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Abstract (200 words/200) 

To become user-driven and more useful for decision-making, the current evidence synthesis 

ecosystem requires significant changes (Paper 1.Future of evidence ecosystem series). 

Reviewers have access to new sources of data (clinical trial registries, protocols, clinical study 

reports from regulatory agencies or pharmaceutical companies) for more information on 

randomized control trials. With all these new available data, the management of multiple and 

scattered trial reports is even more challenging. New types of data are also becoming 

available: individual patient data and routinely collected data. With the increasing number of 

diverse sources to be searched and the amount of data to be extracted, the process needs to be 

rethought. New approaches and tools, such as automation technologies and crowdsourcing, 

should help accelerate the process. The implementation of these new approaches and methods 

requires a substantial rethinking and redesign of the current evidence synthesis ecosystem. 

The concept of a “living” evidence synthesis enterprise, with living systematic review and 

living network meta-analysis, has recently emerged. Such an evidence synthesis ecosystem 

implies conceptualizing evidence synthesis as a continuous process built around a clinical 

question of interest and no longer as a small team independently answering a specific clinical 

question at a single point in time. 
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What is new? 

▪ Access to new sources and types of data and recent developments of methods, 

technologies and tools create additional challenges as well as opportunities to achieve  

a better-designed ecosystem to support the production of high-quality evidence 

syntheses.  

▪ Multiple reports for a trial require assessing the validity of the data and exploring 

appropriate methods to define whether and how these data should be included in 

systematic reviews. 

▪ The implementation of these new approaches and methods requires rethinking the 

current evidence synthesis ecosystem as a living evidence synthesis enterprise and no 

longer a one-shot process. 
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As presented in paper 1 of the Future of evidence ecosystem series, the current evidence 

synthesis ecosystem ─ ecosystem for producing systematic reviews, meta-analyses and 

network meta-analyses ─  requires significant changes to overcome its important drawbacks, 

to adapt to developments in health care and primary research and become more useful in the 

decision-making process.  

In this paper, we will consider how access to new sources and types of data and recent 

developments of new methods, new technologies, and new tools presents a great opportunity 

to create and sustain an ecosystem that is better designed to support production of updated 

high-quality evidence syntheses.  

1. Using all existing sources and types of data 

 

1.1. Searching, using, comparing and integrating all sources of data 

As previously discussed in paper 1, most systematic reviews currently rely on summary data 

extracted from reports published in peer-reviewed journals or reported in conference 

abstracts. This approach raises important concerns related to reporting bias [1–4] and lack of 

transparency [5–9]. In contrast, under pressure from editors, funders, patient and public 

initiatives, and regulatory authorities, new sources of data are now increasingly available. 

These new sources of data allow reviewers to obtain more information on the methodology of 

randomized controlled trials (RCTs) as well as their results through aggregated data. 

Clinical trial registries: 

Clinical trial registries such as ClinicalTrials.gov, the World Health Organization’s 

International Clinical Trials Registry Platform (WHO-ICTRP), and the European Union 

Clinical Trials Register (EU-CTR) have become important sources of information for 
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systematic reviewers. Such registries allow for identifying unpublished trials if these trials 

were initially registered as required by many authorities. They can be used to identify 

outcome reporting bias (e.g., change in the primary outcome) because information on the 

primary and secondary outcomes is included in the registration record before the start of the 

study [10]. Furthermore, theoretically, one should be able to access summary results of trials 

including at least one site in the United States or European Union. Indeed, by law, the section 

801 of the 2007 US Food and Drug Administration (FDA) Amendment Act (FDAAA), 

requires all sponsors/investigators of clinical trials of drugs, biologics, and medical devices 

regulated by the FDA with at least one site in the United States to post their results at 

ClinicalTrials.gov within 1 year after trial completion. The US National Institutes of Health, 

the major US funder of academic trials, enforces this policy for all trials they fund, whether 

subject to FDAAA section 801 requirements or not. In 2014, the European commission on 

clinical trials directive required mandatory posting of results for any interventional trials 

registered in the European Clinical Trials Database (EudraCT). Currently, the results of 

36,751 trials are available at ClinicalTrials.gov [11] and 12,235 at EudraCT [12]. However, 

compliance with these laws and policies is suboptimal, with 40% of trial results not posted 

according to the FDAAA Trial Tracker (http://fdaaa.trialstracker.net) and half  according to 

the EU Trials Tracker (http://eu.trialstracker.net/) [13,14]. 

Clinical trial registries can be extremely valuable for systematic reviewers because the results 

of these recent trials are frequently not published at the time of posting [15] and because the 

completeness and detail of reporting may be higher when results, particularly safety data, are 

posted rather than reported in a published journal article [16].  

Despite often more detailed data available in trial registries, usually only limited information 

related to the methods used and analyses performed is available; the description of outcomes 

http://fdaaa.trialstracker.net/
http://eu.trialstracker.net/
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is often vague and the randomization process is only rarely described [17,18]. To overcome 

this limitation, ClinicalTrials.gov has now made it possible to upload the protocol and 

statistical analysis plans. Moreover, discrepancies in the data reported in trial registrations and 

their publications are common [19].  

Specific journals, and appendices to journal publications: 

Protocols can also be available as published articles — journals such as Trials were developed 

specifically to publish protocols — but also as appendices of journal publications as now 

systematically requested by an increasing number of journals (e.g., New England Journal of 

Medicine, Journal of Clinical Oncology or Annals of Internal Medicine).  

Regulatory agencies: 

Regulatory agencies such as the US FDA and European Medicines Agency (EMA) also give 

access to some additional information for the drugs they approved. The FDA shares the 

reviews and related documents on Drugs@FDA, but the trial protocol, clinical study report 

(CSR), case report forms and individual patient data (IPD) are not routinely available 

[18,20,21], despite the fact that the FDA has released CSRs and other documents on a 

voluntary basis since 2018. Since 2015, via a specific website 

(https://clinicaldata.ema.europa.eu/web/cdp/home), the EMA has given access to the CSRs 

submitted to the agency by companies in support of their marketing authorization 

applications. However, these documents are often thousands of pages long and necessarily 

take more time to analyse than reading a traditionally published article, which is usually a few 

pages long. For example, the compression factor (i.e., ratio of number of pages of the CSR to 

the published article) of a sample of CSRs obtained from public sources ranged from 1 to 

1221 [20]. Some issues related to the large redaction of some of these documents were also 

https://clinicaldata.ema.europa.eu/web/cdp/home
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raised [20]. Nevertheless, CSRs should be highly structured, and data presented are more 

complete in terms of efficacy, safety, and methodology and bias assessment [18,20]. 

Furthermore, with some training, the clear structure and complete reporting of information in 

CSRs allows for data extraction in an acceptable time frame and easier than finding it in 

multiple trial reports. However, considering CSRs as a source of data for inclusion in 

systematic reviews raises some issues [20,22,23]. First, access to these data is limited and 

requesting the data involves excessive time. Second, CSRs are long and complex documents 

containing a very large amount of information, which is time-consuming and resource-

intensive work for systematic reviewers. Third, CSRs can be redacted and important 

information could be masked and unavailable. For example, serious adverse event narratives 

could be redacted [20]. 

Repositories of clinical study reports: 

To increase access to data from pharmaceutical companies, some repositories were created 

that include ClinicalStudyDataRequest.com (www.clinicalstudydatarequest.com) (CSDR) and 

the Yale University Open Data Access (http://yoda.yale.edu/). Through these platforms, 

researchers can request access to the protocol, the CSR, case report forms, statistical analysis 

plan and IPD of a given study. Academic funders and non-governmental organizations such 

as Cancer Research UK, the Medical Research Council, Bill & Melinda Gates Foundation, 

and the Wellcome Trust are now also using the CSDR platform to share their data. In addition 

to peer-reviewed journal articles, some funders such as the UK NIHR Health Technology 

Assessment Programme (https://www.journalslibrary.nihr.ac.uk/#/) also produce detailed 

monographs containing much more data on trial reports including all sensitivity and subgroup 

analyses along with information on open-access data-sharing agreements. Furthermore, trial 

http://www.clinicalstudydatarequest.com/
http://yoda.yale.edu/
https://www.journalslibrary.nihr.ac.uk/#/
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websites also give access to detailed information such as the CSR, statistical analysis plans 

etc. 

All these new sources of data (i.e., trial registries, CSR repositories, etc.) represent a great 

opportunity because they provide access to clearly needed information related to the methods 

used (e.g., protocol, statistical analysis plan, annotated case report form) and the conduct and 

results of the trial (e.g., summary results posted on a trial registry, IPD, analysis-ready dataset, 

CSR). However, contrary to journal publications, which are available from well-structured 

electronic bibliographic databases, these new sources of information are only available 

through various channels that are still rapidly evolving over time as new initiatives emerge 

[24]. Information available for a single trial is usually scattered and not linked, so the 

identification of all data for a given trial is challenging. Using these data also raises specific 

issues related to the risk of double counting the same study [18] and possible discrepancies of 

the data reported in the various sources [25]. Solutions based on the concept of “threaded 

publications,” whereby all the various reports and publications related to a trial are linked 

(published protocol, results paper, secondary commentaries, CSR, IPD, etc.) [26], are being 

explored [27]. Particularly, the OpenTrials database aims to host and match all existing trial 

publications and data in a user-friendly web interface to provide a comprehensive picture of 

all the data and documents available for a trial [28]. 

Methods for evidence synthesis must take into account these developments — for example, 

the search strategies must cover all these new sources of data [29] — and rules to manage 

discrepancies between different reports of the same trial must be pre-specified in the protocol. 

Furthermore, the process needs to be rethought because the large number of diverse sources 

needed to be continuously searched and the increased amount of data to be extracted is a huge 

amount of extremely time-consuming and burdensome work. Developing teams that are both 
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sufficiently large and have the necessary expertise to work with and analyse all these 

documents is becoming essential. Furthermore, to avoid a massive increase in the level of 

resources needed, we need to rethink the current ecosystem. This will be discussed in paper 3 

of this series. 

 

1.2. Better use of other types of data 

New types of data are becoming available: IPD providing a deeper, new layer of the RCTs 

included in systematic reviews, and a new kind of data (routinely collected data), which have 

not been used for systematic reviews to a large extent. 

1.2.1. Individual patient data 

Meta-analyses mainly synthesize summary data from RCTs. However, IPD meta-analyses 

have important advantages [24]. With IPD meta-analysis, it is possible to verify the results 

[30], harmonize outcomes, use harmonized and appropriate analyses to avoid bias [31] and 

approach the question of precision medicine by assessing the treatment effect in subgroups of 

patients [32]. Also, there is some evidence that IPD meta-analyses can influence the design, 

conduct and analysis of subsequent trials [33]. Such meta-analyses can particularly affect the 

selection of participants, choice of comparator, and sample size calculation. In the past, IPD 

meta-analyses were limited because of important barriers to data availability. However, 

mentalities and practices have been changing, and several initiatives and policies to increase 

data-sharing have emerged [34–37].  

Accordingly, access to IPD is increasing rapidly, and making use more often of these data 

would be an important step forward for systematic reviewers as well as decision-makers [38]. 

The International Committee of Medical Journal Editors (ICMJE) requires that manuscripts of 

clinical trials submitted to ICMJE journals as of July 2018 contain a data-sharing statement 



 10 

and that clinical trials that begin enrolling participants on or after January 1, 2019 include a 

data-sharing plan in the trial’s registration record [39,37]. Such initiatives are timely because 

research has shown that participants would agree to sharing their data for a wide range of 

uses, with less than 8% feeling that the potential negative consequences of data sharing 

outweigh the benefits [40].  

However, despite these initiatives and an increasing endorsement of data sharing, meta-

analyses of IPD can take longer and be more expensive than meta-analyses of aggregate data 

[41]. Access to and use of IPD remains difficult particularly because of the lack of 

permanency of trial staff (including retirement or death of the PI), lack of continued resources 

to prepare data sets or to anonymise data once funded study has finished, lack of standard 

operating procedures by some smaller institutions, fear that major data errors will be 

uncovered, or just apathy or possessive mentality. A study in orthopaedic surgery exploring 

the feasibility of IPD for 39 research questions including 273 RCTs, showed that only 13% of 

investigators agreed to share data; accordingly, data would only be accessible for 15% of 

participants of this set of trials [42]. A recent study showed that IPD was accessible for only 

half of the trials published in leading journals [43]. A systematic review of 760 published IPD 

meta-analyses showed that only 25% retrieved 100% of the eligible IPD and half retrieved 

less than 80% [44], with no evidence of improvement in the retrieval rate over time.  

In addition, reanalysing IPD requires substantial resources and expertise. Contacting trialists 

(academic investigators or drug manufacturers), applying for access to IPD, negotiating 

confidentiality and data use agreements and contracts, technically gaining access to data and 

meta-data, understanding the structure of the database, querying possible data errors and 

undertaking analyses remains challenging and time-consuming, especially after funding for 

the main trial has ceased.  
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Moreover, IPD meta-analyses are not appropriate for all clinical questions. Indeed, an 

essential step in research is to determine the extent and scope of evidence synthesis required 

to ensure that the research efforts undertaken are consistent with the relevance of the clinical 

question. For example, for an emergent public health issue, a rapid review ─ i.e., a form of 

knowledge synthesis in which components of the systematic review process are simplified or 

omitted to produce information in a timely manner [45] ─ seems appropriate, whereas an IPD 

meta-analysis seems preferable for a clinical question for which we want to identify the 

characteristics of patients responding to treatment.  

 

1.2.2. Large-scale routinely collected data 

The primary research landscape is changing considerably with increasing access to large-scale 

health data routinely collected for administrative or clinical purposes. These data are defined 

as “data collected without specific a priori research questions developed prior to utilization 

for research” [46]. They include health administrative data, data warehouses of electronic 

medical records, primary care medical record data, and disease registries [47]. These large-

scale routinely collected data represent a real opportunity to transform health research, 

conduct real-life clinical research and improve healthcare efficiency [48].  

Overall, 85% of comparative effectiveness evidence is from non-experimental data [49]. 

There is evidence that only a small percentage of clinical guidelines are based on data from 

experimental studies. For example, a recent study showed that less than 20% of American 

Heart Association/American College of Cardiology recommendations are based on data from 

multiple RCTs (i.e., lower inherent risk for bias) and more than 45% are based solely on 

expert opinion [50]. Furthermore, the proportion of recommendations based on data from 

experimental studies (i.e., RCTs) has not increased over time [50]. According to some 
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experts, it is unrealistic to expect RCTs for every intervention and all combinations of these 

interventions in all patient subgroups [51]. Evidence is needed in a timely manner, and 

randomized trials take several years to design, pilot, deliver and report. Therefore, use of 

large-scale routinely collected data, especially in areas for which RCTs are rare or small, is an 

option that must be discussed [51]. Another example is the drug safety and effectiveness 

network (DSEN) which includes observational studies in network-meta-analyses of RCTs 

[52].  

Nevertheless, use of this kind of data raises some issues related to the quality of the data, key 

missing data, the risk of confounding and misclassification bias. Approaching causality in 

such datasets can be difficult because of the observational nature of the data and risk of 

confounding biases. Furthermore, including such data is challenging particularly because of 

the large heterogeneity in the size and quality of datasets and methods used. However, with 

the increased interest, new concepts, methods, and tools are being developed to support use of 

these data for comparative effectiveness research [51]. For example, emulated trials aim to 

mimic a RCT when planning and conducting the analysis of routinely collected data or other 

observational data for comparative effectiveness research [53,54]. CERBOT (Comparative 

Effectiveness Research Based on Observational data to emulate a Target Trial; cerbot.org) is a 

new tool for helping researchers and clinicians articulate their research question in terms of a 

hypothetical RCT (the target trial) and analyse observational data accordingly [53]. Specific 

reporting guidelines for reporting these studies using routinely collected data are now 

available [46], and a specific tool for assessing risk of bias of non-randomized studies of 

interventions (ROBINS-I) is now available [55]. Such data cannot be ignored during the 

evidence synthesis process. However, we need to assess in a more comprehensive and 

systematic way the validity of data and explore appropriate methods for determining whether 
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and how these data should be included in systematic reviews and other forms of evidence 

synthesis [56]. 

2. Using new methods for evidence synthesis  

The current evidence synthesis enterprise relies on multiple research teams all over the world 

independently deciding their question of interest and for most, working independently on 

evidence synthesis. These teams frequently address similar research questions, with no 

standard or structured approach planned for future updates. The system produces a wide range 

of disparate, redundant and outdated pairwise meta-analyses. It involves a considerable 

amount of resources but is not answering patients’, care providers’ and decision-makers’ 

needs and is responsible for considerable research waste [57]. 

The Cochrane collaboration has aimed at some form of control on prioritising questions and 

avoiding overlap by encouraging groups to define relevant titles, plan for updates and use 

methods such as optimum information size. They proposed to periodically assess all Cochrane 

reviews to determine whether an update is needed considering a number of different factors 

synthesized in a decision framework [58]. 

Furthermore, new methods based on the concept of a “living” evidence synthesis enterprise 

opposed to a one-shot process have recently emerged. 

2.1. Living systematic reviews  

More than 20 years ago, the introduction of cumulative meta-analyses highlighted the 

importance of integrating new evidence as it became available [59]. Considering the large 

number of outdated systematic reviews and the difficulties in managing the updating process, 

some researchers proposed new methods — living systematic reviews [60] — representing 

high-quality, up-to-date evidence synthesis, updated several times per year to add all new 
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RCTs as soon as they are available [60,61]. Under the auspices of the Cochrane 

Collaboration, a living systematic review network launched February 2016 included Cochrane 

and non-Cochrane researchers, policymakers and guideline developers. Four living systematic 

reviews are now available in the Cochrane Library [62–65]. However, living systematic 

reviews and meta-analyses as of now focus on a narrow scope of evidence mostly based on 

pair-wise direct comparisons of two treatments. 

2.2. Living network meta-analyses  

To overcome the limitations of living systematic reviews, a paradigm shift has been proposed: 

to move from living systematic reviews toward a global live cumulative or living network 

meta-analysis (NMA) ─ i.e., technique for comparing interventions simultaneously in a single 

analysis by combining both direct and indirect evidence across a network of studies ─ 

considering all available interventions for a given condition and incorporating new evidence 

as soon as it is available [66,67]. Investing a massive amount of resources to produce an 

NMA and not maintaining it afterwards does not make sense. However, most end-users 

engaged in the funding or production of systematic reviews do not seem to view the 

importance of updating regularly systematic reviews and to consider a living process rather 

than a one-shot process. As an example, for a living NMA for second-line treatments of 

advanced non-small cell lung cancer, the workload of an update was estimated at 10% of the 

initial work in terms of number of records needing to be “screened” and number of trials to be 

extracted, considering the same pace of evidence generation over time [68,69]. 

A living NMA consists of 1) performing an initial NMA and 2) maintaining this NMA by an 

iteration of six methodological steps over time. These steps are 1) adaptive search for 

treatments and trials, 2) crowd-sourced screening of reports and selection of trials, 3) data 

extraction, 4) assessment of risk of bias, 5) updating the network of trials and synthesis, and 
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6) disseminating results [68]. To cover the whole evidence for all treatments (i.e., new 

evidence both for treatments already in the network of trials and also for novel treatments), an 

adaptive search strategy that incorporates additional keywords pertaining to the novel 

treatments over time needs to be implemented. This adaptive search strategy implies that the 

interventions of the PICO criteria need to be slightly different from those for classical 

systematic reviews, more inclusive (treatment category in addition to drug names) and evolve 

over time (including new drugs assessed). A living evidence synthesis community should be 

set up to identify the most relevant research questions and maintain the living cumulative 

NMAs over time. For a given topic, the living evidence synthesis community could consist of 

different embedded groups with different backgrounds and skills (e.g., people interested in the 

disease, including patients or their representatives, content experts, methodological experts). 

We describe the proposed methodology in Figure 1 and at 

http://www.livenetworkmetaanalysis.com.  

The final output is an online living, comprehensive systematic review of all treatments and 

evidence synthesis (meta-analyses and NMAs) for multiple outcomes. The living NMA will 

be associated with a living sharing of data. Providing access to all extracted aggregated data 

allows for the self-correction of any error by the broader research community. It also allows 

end-users to perform additional analyses they consider relevant on the whole set or a subset of 

trial data. For example, living sharing of data may offer the possibility for different guideline 

developers to create their own evidence tables, thus increasing the uptake of evidence and 

potentially narrowing the gap between research publication and implementation. 

The updating frequency is essential to ensure that the living NMA is both feasible and 

relevant according to the pace of evidence generation for the condition of interest. For some 

diseases, the pace of randomized evidence production is slow, and the iterations may occur at 
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longer regular intervals [69]. In other cases, therapeutic evaluation is moving rapidly, and 

iterations must occur after very short periods of time.  

This new approach should be able to address the needs of the end users of comparative 

effectiveness reviews (Table 1). Indeed, living NMA provides a broad and up-to-date 

panorama of all treatments and trials available for a condition or a cluster of diseases under 

investigation. They can be intervention-focused to look for class effects as well as condition-

focused. It is an ideal tool for medical decision-making because it also allows for inferences 

on treatment comparisons that have never been evaluated directly in a trial. A recent study 

showed that living NMAs provided strong evidence against the null hypothesis 4 years earlier 

than pairwise meta-analysis [70]. They also allow for identifying evidence gaps in a very 

powerful manner and guiding future primary research in areas for which evidence is most 

needed and therefore facilitate prioritizing the planning of future trials [71]. Specific models 

have been implemented to combine RCTs with observational studies to get a better sense of how the 

interventions behave in the “real world ” [72]. 

Living evidence synthesis is probably not needed for all systematic reviews but become vital 

in case of a research question of very high importance, uncertainty with potential substantial 

health benefit or harm, or emerging evidence from trials in process. Likewise, living evidence 

syntheses are not open-ended and the question and process of their end must be planned (i.e., 

when it is unlikely that a new trial will change the results of the living NMA). Specific funds 

will have to be allocated for such living NMAs. For example, the Canadian government 

invested funds for the Drugs Safety and Effectiveness Network of the Canadian Institutes of 

Health Research. 

https://cihr-irsc.gc.ca/e/193.html
https://cihr-irsc.gc.ca/e/193.html
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2.3. Toward precision medicine 

Medicine has evolved from the “one-size-fits-all” approach, a uniform approach believed to 

be valid for the whole set of patients, to a precision medicine approach in which healthcare is 

tailored to smaller strata/groups of patients, and possibly even to individual patients. 

Treatment effects vary according to multiple parameters, such as study location, type of 

intervention, and participant characteristics [73,74]. Therefore, the value for decision-making 

of a simple estimation of an average treatment effect across different settings, patient 

populations, and variations of an intervention in a meta-analysis is questionable. Hence, future 

evidence syntheses need to expand efforts toward a precision medicine approach. Increasing 

access to IPD through data sharing will favour a precision medicine approach at the meta-

analysis level.  

Reanalysing IPD offers the opportunity to examine specific subgroups of patients not 

previously considered. It should allow for more uniformly consistent and therefore more 

powerful analyses as well as better characterization of subgroups and outcomes as compared 

with meta-analyses based on aggregate data.  

To achieve this stage of precision medicine, new techniques and statistical methods have been 

developed, for instance, to calibrate treatment effect estimates from a clinical trial to a target 

population [75]. The target population can differ from the study population in patient 

characteristics and/or medical practice due to temporal or regional differences [75]. New 

methods for treatment effect calibration based on the characteristics of the population have 

been developed and involve a combination of outcome regression methods, weighting 

methods based on a propensity score model and a conditional effect model [75]. Another 

example is predictive modelling with electronic health record data, which is anticipated to 

drive precision medicine and improve healthcare quality [76]. Deep learning methods with 
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these records can be used to create accurate and scalable predictions for a variety of clinical 

scenarios, including focusing on specific sub-populations [77].  

This new approach is a very ambitious endeavor requiring significant expertise and resources 

that will allow a new framework of research activity that is both of high value to end users but 

also of professional and career advantage to researchers. 

3. New approaches and tools to accelerate evidence synthesis 

The rigorous methodology of systematic reviews (exhaustive search of trials, minimization of 

subjectivity by independent duplicate assessments, assessment of risk of bias within trials) is 

inherently resource-intensive, especially for a broad and comprehensive systematic review 

incorporating NMA. Updating systematic reviews is also time-consuming and burdensome. 

However, new approaches should help accelerate these processes. Particularly, automation 

technologies on the one hand and crowdsourcing on the other could enhance the feasibility 

and sustainability of the evidence synthesis enterprise and improve efficiency [78]. 

 

3.1. Automation technologies 

For many repetitive and labour-intensive tasks of evidence synthesis, automation can and 

should be preferable and more sustainable [78]. New technologies such as textual analysis, 

semantic analysis, text mining and data linkage could have a major impact on the delay of 

systematic reviews (e.g., EPPI-reviewer [79]). Automated natural language processing (text 

mining) may help overcome resource-intensive manual screening [80–82], data extraction, 

assessment of risk of bias and reporting the findings of a systematic review [83–87]. Semi-

automated web applications (AbstrackR [88], Rayyan [89], RobotAnalyst [90]), that employ 

machine-learning and text-mining technologies, are now available to support systematic 

reviewers during title and abstract screening. These systems use pattern recognition 
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algorithms to predict the likelihood of citations to be included or excluded for a given 

systematic review [82]. Such methods could save 30% to 78% of the workload but miss 4% to 

5% of relevant studies [82,86].  

In a living NMA, automatic screening using word embeddings can successfully be applied for 

updating NMA, diminishing the workload without missing any finally included citations [91]. 

Systematic Review Tool Box gives access to other relevant tools 

(http://systematicreviewtools.com/).  

Nevertheless, current evidence processes remain very manual, and using all these tools in 

practice is still challenging. These automation technologies have been tested on only some 

specific clinical conditions, which raises concerns regarding their generalization in the 

practice of evidence synthesis. They have been mainly assessed in the selection phase of a 

systematic review, and further research and development are required for their transposition to 

other steps [78]. They have also been tested on traditional data sources (extracting data from 

PDFs of journal articles) rather than on new data sources such as structured registries. Finally, 

none of the combinations of these technologies has yet been tested.  

3.2. Crowdsourcing 

Partitioning of review tasks and subsequent online crowdsourcing could also facilitate and 

speed up some steps of the evidence synthesis process [92,93]. Cochrane Crowd is 

Cochrane’s new citizen science platform applying crowdsourcing in the systematic review 

process. It offers the possibility to become a Cochrane citizen scientist by joining the 

collaborative volunteer effort to help categorize and summarize healthcare evidence and result 

in better healthcare decisions [94]. About 14,700 contributors from 189 countries have 

already performed about 3 and a half million classifications as of October 2019. 

https://courriel.aphp.fr/owa/redir.aspx?C=Tgkp3AZ7LJkSoqQP2IOjfOeoSWgP7nYr7XNBlS-BZ0uiYXT039LWCA..&URL=https%3a%2f%2fwww.sciencedirect.com%2ftopics%2fsocial-sciences%2fworkload
http://systematicreviewtools.com/
http://crowd.cochrane.org/
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To reduce the workload on individuals involved in a living NMA, crowdsourcing could allow 

for distributing the tasks to a larger group of members of the living evidence synthesis 

community. Monitoring the development of novel treatments could also be opened up to a 

broad group of individuals actively engaged in the condition of interest. Records needing to 

be screened can be distributed across the group of experts and trials for extracting data across 

the group of trained reviewers, so independent selection and extraction in duplicate is 

guaranteed but the workload for each individual is minimized. 

In a living evidence synthesis process, using crowdsourcing and crowdtiming — engaging 

people in corporate actions by giving their time rather than money to contribute to a project 

— may facilitate the commitment of volunteers and reviewers.  

Conclusion 

New sources and types of data and new methodological approaches and tools are now 

available to overcome the limitations of the current system of evidence synthesis, thereby 

allowing for rigorously conducted, up-to-date, living evidence syntheses that would be more 

useful for decision-makers. However, the implementation of these new approaches and 

methods requires considerable resources to support such an evolution and a substantial 

rethinking and redesign of the current evidence synthesis ecosystem, especially in terms of 

infrastructure. It implies conceptualizing evidence synthesis as a continuous process built 

around a clinical question of interest for patients and physicians and no longer as a small team 

independently answering a very specific clinical question at a single point in time. 

Furthermore, it requires better coordination in identifying and allocating research questions of 

interest among global actors. 
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Table 1: Advantages of living network meta-analyses  

Stakeholders Advantages  

Patients and 

physicians 

• Answers the question of interest: "Which treatment works best?"  

• Gives access to a complete synthesis of all available evidence for all 

treatments over time collated in a freely accessible website 

• Saves time by avoiding the need to compile evidence from disparate, 

incomplete and potentially out-of-date systematic reviews, and 

overcomes issue of missing trials from these meta-analyses 

Researchers  • Brings the communities of researchers and systematic reviewers together   

• Reduces waste in research by avoiding overlapping meta-analyses 

• Improves the identification of research gaps and prioritization of future 

trials 

• Gives access to a complete up-to-date synthesis required to justify a new 

randomized trial 

Decision-makers • Facilitates the production of trustworthy, up-to-date guidelines 

Funders • Facilitates the assessment of future research projects by providing a 

complete up-to-date synthesis 

 

Figure 1: Living network meta-analysis to synthesize all available evidence for a given 

condition 

Legend: At each update, the network of trials encompasses all treatments available for a given 

condition. Each node represents a treatment; an edge connects two nodes when at least one 

randomized trial has compared these two treatments. The node size is proportional to the total 

number of patients randomly allocated to the treatment and the edge width to the total number 

of trials between these two treatments. A research community interested in the condition will 

continuously update this evidence synthesis; different groups will perform specific steps of 

the process, as shown by the colour codes. 
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