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Abstract: The generation of land cover maps with both fine spatial and temporal resolution would
aid the monitoring of change on the Earth’s surface. Spatio-temporal sub-pixel land cover mapping
(STSPM) uses a few fine spatial resolution (FR) maps and a time series of coarse spatial resolution
(CR) remote sensing images as input to generate FR land cover maps with a temporal frequency
of the CR data set. Traditional STSPM selects spatially adjacent FR pixels within a local window
as neighborhoods to model the land cover spatial dependence, which can be a source of error and
uncertainty in the maps generated by the analysis. This paper proposes a new STSPM using FR remote
sensing images that pre- and/or post-date the CR image as ancillary data to enhance the quality of the
FR map outputs. Spectrally similar pixels within the locality of a target FR pixel in the ancillary data
are likely to represent the same land cover class and hence such same-class pixels can provide spatial
information to aid the analysis. Experimental results showed that the proposed STSPM predicted
land cover maps more accurately than two comparative state-of-the-art STSPM algorithms.

Keywords: sub-pixel mapping; same-class pixel; spatial distribution

1. Introduction

Land cover change plays a major role in environmental processes and patterns such as the global
carbon cycle and ecosystem diversity [1,2]. Optical remote sensing provides the opportunity to
monitor and map the land cover transition trajectories from space with different spatial and temporal
resolutions. Coarse spatial resolution (CR) remote sensing imagery such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) have a short revisiting period that can be used to monitor land
cover with a high temporal frequency but lack spatial detail. The relatively large size of the pixels
in such CR imagery often results in a large proportion of the image being composed of mixed pixels
which can degrade the ability to accurately map the land cover [3]. The mixed pixel problem can be
reduced through the use of spectral unmixing or soft classification analysis that allow for multiple
class membership [4]. Typically, the output of an unmixing or soft classification is a set of class
fraction images that represent the proportional cover of the classes in the area represented by CR pixels.
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However, a limitation of spectral unmixing is that the spatial distribution of each class within the
CR pixels is still unknown. The latter may, however, be estimated using super-resolution mapping
techniques such as sub-pixel mapping (SPM).

SPM is a technique that predicts a land cover map with a finer spatial resolution than the image
from which it is derived [5,6]. The SPM analysis typically uses the sub-pixel scale land cover information
contained in class fraction images to locate the classes geographically in the area represented by CR
pixels. A range of SPM algorithms has been developed [7–12] and the approach has been applied to
data sets ranging from a single, mono-temporal, CR image to spatio-temporal SPM that uses a time
series of CR images [13,14]. In the latter, the analysis may also be enhanced through the integration of
information from a few fine spatial resolution (FR) land cover maps, if available, which enable the
generation of FR land cover maps at the temporal frequency of the CR imagery [15]. For studies of land
cover change, such spatio-temporal SPM (STSPM) is more appropriate than SPM as the incorporated FR
maps can greatly reduce the uncertainty in modeling FR land cover temporal change trajectories [13,15].
STSPM has been applied in numerous studies to produce FR maps that facilitate the monitoring of
land cover change [13–20] and the filling of gaps in time series products such as maps of annual forest
cover obtained from PALRSAR/PALSAR2 [21].

Although a range of STSPM algorithms has been developed in recent years, limitations still exist
in accurately predicting the sub-pixel scale land cover map. The limitation is mainly because the land
cover spatial distribution model adopted in STSPM is relatively simple, which makes it difficult to
represent the real-world complex spatial distribution of various land covers [5]. The most popular
land cover spatial distribution model used in SPM and STSPM is the spatial dependence model, which
aims to maximize the spatial dependence between neighboring FR pixels, based on the assumption
that spatially adjacent objects are more alike than those that are far apart [5]. However, the spatial
dependence model is most suitable when the object of interest is larger than the CR pixel size. Objects
are, however, often smaller than the CR pixel size and the aim of SPM is to represent the land cover
mosaic at a sub-pixel scale. Furthermore, using the spatial dependence model in SPM and STSPM
usually produces inappropriate smoothed boundaries between classes [13,22].

One way to reduce errors in STSPM is to incorporate additional ancillary data to constrain the
analysis in order to enhance the quality of the map generated from it. A range of ancillary data sets may
be used. For example, studies have used the digital elevation model (DEM) [23], vector boundaries [24],
and points-of-interest (POI) [25] to refine the result from SPM. However, in such studies it is typically
assumed that the land cover is the same at the time of acquisition of both the ancillary data and the CR
image. This assumption may be untenable for environments that experience relatively abrupt land
cover change. A temporally dense FR data set would be attractive in STSPM for areas that experience
abrupt land cover change. It is important that the ancillary data should be acquired temporally close
to the date of the map to be predicted and that the ancillary data should be temporally updated.

In STSPM, the FR maps used to inform the analysis are usually produced from FR remote sensing
images. These FR images could, however, also be used as a source of additional ancillary data for use
in STSPM. In the ancillary FR images, the local similar pixels are likely from the same land cover class.
For each FR pixel, a number of similar FR pixels within a local window could be extracted that have
the most similar spectral values to the target pixel in the ancillary FR images. The spatial distribution
of the local similar pixels could represent the spatial distribution information about the same-class
pixels to the target FR pixel within the local window. Since the same-class pixels are extracted from FR
images, they can indicate detailed land cover spatial distribution information within the CR pixels,
which can be used in combination with the spatial dependence model in STSPM to avoid producing
over-smoothed boundaries between land cover patches. The same-class pixels are extracted from the
ancillary FR images which are temporally updated in a high frequency, and the effect of abrupt change
between the dates of ancillary data and the map to be predicted is expected to be minimized.

This paper proposed a novel STSPM that uses not only FR land cover maps but also FR remote
sensing images as ancillary data to help the analysis. Unlike traditional STSPMs that only use FR land
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cover maps as ancillary data and use spatial dependence models to characterize the land cover spatial
distribution, the proposed method also incorporates same-class pixels from the ancillary FR images
to assist the prediction of land cover spatial distributions at the FR scale. The proposed same-class
pixels-based STSPM model, i.e., SCPSM, was assessed in three experiments with different land cover
change scenarios. The first experiment focused on land cover changes of a spatially heterogeneous
region in which six land cover classes were present. The second experiment focused on land cover
change caused by a forest fire. The third experiment focused on deforestation due to forest clearance.
The first and second experiments used resampled remote sensing images as the CR image to exclude
errors such as misregistration, and the third experiment used a real MODIS MCD43A4 image as the
CR image and Landsat as the source FR images. The proposed SCPSM was compared with two
state-of-the-art STSPM algorithms.

2. Methods

2.1. The Scheme of SCPSM

STSPM predicts the FR land cover map XFR
tp at the time of CR image yCR

tp acquisition tp, using FR

land cover XFR
t0 and XFR

tn at observation times t0 and tn as input (t0<tp<tn). SCPSM also inputs the FR
images yFR

t0 and yFR
tn at observation times t0 and tn. The input CR image yCR

tp contains I×J pixels and

BCR spectral bands. The input FR maps XFR
t0 and XFR

tn contain I×s×J×s pixels where s is the scale factor
between the CR and FR pixels, and contain C land cover classes. Each CR pixel contains s×s FR pixels.
The FR images yFR

t0 and yFR
tn contain I×s×J×s pixels and BFR spectral bands. The estimation of FR map

using STSPM is equivalent to minimizing the energy function in Equation (1):

f
(
XFR

tp

)
= λspatial

·Uspatial(XFR
tp ) + λancillary

·Uancillary(XFR
tp

∣∣∣yFR
t0 , yFR

tn )

+λtemporal
·Utemporal(XFR

tp

∣∣∣XFR
t0 , XFR

tn ) + Uspectral(yCR
tp

∣∣∣∣XFR
tp )

(1)

where f (XFR
tp ) is the objective function, Uspatial(XFR

tp ) is the spatial term, Uancillary(XFR
tp |yFR

t0 ,yFR
tn ) is the

ancillary data term, Utemporal(XFR
tp |XFR

t0 ,XFR
tn ) is the temporal term, and Uspectral(yCR

tp |XFR
tp ) is the spectral

term, respectively. λspatial, λancillary, and λtemporal are the weights of the spatial, ancillary data and
temporal terms, respectively. The flow chart of SCPSM is in Figure 1.
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2.2. Spatial Term

The STSPM spatial term aims to encode the land cover spatial distribution prior information
in predicting the FR map XFR

tp . The spatial dependence model is used in this paper, and the class
label of the target FR pixel is dependent on its spatially neighboring FR pixels in a local window [22].
Assume Nspatial(aijk) is the set of FR spatially neighboring pixels that includes all FR pixels inside a
square window whose center is aijk, and al is a spatially neighboring pixel of aijk in Nspatial(aijk). The size
of the neighborhood Nspatial(aijk) is Wspatial, and Nspatial(aijk) contains a total of L FR pixels, excluding
the central pixel (L = Wspatial

×Wspatial
−1). Figure 2a shows an example of the selected FR spatially

neighboring pixels within a 3×3 local window. The spatial energy from the spatially neighboring pixels
for the FR pixel aijk is calculated as:

Uspatial
i jk =

L∑
l=1

wspatial
l × δ

(
c(ai jk), c(al)

)
(2)

where c(al) is the land cover class label for FR pixel al, and δ(c(aijk),c(al)) equals 1 if c(aijk) and c(al) are

the same and 0 otherwise. wspatial
l is the weight of FR spatially neighboring pixel that is calculated as:

wspatial
l =

(
1/d

(
ai jk, al

))
/

L∑
l=1

(
1/d

(
ai jk, al

))
(3)

where d(aijk,al) is the Euclidean distance between aijk and al.
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Figure 2. The schematic diagram of spatially neighboring pixels in the spatial term and same-class
pixels in the ancillary data term. (a) Spatially neighboring fine spatial resolution (FR) pixels in the spatial
term. (b) Same-class FR pixels selected from FR image at t0 in the ancillary data term; (c) same-class FR
pixels selected from FR image at tn in the ancillary data term; (d) final same-class FR pixels used in the
ancillary data term. The FR pixels as same-class pixels from images at t0 and tn in (b,c) are randomly
selected in Figure 2.

The contribution of the spatial term from all FR pixels is calculated as:

Uspatial(XFR
tp ) =

I∑
i=1

J∑
j=1

s2∑
k=1

(
−1×Uspatial

i jk

)
. (4)

2.3. Ancillary Data Term

In the ancillary data term, the same-class FR pixels extracted from the ancillary FR images are
used in predicting the FR pixel labels, and the class label of the target FR pixel is dependent on its
same-class FR pixels within a local window. The same-class FR pixels are selected according to the
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smallest spectral difference between the target FR pixel and the FR pixels within the local window in
the ancillary FR images. Figure 2b–c shows the schematic diagram of the selection of FR same-class
pixels within a local window from yFR

t0 and yFR
tn , respectively. For a target FR pixel aijk, a local window

centered at aijk is first defined (marked as dashed lines in Figure 2b–d). The local window size is
Wancillary. Then the spectral difference between aijk and a FR pixel am within the local window at time t0

and tn is calculated as:

Sm,t0 =
BFR∑
b=1

(∣∣∣yi jk,b,t0 − ym,b,t0

∣∣∣/yi jk,b,t0

)
(5)

Sm,tn =
BFR∑
b=1

(∣∣∣yi jk,b,tn − ym,b,tn

∣∣∣/yi jk,b,tn

)
(6)

where yijk,b,t0 and ym,b,t0 are the spectral values of FR pixels aijk and am in the FR image yFR
t0 , and yijk,b,tn

and ym,b,tn are the spectral values of FR pixels aijk and am in the FR image yFR
tn . A number of M FR pixels

with the smallest spectral difference at time t0 and tn are selected as same-class FR neighboring pixels
for the target FR pixel aijk at time t0 and tn, respectively, excluding the central pixel (Figure 2b,c) [26,27].
Finally, an intersection operation is applied to the selected same-class FR neighboring pixels at time
t0 and tn to produce the final same-class FR neighboring pixels (Figure 2d) [27]. If no same-class FR
neighboring pixel is selected, then no same-class FR neighboring pixel information is used in the spatial
term for the FR pixel under consideration.

Assume Nancillary(aijk) is the final set of same-class FR neighboring pixels, and M’ FR pixels are
included in Nancillary(aijk) after the intersection operation. The spatial energy from the same-class FR
neighboring pixels is calculated as:

Uancillary
i jk =

M′∑
m=1

wancillary
m × δ

(
c(ai jk), c(am)

)
(7)

where am is a same-class FR neighboring pixel of aijk in Nancillary(aijk). wancillary
m is the weight of am, which

is calculated as:

wancillary
m = (1/Dm)/

M′∑
m=1

(1/Dm) (8)

Dm = 1 + d
(
ai jk, am

)
/
(
Wancillary/2

)
(9)

where Dm is the relative distance between the am and aijk [28]. The contribution of the ancillary data
term from all FR pixels is calculated as:

Uancillary(XFR
tp

∣∣∣yFR
t0 , yFR

tn ) =
I∑

i=1

J∑
j=1

s2∑
k=1

(
−1×Uancillary

i jk

)
. (10)

2.4. Temporal Term

The temporal term of SCPSM aims to encode temporal dependence of land covers between XFR
t0

and XFR
tp and between XFR

tp and XFR
tn [13,14]. In particular, if an FR pixel belongs to class c in the FR map

XFR
t0 or XFR

tn , then this FR pixel has a relatively higher probability of belonging to class c than other
classes according to the temporal dependence. The temporal term from all FR pixels is calculated as:

Utemporal(XFR
tp

∣∣∣XFR
t0 , XFR

tn ) =
I∑

i=1

J∑
j=1

s2∑
k=1

(
−λT ×

(
wi j,tt0

× δ
(
c(ai jk), c(ai jk,t0)

)
+ wi j,tn × δ

(
c(ai jk), c(ai jk,tn)

)))
(11)
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where c(aijk, t0) and c(aijk, tn) are the class of FR pixel aijk in the maps XFR
t0 and XFR

tn , respectively. wij,t0

and wij,tn are the temporal weights for CR pixel (i,j) at time t0 and tn [13].

2.5. Spectral Term

The spectral term in SCPSM is used to link the predicted FR land cover map XFR
tp with the CR

remote sensing image yCR
tp , based on the assumption that the FR spectral values are linearly combined

in each CR pixel [13,29]. The spectral term aims to minimize the spectrum difference between the
observed CR pixel spectral values in yCR

tp and the synthetic CR pixel spectral values according to the

FR map XFR
tp and the endmember values as:

Uspectral(yCR
tp

∣∣∣∣XFR
tp ) =

I∑
i=1

J∑
j=1

BCR∑
b=1

‖yi j,b,tp − Eb,tp fi j,tp
‖ (12)

where yij,b,tp is the spectral value of the bth band of CR pixel (i,j) at time tp, Eb,tp is a 1×C vector
representing the endmember values of C classes for the bth band, f ij,tp is a C×1 vector representing
the class fraction values of each class in the CR pixel (i,j) at time tp, and ‖‖ is the L2 norm. f ij,tp is
calculated by dividing the total number of FR pixels of each class in the CR pixel (i,j) by s2 in XFR

tp ,
which is estimated and iteratively updated in SCPSM.

2.6. Model Initialization and Optimization

An initial FR map is produced by spectrally unmixing the CR image yCR
tp to CR class fraction

images based on the linear mixture model. In each CR pixel, the number of FR pixels belonging to
a class is determined by multiplying the CR class fraction of that class by s2. Then the FR pixels are
randomly allocated within each CR pixel. Simulated annealing is used to update the initial FR map,
and the model is run until convergence or when some predefined stopping criterion, such as when less
than 0.1% FR pixels are changed in class labels during two successive iterations, is achieved.

3. Experiments

The performance of SCPSM was validated using three experiments each involving substantial
land cover change. In the first and second experiments, the CR image was produced by spatially
resampling the corresponding FR image at the prediction time, and hence avoiding complications
linked to the spatial co-registration of data sets. The third experiment used a real MODIS image and
a Landsat image, respectively, as the CR and FR data, in order to test the performance of SCPSM in
real applications.

The first experiment focused on land cover change using the National Land Cover Database (NLCD)
of the U.S.A. (https://www.usgs.gov/centers/eros/science/national-land-cover-database?qt-science_
center_objects=0#qt-science_center_objects). The second experiment focused on land cover change
caused by a forest fire. The third experiment focused on deforestation arising from forest clearance.

3.1. NLCD Experiment

This experiment focused on an area located near Charlotte, South Carolina (35◦24′00” N and
81◦10′00” W), U.S.A. The Landsat 5 Thematic Mapper (TM) image (path 017, row 036) acquired on
7 October 2011, Landsat 8 Operational Land Imager (OLI) image (path 017, row 036) acquired on
13 November 2013 and on 5 November 2016 were downloaded, and a subset of 800 × 800 pixels was
extracted and used as the study area (Figure 3a–c). The 30 m Landsat OLI image on 13 November 2013
was then spatially resampled to 480 m, similar to the spatial resolution of the MODIS image (Figure 3d).
The scale factor between the CR and FR images was set to 16, and each CR pixel exactly contained
16 × 16 FR pixels [28,30]. The spectral value of a CR pixel in the MODIS-like image was calculated by
averaging values of all FR Landsat pixels inside the CR pixel. The Landsat images on 7 October 2011

https://www.usgs.gov/centers/eros/science/national-land-cover-database?qt-science_center_objects=0#qt-science_center_objects
https://www.usgs.gov/centers/eros/science/national-land-cover-database?qt-science_center_objects=0#qt-science_center_objects
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and 5 November 2016 (Figure 3a,c) were used as the FR images at t0 and tn, and the resampled Landsat
image on 13 November 2013 (Figure 3d) was used as the CR image at tp.
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Figure 3. The fine spatial resolution (FR) images, coarse spatial resolution (CR) image, FR land cover
maps and FR land cover change map used in the National Land Cover Database (NLCD) experiment.
The scale factor s was 16. (a) FR image at t0 from Landsat image acquired on 7 October 2011; (b) FR
image at tp from Landsat image acquired on 13 November 2013; (c) FR image at tn from Landsat image
acquired on 5 November 2016; (d) CR image at tp resampled from (b); (e) FR land cover map at t0;
(f) FR land cover map at tp (reference land cover map); (g) FR image at tn; (h) FR land cover change
map that was produced by comparing (e–g).

The 30 m NLCD land cover maps for the years 2011, 2013, and 2016 were used (Figure 3e–g).
The original NLCD maps with 16 classes according to the NLCD classification system were reclassified
into 6 classes: Water, Developed, Barren, Forest & Shrubland, Herbaceous & Planted/Cultivated,
and Wetlands. The percentage cover of these classes in the reference map was 1.20% for Water,
6.92% for Developed, 0.23% for Barren, 63.99% for Forest & Shrubland, 14.62% for Herbaceous &
Planted/Cultivated, and 13.05% for Wetlands. The FR land cover change map was produced by
comparing the NLCD 2011, 2013, and 2016 maps (Figure 3h). An FR pixel was labelled as unchanged
in the change map if it had the same class label in each of the 3 maps. Otherwise, this FR pixel was
labelled as changed in the FR change map. The NLCD 2011 and 2016 maps (Figure 3e,g) were used
as the FR maps at t0 and tn, and NLCD 2013 was used as the FR map at tp (Figure 3f) which was the
reference map for validation.

3.2. Forest Fire Experiment

This experiment focused on an area located near Las Piedras (10◦56′00” S and 66◦00′00” W),
Bolivia. The Landsat 5 TM images (path 233, row 068) acquired on 7 June 2010, 11 September 2010 and
27 September 2010 were downloaded and a 960 × 960 block of pixels was extracted to form the study
area (Figure 4a–c). Two sites of burned areas due to forest fire can be seen in the Landsat images on
11 September 2010 and 27 September 2010 as highlighted in the black rectangles. The 30 m Landsat
image on 11 September 2010 was spatially resampled to a 480 m image as the CR image by averaging
values of all FR Landsat pixels inside the CR pixel (Figure 4d), and the scale factor between the CR and
FR images was 16. The Landsat image on 7 June 2010 and 27 September 2010 (Figure 4a,c) were used
as the FR images at t0 and tn, and the resampled Landsat image on 11 September 2010 (Figure 4d) was
used as the CR image at tp.



Remote Sens. 2020, 12, 503 8 of 21

Remote Sens. 2020, 12, 503 8 of 21 

 

 

Figure 4. The FR images, CR image, FR land cover maps and FR land cover change map used in the 

experiment for the forest fire experiment. The scale factor s was 16. (a) FR image at t0 from Landsat 

image acquired on 7 June 2010; (b) FR image at tp from Landsat image acquired on 11 September 2010; 

(c) FR image at tn from Landsat image acquired on 27 September 2010; (d) CR image at tp resampled 

from (b); (e) FR land cover map at t0; (f) FR land cover map at tp (reference land cover map); (g) FR 

image at tn; (h) FR land cover change map that was produced by comparing (e–g). 

3.3. Forest Clearance Experiment  

This experiment focused on an area located near Mato Grosso (12°33′00″S and 55°42′00″W), 

Brazil. The Landsat 5 TM images (path 226, row 069) acquired on 23 July 2001, 21 July 2003 and 5 June 

2004 were downloaded and a block of 3200 × 3200 pixels was extracted to form the study area (Figure 

5a-c). In this study area, a land cover change caused by forest clearance occurred. The MODIS 

MCD43A4 Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance 

(NBAR) dataset on 21 July 2003 was used as the CR image. The MODIS image was re-projected from 

sinusoidal projection to UTM projection with a spatial resolution of 480 m, and the scale factor 

between the CR and FR images was 16 (Figure 5d). The Landsat image on 23 July 2001 and 5 June 

2004 (Figure 5a,c) were used as the FR images at t0 and tn, and the MODIS image on 21 July 2003 

(Figure 5d) was used as the CR image at tp.  

 

Figure 5. The FR images, CR image, FR land cover maps, and FR land cover change map used in the 

forest clearance experiment. The scale factor s was 16. (a) FR image at t0 from Landsat image acquired 

on 23 July 2001; (b) FR image at tp from Landsat image acquired on 21 July 2003; (c) FR image at tn 

from Landsat image acquired on 5 June 2004; (d) CR image at tp from MODIS image acquired on 21 

Figure 4. The FR images, CR image, FR land cover maps and FR land cover change map used in the
experiment for the forest fire experiment. The scale factor s was 16. (a) FR image at t0 from Landsat
image acquired on 7 June 2010; (b) FR image at tp from Landsat image acquired on 11 September 2010;
(c) FR image at tn from Landsat image acquired on 27 September 2010; (d) CR image at tp resampled
from (b); (e) FR land cover map at t0; (f) FR land cover map at tp (reference land cover map); (g) FR
image at tn; (h) FR land cover change map that was produced by comparing (e–g).

The Landsat images were classified into three land cover classes: Water, Forest, and Bareland/Impervious,
using a support vector machine classifier (Figure 4e–g). The radial basis function was selected as the
kernel function in support vector machine for its ability to classify remote sensing image with high
accuracy [31]. The training samples of each class were selected according to Google Earth, and the
endmembers were selected directly from the Landsat images. The percentage cover of the classes in
the reference map was 9.38% for Water, 76.57% for Forest, and 14.05% for Bareland/Impervious. An FR
land cover change map was produced by comparing the three land cover maps, and an FR pixel was
labelled as unchanged in the FR change map only when its class was the same in the three land cover
maps (Figure 4h). The land cover maps on 7 June 2010 and 27 September 2010 (Figure 4e,g) were used
as the FR maps at t0 and tn, and the land cover map on 11 September 2010 was used as the FR map at
tp (Figure 4f), which was the reference map used for validation.

3.3. Forest Clearance Experiment

This experiment focused on an area located near Mato Grosso (12◦33′00” S and 55◦42′00” W),
Brazil. The Landsat 5 TM images (path 226, row 069) acquired on 23 July 2001, 21 July 2003 and
5 June 2004 were downloaded and a block of 3200 × 3200 pixels was extracted to form the study area
(Figure 5a–c). In this study area, a land cover change caused by forest clearance occurred. The MODIS
MCD43A4 Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR)
dataset on 21 July 2003 was used as the CR image. The MODIS image was re-projected from sinusoidal
projection to UTM projection with a spatial resolution of 480 m, and the scale factor between the CR
and FR images was 16 (Figure 5d). The Landsat image on 23 July 2001 and 5 June 2004 (Figure 5a,c)
were used as the FR images at t0 and tn, and the MODIS image on 21 July 2003 (Figure 5d) was used as
the CR image at tp.

The two Landsat images at t0 and tn were classified to form land cover maps depicting the Forest
and Non-forest classes using a support vector machine (Figure 5e–g). The radial basis function was
selected as the kernel function in support vector machine for its ability to classify remote sensing image
with high accuracy [31]. The Landsat image at tp was classified to FR land cover map as the reference
map using the support vector machine. The training samples of each class were selected according to
Google Earth, and the endmembers were selected directly from the Landsat images. The percentage
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cover of the classes in the reference map was 61.63% for Forest and 38.37% for Non-forest. The FR
land cover change map was produced by comparing the three land cover maps, and an FR pixel was
labelled as unchanged in the FR change map only when its class was the same in the three land cover
maps in Figure 5h. The land cover maps on 23 July 2001 (Figure 5e) and 5 June 2004 (Figure 5g) were
used as the FR maps at t0 and tn, and the land cover map on 21 July 2003 was used as the FR map at tp

(Figure 5f), which was the reference map used for validation.
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Figure 5. The FR images, CR image, FR land cover maps, and FR land cover change map used in the
forest clearance experiment. The scale factor s was 16. (a) FR image at t0 from Landsat image acquired
on 23 July 2001; (b) FR image at tp from Landsat image acquired on 21 July 2003; (c) FR image at tn from
Landsat image acquired on 5 June 2004; (d) CR image at tp from MODIS image acquired on 21 July
2003; (e) FR land cover map at t0; (f) FR land cover map at tp (reference land cover map); (g) FR image
at tn; (h) FR land cover change map that was produced by comparing (e–g).

3.4. Comparator Methods

SCPSM was compared with two popular STSPM algorithms that use both CR image and FR
land cover maps as input, including the spatio-temporal PSA-based SPM (STPSA) [32] and the
spatio-temporal image and map fusion model (STIMFM) [13]. STPSA uses a CR image at tp and the FR
land cover map at t0 as input. STIMFM uses a CR image at tp and two pairs of FR land cover maps at t0

and tn as inputs. SCPSM uses a CR image at tp and two pairs of FR land cover maps and FR images at
t0 and tn as inputs. STIMFM has the same spatial, temporal, and spectral terms in its objective function
as SCPSM, but it does not have the ancillary data term and does not use FR images at t0 and tn as
inputs. The linear mixture model was used to unmix the CR image at tp to generate CR class fraction
images, which were the input data for STPSA. The CR class fraction images were also used to generate
the initial FR land cover map for STIMFM and SCPSM.

The parameters used in SCPSM were defined on the basis of prior experience. The local window
size Wspatial was set to 7 [33], and the local window size Wancillary was 16, which was equal to the scale
factor between the CR and FR pixels [28]. The number of same-class pixels selected from the FR
image t0 or tn, i.e., M, was set to 20. The temporal weights for CR pixel (i,j) at time t0 and tn, i.e., wij,t0

and wij,tn, were set according to those used in STIMFM [13]. The optimal weights for λspatial, λtemporal,
and λancillary in SCPSM in all experiments were set through trial and error.

Quantitative assessments, including omission and commission errors, were used to assess the
per-class accuracy. The global accuracy was used to assess the accuracy of the entire image for all
pixels. The accuracy for changed pixels was expressed as the percentage of correctly labelled pixels
of changed land cover among all pixels of the changed land cover, and the accuracy for unchanged
pixels was the percentage of correctly labelled pixels of unchanged land cover among all pixels of the
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unchanged land cover. The error map was used to visualize the correctly labelled pixels of changed
land cover, correctly labelled pixels of unchanged land cover, incorrectly labelled pixels of changed
land cover, and incorrectly labelled pixels of unchanged land cover, respectively.

4. Results

4.1. NLCD Experiment

The predicted land cover maps from different methods are shown in Figure 6. The maps generated
from STIMFM and SCPSM in Figure 6b,c were visually more similar to the reference map in Figure 3f
than that generated from STPSA in Figure 6a. Many Forest & Shrubland pixels in green color in
Figure 6a were incorrectly labeled as Wetlands pixels in the STPSA map. Many pixels incorrectly
predicted as being of the unchanged class were found in the error map from STPSA, and were mostly
eliminated in the error maps from STIMFM and SCPSM, showing that both STIMFM and SCPSM can
predict unchanged pixels with better accuracy.Remote Sens. 2020, 12, 503 10 of 21 
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Figure 6. The result of land cover maps predicted from different methods, and the corresponding error
maps in the NLCD experiment. (a) spatio-temporal PSA-based SPM (STPSA); (b) spatio-temporal
image and map fusion model (STIMFM); (c) same-class pixels-based STSPM model (SCPSM); (d) STPSA
error map; (e) STIMFM error map; (f) SCPSM error map.

Figure 7 shows the zoomed areas in the outputs generated from the different methods. In both of
the zoomed areas, the predicted map from STPSA was relatively dissimilar to the reference FR map at
tp in terms of the representation of spatial detail. For instance, in area A, the linear Developed class
feature highlighted in the black ellipse was partly predicted by STPSA. However, since STPSA used
the CR class fraction images unmixed from the CR remote sensing image at tp as input and the analysis
constrained to require that the class fractions should be unchanged between the input CR class fraction
image and the output FR map, any errors in the class fraction images inevitably impact negatively
on the map output from STPSA. In contrast, the linear Developed class feature was better predicted
in the maps from STIMFM and SCPSM. In the zoomed area B, the predicted FR map from STIMFM
contained rounded boundaries for the changed object highlighted in the black circles. This is because
STIMFM uses the spatial dependence model from a spatially neighboring pixel in the spatial term,
which is most suitable for objects that are larger than the size of the CR pixel that may over-smooth
patch boundaries [5,34]. The boundaries between classes were better predicted in the map generated
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from SCPSM, showing that incorporating FR same-class pixels in STSPM can enhance the final map
in terms of the spatial detail represented. In the error maps for the zoomed areas A and B, the map
generated from STPSA contained many incorrectly labelled pixels. This is because these models are
constrained to maintain the class fractions between the input CR class fraction image and the output
FR map, and the predicted maps were affected by errors in the class fraction images. The incorrectly
predicted unchanged pixels were not found in the maps from STIMFM and SCPSM, and the incorrectly
predicted changed pixels were reduced in the map from SCPSM than that from STIMFM.Remote Sens. 2020, 12, 503 11 of 21 
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Figure 7. Input, reference, resulting land cover maps and error maps for the zoomed areas in Figure 6
in the NLCD experiment. Each zoomed area contains 80 × 80 FR pixels. (a–l) are the input, reference,
resulting maps and error maps for zoomed area A: (a) FR image at t0; (b) FR map at t0; (c) CR image at
tp; (d) FR map at tp; (e) FR image at tn; (f) FR map at tn; (g) STPSA; (h) STIMFM; (i) SCPSM; (j) STPSA
error map; (k) STIMFM error map; (l) SCPSM error map. (m–x) are the input, reference, resulting maps
and error maps for zoomed area B: (m) FR image at t0; (n) FR map at t0; (o) CR image at tp; (p) FR map
at tp; (q) FR image at tn; (r) FR map at tn; (s) STPSA; (t) STIMFM; (u) SCPSM; (v) STPSA error map;
(w) STIMFM error map; (x) SCPSM error map.

The accuracies of the predicted FR maps from different methods are shown in Table 1. The STIMFM
and SCPSM generated the lowest omission and commission errors for different classes. For the Forest
& Shrubland classes and Herbaceous & Planted/Cultivated classes, which were the two dominant land
cover classes in the reference map, SCPSM generated both the lowest omission and commission errors.
For the Wetlands classes (the percentage was 13.05%), SCPSM generated relatively higher omission
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errors but lower commission errors than STIMFM. For changed pixels, the accuracy from STPSA was
33.59%, and the accuracy increased to 59.48% from STIMFM, and increased to 64.46% from SCPSM,
showing that SCPSM can predict with the highest accuracy for changed pixels. The accuracy of the
classifications of unchanged pixels increased from 55.58% from STPSA to 100% from both STIMFM
and SCPSM. The prediction accuracies for unchanged pixels were higher than for changed pixels for
all the STSPM methods. This is because the FR maps were used in these STSPM algorithms, and an FR
pixel has a higher probability of being labelled with the class of that FR pixel in the input FR map than
other classes, according to the temporal dependence model used in STSPM. SCPSM generated the
highest overall accuracy, indicating its suitability for land cover mapping.

Table 1. The error and accuracies (%) for changed pixels, unchanged pixels, and all pixels (overall
accuracy) of different methods in the NLCD experiment.

Mapping Method

STPSA STIMFM SCPSM

Error

Omission
error

Water 28.44 11.79 11.12
Developed 82.61 0.00 0.00

Barren 21.22 1.99 1.99
Forest & Shrubland 50.02 2.62 2.05

Herbaceous &
Planted/Cultivated 27.37 16.63 15.58

Wetlands 35.44 0.16 0.20

Commission
error

Water 87.33 2.32 2.46
Developed 25.19 0.10 0.24

Barren 90.70 10.98 11.91
Forest & Shrubland 12.71 3.76 3.50

Herbaceous &
Planted/Cultivated 43.28 12.19 9.66

Wetlands 75.47 0.71 0.62

Accuracy
Changed pixels 33.59 59.48 64.46

Unchanged pixels 55.58 100.00 100.00
Overall accuracy 53.26 95.72 96.25

4.2. Forest Fire Experiment

In Figure 8, the predicted map from STPSA contained many small speckle-like artifacts. This is
because the class fractions in the map produced from STPSA must be the same as those in the CR class
fraction images input to the analysis, and the error in class fraction images resulted in the speckle-like
artifacts. For instance, if a CR pixel contains 100% of Forest pixels but the unmixed class fraction
images contain 5% of Bareland/Impervious class, then 16 × 16 × 5% = 13 FR pixels will be labelled as
Bareland/Impervious class in the area represented by this CR pixel. The speckle-like artifacts were
eliminated in the maps from STIMFM and SCPSM because they did not constrain the analysis to
maintain the class fraction information. The FR maps from STIMFM and SCPSM were close to the
reference map in Figure 4f. Most of the incorrectly labelled pixels of unchanged land cover in blue
color in Figure 8e,f were eliminated in the STIMFM and SCPSM maps.

Figure 9 shows the zoomed areas which experienced forest fire in the period t0 to tn in the maps
produced by the different methods. The map from STPSA contained many speckle-like artifacts which
were eliminated in the maps from STIMFM and SCPSM. The spatial detail of the burned area in the
map from STPSA was dissimilar to the reference FR map at tp. The map from STIMFM contained
rounded boundaries such as those highlighted in the black circles in zoomed area A, and parts of
the burned area were not predicted in the map from STIMFM, highlighted in the black circles in
zoomed area B. In contrast, the map from SCPSM was more similar to the reference map than that
from STIMFM. The spatial details of the burned area were better reconstructed in the SCPSM map in
zoomed area A, and most of the missing parts of the burned area in the STIMFM map highlighted
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in the black circles in zoomed area B were reconstructed in the SCPSM map. The error maps from
STIMFM and SCPSM contained very few incorrectly labelled pixels, especially for unchanged classes.
The maps from SCPSM contained the least error in both zoomed areas.Remote Sens. 2020, 12, 503 13 of 21 
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STIMFM and SCPSM generated the lowest omission and commission errors (Table 2). SCPSM
generated the lowest omission and commission errors for the Water class. The transition from Forest
to Bareland/Impervious due to forest fire is the dominant land cover change trajectory in this area.
STIMFM generated lower omission error for the Forest class but a much higher omission error for
the Bareland/Impervious class than SCPSM. For instance, many Bareland/Impervious pixels were not
mapped in the result from STIMFM in Figure 9, showing that STIMFM underestimated the burned
areas due to forest fire in this experiment. SCPSM generated the lowest commission error for Forest
class, and STIMFM generated the lowest commission error for the Bareland/Impervious class. STIMFM
generated the highest accuracy for changed pixels, and STIMFM and SCPSM generated the highest
accuracy for unchanged pixels in Table 2. The overall accuracy increased from 88.59% for STPSA,
and increased to 96.15% for STIMFM and 97.03% for SCPSM.

Table 2. The error and accuracies (%) for changed pixels, unchanged pixels and all pixels (overall
accuracy) of different methods in the forest fire experiment.

Mapping Method

STPSA STIMFM SCPSM

Error

Omission error
Water 28.11 5.59 5.02
Forest 8.63 1.02 1.45

Bareland/Impervious 15.43 18.11 9.89

Commission
error

Water 15.75 2.71 2.29
Forest 4.12 3.51 1.99

Bareland/Impervious 37.57 6.87 8.84

Accuracy
Changed pixels 66.29 65.81 73.63

Unchanged pixels 91.41 99.99 99.99
Overall accuracy 88.59 96.15 97.03
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Figure 9. Input, reference, resulting land cover maps, and error maps for the zoomed areas in Figure 8
in the forest fire experiment. Each zoomed area contains 240 × 240 FR pixels. (a)–(l) are the input,
reference, resulting maps and error maps for zoomed area A: (a) FR image at t0; (b) FR map at t0; (c) CR
image at tp; (d) FR map at tp; (e) FR image at tn; (f) FR map at tn; (g) STPSA; (h) STIMFM; (i) SCPSM;
(j) STPSA error map; (k) STIMFM error map; (l) SCPSM error map. (m)–(x) are the input, reference,
resulting maps and error maps for zoomed area B: (m) FR image at t0; (n) FR map at t0; (o) CR image at
tp; (p) FR map at tp; (q) FR image at tn; (r) FR map at tn; (s) STPSA; (t) STIMFM; (u) SCPSM; (v) STPSA
error map; (w) STIMFM error map; (x) SCPSM error map.

4.3. Forest Clearance Experiment

In Figure 10d, the error map from STPSA contained many pixels incorrectly labelled as changed
and unchanged. A visual comparison shows that the error maps from STIMFM and SCPSM contained
fewer incorrectly predicted unchanged pixels than that from STPSA. In both zoomed areas in Figure 11,
the map from STPSA contained many speckle-like artifacts due to class fraction errors from spectral
unmixing. In zoomed area A, the class boundary from SCPSM highlighted in the black circle was more
similar to the reference map than that from STIMFM. In zoomed area B, the corners of the Non-forest
patch from STIMFM were rounded due to over-smoothing, and the shape of corners was better mapped
using SCPSM. In both zoomed areas, the error map from STPSA contained many incorrectly predicted
changed and unchanged pixels. The error maps from STIMFM and SCPSM eliminated most of the
incorrectly predicted unchanged pixels. The error map from SCPSM contained fewer incorrectly
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predicted changed pixels than that from STIMFM, such as those highlighted in the black circles in both
zoomed areas.Remote Sens. 2020, 12, 503 15 of 21 

 

 

Figure 10. The land cover maps predicted from different methods and the corresponding error maps 

in the forest clearance experiment. (a) STPSA; (b) STIMFM; (c) SCPSM; (d) STPSA error map; (e) 

STIMFM error map; (f) SCPSM error map. 

 

Figure 10. The land cover maps predicted from different methods and the corresponding error maps in
the forest clearance experiment. (a) STPSA; (b) STIMFM; (c) SCPSM; (d) STPSA error map; (e) STIMFM
error map; (f) SCPSM error map.

SCPSM generated the fewest omission and commission errors for Forest class and the fewest
commission error for Non-forest among all methods in Table 3. SCPSM generated the highest accuracy
for changed pixels, but the predicted accuracy for unchanged pixels was 0.01% lower than STIMFM.
The overall accuracy was slightly lower than 93% for STPSA, and increased to 96.61% for STIMFM and
97.33% for SCPSM.

Table 3. The error and accuracies (%) for changed pixels, unchanged pixels and all pixels (overall
accuracy) of different methods in the forest clearance experiment.

Mapping Method

STPSA STIMFM SCPSM

Error
Omission error

Forest 3.47 1.88 0.67
Non-forest 13.03 5.82 5.87

Commission
error

Forest 7.75 3.56 3.55
Non-forest 6.02 3.11 1.14

Accuracy
Changed pixels 83.24 82.99 86.66

Unchanged pixels 95.26 100.00 99.99
Overall accuracy 92.86 96.61 97.33
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Figure 11. Input, reference, resulting land cover maps and error maps for the zoomed areas in Figure 10
in the forest clearance experiment. Each zoomed area contains 192 × 192 FR pixels. (a)–(l) are the input,
reference, resulting maps and error maps for zoomed area A: (a) FR image at t0; (b) FR map at t0; (c) CR
image at tp; (d) FR map at tp; (e) FR image at tn; (f) FR map at tn; (g) STPSA; (h) STIMFM; (i) SCPSM;
(j) STPSA error map; (k) STIMFM error map; (l) SCPSM error map. (m)–(x) are the input, reference,
resulting maps and error maps for zoomed area B: (m) FR image at t0; (n) FR map at t0; (o) CR image at
tp; (p) FR map at tp; (q) FR image at tn; (r) FR map at tn; (s) STPSA; (t) STIMFM; (u) SCPSM; (v) STPSA
error map; (w) STIMFM error map; (x) SCPSM error map.

5. Discussion

The results show that SCPSM yielded FR land cover predictions with a high overall accuracy.
Critically, it appears that SCPSM made fuller use of the FR data available, notably the information
obtained from same-class pixels, in producing its predictions. Four key issues are apparent and explored
further in this section; the difference in the usage between the FR maps and the FR images in STSPM
is introduced, and the methods of identifying same-class pixels from the FR images are discussed.
The difference in predicting the percentage of FR pixels of different classes from STPSA, STIMFM,
and SCPSM is discussed. The performance of SCPSM is also related to the degree of land cover change
in the study area and the model parameters, which are also discussed in the following sub-sections.
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5.1. Differences in the Usage Between the FR Maps and the FR Images in STSPM

Compared with traditional STSPMs, which use FR maps that pre- and post-date the CR image,
SCPSM also incorporated FR images as ancillary data. The FR maps and images played different roles
in STPSM. In the use of FR maps, each pixel was assigned to one specific class in the maps. The error in
labeling the FR pixels could evidently affect the use of FR maps in STSPM. In contrast, in the use of FR
images, the identification of same-class pixels did not label the FR pixel to any land cover classes, and
only computed the similarity between the FR pixel in the local window and the target FR pixel. SCPSM
used the spatial distribution of same-class pixels within the local window to assist the prediction of FR
land cover spatial distributions, and experiments showed that SCPSM can better predict the spatial
details of changed land cover objects. The advantage was, for example, clear in the prediction of
burned areas in the forest fire experiment and in predicting the spatial details of the non-forest patch in
the forest clearance experiment.

5.2. Methods of Identifying Same-Class Pixels

The method identifying same-class pixels in SCPSM was based on the spectral distance between
the target FR pixel and a neighboring FR pixel within a local window centered on the target FR pixel.
The selection of same-class pixels was similar to the selection of spectrally similar pixels in the field
of spatio-temporal reflectance image fusion (STIF) [26,35,36]. The effect of different same-class pixel
selection methods according to different spectrally similar pixel selection schemes used in STIF could
be explored in SCPSM in the future. For instance, the same-class pixels can be selected using a non-local
searching approach, assuming same-class pixels can be located in different regions of the image [37,38].

5.3. Comparison of Different Methods in Predicting the Percentage of FR Pixels of Different Classes

The percentage of each class in the predicted maps was compared with that in the reference
map in each experiment, and the corresponding differences are shown in Figure 12. First, among
different methods and in all experiments, STPSA generated the largest absolute difference in the
percentage of FR pixels for all classes and in all experiments. In particular, STPSA underestimated
about 27% × 800 × 800 = 172800 FR pixels of Forest & Shrubland class, and overestimated about
21% × 800 × 800 = 134400 FR pixels of Wetlands class in the NLCD experiment. This was clear by
comparing the STPSA map in Figure 6a with the reference map in Figure 3f, in which many Forest
& Shrubland pixels were incorrectly labeled as Wetlands pixels from STPSA. Second, STIMFM and
SCPSM over- or underestimated the FR pixel of each class simultaneously. For instance, in the forest
fire experiment, both STIMFM and SCPSM overestimated the FR pixel number of Forest class, and
they underestimated the FR pixel number of Water and Bareland/Impervious classes. The main reason
was that STIMFM and SCPSM had the same spatial, temporal, and spectral terms in their objective
functions. Third, STIMFM generated relatively smaller absolute differences than SCPSM for Forest &
Shrubland and Herbaceous & Planted/Cultivated classes in the NLCD experiment, as well as Forest
and Non-forest classes in the forest clearance experiment. However, STIMFM only decreased the
absolute difference by less than 0.3%, compared with SCPSM for these classes. By contrast, SCPSM
decreased the absolute difference by about 1.5% compared with STIMFM for Water and Forest classes
in the forest fire experiment.
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Figure 12. The absolute differences between the percentage of FR pixels of each class in the predicted
and reference maps in the three experiments. Positive value means the predicted number of pixels is
higher than that in the reference map for a class, and negative value means the predicted number of
pixels is lower than that in the reference map for a class.

5.4. Influencing Factors

5.4.1. The Degree of Land Cover Change in the Study Area

The accuracies of predicting changed pixels and unchanged pixels were different for SCPSM.
In all the three experiments, the accuracies from both STIMFM and SCPSM were close to 100% for
unchanged pixels and 60–80% for changed pixels. This shows that it was more difficult to predict
accurately for changed than for unchanged pixels. The reason was that if a pixel had an unchanged
class in the FR maps at t0 and tn, it was more likely to have an unchanged class in the FR map at tp.
The temporal term used in STIMFM and SCPSM gave a higher probability of predicting an FR pixel as
an unchanged class than changed class. If an FR pixel was changed, the uncertainty in predicting its
label was much larger in STSPM. One way to increase the accuracy of SCPSM is to accurately detect the
sub-pixel scale class change within the CR pixels. For instance, in the STSPM proposed by Li et al. [39],
a class fraction change detection is first applied to the CR class fraction images at time t0 and tp. Then
the prediction of an FR pixel label (assuming its label is c) is related to the cth CR fraction change
detection result in the corresponding CR pixel; the pixel’s label is assumed unchanged in STSPM if
the cth class fraction in the corresponding CR pixel is detected as unchanged, and the pixel’s label is
updated by STSPM if the cth class fraction in the corresponding CR pixel is detected as changed. In this
way the STSPM is simplified to only predict the changed FR pixel labels, and the temporal term may
not have a negative effect in this case. However, the linear mixture model is used in [39] to produce
the CR fraction images, and the accuracy of class fraction image accuracy would decrease with low
inter-class spectral separability. Considering that spectral unmixing is an open problem, future studies
on class fraction extraction and sub-pixel change detection and their applications in SCPSM should
be developed.

5.4.2. Model Parameters

The performance of SCPSM was influenced by the weights used in the analysis. The optimal
weights can be selected based on criteria such as inter-class spectral separability, which could be
used to balance the spectral and spatial terms [40], and based on the spatial heterogeneity of the CR
class fraction images, which could be used to give different weights of spatial terms to different CR
pixels [41]. In real applications in which subsets of training data are usually available, the optimal
weights can also be defined based on the subsets of training samples.



Remote Sens. 2020, 12, 503 19 of 21

6. Conclusions

A novel STSPM which uses same-class FR neighborhood pixels extracted from the ancillary FR
remote sensing images was proposed in this paper. In addition to the FR land cover maps at the times
that pre- and post-date the CR image at the prediction time, the proposed SCPSM inputs FR remote
sensing images to constrain the analysis. The same-class FR neighborhood pixels selected from the FR
images are used to model the spatial distribution for FR pixels, based on the assumption that spectrally
similar pixels are more likely to belong to the same class. This paper is, to the best of our knowledge,
the first to report on the use of same-class pixels extracted from the ancillary FR images in STSPM.

The proposed SCPSM has two advantages against the state-of-the-art STSPM algorithms, including
STPSA and STIMFM. First, SCPSM could increase the overall accuracy compared with STPSA and
STIMFM in this paper. Since the overall accuracy is a key metric in assessing the accuracy of land cover
maps, SCPSM is effective in producing land cover maps due to its higher overall accuracy. Second,
SCPSM could also predict the pixels of changed pixels more accurately than both STPSA and STIMFM.
The detection and mapping of land cover change are important issues in the society of remote sensing,
and these tasks are especially difficult when the change occurs at the sub-pixel scale. SCPSM is superior
to STPSA and STIMFM in monitoring the substantial sub-pixel scale spatio-temporal change of surface
land covers. Finally, SCPSM better predicted the spatial details of land cover spatial patterns. Since
SCPSM adopted the same-class pixels extracted from FR images to indicate detailed land cover spatial
distribution information within the CR pixels, it could avoid producing over-smoothed boundaries
between land cover patches that result from STSPM algorithms, which only use the spatial dependence
model to model the land cover spatial distribution. Thus, SCPSM is more suitable in land cover
mapping, especially in fragmented landscapes, than the other STSPMs.

Although SCPSM has numerous advantages over the comparison algorithms, it has limitations
and faces challenges in several aspects. First, SCPSM is superior to STPSA in the accuracy of predicting
unchanged FR pixel labels, but it may generate a slightly lower accuracy than STIMFM, such as in the
forest clearance experiment. This is because, although SCPSM and STIMFM have the same spatial,
spectral, and temporal terms, SCPSM has an additional ancillary data term. In SCPSM, if an FR is
unchanged and the labels between the same-class FR pixels at tp and the temporal neighborhood FR
pixels at t0 and tp are different, the ancillary data term in SCPSM makes the target FR pixel have a
changed FR pixel label, and this effect may decrease the accuracy in predicting unchanged FR pixel
labels in SCPSM. Second, SCPSM uses more data, i.e., the FR images that pre- and post-date the
prediction time, as input in comparison with STIMFM, and uses a relative longer time than STIMFM in
computation. Lastly, SCPSM has limitations in predicting the labels of changed pixels, regardless of the
fact that it predicts higher accuracy of changed pixels than STPSA and STIMFM. SCPSM predicted the
labels accurately for more than 99.99% of unchanged FR pixels in all the experiments, but it predicted
labels accurately for only 64.46%–86.66% of changed FR pixels. Means to enhance the method, such as
using an advanced method to accurately detect the sub-pixel scale class change within the CR pixels,
and the potential of different methods for the selection of same-class pixels should be explored further
for the study of mapping spatio-temporal changes of land use and land covers.
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