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Abstract 9 

The kappa coefficient is not an index of accuracy, indeed it is not an index of overall agreement but 10 

one of agreement beyond chance. Chance agreement is, however, irrelevant in an accuracy assessment 11 

and is anyway inappropriately modelled in the calculation of a kappa coefficient for typical remote 12 

sensing applications. The magnitude of a kappa coefficient is also difficult to interpret. Values that 13 

span the full range of widely used interpretation scales, indicating a level of agreement that equates to 14 

that estimated to arise from chance alone all the way through to almost perfect agreement, can be 15 

obtained from classifications that satisfy demanding accuracy targets (e.g. for a classification with 16 

overall accuracy of 95% the range of possible values of the kappa coefficient is -0.026 to 0.900). 17 

Comparisons of kappa coefficients are particularly challenging if the classes vary in their abundance 18 

(i.e. prevalence) as the magnitude of a kappa coefficient reflects not only agreement in labelling but 19 

also properties of the populations under study. It is shown that all of the arguments put forward for the 20 

use of the kappa coefficient in accuracy assessment are flawed and/or irrelevant as they apply equally 21 

to other, sometimes easier to calculate, measures of accuracy. Calls for the kappa coefficient to be 22 

abandoned from accuracy assessments should finally be heeded and researchers are encouraged to 23 

provide a set of simple measures and associated outputs such as estimates of per-class accuracy and 24 

the confusion matrix when assessing and comparing classification accuracy. 25 



2 
 

1. Introduction 26 

The kappa coefficient of agreement was introduced to the remote sensing community in the early 27 

1980s as an index to express the accuracy of an image classification used to produce a thematic map 28 

(Congalton et al., 1983; Rosenfield and Fitzpatrick-Lins, 1986). Early papers highlighted the 29 

limitations of conventional approaches to accuracy assessment, especially the omnibus index of 30 

overall accuracy that indicates the proportion of correctly classified cases (Turk, 1979). A major 31 

concern with the latter is that its magnitude can be highly sensitive to variations in class abundance 32 

(i.e. it is prevalence dependent). This problem can be easily illustrated in relation to a basic binary 33 

classification such as that used in studies of land cover change. If one class is very rare, as change 34 

typically is, an apparently very accurate classification could be achieved by simply allocating all cases 35 

to the most abundant class (Fielding and Bell, 1997; Hoehler, 2000). In such circumstances the overall 36 

accuracy would seem to be very high but the map produced with the classification would actually 37 

provide a very poor representation of the classes, especially with regard to the rare class that may be 38 

of particular interest.  39 

 40 

To address the problems associated with overall accuracy, the community has been encouraged to 41 

estimate and communicate with it measures of per-class accuracy (Story and Congalton, 1986; 42 

Janssen and van der Wel, 1994; Congalton and Green, 2009; Stehman and Foody, 2009; Olofsson et 43 

al., 2014) as well as explore other measures of accuracy and its reporting (e.g. Finn, 1993; Pontius, 44 

2000; Liu et al., 2007; Foody, 2011; Pontius and Millones, 2011; Comber et al., 2012; Pontius and 45 

Parmentier, 2014; Tsutsumida and Comber, 2015; Ye et al., 2018; Ariza-Lopez et al., 2019). For 46 

example, the conditional probability that a case has been allocated a class label that corresponds to its 47 

actual class of membership which is often referred to as producer’s accuracy (Congalton and Green, 48 

2009; Stehman and Foody, 2009; Olofsson et al., 2014) can indicate accuracy on a per-class basis. 49 

Similarly, per-class accuracy could be assessed by relating the number of correctly classified cases of 50 

a class to the number of cases allocated to that class in the classification and this is often referred to as 51 

user’s accuracy (Congalton and Green, 2009; Stehman and Foody, 2009; Olofsson et al., 2014). The 52 
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desire for a single omnibus measure, however, encouraged the exploration of measures of accuracy 53 

that seek to summarise accuracy over all classes in a single index and address impacts of issues such 54 

as class abundance on the apparent accuracy.  Indeed the kappa coefficient was proposed as an index 55 

that improved upon overall accuracy (Ubsersax, 1987; Maclure and Willett, 1987) and in the remote 56 

sensing community it has been promoted as being an advancement on overall accuracy (Congalton et 57 

al., 1983; Fitzgerald and Lees, 1994).  58 

 59 

Key arguments put forward for the adoption of the kappa coefficient as an index of classification 60 

accuracy were along the lines that it corrected for chance agreement, scales exist for its interpretation, 61 

it may be estimated on a per-class as well as on an overall basis and that a variance term may be 62 

estimated for it allowing statistically rigorous comparisons to be undertaken (Congalton et al., 1983; 63 

Rosenfield and Fitzpatrick-Lins, 1986).  Perhaps because of the correction for chance agreement, it is 64 

also sometimes claimed that the kappa coefficient is relatively independent of variations in class 65 

prevalence (Manel et al., 2001). 66 

 67 

The papers that introduced the kappa coefficient for accuracy assessment in remote sensing have had 68 

an enormous impact on the research community. These papers have been very highly cited and have 69 

been followed by other hugely influential publications that have further promoted the use of the kappa 70 

coefficient in accuracy assessment (e.g. Congalton, 1991; Congalton and Green, 2009). These 71 

publications have helped to foster the widespread use of the kappa coefficient that has been aided by 72 

the inclusion of functionality for its calculation in popular image processing software (Pontius and 73 

Millones, 2011).  74 

 75 

Despite the widespread promotion of the kappa coefficient and the ease of its estimation, there are 76 

many concerns with its use in accuracy assessment. Although widely used, the kappa coefficient has 77 

had a troubled history, with concerns ranging from the use of incorrect equations (Fleiss et al., 1969; 78 
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Rosenfield and Fitzpatrick-Lins, 1986; Hudson and Ramm, 1987) to more fundamental calls for the 79 

kappa coefficient to be abandoned (e.g. Pontius and Millones, 2011). Indeed the use of the kappa 80 

coefficient is regarded explicitly as poor practice in accuracy assessment (Olofsson et al. 2013; 2014). 81 

Sadly the calls to abandon the use of the kappa coefficient in accuracy assessment seem to have fallen 82 

on deaf ears. It may be that the kappa coefficient is still widely used because it has become ingrained 83 

in practice and there may be a sense of obligation to use it (Stehman and Foody, 2019). Indeed many 84 

researchers seem to use it because precedent for its use exists but given the concerns with the kappa 85 

coefficient this is merely an argument to allow mistakes to be repeated. Mistakes happen, but should 86 

be used as a positive learning experience that leads to constructive change rather than a situation to be 87 

repeated. 88 

 89 

It is unclear why the calls to abandon the use of the kappa coefficient in accuracy assessment have not 90 

been heeded as the criticisms have been damning with recommendations for good practice clear (e.g. 91 

Foody, 1992; Stehman, 1997a; Pontius and Millones, 2011; Stehman and Foody, 2009; Olofsson et 92 

al., 2013, 2014). It may be that theoretical arguments have been challenging or that the ease with 93 

which the kappa coefficient may be estimated as relevant functionality is often embedded in popular 94 

software leads to widespread and possibly unquestioning use. For example, in the period after the 95 

publication of the ‘death to kappa’ paper by Pontius and Millones (2011), the kappa  coefficient was 96 

reported in half of the relevant literature (Morales-Barquero et al., 2019). The use of the kappa 97 

coefficient seems to be embedded into standard practice despite well-known concerns that have been 98 

widely disseminated. One possible reason for this unsatisfactory situation is that the community is 99 

unaware of the magnitude of the problems associated with the use of the kappa coefficient. Hence, 100 

this article aims to revisit major concerns with the use of the kappa coefficient to demonstrate its 101 

unsuitability as an index of classification accuracy in remote sensing using simple examples with a 102 

focus on highlighting the challenges of interpreting a kappa coefficient by stressing the difficulties in 103 

interpreting its magnitude. It will be stressed that all of the arguments put forward for the use of the 104 

kappa coefficient are flawed or, in the sense that they are not unusual or unique, irrelevant. The article 105 
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will first review the estimation of the kappa coefficient and key attributes that have been espoused in 106 

support of its use. The latter will be critically evaluated to highlight key concerns before providing 107 

some simple examples to demonstrate the problems that can be encountered in the interpretation of 108 

the magnitude of a kappa coefficient. Throughout the focus is on commonly encountered situations 109 

and hence limited to evaluations of standard hard classifications. 110 

 111 

2. Estimation of the kappa coefficient 112 

The kappa coefficient can be estimated easily from the confusion or error matrix that is widely used in 113 

classification accuracy assessment. For ease of discussion, the main focus will be on the simplest case 114 

of a binary confusion matrix which is widely used in, for example, studies of land cover change 115 

(Figure 1). The approach readily extends to larger, multi-class, matrices and this is briefly discussed 116 

for completeness. For ease of presentation, it will also be assumed throughout that the sample of cases 117 

used to form the confusion matrix was acquired using simple random sampling unless stated 118 

otherwise; different sampling designs can be used and the correct formulae for use with them are 119 

provided in the literature (e.g. Stehman, 1996, 1997b). 120 

 121 

In a binary classification there are just two classes. Thus, in the map produced by a binary image 122 

classification, each case (e.g. image pixel) either has (+) a particular trait associated with it or it has 123 

not (-). For example, in a remote sensing application the case might be labelled in the map as 124 

representing an area of change or of no change. Similarly, the labels might be forest and non-forest or 125 

urban and non-urban or to some other specific class of interest or not. Critically, a case may also have 126 

similar labels applied to it in a ground reference data set used to assess classification accuracy. The 127 

cross-tabulation of the class labels observed in the map and those in the reference data set yields a 128 

basic 2 x 2 confusion matrix, often referred to as an error matrix, from which a range of summary 129 

measures of classification accuracy can be obtained (Figure 1). Based on the assumption that the map 130 
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and reference data sources are considered to be two independent raters, the kappa coefficient of 131 

agreement may be estimated from this matrix.   132 

 133 

 134 

Figure 1. The confusion matrix for a binary classification based on a simple random sample of n 135 
cases. 136 

 137 

Before exploring the estimation of the kappa coefficient further it may be useful to focus first on the 138 

composition of the confusion matrix. The binary confusion matrix has four elements that summarise 139 

every possible scenario of class labelling. The number of cases with each of the four possible class 140 

allocation scenarios, a-d, are inserted into the appropriate matrix elements. Of these, a cases are 141 

labelled as having the trait of interest in both the image classification that forms a thematic map and 142 

the reference data; these are often termed true positives. The d cases that are labelled as not having the 143 

trait of interest in both the image classification and the reference data lie in the other element of the 144 

matrix’s main diagonal; these are often termed true negatives. Thus, the cases lying in elements of the 145 

main diagonal, a and d, represent those that have been correctly classified. All of the cases that have 146 

been incorrectly classified lie in the off-diagonal elements of the matrix. Of these, b are those cases 147 

that have been classed as having the trait of interest but do not actually possess it; these are commonly 148 

referred to as false positives. Such cases represent commission errors, sometimes referred to as type I 149 

errors although the use of this terminology can sometimes be problematic (Thron and Miller, 2015). 150 

Finally, c cases have the trait of interest in the reference data but were classified as not having it; these 151 

are commonly referred to as false negatives. These latter cases represent omission errors, sometimes 152 

referred to as type II errors. The cases on which the classification and reference data differ in labelling 153 

are the misclassifications or errors. In Figure 1, omission is assessed with a focus on the columns of 154 

the matrix while commission is assessed with a focus on the rows of the matrix. The total number of 155 
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cases lying in each row and each column can be determined by summing the relevant matrix elements. 156 

These row and column total values are often referred to as the matrix marginal values. Their total, 157 

calculated over all rows or all columns, also equates to the total number of cases, n, used to form the 158 

matrix. The difference between the row and column proportions for a class indicate non-site specific 159 

accuracy and indicate map bias which is sometimes referred to as quantity disagreement (Pontius and 160 

Millones, 2011; Stehman and Foody, 2019). Finally, the prevalence, θ, of the trait of interest which 161 

indicates its abundance may be estimated from 
(𝑎+𝑐)

𝑛
=

𝑛.+

𝑛
 and is a property of population being 162 

studied. Ideally, a measure of accuracy should reflect only the quality of the classification and not 163 

vary with prevalence. Indeed, the prevalence dependency of overall accuracy noted at the beginning 164 

of this article is one of its major limitations as a measure of accuracy. Some measures, such as 165 

producer’s accuracy, are prevalent independent if the diagnostic ability of the classifier is unaffected 166 

by prevalence, which can aid their interpretation; in common remote sensing applications the 167 

producer’s accuracy may, however, be expected to be prevalent dependent.  168 

 169 

Using notation similar to Cohen (1960), the kappa coefficient of agreement, κ, is estimated from: 170 

𝜅 =
𝑝𝑜− 𝑝𝑒

1− 𝑝𝑒
       (1) 171 

where po is the proportion of cases correctly classified (i.e. overall accuracy) and pe is the expected 172 

proportion of cases correctly classified by chance; note with this notation the distinction between 173 

parameters and estimated parameters is not explicit but the text will indicate where sample-based 174 

estimates are being made or used. The magnitude of κ  lies on a scale from -1 to +1 but interest is 175 

typically focused on only on positive values because negative values indicate a level of agreement less 176 

than that due to chance and can be difficult to interpret (Sim and Wright, 2005). The maximum value 177 

of +1 occurs when there is perfect agreement and a value of 0 arises when the observed agreement 178 

equals that due to chance (Cohen, 1960). Commonly the magnitude of the kappa coefficient is 179 

interpreted relative to a scale. One such interpretation scale that has been widely used in remote 180 

sensing applications is that proposed by Landis and Koch (1977). 181 
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Central to the estimation of the kappa coefficient is the estimation of the level of agreement and also 182 

the level of agreement that occurs due to chance. For the simple case of a binary confusion matrix 183 

such as shown in Figure 1, the proportion of agreement, po is estimated from 184 

𝑝𝑜 =
𝑎 + 𝑑 

𝑛
         (2)  185 

in which a and d are the number of cases correctly labelled (i.e. the true positive and true negative 186 

cases), lying in the elements of the main diagonal of the confusion matrix (Cohen, 1960; Congalton et 187 

al., 1983). Thus, po is simply the sum of all correctly classified cases divided by the total number of 188 

cases used to form the matrix and expresses the proportion of correctly labelled cases (i.e. overall 189 

accuracy); it is often multiplied by 100 and expressed as a percentage which is commonly termed the 190 

percentage correctly classified cases. Although an imperfect index of accuracy, the proportion of 191 

correctly allocated cases is relatively easy to estimate and understand (Pontius and Millones, 2011). 192 

Before going into any further detail one thing to note at this stage of the discussion is that the kappa 193 

coefficient is estimated from po, it is an additional analytical step required after the estimation of 194 

overall accuracy.  195 

 196 

There are a variety of ways to estimate chance agreement (Byrt et al., 1993), but the version that is 197 

adopted commonly in remote sensing, which is used in the estimation of Cohen’s kappa coefficient, is 198 

based on a simple analysis of the row and column marginal values (Byrt et al., 1993; Lantz and 199 

Nebenzahl, 1996; Hoehler, 2000, Sim and Wright, 2005). In this, the proportion of agreement 200 

expected due to chance, pe, may obtained from equation 3. 201 

𝑝𝑒 = ((
𝑎+𝑐

𝑛
) ( 

𝑎+𝑏

𝑛
)) + ((

𝑏+𝑑

𝑛
 ) (

𝑐+𝑑

𝑛
))     (3) 202 

Chance may be modelled differently yielding alternatives to equation 3 and these may be used in 203 

equation 1 to yield other indices of agreements. For example, Scott’s pi, π, is estimated from equation 204 

1 but, as it is based on different assumptions to the kappa coefficient, the estimation of pe is different 205 

(Byrt et al., 1993; Banerjee et al., 1999).  206 
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 207 

To illustrate accuracy on a per-class basis it is possible to estimate the conditional kappa coefficient 208 

(Rosenfield and Fitzpatrick-Lins, 1986; Czaplewski, 1994; Congalton and Green, 2009). For the class 209 

i, which has either the + or – label, the latter may be estimated from 210 

𝜅𝑖 =
𝑛𝑛𝑖𝑖−𝑛𝑖∙𝑛∙𝑖

𝑛𝑛𝑖∙−𝑛𝑖∙𝑛∙𝑖
       (4) 211 

The variance for kappa may be estimated (Congalton et al., 1983; Congalton and Green, 2009) and 212 

can be usefully expressed in terms of the standard error, 𝜎𝜅, which is the square root of the variance. 213 

The details of the estimation are not central to the argument in this article but the equation for its 214 

estimation for those interested is given in Figure 2. A large literature discusses the estimation of the 215 

variance and related terms in more detail (e.g. Fleiss et al., 1969, 2013; Hudson and Ramm, 1987; 216 

Czaplewski, 1994). 217 

 218 

The standard error may be used to define confidence limits around the estimated value of a kappa 219 

coefficient. For example, the 95% confidence interval (95% CI) would be 𝜅 ± 1.96𝜎𝜅 as at this level 220 

of confidence the standard score, z, is 1.96. The statistical significance of a kappa coefficient may also 221 

be assessed, using:   222 

𝑧 =
𝜅

𝜎𝜅
        (5) 223 

which indicates the degree to which the level of agreement observed is better than that arising from 224 

chance alone (Congalton and Green, 2009; Fleiss et al., 2013). More usefully, this also provides the 225 

basis to compare an estimated kappa coefficient against other values and also to compare the 226 

difference between two estimated kappa coefficients. This is particularly useful when seeking to 227 

undertake a statistically rigorous and credible comparison of the accuracy of two thematic maps. For 228 

example, two maps, A and B, may have been produced for a region using two different classifiers and 229 

the researcher may be interested in knowing if they differ in accuracy. The test for the significance of 230 

the difference between two kappa coefficients estimated using independent samples is: 231 



10 
 

𝑧 =
𝜅𝐴−𝜅𝐵

√𝜎𝜅𝐴
2 +𝜎𝜅𝐵

2
         (6) 232 

where 𝜅𝐴 and 𝜅𝐵 are the estimated kappa coefficients for maps A and B respectively, and 𝜎𝜅𝐴 and 𝜎𝜅𝐵 233 

are the associated estimates of the standard error of kappa for maps A and B respectively (Cohen, 234 

1960; Congalton and Mead, 1983; Congalton et al., 1983; Rosenfield and Fitzpatrick-Lins, 1986, 235 

Smits et al., 1999). Two maps would be deemed to be of different accuracy if |z|>1.96 at the 95% 236 

level of confidence. If the hypothesis under test has a directional component (e.g. that one map is 237 

more accurate than another) a one-sided rather than two-sided test can be undertaken in the usual way 238 

(Foody, 2009; Fleiss et al., 2013). 239 

 240 

The discussion in this article is focused on binary classifications for ease but the issues extend to 241 

multi-class classifications. For multi-class classifications the nature of the confusion matrix and key 242 

equations are given in Figure 2. 243 

 244 

 245 

 246 

Figure 2. The confusion matrix for a multi-class classification involving m classes, expressed as 247 

proportions, together with key equations for the estimation of the kappa coefficient and its standard 248 

error. 249 

 250 

 251 
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3. Challenging the arguments for the use of the kappa coefficient 252 

Before addressing the substantive problems with the kappa coefficient it should be noted that a range 253 

of problems have been encountered in its use in remote sensing. For example, there is often a failure 254 

to recognise impacts of the sample design used to acquire the cases used in estimation (Stehman, 255 

1996), incorrect variance equations have been used (Rosenfield and Fitzpatrick-Lins, 1986), and many 256 

comparative assessments have used related rather than independent samples (Foody, 2004) or not 257 

recognised the directionality of the study which may require testing for dissimilarities related to 258 

inferiority, superiority or equivalence rather than just a difference (Foody, 2009). Similar concerns 259 

could be flagged in relation to other indices of accuracy and so such problems are not the central issue 260 

of concern to this article. Here, the concern is that the kappa coefficient is unsuitable for use in 261 

accuracy assessment, the additional problems encountered in practical application are of very 262 

secondary importance. Consequently, the latter are not discussed further especially as such 263 

methodological errors are often easy to address with, for example, equations for use with stratified 264 

samples (Stehman, 1996) and cluster samples (Stehman, 1997b) as well as statistical tests for related 265 

samples (Donner et al., 2000; Foody 2004; 2009; Fleiss et al., 2013). 266 

 267 

Central to this article are fundamental problems with the use of the kappa coefficient as an index of 268 

classification accuracy. A variety of arguments can be raised against the use of the kappa coefficient 269 

in accuracy assessment. These range from the fundamental issue that as a measure of inter-rater 270 

agreement it is not a measure of accuracy (Nishii and Tanaka, 1999; Vach, 2005; Wu et al., 2007) to 271 

substantial difficulties in its interpretation (Byrt et al., 1993; Lantz and Nebenzahl, 1996; Sim and 272 

Wright, 2005; Pontius and Millones, 2011). Here, the central focus is directed at challenging each of 273 

the arguments that have been put forward to promote the use of the kappa coefficient in order to 274 

highlight its unsuitability as a measure of classification accuracy, summarised in Table 1. 275 

 276 
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Table 1. A summary of the seven main arguments offered for the adoption of the kappa coefficient 277 

and a brief critique of each, highlighting the argument to be either seriously flawed or irrelevant, in 278 

the sense that while it may be a valid statement there is nothing unusual or different to other standard, 279 

often simpler, indices of accuracy. In short, not a single one of the key arguments put forward for the 280 

use of kappa has any real merit, each is either deeply flawed or equally applicable to other indices. 281 

Arguments for the use of kappa Reality 

It ‘corrects’ for chance agreement Flawed argument. There is no need to ‘correct’ 

for chance agreement. The source of error is 

unimportant in the assessment of classification 

or map accuracy. Furthermore, chance is an 

artificial construct and the way it is modelled in 

the estimation of κ is inappropriate.  

Its estimation is based on the entire confusion 

matrix 

Flawed argument, indeed one that is completely 

untrue. The estimation is actually based on the 

main diagonal together with the row and column 

marginal totals. 

It can be estimated on an overall and per-class 

basis 

Irrelevant as the exact same can be argued for 

other standard measures of accuracy such as 

overall accuracy (i.e. the proportion of cases 

correctly classified) with per-class statements 

from the user’s and producer’s perspectives. 

It is, to a large degree, prevalent independent Flawed argument as untrue. Kappa is, like many 

other indices, very dependent on class 

prevalence. 

A variance term may be estimated for it. Irrelevant as the exact same can be argued for 

other standard measures of accuracy such as the 

proportion of cases correctly classified. 

It allows rigorous comparison of estimates of 

classification accuracy. 

Irrelevant as the exact same approach to 

comparison, which requires variance estimates, 

can be used with other measures of accuracy. 

The commonly promoted approach is also 

suitable for situations in which independent 

samples are used but often the same sample is 

used; methods for the comparison of accuracy 

estimates obtained from the same sample are 

available. The comparison of kappa coefficients 

is also problematic if there are differences in 

prevalence.   

Scales exist for its interpretation Flawed argument. A variety of scales exist but 

any scale is arbitrary and cannot be expected to 

be of universal applicability. The scales also 

ignore problems linked to issues such as class 

prevalence. 

 282 

The kappa coefficient is designed for application to data arising from two independent raters and 283 

provides a measure of the degree to which they agree in labelling. Indeed, an early article introducing 284 
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the kappa coefficient to the remote sensing community focused on its use as a measure of inter-rater 285 

agreement (Congalton and Mead, 1983). However, this type of analysis is not the scenario 286 

encountered in the assessment of classification accuracy, notably because the ground reference data 287 

are supposed to represent the true condition and the desire is to yield a measure of accuracy not 288 

simply agreement.  289 

 290 

Classification accuracy is a measure of the quality with which a set of cases have been labelled. 291 

Fundamentally, the concern in accuracy assessment is with the amount of error or mis-labelling that 292 

has occurred in the classification. In this way the accuracy assessment is useful in terms of assessing 293 

the fitness for purpose of the classification. The latter would typically require a comparison of the 294 

estimated accuracy relative to some target value that indicates the minimum acceptable accuracy for 295 

the proposed use of the classification. A target accuracy should ideally be defined before the 296 

classification is undertaken and be tailored to the specific purpose of the classification (Foody, 2008). 297 

For example, in the pioneering work linked to Anderson (1971) and Anderson et al. (1976) for the 298 

mapping of broad land cover classes over a large area, a target of 85% correct allocation with the 299 

classes mapped to approximately equal accuracy was used. This target value was well-justified for the 300 

specific application and data sets used. For a different mapping application, a target for the specific 301 

needs of that individual application should be defined and used; the 85% target put forward by 302 

Anderson et al. (1976) is not a universally applicable one. For example, a simple binary classification 303 

involves fewer classes than the application Anderson et al. (1976) addressed and a higher target 304 

accuracy might be appropriate. An example used below, for instance, sets a target that comprises an 305 

overall accuracy of 95% with the producer’s accuracy for the two classes to be at least 95%. Key 306 

attractions of this sort of Anderson-type target are that a target value can be defined in advance of the 307 

classification and it may, to some extent, help to address concerns with prevalence dependency. The 308 

latter arises because the target includes the producer’s accuracy for each class and this measure of 309 

accuracy is independent of prevalence if the diagnostic ability of the classifier is fixed (Rogan and 310 

Gladen, 1978; Maclure and Willetts, 1987); but note that the valuable attribute of prevalence 311 
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independence is lost if the ground data set is imperfect (Foody, 2010) or if the diagnostic ability of the 312 

classifier changes with prevalence. 313 

 314 

The desire for a target highlights an initial problem with the use of the kappa coefficient: how can a 315 

sensible target value be defined in advance of a mapping study when the marginal values of the 316 

confusion matrix are unknown? In brief, it will typically be infeasible to define a meaningful kappa 317 

coefficient as a target value in advance of the classification. It could be argued, however, that a target 318 

value is not required with the use of the kappa coefficient as the quality of the classification can be 319 

assessed relative to an interpretation scale. This will be one of the problems with the kappa coefficient 320 

that will be discussed below. 321 

 322 

As highlighted in the introduction, several key attributes have been routinely suggested as arguments 323 

for the use of the kappa coefficient in the assessment of classification accuracy. Perhaps the most 324 

widely used argument for the adoption of the kappa coefficient is, essentially, that it corrects for 325 

chance agreement. Although the exact meaning of ‘chance correction’ is not always clear the core 326 

thrust appears to be that it adjusts the assessment for the effect of chance agreement; the kappa 327 

coefficient essentially quantifies the level of agreement beyond that due to chance. This is an 328 

important observation as the kappa coefficient is often treated as a measure of overall agreement 329 

rather than a measure of agreement beyond chance (Jiang and Liu, 2011) and, as noted above, chance 330 

may be modelled in different ways and so needs to be quantified with care. Because of the assessment 331 

being made relative to a random classification, which is unrealistic of real land cover mosaics, the 332 

kappa coefficient fails to meet the map relevant criterion for good practice (Stehman and Foody, 333 

2019). Moreover, the aim of an accuracy assessment is, essentially, the estimation of how much error 334 

has occurred; the lower the error the greater the accuracy. Note the origin of the error or the reason for 335 

correct labelling is of absolutely no concern to the measurement of accuracy. In a conventional 336 

accuracy assessment, a map label is either correct or it is not. There may well be interest in 337 
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understanding error, especially as a means to further enhance a classification-based analysis, but such 338 

assessments of skill require a different type of analysis (Turk, 1979); a distinction between the 339 

assessment of classifier performance that indicates diagnostic ability and the assessment of 340 

classification accuracy is required (Turk, 2002). Accuracy assessment merely seeks to quantify the 341 

amount of error, the origin or source of the error is irrelevant. There is, therefore, no interest in chance 342 

agreement and no desire to correct for it in a standard accuracy assessment. Indeed rather than 343 

estimate and remove the chance agreements the community should regard such agreements as a 344 

windfall gain (Turk, 2002). Even if there was a desire to explore the issue of chance agreement the 345 

estimation of its magnitude for the calculation of the kappa coefficient, equation 3, is inappropriate. 346 

Since the ground reference data represent reality rather than labels from another independent rater, it 347 

may be more appropriate to have fixed column marginal values determined by the number of classes 348 

with pe = 1/m (Brennan and Prediger, 1981; Foody, 1992).   349 

 350 

Another popular argument for the use of the kappa coefficient is that its variance may be estimated 351 

which facilitates rigorous testing. In particular, the ability to obtain the variance for kappa allows tests 352 

of the statistical significance of the difference between two kappa coefficients to be undertaken 353 

(Rosenfield and Fitzpatrick-Lins, 1986; Congalton and Green, 2009). These arguments are well-354 

founded and the ability to rigorously compare estimates is a useful attribute. This situation is, 355 

however, nothing particularly special to the kappa coefficient. The variance of other estimates of 356 

accuracy such as  the overall accuracy, which is simply a proportion (p), can also be calculated. The 357 

standard error for a proportion, assuming the use of a simple random sample, can be estimated from: 358 

𝜎𝑝 = √
𝑝(1−𝑝)

𝑛
         (7) 359 

Thus, the variance and related statistics can be obtained for proportions (Fleiss et al., 2013) such as 360 

overall, producer’s and user’s accuracy.  Furthermore, contrary to claims to the reverse (Jansen and 361 

van der Wel, 1994), it is possible to rigorously compare estimates of the proportion of correctly 362 

classified cases. Thus, the statistical significance of the difference in the accuracy of two 363 
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classifications could be assessed using overall accuracy. The assessment would be similar to that 364 

indicated by equation (6) but with the proportion correct, po, and its associated variance term, which 365 

can be expressed as the standard error, 𝜎𝑃, for each classification used instead of the kappa 366 

coefficients and their standard errors (Stehman, 1997a; Foody, 2004):  367 

𝑧 =
𝑃𝑜𝐴−𝑃𝑜𝐵

√𝜎𝑝𝐴
2 +𝜎𝑝𝐵

2
       (8)   368 

Equation 8 allows the statistical significance of differences in proportions, such as overall accuracy, 369 

on the assumption that the samples used are independent. Often in remote sensing applications the 370 

same ground reference data set is used and the effect this has on the analysis could be addressed by 371 

integrating a covariance term into the test or by adopting a test suited for use with related samples 372 

such as the McNemar test as an alternative (Foody, 2004; 2009). 373 

 374 

The ability to estimate a measure of accuracy on a per-class basis has also been highlighted as an 375 

advantageous feature associated with the kappa coefficient. Often referred to as conditional kappa this 376 

allows assessment on a class-specific rather than overall basis. Although this is a useful feature it is 377 

also nothing special or unique to the kappa coefficient. As noted above, per-class measures of 378 

accuracy can be obtained directly from the confusion matrix used to estimate po. For example, simple 379 

per-class measures such as user’s and producer’s accuracy can be obtained by analysing the relevant 380 

row and column of the confusion matrix depending on whether errors of commission or omission are 381 

important. For example, the producer’s accuracy (P) for the class with the trait of interest is estimated 382 

from P+ = a/n∙+; often referred to as the true positive rate, recall or sensitivity. Similarly, the 383 

producer’s accuracy may be calculated for the class without the trait of interest from P− = d/n∙−; often 384 

referred to as specificity. Alternatively, with a focus on commission error, the user’s accuracy (U) 385 

may be calculated for each class. For example, the user’s accuracy for the class with the trait of 386 

interest may be estimated from U+ = a/n+∙; often referred to as the positive predicted value or precision 387 

although this latter term should perhaps be avoided due to the potential for mis-interpretation. 388 

Sometimes researchers combine measures to yield a single summary indicator of classification 389 
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accuracy. One such measure which utilizes the producer’s accuracy for each class is Youden’s J 390 

which is estimated as J = P+ + P− - 1 (Allouche et al., 2006; Hand, 2012); sometimes referred to as the 391 

true skills statistic or informedness. This latter index is sometimes attractive as an overall summary 392 

measure of classification accuracy as the components may be prevalent independent if the diagnostic 393 

ability of the classifier is fixed and, although not without concerns, its variance may also be estimated 394 

(Allouche et al. 2006). However, there are many measures of accuracy and these can be combined in 395 

various ways. For example, average accuracy or the F1 score can be estimated. Such measures, 396 

however, are challenging to interpret and of questionable value (Stehman and Foody, 2009; Liu et al., 397 

2007). Indeed many measures of accuracy are available and may be sensitive to different things 398 

(Hand, 2012). For a statement of map accuracy to be useful the error measure adopted should be 399 

justified and appropriate to the task in-hand (Fielding and Bell, 1997). 400 

 401 

A key feature often used in the promotion of the use of the kappa coefficient in accuracy assessment 402 

is that scales to interpret the kappa coefficient are available. The existence of a meaningful scale could 403 

also be argued to remove the common desire for a target value in accuracy assessment. While it is true 404 

that scales for the interpretation of the kappa coefficient exist, with that provided by Landis and Koch 405 

(1977) widely used in remote sensing, there are substantial problems in their use. For example, there 406 

are a range of scales available (e.g. Figure 3) with no obvious way to choose between them and a 407 

scale could readily be constructed for other indices such as overall accuracy. More critically, it should 408 

be readily apparent that such interpretation scales are arbitrary and cannot be of universal applicability 409 

(Sim and Wright, 2005; Vach, 2005; Banerjee et al., 1999). Indeed, Landis and Koch (1977) explicitly 410 

note the arbitrary nature of the scale that they proposed in their study. Some studies may, for example, 411 

require very high quality labelling and hence the thresholds dividing the scale should be set at higher 412 

values. The arbitrary and subjective nature of the scales limit their value as a means to interpret a 413 

kappa coefficient. The problems also mean that the existence of an interpretation scale does not 414 

address the inability to define a meaningful target value if using the kappa coefficient as the index of 415 

accuracy.  416 
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 417 

Figure 3. Three scales for the interpretation of the kappa coefficient (adapted and updated from 418 

Czaplewski, 1994). The scales are those provided by Landis and Koch (1977, page 165); Fleiss et al. 419 

(2013, page 604) and Monserud and Leemans (1992, page 285). Note that the full scale of 420 

measurement does extend to -1 but the focus is usually on positive values only.  421 

 422 

 423 

The interpretation of a kappa coefficient can be challenging, especially if not accompanied by the 424 

confusion matrix and details of the sample of cases used in its estimation.  Indeed it is widely 425 

suggested that that the provision of a kappa coefficient alone is misleading and that per-class 426 

measures and/or indices of bias and prevalence should accompany it (Byrt et al., 1993; Lantz and 427 

Nebenzahl, 1996; Cicchetti and Feinstein, 1990); the provision of the confusion matrix and details of 428 

the sample used in its construction would also help as they can provide the additional information 429 

needed to interpret a kappa coefficient. A variety of challenges is encountered in interpreting the 430 

magnitude of a kappa coefficient. In particular, two paradoxes commonly arise (Feinstein and 431 
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Cicchetti, 1990; Lantz and Nebenzahl, 1996; Hoehler, 2000; Sim and Wright, 2005). First, there is the 432 

situation in which there may be high level of agreement indicated by po but a low kappa coefficient. 433 

Second, unbalanced matrix marginal values can help produce a high kappa coefficient, especially if 434 

the marginals are asymmetrically imbalanced (Feinstein and Cichetti, 1990).  These paradoxes arise 435 

because the estimation of the kappa coefficient is influenced by prevalence and bias between the 436 

raters (Byrt et al., 1993; Lantz and Nebenzahl, 1996; Hoehler, 2000). Both paradoxes can be 437 

explained by the distribution of cases within the confusion matrix. The first paradox arises because of 438 

the effect of prevalence on the estimation of the kappa coefficient and is positively related to the 439 

difference between a and d (Figure 1). The second paradox is related to bias effects that occur when 440 

the two sources of class labels used to form the confusion matrix differ in the proportion of cases with 441 

the trait of interest and varies as a function of the difference between b and c (Figure 1). Critically, the 442 

manner in which cases are distributed in the confusion matrix and its resulting marginal values can 443 

greatly impact on the magnitude of the kappa coefficient. 444 

 445 

It is sometimes claimed that the whole confusion matrix is used in the estimation of the kappa 446 

coefficient. This claim, however, is untrue; the estimation of the kappa coefficient is based on the 447 

main diagonal and marginal values only (Nishii and Tanaka, 1999; Jiang and Liu, 2011). It is, for 448 

example, possible in a multi-class classification to change the entries in the matrix but maintain the 449 

same diagonal and marginal values and hence kappa coefficient. Because of the prevalence and bias 450 

effects noted above, knowledge of all of the elements of the matrix is, however, useful in interpreting 451 

a kappa coefficient (Lantz and Nebenzahl, 1996).  452 

 453 

The factors that influence the magnitude of the kappa coefficient are well-known but the size and 454 

importance of the issues may not always be apparent. To help demonstrate problems in the 455 

interpretation and use of the kappa coefficient it may be helpful to explore some simple scenarios as 456 

examples. As a starting point, a range of possible values for the kappa coefficient can be obtained for 457 
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any given level of agreement (po). This range can be explored by moving cases around the confusion 458 

matrix in a manner that maintains the proportion of correct agreement. The maximum and minimum 459 

kappa coefficient possible may also be estimated given an understanding of how the distribution of 460 

cases in a confusion matrix impacts on the estimation of the kappa coefficient (Lantz and Nebanzahl, 461 

1996). Figure 4 shows the relationship between the maximum and minimum kappa coefficient values 462 

that can be obtained for all possible proportions of correct agreement. A key feature to note is the 463 

extremely large difference between the maximum and minimum kappa coefficient at each value for 464 

the proportion of correct agreement. For example, with the very high level of agreement of po=0.95 it 465 

would be perfectly possible for a kappa coefficient of between −0.026 and 0.900 to be estimated. 466 

Moreover, this very wide range of possible values for the kappa coefficient covers every single level 467 

of the widely used interpretation scale of Landis and Koch (1977). Thus, with 95% of the cases 468 

correctly labelled the use of the kappa coefficient could result in the level of agreement interpreted as 469 

being anything from poor to almost perfect inclusive (Figure 3).  470 

 471 

 472 

Figure 4. Relationships between the maximum and minimum possible kappa coefficient with overall 473 

accuracy (po). 474 
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The confusion matrices for the extreme values of the kappa coefficient when po=0.95 are shown in 475 

Figure 5 and highlight the effect of bias on the maximum value and prevalence on the minimum 476 

value. Importantly, very different interpretations of classification accuracy could be drawn from the 477 

use of the kappa coefficient and overall accuracy. Even though 95% of the cases in the confusion 478 

matrix have been correctly labelled it would be possible for a negative kappa coefficient to be 479 

estimated that would indicate the level of agreement was less than that due to chance. While the 480 

minimum kappa coefficient could be usefully interpreted as highlighting a poor classification, with 481 

virtually all cases allocated to one class and the accuracy for one class zero, intermediate values could 482 

be obtained. For example, Figure 6 shows one matrix for which the overall accuracy and producer’s 483 

accuracy for each class are all approximately 95%, highlighting a very accurate classification. The 484 

kappa coefficient for the matrix in Figure 6 is 0.592 which lies in the range of ‘moderate’ agreement 485 

in the Landis and Koch (1977) scale yet the classification meets an exacting Anderson-type target of 486 

an overall accuracy of 95% with a producer’s accuracy of at least 95% for each class; note purely for 487 

ease of argument the focus is on the accuracy estimate itself relative to the target value and not its 488 

associated confidence interval although the use of the latter may sometimes be appropriate.   489 

 490 

 491 

475 50 525  0 25 25 

0 475 475  25 950 975 

475 525 1000  25 975 1000 

 492 

(a)                                                                                        (b) 493 

Figure 5. Example confusion matrices to illustrate the range of possible kappa coefficients that could 494 

arise for a classification with po=95% (Figure 4). The layout of the matrices is as defined in Figure 1 495 

and a sample of 1000 cases assumed. (a) Matrix for the maximum possible kappa coefficient, κ = 496 

0.900 (95% CI 0.873 - 0.927). (b) Matrix for the minimum possible kappa coefficient, κ = -0.026 497 

(95% CI -0.033 - -0.019). 498 

 499 
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40 47 87 

2 911 913 

42 958 1000 

 500 

Figure 6. Confusion matrix for a classification that meets an Anderson-type target of an overall 501 

accuracy ≥ 95% and the producer’s accuracy for each class are approximately equal and ≥95%. For 502 

this matrix, po = 95.1%, and the producer’s accuracies are 95.23% and 95.09%. The kappa coefficient 503 

for this matrix is κ = 0.592 (95% CI 0.496 – 0.698). 504 

 505 

 506 

A key concern with the use of the kappa coefficient is its prevalence dependency (Byrt et al., 1993; 507 

Feinstein and Cicchetti, 1990; Sim and Wright, 2005). Again, while this is well-known it may be that 508 

the size of the effect is not fully appreciated. Figure 7 shows how the magnitude of the kappa 509 

coefficient varies with prevalence for three scenarios with a fixed overall accuracy (Vach, 2005): 510 

overall accuracies of 85%, 90% and 95%. Note the magnitude of the kappa coefficient varies greatly 511 

and the effects of prevalence are especially apparent at very large or low values of prevalence. In 512 

addition, a single value for the kappa coefficient could be associated with classifications of different 513 

overall accuracy due to differences in prevalence. Indeed differences in prevalence could change the 514 

apparent order or ranking of a series of classifications. For example, a classification could be viewed 515 

as being more accurate than another in terms of overall accuracy yet the exact opposite trend could be 516 

provided by the kappa coefficients; ranking classifications in terms of accuracy requires careful 517 

interpretation. The effect of prevalence variations is also very large and is further illustrated in Figure 518 

8 which shows matrices for four scenarios in which the overall accuracy and producer’s accuracy for 519 

each class are fixed at 90% but which differ in prevalence. Each of the four matrices shown in Figure 520 

8 have the same overall accuracy and producer’s accuracies but the magnitude of the kappa 521 

coefficient differs greatly. Indeed the 95% confidence intervals fitted to the four estimates of the 522 

kappa coefficient only just touch for two of the scenarios shown (Figure 8b and 8c). Comparing kappa 523 

coefficients is, therefore, challenging if there are differences in prevalence.  Thus, the kappa 524 
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coefficient would not be a suitable measure if comparing classifications of study areas that may 525 

contain the same classes but at different abundances; similar problems with prevalence dependency 526 

may be observed with many other measures of accuracy. Would a difference in the magnitude of 527 

observed kappa coefficients indicate a difference in the quality of class labelling or merely reflect the 528 

variations in class prevalence? 529 

 530 

 531 

 532 

Figure 7. Variation in the magnitude of the kappa coefficient with prevalence for three fixed value of 533 

overall accuracy. Three scenarios are shown in which the marginal values (i.e. n∙+ and n+∙) are equal 534 

and the overall accuracy is 85% (dotted line with square symbols), 90% (dashed line with triangular 535 

symbols) and 95% (solid line with circular symbols). 536 

 537 
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 538 

Figure 8. Confusion matrices for a scenario in which there is constant agreement on an overall and 539 

per-class basis (po = 0.9, producer’s accuracy for each class = 90%) but varying prevalence. (a) 540 

prevalence = 0.5 (i.e. the two classes have equal abundance), (b) prevalence = 0.10, (c) prevalence = 541 

0.05, and (d) prevalence = 0.01.  542 

 543 

The various problems associated with the interpretation of the kappa coefficient make comparison of 544 

kappa coefficients difficult, especially if the comparison is between studies of regions of dissimilar 545 

prevalence (Ubserax, 1987; Byrt et al., 1993; Vach, 2005; Sim and Wright, 2005). A major concern is 546 

that the magnitude of a kappa coefficient and its possible range of values reflect the nature of the 547 

population being studied (e.g. prevalence) (Byrt et al., 1993; Lantz and Nebenzahl, 1996). The kappa 548 

coefficient has been widely promoted as a summary statistic that is meant to convey information on 549 

thematic accuracy but it is a poor tool as it is highly mis-leading (Maclure and Willett, 1987). The 550 

kappa coefficient is not well suited for use in accuracy assessment. Rather than use the kappa 551 

coefficient because other studies have done so, and perpetuate a mistake, researchers should select an 552 

accuracy measure appropriate for the task in-hand recognising that different measures of accuracy 553 
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reflect different aspects of quality and may require careful interpretation. Inspired by the comments of 554 

the referees on this article, as part of an effective peer review process, referees and editors should 555 

perhaps challenge the use of a measure such as the kappa coefficient in applications such as accuracy 556 

assessment and comparison for which it is unsuitable. 557 

 558 

Finally on the issue of prevalence, it may be worth remembering that at the outset one key reason for 559 

not using overall accuracy was because of its sensitivity to the effect of variations in prevalence. This 560 

dependency is well known with po = (θP+ + (1-θ)P−). Overall accuracy is certainly an imperfect 561 

measure, as is any omnibus index (Byrt et al., 1993; Cicchetti and Feinstein, 1990), and no single 562 

measure will be universally ideal for accuracy assessment (Stehman, 1997a) but the kappa coefficient 563 

does not solve the problems associated with overall accuracy. That the kappa coefficient is prevalent 564 

dependent should come as no surprise given it is calculation from po and pe in equation 1. Kappa is 565 

simply a rescaled version of po and pe is prevalent dependent as prevalence is included in its 566 

calculation (equation 3). Because of the limitations of overall accuracy researchers have been 567 

encouraged to state per-class accuracies, such as user’s and producer’s accuracy, in addition (e.g. Liu 568 

et al., 2007; Stehman, 2000; Olofsson et al., 2014). A further enhancement would be to follow further 569 

good practices such as the provision of the confusion matrix and details of the sample used in its 570 

construction to allow estimation of other measures, even the kappa coefficient, if desired (Olofsson et 571 

al., 2013, 2014). It is difficult to identify how the provision of the kappa coefficient adds positively to 572 

this situation. The kappa coefficient alone is mis-leading so other information, notably on bias and 573 

prevalence, needs to be provided with it. The provision of a difficult to interpret measure such as the 574 

kappa coefficient that must be accompanied by additional measures such as bias and prevalence to aid 575 

interpretation does not help communicate accuracy information in a clear and succinct way. Then, in 576 

addition, there are concerns about the way chance is modelled and used. Given that the kappa 577 

coefficient is estimated from overall accuracy, it is evident that the estimation of the kappa coefficient 578 

is an unhelpful and unnecessary step in the assessment or comparison of classification accuracy.  579 

 580 
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4. Conclusions 581 

The kappa coefficient is widely promoted and used as a measure of thematic accuracy in remote 582 

sensing. The publications that promoted the use of the kappa coefficient have played an enormously 583 

influential role to inspire thought concerning  rigorous quantitative assessments of classifications but 584 

promoted an inappropriate index. The reasons espoused for the use of the kappa coefficient are flawed 585 

and/or irrelevant as they apply equally well to other measures. Critically, the kappa coefficient is not 586 

an index of accuracy but a measure of the level of agreement observed beyond chance that is obtained 587 

using a model of chance that is inappropriate to the typical accuracy assessment scenario. Not only is 588 

the effect of chance agreement mis-estimated it is, however, irrelevant to an accuracy assessment 589 

which seeks to indicate the amount of error, and thereby correctness, in the labelling with the source 590 

of error inconsequential. The kappa coefficient is an inappropriate index to use to describe 591 

classification accuracy. 592 

 593 

Many of the concerns with the kappa coefficient have been known for decades and it may be that its 594 

continued use in remote sensing is, in part, because the problems are viewed as being small and 595 

insubstantial. Here, emphasis has been placed on indicating the size and nature of the problems with 596 

the kappa coefficient by showing how its magnitude can vary as a function of basic properties of a 597 

study such as prevalence. Critically, simple examples have been used to show the unsuitability of the 598 

kappa coefficient for the description of accuracy and its comparison. For example, it was shown that  599 

classifications with an overall accuracy of 95%  could have  a kappa coefficient that lay within the 600 

range from -0.026 to 0.900. The difficulty of interpreting the estimated kappa coefficients is further 601 

highlighted by noting that the entire spread of possible values covers the complete range of the widely 602 

used Landis and Koch (1977) interpretation scale. Furthermore, if the classification satisfied a 603 

demanding Anderson-type target that required the producer’s accuracy for each class be ≥95% the 604 

kappa coefficient for this very accurate classification would be interpreted as showing only moderate 605 

agreement. A key problem is the effect of variations in class abundance or prevalence, the very 606 

problem highlighted in criticisms of overall accuracy. Differences in prevalence make the comparison 607 
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of kappa coefficients very difficult, a researcher will be unsure if a difference reflects dissimilarity in 608 

the level of agreement or of the populations being studied. Overall accuracy on the other hand, while 609 

flawed, does have a clear meaning and, relative to kappa, is simple to estimate.   610 

 611 

Different measures of accuracy reflect different aspects of a classification (Hand, 2012). Care must, 612 

therefore, be taken to ensure that a measure of accuracy that is appropriate for the task in-hand is 613 

adopted. There are many possible motivations and interests in an accuracy assessment which makes 614 

the provision of universal recommendations difficult. The literature on accuracy assessment can at 615 

times be challenging and other researchers may be better qualified to comment with authority and 616 

clarity on the topic but the common practice of using the kappa coefficient to indicate classification 617 

accuracy is flawed. Indeed, from the discussion above it is recommended that the kappa coefficient be 618 

dropped from the community’s toolbox or at least used only sparingly and when good reason for its 619 

estimation exists such as in the assessment of agreement in class labelling among multiple 620 

interpreters. Although there are sometimes challenges to fully documenting an accuracy assessment, 621 

the provision of overall accuracy and per-class accuracy values together with the confusion matrix, set 622 

in the context of broader good practices (e.g. Olofsson et al., 2014; Stehman and Foody, 2019), should 623 

meet the objectives of most accuracy assessments. The provision of such information also allows 624 

assessments from other perspectives and the estimation of other measures, including even the kappa 625 

coefficient if desired, in order to meet the specific aims of a study. Comparisons of accuracy 626 

statements can be undertaken using overall accuracy and per-class accuracy using the same approach 627 

suggested for kappa if the samples involved are independent. If the samples are not independent, as is 628 

often the case in remote sensing research, alternative means to compare classification accuracy such 629 

as the McNemar test may be used.  The kappa coefficient does not add positively to such accuracy 630 

assessments and comparisons. Given the challenges with its interpretation, the kappa coefficient 631 

should, therefore, not be used and reported routinely.  632 

 633 
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