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23 Abstract

24 Omega-6 fatty acids have been shown to exert pro-adipogenic effects whereas omega-3 fatty 

25 acids  appear to work in opposition. Increasing intakes of LA (linoleic acid; omega-6) vs 

26 ALA (alpha-linolenic acid; omega-3) in Western diets has led to the hypothesis that 

27 consumption of this diet during pregnancy may be contributing to adverse offspring health. 

28 This study investigated the effects of feeding a maternal dietary LA:ALA ratio similar to that 

29 of the Western diet (9:1) compared to a proposed ‘ideal’ ratio (~1:1.5), at two total fat levels 

30 (18% vs 36% fat w/w), on growth and fat depositionlipogenic gene expression in the 

31 offspring. Female Wistar rats were assigned to one of the four experimental groups 

32 throughout gestation and lactation. Offspring were culled at 1 and 2 weeks of age for blood 

33 and tissue sample collection. Offspring of dams consuming a high-36% fat diet were ~20% 

34 lighter than those exposed to a low-18% fat diet (P<0.001). Male, but not female, liver weight 

35 at 1 week was ~13% heavier, and had increased glycogen (P<0.05), in offspring exposed to 

36 high LA (P<0.01). Hepatic expression of lipogenic genes suggested an increase in lipogenesis 

37 in male offspring exposed to a high-36% fat maternal diet and in female offspring exposed to 

38 a low LA diet, via increases in the expression of Fasn and Srebf1. Sexually dimorphic 

39 responses to altered maternal diet appeared to persist until two weeks-of-age. In conclusion, 

40 whilst maternal total fat content predominantly affected offspring growth, fatty acid ratio and 

41 total fat content had sexually dimorphic effects on offspring liver morphology weight and 

42 composition. 
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43 Introduction

44 Accumulating evidence suggests that the nutritional environment experienced by an individual 

45 during fetal and early infant development has long-lasting impacts on their metabolic health (1). 

46 In the context of the global epidemic of obesity and nutritional excess, there has been 

47 considerable interest in determining the effects of maternal overnutrition on the metabolic 

48 health of the offspring. The majority of these studies have utilised animal models and have 

49 consistently reported that maternal high-fat feeding during pregnancy has detrimental effects 

50 on the metabolic health of both the mother and her offspring (2,3). As a result, excess maternal 

51 fat consumption has been implicated as a key contributor to metabolic programming of long-

52 term health and disease risk. 

53 There is increasing evidence, however, that the impact of a high-fat diet on the metabolic 

54 health of the offspring depends not only on the amount of fat in the diet, but also on the fatty 

55 acid composition (4,5). There has been particular interest in the role of two classes of 

56 polyunsaturated fatty acids (PUFA), due to the substantive increase in the amounts of omega-

57 6 PUFA, predominately linoleic acid (LA), being consumed in the diets of many Western 

58 countries over the past few decades (6,7). This increase in the intake of LA intakes has not 

59 been accompanied by substantial changes in the consumption of omega-3 PUFA such as 

60 alpha-linolenic acid (ALA) and has therefore resulted in increases in the ratio of omega-

61 6:omega-3 PUFA consumed in the diets of many Western countries (6,8). 

62 The increasing dominance of omega-6 over omega-3 PUFA in modern Western diets has 

63 considerable biological significance, since the omega-6 and omega-3 fatty acid families 

64 utilise the same enzymes for production of longer chain bioactive derivatives such as 

65 arachidonic acid (AA; omega-6), eicosapentaenoic acid (EPA; omega-3), docosapentaenoic 

66 acid (DPA; omega-3) and docosahexaenoic acid (DHA; omega-3), and also compete for 

67 incorporation into cell membranes. As a result, excess consumption of LA leads to a decrease 

68 in the production and incorporation of omega-3 fatty acids through simple substrate 

69 competition, and this effect is exacerbated when total dietary PUFA is high (9,10). The omega-

70 3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFA) derivatives also have 

71 opposing physiological actions, with those from the omega-3 family predominately 

72 exhibiting anti-inflammatory properties (for example via the suppression of the pro-

73 inflammatory transcription factor nuclear factor kappa B and activation of the anti-

74 inflammatory transcription factor peroxisome proliferator activated receptor γ (11)) and those 
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75 from the omega-6 family exhibiting more pro-inflammatory and pro-adipogenic properties 

76 (12). This has led to the hypothesis that the increasing ratio of omega-6 to omega-3 fatty acids 

77 in modern Western diets may have negative effects on conditions characterised by low-grade 

78 inflammation, including obesity and the metabolic syndrome, and may potentially be 

79 contributing to an intergenerational cycle of obesity (8). 

80 Data from observational studies in humans and animal models provide supporting evidence 

81 that suggests high intakes of omega-6 PUFA during pregnancy could have negative effects on 

82 metabolic health of the progeny (13,14,15). However, the results of these studies have not been 

83 consistent. The results of pre-clinical studies are also limited by the use of diets with much 

84 higher omega-6:omega-3 PUFA ratios and/or absolute PUFA contents than those encountered 

85 in typical human diets. Furthermore, offspring often continue to have access to the same diet 

86 as their mother so that any effects observed cannot be clearly attributed to dietary fatty acid 

87 exposure during the gestation and lactation periods (16,17,18).  The aim of this study, therefore, 

88 was to investigate the effects of feeding a maternal dietary LA:ALA ratio similar to that of 

89 the Western diet (9:1) (6), compared to a proposed ‘ideal’ ratio of 1:1.5 (19,20) on growth and 

90 fat depositionlipogenic gene expression of in the offspring. Since total dietary PUFA intake 

91 also influences PUFA metabolism (9,10), we also investigated the effect of feeding each dietary 

92 fat ratio at either 18% fat w/w (in line with dietary recommendations (21)) or at a higher fat 

93 level of 36% fat w/w. A rat model was utilised to achieve the study objectives by allowing for 

94 tight control of dietary manipulation as well as invasive end points.

95

96 Materials and Methods

97 Animals

98 All animal procedures were performed in accordance with the Animals (Scientific Procedures) 

99 Act 1986 under Home Office licence and were approved by the Animal Ethics Committee of 

100 the University of Nottingham, UK. Virgin female Wistar rats (n=30; 75-100g; Charles River, 

101 UK) were housed on wood shavings in individually ventilated cages under a 12 hour light/12 

102 hour dark cycle at a temperature of 20-22°C and had ad libitum access to food and water 

103 throughout the experiment. Female rats were allowed to acclimatise to the unit for 1-2 weeks, 

104 during which time they were fed standard laboratory chow (2018 Teklad Global 18% Protein 

105 Rodent Diet, Harlan Laboratories, UK). After acclimatisation, a tail vein blood sample was 

106 taken from each animal for the determination of fatty acid status. The rats were then randomly 
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107 assigned to one of 4 dietary groups (details provided below). Animals were maintained on their 

108 allocated diet for a four week ‘pre-feeding’ period, after which they were mated. Conception 

109 was confirmed by the presence of a semen plug and this was recorded as day 0 of pregnancy. 

110 Animals were housed in individual cages and remained on their respective diets throughout 

111 pregnancy and lactation. 

112

113 Litters were standardised to 8 pups within 24 hours of birth (4 males and 4 females, where 

114 possible). At 1 and 2 weeks of age, one randomly selected male and one randomly selected 

115 female from each litter were culled via cervical dislocation and exsanguination for blood and 

116 tissue collection. At 3 weeks of age, the remaining offspring were weaned and dams were then 

117 euthanised by CO2 asphyxiation and cervical dislocation for collection of maternal blood and 

118 tissues. All dams were weighed and had feed intake measured daily throughout the experiment 

119 and offspring bodyweight was measured weekly. 

120

121 Diets

122 Diets were designed to provide either a high (9:1, high LA) or low (1:1.5, low LA) ratio of LA 

123 (cis/cis isomer) to ALA, achieved by altering the amounts of flaxseed and sunflower oil 

124 included in the fat component of the feed. The levels of saturated and monounsaturated fatty 

125 acids were comparable in all diets, achieved by adjusting the amounts of coconut (saturated fat 

126 source) and macadamia (monounsaturated fat source) oils in the diets. For each level of LA, 

127 diets were developed to containing either 18% fat (w/w), in line with government 

128 recommendations (21), or 36% fat (w/w) to highlight any additive effects were developed (38.6 

129 vs 63.5% of dietary energy respectively). This resulted in four experimental diets (n=6-9 per 

130 dietary group); high LA (18% fat), high LA (36% fat), low LA (18% fat) and low LA (36% 

131 fat). The list of ingredients and final fatty acid composition of the four experimental diets have 

132 been reported previously (5).

133

134 Blood sample and tissue collection

135 Blood samples were collected from dams prior to the start of the experiment and after the 4 

136 week ‘feed-in’ period (tail vein sample) and at the end of lactation (via cardiac puncture 

137 following CO2 asphyxiation and cervical dislocation). Truncal blood samples were also 

138 collected from one randomly selected male and one randomly selected female at 1 and 2 weeks 

139 of age. In all cases, samples of whole blood (~30µl) from non-fasted animals were spotted onto 

140 PUFAcoat™ dried blood spot (DBS) collection paper (22), allowed to dry at room temperature 
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141 and stored at -20°C for subsequent fatty acid analysis. Maternal tissues were weighed and 

142 samples of whole liver, retroperitoneal and gonadal adipose tissues collected. Offspring body 

143 and organ weights were measured and whole liver samples were collected from one randomly 

144 selected male and female pup at both time points. At 2 weeks of age, samples of gonadal and 

145 retroperitoneal fat were also collected from one male and one female pup per litter. All tissue 

146 samples were snap-frozen in liquid nitrogen and stored at -80°C until determination of gene 

147 expression by quantitative reverse transcriptase PCR (qRT-PCR).

148

149 Fatty acid methylation and analysis

150 Fatty acid composition in maternal and fetal blood was determined as previously described (22). 

151 Briefly, whole DBS samples were directly transesterified with 2ml of 1% H2SO4 in methanol 

152 and the fatty acid methyl esters (FAME) were extracted with heptane. Samples were separated 

153 and analysed by a Hewlett-Packard 6890 gas chromatograph (GC) equipped with a capillary 

154 column (30m x 0.25mm) coated with 70% cyanopropyl polysilphenylene-siloxane (BPX-70; 

155 0.25µm film thickness) which was fitted with a flame ionization detector (FID). FAMEs were 

156 identified in unknown samples based on the comparison of retention times with an external 

157 lipid standard (Standard 463, Nu-check prep Inc., MN, USA) using Agilent Chemstation 

158 software (Agilent Technologies Australia Pty Ltd). Individual fatty acid content was calculated 

159 based on peak area and response factors normalised to total fatty acid content and expressed as 

160 a percentage of total fatty acids.

161

162 Isolation of RNA and cDNA synthesis and quantitative reverse transcription real-time PCR 

163 (qRT-PCR)

164 RNA was isolated from crushed snap-frozen samples of ~25mg of liver using the Roche High 

165 Pure Tissue kit (Roche Diagnostics Ltd., UK). Adipose RNA was extracted, after 

166 homogenisation of ~100mg of tissue with MagNA lyser green beads and instrument (Roche 

167 Diagnostics Ltd.), using the RNeasy Mini Kit (QIAGEN Ltd., UK). RNA concentration was 

168 determined using a Nanodrop 2000 (Thermo Scientific) and RNA quality was evaluated by 

169 agarose gel electrophoresis. cDNA was synthesised using a RevertAid™ reverse transcriptase 

170 kit (Thermo Fisher Scientific, UK) with random hexamer primers.

171

172 Lipogenic pathway and adipokine target genes were chosen based on previous data from our 

173 laboratory that indicated that these genes were sensitive to changes in the maternal diet(23) and 

174 included; peroxisome proliferator-activated receptor gamma (Pparg), sterol regulatory 
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175 element-binding protein (variant 1c; Srebf1), fatty acid synthase (Fasn), lipoprotein lipase (Lpl) 

176 and leptin (Lep), with β-actin (Actb) as the housekeeper. Primer efficiency ranged from 85%-

177 108% and sequences have previously been published elsewhere (5). Adipocyte and hepatic gene 

178 expression was quantified using SYBR Green (Roche Diagnostics) in a Light-Cycler 480 

179 (Roche Diagnostics). Samples were analysed against a standard curve of a serially diluted 

180 cDNA pool to produce quantitative data and expression was normalised to the housekeeping 

181 gene using LightCycler® 480 software (version 1.5.1) as previously described (24). The 

182 expression of the housekeeper gene was not different between treatment groups. 

183

184 Determination of liver DNA, protein and glycogen content

185 For determination of DNA and protein content of liver samples, approximately 100mg of 

186 frozen crushed sample was added to 1ml of 0.05M trisodium citrate buffer. Samples were 

187 homogenised and centrifuged at 2500rpm for 10 minutes at 4°C. Supernatant was used for 

188 further analyses. DNA concentration (ug/ml) was measured using a Hoechst fluorimetric 

189 method and protein content (ug/well), modified for a 96 well plate format, was measured as 

190 described by Lowry et al. (25). Measurements were normalised to the exact amount of tissue 

191 used for measurements. Liver glycogen was measured using the Colorimetric Glycogen 

192 Assay Kit II (Abcam Ltd.) according to manufacturer’s instructions.

193

194 Statistical analysis

195 Data are presented as mean ± SEM. Data were analysed using the Statistical Package for Social 

196 Sciences (Version 24, SPSS Inc.). The effect of maternal dietary fatty acid ratio and maternal 

197 dietary fat content on maternal dependent variables was assessed using a two-way ANOVA, 

198 with dietary LA:ALA ratio and dietary fat content as factors and dams were used as the unit of 

199 analysis. Where longitudinal data were analysed, as with maternal feed, protein and energy 

200 intakes, the impact of maternal dietary LA:ALA ratio and maternal dietary fat content was 

201 analysed using a two-way repeated-measures ANOVA. Offspring data were analysed using a 

202 two-way ANOVA, with maternal dietary LA:ALA ratio and fat content as factors; where there 

203 was no overall effect of sex, male and female offspring data were combined. Where data were 

204 not normally distributed, analyses were performed on log10 transformed data. A value of 

205 P<0.05 was considered to be statistically significant. 

206
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207 Results

208 Maternal dietary intakes

209 There were no differences in feed intake of dams between treatment groups before or during 

210 pregnancy. During lactation, dams receiving the 36% fat diets had a lower average daily feed 

211 intake than those receiving the 18% fat diets, irrespective of dietary LA:ALA ratio (P<0.001; 

212 Fig 1a). Energy intake was similar between groups throughout the experiment (Fig. 1b). Protein 

213 intake prior to and during pregnancy was affected by both dietary LA:ALA ratio and fat content 

214 (P<0.05; Fig. 1c), however, these effects were small and inconsistent. During lactation, protein 

215 intake was affected by dietary fat content only (P<0.001; Fig. 1c), such that mothers receiving 

216 high-36% fat diets (36% fat) consumed 24% less protein on average compared to those 

217 consuming lower (18%) fat diets, irrespective of dietary LA:ALA ratio. As expected, all dams 

218 consumed more food, energy and protein during lactation than before and during pregnancy 

219 regardless of dietary group (P<0.001).

220

221 Maternal fatty acid profile

222 There were no differences in the proportions of either saturated fatty acids (SFA), 

223 monounsaturated fatty acids (MUFA), omega-6 (Fig. 2a) or omega-3 PUFA (Fig. 2b) in whole 

224 blood samples collected from the dams prior to the commencement of dietary intervention. 

225 After 4 weeks on their respective diets, the blood fatty acid profiles were significantly different 

226 between treatment groups and largely reflected the composition of the experimental diets. 

227 Thus, dams fed on high LA diets had higher proportions of LA (1.2 fold) and AA (1.4 fold) 

228 compared to those consuming a low LA diet (P<0.001; Fig. 2c). Conversely, dams fed the low 

229 LA diets had a 5.5 fold higher proportion of ALA and an 8.5 fold higher proportion of EPA 

230 compared to those consuming a high LA diet (P<0.001; Fig. 2D). These changes were 

231 independent of the total fat content of the diet. DPA and DHA levels after the 4 week pre-

232 feeding period were influenced by both dietary LA:ALA ratio and total fat content. Thus, the 

233 relative proportions of DPA were higher in dams fed the low LA compared to high LA diets 

234 (P<0.001), and marginally higher in dams consuming the 18% vs 36% fat diets (P<0.05). DHA 

235 proportions were also higher in the low LA group (P<0.001) but, unlike DPA, were modestly 

236 but significantly higher in dams consuming the 36% fat vs 18% fat diets (P<0.05; Fig. 2D). 

237 Total blood MUFA proportions were higher (1.3-fold) in dams consuming the low LA diet, 

238 irrespective of dietary fat content (P<0.001; Fig. 2C). 

239
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240 The blood fatty acid profile of the dams at the end of lactation, after a further 6 weeks on their 

241 respective experimental diets, were similar to those observed after the first 4 weeks of dietary 

242 intervention. A notable difference, however, was that at this time point, relative proportions of 

243 DHA, as a percentage of total lipids, were not different between dietary groups (Fig. 2F). LA 

244 (1.5-fold), AA (1.8-fold) and total omega-6 (1.5-fold) were all higher in dams consuming a 

245 high LA diet irrespective of dietary fat content (P<0.001; Fig. 2E). Conversely, total omega-3 

246 levels were 3-fold higher in dams consuming a low LA diet, irrespective of dietary fat content 

247 (P<0.001). The proportions of ALA were also higher in the groups consuming the low LA diets 

248 and in rats consuming the 36% vs 18% fat diets in the low LA group only (P<0.05; Fig 2F). 

249 DPA proportions were higher in the groups consuming the low LA diets, however, unlike ALA, 

250 DPA proportions were lower, rather than higher, in dams consuming the 36% fat diets in the 

251 low LA group only (P<0.001; Fig. 2F). EPA proportions were higher in groups consuming a 

252 low LA diet compared to those consuming a high LA diet (P<0.001; Fig. 2F). EPA proportions 

253 were also affected by total dietary fat content, and were lower in dams consuming a high-36% 

254 fat (36% fat) diet compared to an lower (18% fat) diet (P<0.001; Fig. 2F). Maternal blood total 

255 MUFA levels at the end of lactation were 1.4-fold higher in the dams consuming a low LA diet 

256 irrespective of dietary fat content (P<0.001; Fig. 2E).

257

258 Maternal weight, body composition and gene expression

259 There were no significant differences in dam bodyweight between dietary groups prior to the 

260 commencement of the dietary intervention or at any time during the experiment (data not 

261 shown). Dams consuming the 36% fat diets had heavier lungs relative to bodyweight at the end 

262 of lactation compared to those consuming the 18% fat diets, independent of the LA:ALA ratio 

263 (P<0.05). There were no differences in the relative weight of the heart, liver, brain, kidney, 

264 gonadal or retroperitoneal fat pads between experimental groups (Table 1).

265

266 Analysis of mRNA expression of lipogenic genes indicated that hepatic (3-fold) and gonadal 

267 fat (7-fold) expression of Fasn was higher in dams consuming an 18% fat diet, compared to 

268 those on a 36% fat diet, irrespective of dietary fatty acid ratio (P<0.01). The mRNA  expression 

269 of Lpl, Pparg and Srebf1 was not, however, affected by either dietary fat content or ratio in 

270 either hepatic or gonadal fat tissues (Table 1). Expression of leptin mRNA in gonadal adipose 

271 tissue was not significantly different between treatment groups.

272

273 Birth outcomes and offspring bodyweights

Page 9 of 31

Cambridge University Press

British Journal of Nutrition



For Review Only

Page 10 of 26

274 There were no differences between dietary groups in terms of litter size or sex ratio of pups 

275 (Table 2). Birth weight was lower in offspring of dams fed a 36% fat vs 18% fat diets, 

276 independent of the dietary LA:ALA ratio (Table 2). The lower body weight in offspring of 

277 dams fed the 36% fat diet persisted during the sucking period such that offspring of dams fed 

278 the 36% fat diets remained lighter than offspring of dams fed on 18% fat diets at both 1 and 2 

279 weeks of age; again this was independent of dietary LA:ALA ratio (P<0.001; Table 3). 

280

281 Offspring fatty acid profile

282 At 1 week of age, proportions of AA (2.1 fold) were lower in the offspring of the low LA 

283 compared to high LA dams (P<0.001), and in offspring of dams consuming the 36% fat vs 18% 

284 fat diets (1.4 fold; P<0.001; Fig. 3A). Blood ALA proportions were 5.9 fold higher in offspring 

285 of dams in the low LA groups compared to high LA groups (P<0.001; Fig. 3B). Offspring EPA 

286 and DPA proportions were also higher in the low LA group compared to the high LA group. 

287 Blood EPA was also influenced by total dietary fat content, but only in offspring of dams fed 

288 the low LA diet, in which EPA levels  were lower in offspring of dams fed the 36% fat diets 

289 compared to the 18% fat diets (EPA, P<0.001; DPA, P<0.01; Fig. 3B). DHA proportions were 

290 not different between groups at 1 week of age (Fig. 3B). MUFA proportions were higher (1.2-

291 fold) in offspring of dams in the low LA groups (P<0.001), consistent with the pattern in 

292 maternal blood. However, unlike maternal MUFA, offspring MUFA levels were also affected 

293 by maternal dietary fat content and were 1.2-fold higher in offspring of dams fed the 36% fat 

294 vs 18% fat diets (P<0.001; Fig. 3A). At 1 week of age offspring of dams in the 36% fat diet 

295 groups also had lower blood proportions of SFA, irrespective of LA:ALA ratio of the maternal 

296 diet (P<0.01; Fig. 3A). 

297

298 The fatty acid profiles of the offspring at 2 weeks of age were similar to those observed at 1 

299 week. Thus, blood AA (1.9 fold) and total omega-6 (1.6 fold) proportions were lower (Fig. 3C) 

300 and ALA (6.3 fold), EPA (4.7 fold), DPA (2.4 fold) and total omega-3 PUFA (3-fold) 

301 proportions (Fig. 3D) were higher in offspring of dams in the low LA group compared to high 

302 LA groups, irrespective of maternal dietary fat content (P<0.001). Proportions of LA were 

303 higher in offspring of dams fed the 36% fat diets compared to those fed 18% fat diets in the 

304 high LA group only (P<0.05; Fig 3C), while EPA and DPA proportions were lower in the 36% 

305 compared to the 18% fat diet groups, independent of the dietary LA:ALA ratio (P<0.001; Fig. 

306 3D). Unlike findings at 1 week of age, the DHA levels in 2 week old offspring of dams 

307 consuming a 36% fat diet were lower (P<0.05) when compared to 18% fat groups, irrespective 
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308 of maternal dietary fatty acid ratio. As at 1 week, SFA proportions were lower (1.2-fold) in 

309 offspring of dams fed a high-36% fat (36%) diet, independent of the LA:ALA ratio (P<0.001). 

310 MUFA proportions were 1.2 fold higher in offspring of dams fed the low LA diets, and 1.2 

311 fold higher in offspring of dams who consumed a 36% fat vs 18% diet (P<0.001; Fig. 3C).

312

313 Offspring organ weight and liver composition

314 At 1 week of age, heart weight relative to bodyweight was higher in female offspring of dams 

315 receiving a high (36%) fat diet compared to the 18% fat diet, independent of the dietary 

316 LA:ALA ratio (P<0.05). There were no differences in the relative weight of lung or kidney at 

317 1 week of age and no differences in the relative weight of the heart, lung, liver, gonadal or 

318 retroperitoneal fat pads in the offspring at 2 weeks of age between treatment groups in either 

319 male or female offspring (Table 3).

320

321 Liver weight at 1 week appeared to be influenced by the LA:ALA ratio of the diet to a greater 

322 extent than total fat level, at least in males. Thus, male offspring of dams consuming the high 

323 LA diets had increased liver weights compared to offspring of dams receiving a low LA diet  

324 (P<0.01), irrespective of total dietary fat content. The glycogen content of the livers was also 

325 higher in male offspring of dams consuming the high LA diets at 1 week of age (P<0.05). No 

326 effect of maternal diet on offspring liver protein or DNA concentration was observed (Table 

327 4). These differences were not present in females at 1 week of age and no differences in 

328 glycogen content were observed at two weeks of age in male offspring. DNA concentration in 

329 females at two weeks of age was marginally increased (1.1-fold) in offspring exposed to a high-

330 36% fat diet, irrespective of maternal dietary fatty acid ratio (P<0.05). 

331

332 Hepatic gene expression

333 At 1 week of age, hepatic Fasn expression was influenced by maternal dietary intervention in 

334 a sex specific manner. Thus, in males, Fasn expression was higher in offspring of dams 

335 consuming a high-36% fat (36%) diet irrespective of maternal LA:ALA ratio (P<0.05). In 

336 female offspring, however, Fasn expression was higher in offspring of dams consuming a low 

337 LA diet, independent of dietary fat content (P<0.05). Hepatic Lpl mRNA expression in male 

338 offspring at 1 week of age was also influenced by maternal dietary fat content, with higher 

339 expression in offspring of dams consuming a 36% fat diet vs a low 18% fat diet (P<0.05). In 

340 female offspring, hepatic Srebf expression, similar to that of Fasn, was higher in offspring of 

341 dams consuming a low LA diet at 1 and 2 weeks of age (P<0.01). Female hepatic expression 
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342 of Pparg was lower in offspring of dams consuming a low LA diet at 2 weeks of age (P<0.05). 

343 There were no differences in the expression of Fasn or Lpl in female offspring, or expression 

344 of any hepatic genes in male offspring at this time point (Table 3).

345

346 Discussion

347 This study has demonstrated that altering the fat content and/or LA:ALA ratio of the maternal 

348 diet during pregnancy and lactation resulted in significant alteration in the circulating fatty acid 

349 profile of dams in the absence of any significant effects on maternal bodyweight or body 

350 composition. Exposure to a high-36% fat diet during gestation and lactation was, however, 

351 associated with lower offspring bodyweight from birth, which persisted to 2 weeks of age. This 

352 suggests that increased dietary fat intake during pregnancy and lactation can compromise 

353 growth of the progeny, irrespective of the type of fat consumed. In addition, alterations in the 

354 fat content and/or composition of the maternal diet had transient effects on offspring body 

355 composition and hepatic gene expression, effects which were also sex-specific.

356

357 Maternal fatty acid profiles after 4 weeks on the experimental diets largely reflected dietary 

358 composition, confirming that the dietary intervention had the desired effect on maternal 

359 circulating fatty acid composition. These changes persisted after a further 6 weeks of exposure 

360 to the diets and, as expected, the dietary LA:ALA ratio had a greater impact on the maternal 

361 blood omega-6 and omega-3 status than total dietary fat content. Consistent with previous 

362 studies (5,9,26,27), decreasing the dietary LA:ALA ratio resulted in substantial increases in 

363 relative maternal ALA and EPA levels but only a very modest increase in DHA proportions 

364 after a 4-week exposure, and no difference compared to the higher LA:ALA ratio after 10 

365 weeks. Interestingly, and independent of dietary LA:ALA ratio, dams appeared to be more 

366 efficient at converting DPA to DHA when total dietary fat load was higher. One possibility is 

367 could be that this is simply a result of the higher amount of substrate (i.e. ALA) available for 

368 conversion to the longer chain derivatives such as DPA and DHA in diets containing higher 

369 total fat levels. This effect did not, however, persist after a further 6 weeks of dietary exposure, 

370 at which point EPA and DPA were lower in dams consuming a low LA 36% fat diet compared 

371 to a low LA 18% fat diet. This may be a result of saturation of the PUFA metabolic pathway 

372 when total fat, and therefore PUFA, levels were higher (10,28). This apparent decrease in capacity 

373 to convert ALA through to EPA and DHA during consumption of a high-36% fat diet coincides 

374 with the decreased protein intake observed in these groups. It is possible that the lower 

375 consumption of protein in rats fed on the 36% fat diets may have contributed to reduced 
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376 conversion of ALA, since previous studies have shown reduced desaturase, particularly Δ6-

377 desaturase, expression in the mammary gland (29) and liver (30) of rats exposed to a low protein 

378 diet. Maternal whole blood MUFA proportions appeared to be influenced by dietary LA:ALA 

379 ratio, however, this is most likely a result of the slightly higher MUFA content of the low LA 

380 diets.  

381

382 Offspring fatty acid profiles at 1 and 2 weeks of age largely reflected maternal profiles with 

383 maternal dietary LA:ALA ratio exhibiting the strongest effect on offspring circulating fatty 

384 acid proportions. However, the total fat content of the maternal diet appeared to have a greater 

385 influence on the blood fatty acid composition of the offspring thanas opposed to that observed 

386 in the dams. Of particular interest was the finding that the proportion of both EPA and DPA in 

387 offspring at 1 week of age were higher in the low LA (18% fat) vs the low LA (36% fat) group, 

388 and that this effect persisted at 2 weeks of age despite ALA levels being increased in the low 

389 LA (36% fat) group at this time point. DHA was not different between groups at 1 week of age 

390 but was lower in offspring exposed to a high-36% fat diet at 2 weeks of age. As with the 

391 maternal fatty acid profiles, this again may be a result of saturation of the PUFA metabolic 

392 pathway at higher total PUFA intakes, and is in line with findings from numerous studies, both 

393 human and animal, that indicate that simply increasing the quantity of substrate, i.e. ALA, is 

394 not an effective strategy for increasing concentrations of its long-chain derivatives, in particular 

395 DHA (26,27,31,32).

396

397 The total dietary fat content of the maternal diet also had an influence on the proportion of SFA 

398 in the offspring, such that offspring of dams consuming high-36% fat diets exhibited lower 

399 SFA proportions than offspring of dams consuming the lower18% fat diets. Unlike the fetus, 

400 where fatty acid composition is largely related to maternal dietary intake, during suckling, 

401 offspring fatty acid composition is largely determined by the composition of the milk, which 

402 may not fully reflect maternal fatty acid intakes. In a study by Mohammad et al. (33), for 

403 example, women consuming diets with a higher total fat content (55%en vs. 25%en) exhibited 

404 reduced SFA concentrations (C6:0-C14:0) in breast milk but not in maternal plasma. While 

405 milk composition was not assessed in the current study, this raises the possibility that SFA 

406 content of the milk may have been lower in those dams consuming the 36% fat diets, which 

407 could in turn explain the lower SFA status of the offspring. Alternatively, it may be that 

408 increasing the fat content of the diets resulted in an increased conversion of SFA to MUFA, 

409 since high-fat feeding has been associated with increased expression of the enzyme responsible 
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410 for conversion of SFA to MUFA, stearoyl-CoA desaturase 1 (SCD-1) (34) and could therefore 

411 be the reason for the observed effect of fat content on offspring MUFA levels in this study. It 

412 is important to note, however, that circulating fatty acid profiles are a product of both dietary 

413 fatty acid intake as well as tissue fatty acid production and release. Whilst the collection of 

414 blood samples from animals in the fed state suggests that the dietary fraction of fatty acids 

415 would provide a greater contribution to the fatty acid profile of both dams and offspring, the 

416 influence of hepatic synthesis of fatty acids should not be overlooked as a contributor to the 

417 observed differences. 

418

419 Despite significant shifts in maternal fatty acid profiles and increased fat content of the 36% 

420 fat diets, we saw no differences in maternal bodyweight or fat deposition. This is consistent 

421 with our previous study (5) and is likely a result of the reduced feed intakes of the dams to 

422 compensate for the increased energy density of the higher fat diets, a phenomenon consistently 

423 seen with dietary intervention trials using rodents (35). Despite the lack of an effect on maternal 

424 weight gain and fat deposition, bodyweight was reduced in offspring of dams receiving a high-

425 36% fat (36% fat) diet, irrespective of maternal dietary LA:ALA ratio. This phenotype was 

426 consistent across sexes and persisted from birth to 2 weeks of age. Variable results have been 

427 reported in this regard with some studies reporting no effects (36,37,38) or increased weight (39). 

428 This finding was, however, consistent with many other studies that reported decreased fetal 

429 (40,41), birth (42) and weaning weight (43) in offspring of dams exposed to a high-36% fat diet 

430 during gestation and lactation periods. The differential effects of different high-36% fat diets 

431 on offspring growth is likely due to differences in composition of the diet as well as periods of 

432 exposure between studies (3). In those studies that have reported lower offspring weights in 

433 offspring fed a high-fat diet, lower protein intakes in dams consuming a high-fat diet have been 

434 cited as a likely contributing factor. Further to this, protein restricted diets have been associated 

435 with impaired mammary gland development (29,44) leading to impaired milk synthesis (44), and 

436 this may also have contributed to reduced offspring growth observed during the suckling 

437 period. It is important to note however, that the reduction in protein intake in high-fat dams 

438 consuming a 36% fat diet in the current study were more modest (10-25%) than those typically 

439 used in low-protein diet studies (~50% reduction) (45,46,47,48). 

440

441 The lower Fasn expression in the liver and adipose tissue of dams exposed to a high-36% fat 

442 diet is consistent with the established role of this enzyme in suppressing lipogenesis in times 

443 of energy excess (49). Surprisingly, this change did not appear to be mediated through changes 
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444 in maternal Srebf1 mRNA expression, a known regulator of Fasn expression (50). It is important 

445 to note that since only mRNA expression was measured, we cannot comment on any 

446 differences in protein expression or activity of this transcription factor although mRNA and 

447 protein levels have been shown to be closely correlated (23).  Following this up at the protein 

448 level is a major priority for future study. In the offspring, however, hepatic Fasn expression 

449 was not downregulated by exposure to a maternal high-36% fat diet but was actually higher in 

450 male offspring of dams consuming the 36% fat compared to the 18% fat diets at 1 week of age 

451 and was accompanied by an increase in Lpl expression. In female offspring, however, hepatic 

452 Fasn and Sbrepf1 expression at 1 week were influenced by maternal dietary fatty acid ratio, 

453 rather than total fat content, with both genes upregulated in offspring of dams fed the low LA 

454 diets. In both cases, the upregulation of Sbref1, Fasn and Lpl genes would be expected to be 

455 associated with an upregulation of both lipogenesis and fatty acid uptake. It is worth 

456 mentioning that differences in hepatic expression of lipogenic genes in male offspring were 

457 consistently associated with maternal dietary fat content whereas differences in female hepatic 

458 expression were consistently associated with maternal dietary fatty acid ratio. This suggests 

459 that female offspring are more sensitive to changes in the types of maternal dietary fat whereas 

460 male offspring are more sensitive to gross maternal fat consumption. Sex specific effects 

461 associated with the programming of disease hypothesis have been frequently reported (51). The 

462 mechanism by which sex influences these effects, however, remains to be elucidated within a 

463 larger perspective, as well as within the context of this study. 

464

465 We found no evidence that these alterations in hepatic gene expression translated to increases 

466 in liver weight, however whether there was any effect on hepatic fat content remains to be 

467 determined. In both male and female offspring, relative liver weight was increased in offspring 

468 of dams fed the high LA diet. In an aim to further elucidate the source of this increased weight, 

469 we measured liver DNA, protein and glycogen composition. Similar to liver weight, glycogen 

470 levels were increased in offspring of dams fed the high LA diets. This increase in glycogen, 

471 however, was not sufficient enough to completely account for the differences observed in liver 

472 weight but may be a contributing factor. Consideration of DNA and protein content of the 

473 tissue did not indicate significant changes to cell size or number. More detailed analysis is 

474 required to further elucidate the mechanism by which high maternal dietary omega-6 may 

475 impact upon offspring liver morphology and physiology.

476
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477 The majority of the hepatic mRNA expression differences, as well as gross differences in liver 

478 weight and composition, appeared to be transient and were no longer present at 2 weeks of age. 

479 A notable exception was the lower expression of Srebf1 mRNA and higher expression of Pparg 

480 in females of dams exposed to a high LA diet compared to the low LA diet, with a similar trend 

481 observed in males. Although found in relatively low concentrations in the liver, activation of 

482 Pparg has been shown to increase hepatic lipid storage and is elevated in models of hepatic 

483 steatosis (52). As such, decreased Pparg expression can alleviate some of the symptoms of 

484 hepatic steatosis leading to a reduced liver weight in conjunction with a reduction in hepatic 

485 triglyceride content (53). Thus, our finding that female offspring of dams exposed to a high LA 

486 diet tended towards to have an increased liver weight at one week of age followed by increased 

487 hepatic Pparg expression at two weeks of age may suggest that the increase in Pparg 

488 expression is a potential response to the increased liver growth observed a week earlier. 

489 Alternatively, parallels may be drawn to the effect of low protein diets where fluctuations 

490 between an increased and decreased lipogenic capacity, chiefly mediated by altered Srebf1 

491 expression, occur in early life only to settle into a pattern of upregulated lipogenesis at a later 

492 life stage (23). Further studies would be needed to directly evaluate this hypothesis. 

493

494 In conclusion, we have demonstrated that exposure to a high-36% fat diet during gestation and 

495 lactation is associated with persistent growth restriction in both male and female offspring 

496 irrespective of maternal dietary fatty acid composition. Growth restriction has been associated 

497 with a plethora of metabolic disturbances later in life (54,55,56) and transient alterations in gene 

498 expression have been suggested as a mechanism for programming changes in metabolic 

499 processes within tissues as well as the morphology of the tissues themselves (1) . In this study, 

500 offspring are still exposed to the experimental diets via the dams milk, and further studies in 

501 offspring at older ages are required to assess whether the changes in growth, hepatic gene 

502 expression and liver weights in the current study are associated with phenotypic changes that 

503 persist once offspring are no longer exposed directly to the altered diet composition. In 

504 addition, analysis of lipogenic pathway and adipokines targets at the protein level, as well as 

505 whole transcriptome analysis, may yield useful information about their regulation and the 

506 extent to which these experimental diets programme other metabolic and regulatory pathways 

507 in the liver. Further to thisFinally, the longevity of these perturbations into later life, especially 

508 when presented with secondary metabolic challenges such as aging, prolonged high-fat feeding 

509 or in the case of female offspring, pregnancy, remains to be elucidated. 
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676 Table 1. Maternal organ weights and gene expression

677 All values are mean ± SEM and n=6-9 per dietary group. The effect of dietary fatty acid ratio 

678 and dietary fat content were assessed using a two-way ANOVA. a indicates a significant 

679 effect of dietary fat content (P<0.05, *P<0.01). Although not statistically significant there 

680 was some evidence that maternal Srebpf1 expression was influenced by the LA (P=0.08) and 

681 fat content (P=0.06) of the diet.

High LA 
(18% Fat)

High LA 
(36% Fat)

Low LA (18% 
Fat)

Low LA (36% 
Fat)

Bodyweight (g) 308.75 ± 9.82 288.73 ± 14.95 303.29 ± 11.11 302.23 ± 7.85
Heart (% BW) 0.35 ± 0.01 0.36 ± 0.01 0.35 ± 0.01 0.35 ± 0.01
Lungs (% BW)a 0.45 ± 0.02 0.51 ± 0.04 0.42 ± 0.02 0.48 ± 0.02
Kidney (% BW) 0.78 ± 0.02 0.83 ± 0.03 0.82 ± 0.02 0.79 ± 0.02
Liver (% BW) 5.01 ± 0.10 4.80 ± 0.28 5.28 ± 0.10 4.88 ± 0.09
Brain (% BW) 0.59 ± 0.02 0.59 ± 0.02 0.58 ± 0.02 0.59 ± 0.02
Gonadal Fat (% BW) 1.88 ± 0.35 2.02 ± 0.39 1.65 ± 0.19 1.61 ± 0.11
Retroperitoneal Fat (% BW) 0.76 ± 0.13 0.76 ± 0.13 0.76 ± 0.08 0.85 ± 0.15
Liver mRNA Expression
Fasna* 20.98 ± 6.17 7.03 ± 1.26 25.08 ± 8.12 9.45 ± 1.63
Lpl 0.20 ± 0.04 0.19 ± 0.04 0.19 ± 0.04 0.13 ± 0.01
Pparg 0.63 ± 0.22 0.78 ± 0.18 0.41 ± 0.09 0.70 ± 0.16
Srebf1 3.52 ± 0.91 2.56 ± 0.64 7.85 ± 2.57 3.39 ± 0.61
Gonadal Fat mRNA Expression
Fasna* 1.29 ± 0.64 0.18 ± 0.05 2.50 ± 1.16 0.37 ± 0.14
Lpl 0.90 ± 0.23 0.87 ± 0.06 1.56 ± 0.41 1.48 ± 0.46
Ppparg 0.91 ± 0.23 1.22 ± 0.20 1.12 ± 0.13 1.16 ± 0.18
Srebf1 1.80 ± 0.48 1.56 ± 0.31 3.43 ± 1.16 2.21 ± 0.62
Lep 0.49 ± 0.08 1.00 ± 0.29 1.10 ± 0.31 1.38 ± 0.25
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682 Table 2. Birth outcomes

683 All values are mean ± SEM. The effect of dietary fatty acid ratio and dietary fat content was 

684 assessed using a two-way ANOVA. a indicates a significant effect of maternal dietary fat 

685 content (P<0.05).

High LA 
(18% Fat)

High LA 
(36% Fat)

Low LA 
(18% Fat)

Low LA 
(36% Fat)

n 6 8 7 9

Litter Size 12.83 ± 1.19 13.00 ± 1.21 13.14 ± 0.40 13.33 ± 1.08

Sex Ratio (male/female) 1.01 ± 0.23 0.97 ± 0.24 1.27 ± 0.28 1.13 ± 0.26

Male Birthweight (g)a 6.19 ± 0.53 5.19 ± 0.18 5.66 ± 0.14 5.36 ± 0.11

Female Birthweight (g)a 5.60 ± 0.37 4.85 ± 0.21 5.26 ± 0.14 5.07 ± 0.12
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686 Table 3. Offspring organ weights and hepatic gene expression

687 All values are mean ± SEM. A two-way ANOVA was used to analyse results with maternal dietary fatty acid ratio and maternal dietary fat 

688 content as factors. Different superscripts denote values which are significantly different (P<0.05). n=4-9 per dietary group. All comparisons are 

689 made within sex group.

Male Female
Experimental Group High LA 

(18% Fat)
High LA 
(36% Fat)

Low LA 
(18% Fat)

Low LA 
(36% Fat)

High LA 
(18% Fat)

High LA 
(36% Fat)

Low LA 
(18% Fat)

Low LA 
(36% Fat)

1 Week Offspring
Bodyweight (g) 17.52 ± 1.22a 12.85 ± 1.16b 16.61 ± 0.41a 14.20 ± 0.63b 15.79 ± 1.11a 12.44 ± 1.17b 15.66 ± 0.66a 13.40 ± 0.56b

Heart (% BW) 0.59 ± 0.07 0.67 ± 0.06 0.58 ± 0.04 0.64 ± 0.02 0.56 ± 0.02a 0.70 ± 0.06b 0.57 ± 0.06a 0.69 ± 0.04b

Lungs (% BW) 1.87 ± 0.05 1.73 ± 0.04 1.89 ± 0.05 1.90 ± 0.06 1.96 ± 0.11 1.92 ± 0.05 1.88 ± 0.12 1.93 ± 0.05
Kidney (%BW) 1.27 ± 0.08 1.34 ± 0.05 1.19 ± 0.09 1.22 ± 0.02 1.25 ± 0.04 1.38 ± 0.06 1.21 ± 0.10 1.26 ± 0.03
Liver (% BW) 3.17 ± 0.16a 3.39 ± 0.13a 2.81 ± 0.12b 2.89 ± 0.09b 3.18 ± 0.10 3.20 ± 0.27 2.96 ± 0.13 2.99 ± 0.05
Liver Fasn 0.21 ± 0.08a 0.24 ± 0.05b 0.18 ± 0.02a 0.38 ± 0.04b 0.15 ± 0.02a 0.22 ± 0.03a 0.32 ± 0.06b 0.35 ± 0.08b

Liver Lpl 1.09 ± 0.38a 1.26 ± 0.25b 0.76 ± 0.15a 2.01 ± 0.38b 1.26 ± 0.24 1.37 ± 0.46 1.59 ± 0.28 1.81 ± 0.35
Liver Pparg 0.40 ± 0.16 0.30 ± 0.07 0.46 ± 0.14 0.38 ± 0.08 0.51 ± 0.11 0.52 ± 0.13 0.62 ± 0.16 0.41 ±0 .06
Liver Srebpf1 0.63 ± 0.16 0.56 ± 0.09 0.51 ± 0.10 0.74 ± 0.10 0.44 ± 0.06a 0.44 ± 0.05a 0.64 ± 0.11b 0.80 ± 0.12b

2 Week Offspring
Bodyweight (g) 39.76 ± 1.67a 31.78 ± 2.17b 39.89 ± 0.59a 31.56 ± 1.49b 37.77 ± 1.55a 31.70 ± 2.05b 38.49 ± 0.93a 30.75 ± 1.29b

Heart (% BW) 0.60 ± 0.01 0.60 ± 0.02 0.61 ± 0.03 0.63 ± 0.01 0.67 ± 0.06 0.67 ± 0.01 0.65 ± 0.03 0.61 ± 0.02
Lungs (% BW) 1.33 ± 0.20 1.26 ± 0.05 1.25 ± 0.07 1.42 ± 0.07 1.28 ± 0.07 1.32 ± 0.05 1.26 ± 0.08 1.32 ± 0.06
Kidney (%BW) 1.05 ± 0.02 1.02 ± 0.03 1.06 ± 0.02 1.00 ± 0.03 1.17 ± 0.04 1.15 ± 0.04 1.14 ± 0.01 1.05 ± 0.02
Gonadal Fat (%BW) 0.22 ± 0.06 0.18 ± 0.02 0.19 ± 0.02 0.18 ± 0.01 0.24 ± 0.02 0.21 ± 0.02 0.23 ± 0.02 0.24 ± 0.03
Retroperitoneal Fat (%BW) 0.36 ± 0.01 0.41 ± 0.04 0.41 ± 0.02 0.39 ± 0.02 0.33 ± 0.03 0.27 ± 0.02 0.29 ± 0.03 0.27 ± 0.01
Liver (% BW) 3.01 ± 0.06 3.08 ± 0.14 3.11 ± 0.02 3.03 ± 0.02 3.18 ± 0.09 3.15 ± 0.09 3.23 ± 0.05 3.01 ± 0.10
Liver FASFasn 0.17 ± 0.01 0.18 ± 0.02 0.19 ± 0.02 0.20 ± 0.02 0.19 ± 0.02 0.20 ± 0.03 0.22 ± 0.03 0.24 ± 0.03
Liver LPLLpl 1.70 ± 0.25a 1.81 ± 0.29b 1.60 ± 0.13a 2.44 ± 0.23b 1.25 ± 0.16 1.89 ± 0.16 2.01 ± 0.29 1.81 ± 0.08
Liver PPARγPparg 0.56 ± 0.17 0.66 ± 0.10 0.48 ± 0.10 0.42 ± 0.07 0.79 ± 0.25a 0.58 ± 0.07a 0.31 ± 0.06b 0.43 ± 0.07b

Liver SREBP1cSrebf1 0.74 ± 0.02 0.71 ± 0.08 0.83 ± 0.06 0.80 ± 0.05 0.68 ± 0.07a 0.68 ± 0.05a 0.83 ± 0.06b 0.95 ± 0.10b
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690 Table 4. Offspring liver composition

691 All values are mean ± SEM. A two-way ANOVA was used to analyse results with maternal dietary fatty acid ratio and maternal dietary fat 

692 content as factors. Different superscripts denote values which are significantly different (P<0.05). n=4-9 per dietary group. All comparisons are 

693 made within sex group.

Male Female
Experimental Group High LA 

(18% Fat)
High LA 
(36% Fat)

Low LA 
(18% Fat)

Low LA 
(36% Fat)

High LA 
(18% Fat)

High LA 
(36% Fat)

Low LA 
(18% Fat)

Low LA 
(36% Fat)

1 Week Offspring
Liver DNA 
(µg/mg tissue)

0.48 ± 0.06 0.54 ± 0.04 0.56 ± 0.06 0.52 ± 0.03 0.51 ± 0.03 0.51 ± 0.04 0.50 ± 0.04 0.52 ± 0.02

Liver Protein 
(mg/g tissue)

119.2 ± 12.8 137.7 ± 8.9 135.6 ± 5.2 129.8 ± 4.9 123.8 ± 4.5 138.8 ± 8.3 128.6 ± 3.3 129.5 ± 5.2

Liver Glycogen
(µg/mg tissue)

12.71 ± 0.70a 11.26 ± 1.86a 9.72 ± 1.32b 8.64 ± 0.76b 9.70 ± 0.89 7.73 ± 0.88 9.00 ± 1.43 11.27 ± 1.80

2 Week Offspring
Liver DNA (µg/mg 
tissue)

0.59 ± 0.03 0.53 ± 0.05 0.56 ± 0.04 0.51 ± 0.03 0.52 ± 0.02a 0.61 ± 0.05b 0.52 ± 0.03a 0.57 ± 0.01b

Liver Protein 
(mg/g tissue)

115.1 ± 3.6 129.9 ± 13.5 130.2 ± 10.0 117.9 ± 9.4 117.2 ± 9.7 132.3 ± 9.1 120.7 ± 9.4 120.6 ± 6.5

Liver Glycogen 
(µg/mg tissue)

9.45 ± 0.61 7.48 ± 0.54 8.35 ± 0.98 9.30 ± 1.75 - - - -
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694 Figures

695

696 Figure 1. Maternal average daily (A) feed intake, (B) energy intake and (C) protein intake 

697 during pre-feeding, pregnancy and lactation fed on either a high LA (18% fat) diet (closed 

698 circles), high LA (36% fat) diet (open circles), low LA (18% fat) diet (closed squares) and a 

699 low LA (36% fat) diet (open squares). Values are means ± SEM and n=6-9 per group. The 

700 effects of dietary fatty acid ratio and dietary fat content were determined using a two-way 

701 repeated measures ANOVA. * indicates a significant effect of dietary fat content (** P<0.01, 

702 *** P<0.001). † indicates a significant interaction between dietary fat content and fatty acid 

703 ratio. 

704

705 Figure 2. Maternal whole blood fatty acids profile at (A/B) baseline (C/D) after 4 weeks on 

706 experimental diet and (D/E) at the end of lactation (3 weeks post-partum). Values are means 

707 ± SEM and n=6-9 per group. The effects of dietary fatty acid ratio and dietary fat content 

708 were determined using a two-way ANOVA (*P<0.05, **P<0.01, ***P<0.001). † indicates a 

709 significant interaction effect (P<0.05).

710

711 Figure 3. Offspring whole blood fatty acids profile at (A/B) one week of age and (C/D) at 

712 two weeks of age. Values are means ± SEM and n=11-17 per group. The effects of maternal 

713 dietary fatty acid ratio, maternal dietary fat content and sex were determined using a three-

714 way ANOVA. No effect of sex was found for any of the fatty acids measured and so male 

715 and female samples were combined for further analysis. * Indicates significant difference 

716 (*P<0.05, **P<0.01, ***P<0.001). † indicates a significant interaction effect (P<0.05).
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Figure 3.  

Total SFA

Total M
UFA

Total O
mega-6 LA AA

0

5

10

15

20

25

30

35

40

45

50

55

60

** **

***

***

***

***

***

***

***
***

***
†

Total O
mega-3 ALA

EPA
DPA 

DHA
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
 High LA (18% fat)
 High LA (36% fat)
 Low LA (18% fat)
 Low LA (36% fat)*

*

***

***

† †

Total SFA

Total M
UFA

Total O
mega-6 LA AA

0

5

10

15

20

25

30

35

40

45

50

55

60

*** ***

***

***
***

***

***

†

Total O
mega-3 ALA

EPA
DPA 

DHA
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0  High LA (18% fat)
 High LA (36% fat)
 Low LA (18% fat)
 Low LA (36% fat)

***

***

***

***

***

***

***

*** * *

 

 

 

 

Page 29 of 31

Cambridge University Press

British Journal of Nutrition



For Review Only
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1
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1
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2
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3
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4
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 ITEM RECOMMENDATION 
Section/ 
Paragraph 

Title 1 Provide as accurate and concise a description of the content of the article 

as possible. 

      

Abstract 2 Provide an accurate summary of the background, research objectives, 

including details of the species or strain of animal used, key methods, 

principal findings and conclusions of the study. 

      

INTRODUCTION  

Background 3 a. Include sufficient scientific background (including relevant references to 

previous work) to understand the motivation and context for the study, 

and explain the experimental approach and rationale. 

b. Explain how and why the animal species and model being used can 

address the scientific objectives and, where appropriate, the study’s 

relevance to human biology. 

      

Objectives 4 Clearly describe the primary and any secondary objectives of the study, or 

specific hypotheses being tested. 

      

METHODS  

Ethical statement 5 Indicate the nature of the ethical review permissions, relevant licences (e.g. 

Animal [Scientific Procedures] Act 1986), and national or institutional 

guidelines for the care and use of animals, that cover the research. 

      

Study design 6 For each experiment, give brief details of the study design including: 

a. The number of experimental and control groups. 

b. Any steps taken to minimise the effects of subjective bias when 

allocating animals to treatment (e.g. randomisation procedure) and when 

assessing results (e.g. if done, describe who was blinded and when). 

c. The experimental unit (e.g. a single animal, group or cage of animals). 

A time-line diagram or flow chart can be useful to illustrate how complex 

study designs were carried out. 

      

Experimental 
procedures 

7 For each experiment and each experimental group, including controls, 

provide precise details of all procedures carried out. For example: 

a. How (e.g. drug formulation and dose, site and route of administration, 

anaesthesia and analgesia used [including monitoring], surgical 

procedure, method of euthanasia). Provide details of any specialist 

equipment used, including supplier(s). 

b. When (e.g. time of day). 

c. Where (e.g. home cage, laboratory, water maze). 

d. Why (e.g. rationale for choice of specific anaesthetic, route of 

administration, drug dose used). 

      

Experimental 
animals 

8 a. Provide details of the animals used, including species, strain, sex, 

developmental stage (e.g. mean or median age plus age range) and 

weight (e.g. mean or median weight plus weight range). 

b. Provide further relevant information such as the source of animals, 

international strain nomenclature, genetic modification status (e.g. 

knock-out or transgenic), genotype, health/immune status, drug or test 

naïve, previous procedures, etc. 
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Housing and 
husbandry 

9 Provide details of: 

a. Housing (type of facility e.g. specific pathogen free [SPF]; type of cage or 

housing; bedding material; number of cage companions; tank shape and 

material etc. for fish). 

b. Husbandry conditions (e.g. breeding programme, light/dark cycle, 

temperature, quality of water etc for fish, type of food, access to food 

and water, environmental enrichment). 

c. Welfare-related assessments and interventions that were carried out 

prior to, during, or after the experiment. 

      

Sample size 10 a. Specify the total number of animals used in each experiment, and the 

number of animals in each experimental group.  

b. Explain how the number of animals was arrived at. Provide details of any 

sample size calculation used. 

c. Indicate the number of independent replications of each experiment, if 

relevant. 

      

Allocating 
animals to 
experimental 
groups 

11 a. Give full details of how animals were allocated to experimental groups, 

including randomisation or matching if done. 

b. Describe the order in which the animals in the different experimental 

groups were treated and assessed. 

      

Experimental 
outcomes 

12 Clearly define the primary and secondary experimental outcomes assessed 

(e.g. cell death, molecular markers, behavioural changes). 

      

Statistical 
methods 

13 a. Provide details of the statistical methods used for each analysis. 

b. Specify the unit of analysis for each dataset (e.g. single animal, group of 

animals, single neuron). 

c. Describe any methods used to assess whether the data met the 

assumptions of the statistical approach. 

      

RESULTS  

Baseline data 14 For each experimental group, report relevant characteristics and health 

status of animals (e.g. weight, microbiological status, and drug or test naïve) 

prior to treatment or testing. (This information can often be tabulated). 

      

Numbers 
analysed 

15 a. Report the number of animals in each group included in each analysis. 

Report absolute numbers (e.g. 10/20, not 50%
2
). 

b. If any animals or data were not included in the analysis, explain why. 

      

Outcomes and 
estimation 

16 Report the results for each analysis carried out, with a measure of precision 

(e.g. standard error or confidence interval). 

      

Adverse events 17 a. Give details of all important adverse events in each experimental group. 

b. Describe any modifications to the experimental protocols made to 

reduce adverse events. 

      

DISCUSSION  

Interpretation/ 
scientific 
implications 

18 a. Interpret the results, taking into account the study objectives and 

hypotheses, current theory and other relevant studies in the literature. 

b. Comment on the study limitations including any potential sources of bias, 

any limitations of the animal model, and the imprecision associated with 

the results
2
. 

c. Describe any implications of your experimental methods or findings for 

the replacement, refinement or reduction (the 3Rs) of the use of animals 

in research. 

      

Generalisability/ 
translation 

19 Comment on whether, and how, the findings of this study are likely to 

translate to other species or systems, including any relevance to human 

biology. 

      

Funding 20 List all funding sources (including grant number) and the role of the 

funder(s) in the study. 
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