Chastel Y (2003) Numerical
modelling of crack propagation: automatic remesh—84
ing and comparison of different criteria. Com—84

83

6
7
8
9
0
1
2

3

puter methods in applied mechanics and engineer—w

ing 192(35):3887-3908

Bourdin B, Francfort GA, Marigo JJ (2008) The .

5

variational approach to fracture. Journal of elastic-

ity 91(1):5-148

Brocks W, Scheider I, Schédel M (2006) Simulationzz
of crack extension in shell structures and prediction850

of residual strength. Archive of Applied Mechanics
76(11-12):655-665

22.

23.

24.

25.

26.

27.

28.

29.

30.

Carollo V, Reinoso J, Paggi M (2017) A 3d finite
strain model for intralayer and interlayer crack sim-
ulation coupling the phase field approach and cohe-
sive zone model. Composite Structures 182:636-651
Cook RD, Malkus DS, Plesha ME, Witt RJ (1974)
Concepts and applications of finite element analy-
sis, vol 4. Wiley New York

Dolbow J, Belytschko T (1999) A finite element
method for crack growth without remeshing. Inter-
national journal for numerical methods in engineer-
ing 46(1):131-150

Dugdale DS (1960) Yielding of steel sheets contain-
ing slits. Journal of the Mechanics and Physics of
Solids 8(2):100-104

Dvorkin EN, Bathe KJ (1984) A continuum me-
chanics based four-node shell element for gen-
eral non-linear analysis. Engineering computations
1(1):77-88

Egger A, Pillai U, Agathos K, Kakouris E, Chatzi
E, Aschroft IA, Triantafyllou SP (2019) Discrete
and phase field methods for linear elastic fracture
mechanics: A comparative study and state-of-the-
art review. Applied Sciences 9(12):2436

Ehlers W, Luo C (2018) A phase-field approach em-
bedded in the theory of porous media for the de-
scription of dynamic hydraulic fracturing, part II:
The crack-opening indicator. Computer Methods in
Applied Mechanics and Engineering 341:429-442
Francfort GA, Marigo JJ (1998) Revisiting brit-
tle fracture as an energy minimization problem.
Journal of the Mechanics and Physics of Solids
46(8):1319-1342

Geelen RJ, Liu Y, Hu T, Tupek MR, Dolbow JE
(2019) A phase-field formulation for dynamic cohe-
sive fracture. Computer Methods in Applied Me-
chanics and Engineering 348:680-711



851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

Phase-field modelling of brittle fracture in thin shell elements based on the MITC4+ approach 21

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Gerasimov T, De Lorenzis L (2019) On penalizationsos
in variational phase-field models of brittle fracture.oos
Computer Methods in Applied Mechanics and En-us
gineering 907
Griffith AA (1921) The phenomena of ruptureos
and flow in solids. Philosophical transactions ofoes
the Royal Society of London Series A, contain-o
ing papers of a mathematical or physical characterm
221:163-198 012
Heider Y, Markert B (2017) A phase-field mod-os
eling approach of hydraulic fracture in saturatedos
porous media. Mechanics Research Communica-os
tions 80:38—46 916
Hillerborg A, Modéer M, Petersson PE (1976 )ur
Analysis of crack formation and crack growth ines
concrete by means of fracture mechanics and finitenso
elements. Cement and concrete research 6(6):773-o2
781 o1
Ingraffea A, Saouma V (1985) Numerical mod-e
elling of discrete crack propagation in reinforcedos
and plain concrete. Fracture Mechanics of concretess
pp 171-225 925
Johnson AF, Pickett AK, Rozycki P (2001) Com-os
putational methods for predicting impact damagesr
in composite structures. Composites Science andos
Technology 61(15):2183-2192 029
Kakouris E, Triantafyllou S (2018) Material pointeso
method for crack propagation in anisotropic mediaos:
a phase field approach. Archive of Applied Mechan-os.
ics 88(1-2):287-316 033
Kiendl J, Ambati M, De Lorenzis L, Gomez H, Re-:
ali A (2016) Phase-field description of brittle frac-ss
ture in plates and shells. Computer Methods in Ap-s
plied Mechanics and Engineering 312:374-394 037
Ko Y, Lee PS, Bathe KJ (2017) A new MITC4+-o3
shell element. Computers & Structures 182:404—418so
Kuhn C, Miiller R (2010) A continuum phase fieldso
model for fracture. Engineering Fracture Mechanicsa
77(18):3625-3634 042
Miehe C, Hofacker M, Welschinger F (2010) Ao
phase field model for rate-independent crack prop-es
agation: Robust algorithmic implementation basedos
on operator splits. Computer Methods in Appliedwus
Mechanics and Engineering 199(45):2765-2778  ow
Miehe C, Welschinger F, Hofacker M (2010) Ther-os
modynamically consistent phase-field models ofo
fracture: Variational principles and multi-field FFoso
implementations. International Journal for Numer-os:
ical Methods in Engineering 83(10):1273-1311 o2
Moés N, Stolz C, Bernard PE, Chevaugeon Noss
(2011) A level set based model for damage growth:s
the thick level set approach. International Journalss
for Numerical Methods in Engineering 86(3):358-ss

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

380

Moutsanidis G, Kamensky D, Chen J, Bazilevs Y
(2018) Hyperbolic phase field modeling of brittle
fracture: Part 1T - immersed IGA-RKPM coupling
for air-blast—structure interaction. Journal of the
Mechanics and Physics of Solids 121:114-132
Pham K, Marigo JJ (2010) Approche variationnelle
de I'endommagement: I. Les concepts fondamen-
taux. Comptes Rendus Mécanique 338(4):191-198
Pham K, Ravi-Chandar K, Landis C (2017) Exper-
imental validation of a phase-field model for frac-
ture. International Journal of Fracture 205(1):83—
101

Pillai U, Heider Y, Markert B (2018) A diffusive
dynamic brittle fracture model for heterogeneous
solids and porous materials with implementation
using a user-element subroutine. Computational
Materials Science 153:36-47

Quintanas-Corominas A, Turon A, Reinoso J, Ca-
soni E, Paggi M, Mayugo J (2020) A phase field
approach enhanced with a cohesive zone model for
modeling delamination induced by matrix cracking.
Computer Methods in Applied Mechanics and En-
gineering 358:112618

Reinoso J, Arteiro A, Paggi M, Camanho P (2017)
Strength prediction of notched thin ply laminates
using finite fracture mechanics and the phase
field approach. Composites Science and Technology
150:205-216

Reinoso J, Paggi M, Linder C (2017) Phase field
modeling of brittle fracture for enhanced assumed
strain shells at large deformations: formulation and
finite element implementation. Computational Me-
chanics 59(6):981-1001

Remmers J, de Borst R, Needleman A (2003) A co-
hesive segments method for the simulation of crack
growth. Computational mechanics 31(1-2):69-77
Rethore J, Gravouil A, Combescure A (2004) A sta-
ble numerical scheme for the finite element simula-
tion of dynamic crack propagation with remeshing.
Computer methods in applied mechanics and engi-
neering 193(42):4493-4510

Rouzegar SJ, Mirzaei M (2013) Modeling dynamic
fracture in Kirchhoff plates and shells using the
extended finite element method. Scientia Iranica
20(1):120-130

Scheider I, Brocks W (2006) Cohesive elements
for thin-walled structures. Computational Materi-
als Science 37(1-2):101-109

Scheider I, Brocks W (2009) Residual strength
prediction of a complex structure using crack ex-
tension analyses. Engineering Fracture Mechanics
76(1):149-163



957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

22

56. Schwab M, Todt M, Wolfahrt M, Pettermann H
(2016) Failure mechanism based modelling of im-
pact on fabric reinforced composite laminates based
on shell elements. Composites Science and Technol-
ogy 128:131-137

57. Shahani A, Fasakhodi MA (2009) Finite ele-
ment analysis of dynamic crack propagation us-
ing remeshing technique. Materials & design®®
30(4):1032-1041 997

58. Sih GC, Paris P, Erdogan F (1962) Crack-tip®
stress-intensity factors for plane extension and®®
plate bending problems. Journal of Applied Me®
chanics 29(2):306-312

59. Soto A, Gonzalez E, Maimi P, De La Escalera FM,
De Aja JS, Alvarez E (2018) Low velocity impact
and compression after impact simulation of thin ply
laminates. Composites Part A: Applied Science and
Manufacturing 109:413-427

60. Soto A, Gonzédlez E, Maimi P, de la Escalera FM,
de Aja JS, Alvarez E (2018) Low velocity impact
and compression after impact simulation of thin ply
laminates. Composites Part A: Applied Science and
Manufacturing 109:413-427

61. Ulmer H, Hofacker M, Miehe C (2012) Phase field
modeling of fracture in plates and shells. PAMM
12(1):171-172

62. Wilson ZA, Landis CM (2016) Phase-field modeling
of hydraulic fracture. Journal of the Mechanics and
Physics of Solids 96:264-290

63. Wu JY, Nguyen VP, Nguyen CT, Sutula D, Bordas
S, Sinaie S (2018) Phase field modeling of fracture.
Advances in Applied Mechancis: Multi-scale The-
ory and Computation 52

64. Zienkiewicz O, Taylor R, Too J (1971) Reduced in-
tegration technique in general analysis of plates and
shells. International Journal for Numerical Meth-
ods in Engineering 3(2):275-290

Appendices
A Jacobian for coordinate transformation

The Jacobian [J] for coordinate transformation map-
ping in a Reissner-Mindlin shell element and its first
column are defined as in Eq. (63) and (64). Eq. (64)
can be subsequently used to derive expressions for sec-
ond and third column in a similar manner.

1003

Te Ye 2¢ 1004
T Ym Zn (63 oos
x7C y7g Z?C 1006

[J] =

where,
til3i
x ZNi’E(xH—C 3)
ol Ctilsg
Tyl = |> Niy (xi + (64)
‘TaC

= (%)

where, x = [z,y, 2] is the position vector of any arbi-
trary point within the shell element, {£,n,(} are the
shell parametric coordinates, t; is the shell thickness
and {ls;, ms;, n3;} are the direction cosines of normal
vector V3; to the shell mid-surface at any node i.

B Coordinate-transformation matrix for
rotation of strain tensors

The strains can be rotated from any one coordinate sys-
tem (say C; with normalized basis vectors &) to another
coordinate system (Cy with normalized basis vectors é)
by multiplying with the strain-transformation matrix
7- shown in eq. (65).

Ti1 7'12}

65
Tor Tao (65)

|

with,
r2 2,2
¥ my ny

2,2 .2
I3 m3 n3

2. 2 2
I35 m3 n3

T = (66)

_llml ming ’I’Llll
lama mang nals
|[3m3 man3 n3ls

T2 (67)

-2l1l2 2m1m2 2n1n2
2l2l3 2m2m3 277,2713
_2l3l1 2m3m1 2n3n1

(68)

[11ms + lamy ming +mang nyly + naly
lamg 4 l3ma mans + mang nals + nsly
|Ism1 + lims mang + minz ngly +nqls

T2 = (69)

where, the terms [l1, m1,n1], [l2, ma, n2] and [l3, m3, ns]
correspond to the direction cosines of the shell nodal-
vectors Vi;, Vo, and V3, respectively, defined according
to Eq. (70) [11].

li = cos|ég, €3] ; my = cos|éy, €] ; n1 = cos[e,, é;)

lo = cos[éy, éy]; Mo = cos[éy, é,]; no = cos[e,, é,] (70)

l3 = cos[éy, €;]; m3 = cos[éy, é,]; ng = COS[E;, &,]

The resulting 7; is a (6 x 6) matrix which can be mul-
tiplied to (6 x 1) strain vector (expressed in Voigt no-
tation) to transform it from coordinate system C; to
coordinate system Cs.
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