
IMA Journal of Applied Mathematics (2019) Page 1 of 17
doi:10.1093/imamat/xxx000

Reflection and transmission of high-frequency acoustic, electromagnetic,
and elastic waves at a distinguished class of irregular, curved boundaries

A. M. R. RADJEN∗

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham,
NG7 2RD, UK∗Corresponding author: Anthony.Radjen@Nottingham.ac.uk

G. GRADONI
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham,

NG7 2RD, UK

AND

R. H. TEW
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham,

NG7 2RD, UK

[Received on 5 November 2019]

Reflection and transmission phenomena associated with high-frequency linear wave incidence on irreg-
ular boundaries between adjacent acoustic or electromagnetic media, or upon the irregular free surface
of a semi-infinite elastic solid, are studied in two dimensions. Here, an “irregular” boundary is one for
which small-scale undulations of an arbitrary profile are superimposed upon an underlying, smooth curve
(which also has an arbitrary profile), with the length scale of the perturbation being prescribed in terms
of a certain inverse power of the large wave-number of the incoming wave field. Whether or not the
incident field has planar or cylindrical wave-fronts, the associated phase in both cases is linear in the
wave-number, but the presence of the boundary irregularity implies the necessity of extra terms, involv-
ing fractional powers of the wave-number in the phase of the reflected and transmitted fields. It turns out
that there is a unique perturbation scaling for which precisely one extra term in the phase is needed and
hence for which a description in terms of a Friedlander - Keller ray expansion in the form as originally
presented is appropriate, and these define a “distinguished” class of perturbed boundaries and are the
subject of the current paper.
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1. Introduction

The problems which are addressed in this paper involve acoustic, electromagnetic, and elastic wave
propagation, although there are fundamental features common to all three of these situations.

First, an oscillatory time-dependence e−iωt is always assumed but suppressed, so that if the wave-
speed within the medium in question is c then the relevant field equation is the two-dimensional Helmholtz
equation (

∂ 2

∂x2 +
∂ 2

∂y2 + k2
)

φ = 0, (1.1)

c© The author 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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in which k =
ω

c
is the wave-number (so that

2π

k
is the associated wave-length), and φ is the relevant

field variable (such as a pressure field, displacement potential function, or a component of an elec-
tric/magnetic field, respectively, in each of the three applications referred to above).

Second, relative to the same Cartesian coordinates (x,y) used in the Helmholtz equation (1.1), the
domain occupied by this medium is D̂, and is bound by the smooth curve ∂ D̂ which is given parametri-
cally as

∂ D̂ : xxx = xxx0(s)+ k−1/N x̂xx0(s), (1.2)

where xxx = (x,y), with ∂D being the corresponding O(1) boundary given by xxx = xxx0. Thus, x̂xx0, which
is an O(1) variable, denotes the small-scale undulations imposed onto xxx0, and so the domain above is
defined by y > y0(s)+k−1/N ŷ0(s). The variable N will actually be specified to be N = 2 shortly, but it is
helpful to leave N as a general positive integer for the purposes of this introduction. In both the acoustic
and the electromagnetic cases, the region y < y0(s)+ k−1/N ŷ0(s) is taken to be occupied by a second
“lower” medium for which the Helmholtz equation (1.1) is to be replaced by(

∂ 2

∂x2 +
∂ 2

∂y2 +
k2

γ2

)
φ = 0, (1.3)

where
1
γ

(the refractive index in optical terms) is a given positive O(1) constant. Also, the parameter s

occurring in boundary (1.2) is taken to be the arc-length measured along the curve x = x0(s), y = y0(s)
(so that

(
x′0
)2

+
(
y′0
)2

= 1, a result that is used repeatedly in the applications that follow). Notice that
appropriate interfacial/boundary conditions need to be imposed along boundary (1.2), and these shall be
specified for each class of problems in turn.

Third, the wave-number k occurring in both Helmholtz equations (1.1) and (1.3) is large, in which
case they are both singularly-perturbed partial differential equations amenable to WKBJ-type analysis,
whilst the term proportional to k−1/N on the right-hand side of boundary (1.2) can be interpreted as
a small perturbation of scale O

(
k−1/N

)
of profile (x̂0(s), ŷ0(s)) superimposed on the underlying curve

xxx = (x0(s),y0(s)).

In summary, the problems have two wave-bearing media both supporting high-frequency, short
waves and are separated by a smooth, curved interface superimposed on which are small-scale undula-
tions; the elastic case has the second “lower” medium replaced by a vacuum. The plan is to calculate the
effects that these boundary perturbations have on the reflected and (if applicable) the transmitted fields
when subject to specified wave incidence from the “upper” medium. Then the study of (i) transmission
problems at the common interface between adjacent acoustic wave-bearing media and (ii) applications
in electromagnetism and elasticity are considered, with these applications being natural and significant
extensions to those considered previously by Tew (2018, 2019).

Finally, referring to Tew (2018, 2019) once again, the case N = 2 is distinguished compared to any
other value N = 3,4,5, · · · . Without repeating in full the arguments presented there, an incident plane
wave of the form

φ
(inc)
p (x,y) ∼ Fp (x tan(θ)+ y)exp(ik [xcos(θ)− ysin(θ)]) , (1.4)



REFLECTION AND TRANSMISSION AT A CLASS OF CURVED BOUNDARIES 3 of 17

(which is an asymptotic solution of the Helmholtz equation (1.1) as k→ ∞ with Fp being arbitrary to
specify the incident amplitude profile, and θ is the angle of incidence between the ray and the x-axis)
necessarily has terms proportional to k(N−1)/N (x̂0(s)cos(θ)− ŷ0(s)sin(θ)) in its phase when evaluated
on the boundary (1.2), in addition to the standard term k (x0(s)cos(θ)− y0(s)sin(θ)). For an incident
cylindrical wave of the form φ

(inc)
c , which is emitted from a point source located at xxx = (0,h),

φ
(inc)
c ∼ Fc (Θ)√

R
exp(ikR) , (1.5)

is also an asymptotic solution of the Helmholtz equation (1.1) as k→∞; where R =
(

x2 +(y−h)2
)1/2

,
Θ is the polar angle from the point source, and Fc denoted the angular directivity of the cylindrically-
spreading wave field. The Taylor series expansion of R along the boundary (1.2) has all values O

(
km/N

)
,

m = 0,1, · · · ,N. In either case, all of these extra terms (i.e. in addition to the O(k)) are inherited by the
phases of the reflected and transmitted fields, necessitating solutions for these quantities of the general
form

∞

∑
n=0

An (x,y)
kn/N exp

(
i

N

∑
m=1

k(N+1−m))/Nvm (x,y)

)
, (1.6)

and so not of the form exp(iku(x,y)+ kα v(x,y))
∞

∑
n=0

An (x,y)
kλn

, with just two terms in the exponent, one

proportional to k and one other as discussed by Friedlander and Keller (1955). Hence, their pioneering
theory has to be amended in order to make it applicable here.

Considering the m = 0 term in the various phase terms of O
(
km/N

)
just mentioned as being more

accurately described as part of the amplitude pre-factor to the exponential in the ansatz then the only
instance that an O(k) term and precisely one other term appear in the phase is when N = 2, correspond-

ing to a term proportional to k1/2 in the exponent. This corresponds to setting α =
1
2

into the ansatz
proposed by Friedlander and Keller and coincides precisely with the unique value of α that they identity
as being distinguished form all others. Additionally, a separate geometrical argument first put forward
by Engineer et al (1998) also identified N = 2 as an isolated case of special importance, and so this
value is substituted into boundary (1.2) from now onwards.

2. The Friedlander-Keller ray expansion

With the value of N = 2 highlighted as a special case, the ansatz

φ (xxx) = exp
(

iku(xxx)+ ik1/2v(xxx)
) ∞

∑
n=0

An (xxx)
kn/2 . (2.1)

is taken. Substitution of this ansatz into the Helmholtz equation (1.1) reveals that u obeys the eikonal
equation

∇∇∇u ·∇∇∇u = 1. (2.2)

The second-order equation then yields the governing equation for v as

∇∇∇u ·∇∇∇v = 0. (2.3)
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The lower order terms give the family of recursive transport equations for the amplitude functions An

2∇∇∇A0 ·∇∇∇u+A0

[
∇∇∇

2u+ i∇∇∇v ·∇∇∇v
]

= 0, (2.4)

2 [∇∇∇An ·∇∇∇u+∇∇∇An−1 ···∇∇∇v]− i∇∇∇2An−2 +An−1∇∇∇
2v+An

[
∇∇∇

2u+ i∇∇∇v ·∇∇∇v
]

= 0, (2.5)

where n = 1,2,3, · · · and A−1 = 0 is understood when taking n = 1 in equation (2.5).

The first step is to solve the eikonal equation (2.2) using Charpit’s method of characteristics (which
will become the “rays” here), as described by Zauderer (1989), Ockendon et al (2003), and applied by
Tew (2019). Defining ppp = ∇∇∇u, the idea is to introduce curves Γ (s,τ), parametrised by arc-length τ

and emanating from the boundary xxx = xxx0 (s), defined by
dxxx
dτ

= ppp. The eikonal equation then reduces to
du
dτ

= 1 along Γ (s,τ), so that if measuring τ from ∂D and if u = u0 (s) on ∂D (so that u = u0 (s) when
τ = 0), the ray solution for u is in the form

u(s,τ) = u0 (s)+ τ , along Γ (s,τ) . (2.6)

It is not difficult to show that ppp - which defines the directions of the rays - is constant along them so

that ppp = ppp0 (s) = (p0 (s) ,q0 (s)) along Γ (s,τ). This, in turn, allows the defining equation
dxxx
dτ

= ppp to be
integrated, allowing the rays to be identified as the family of straight lines

Γ (s,τ) : xxx = xxx0 (s)+ τ ppp0 (s) , (2.7)

and all that remains to do is calculate p0 and q0. The first of two equations for these is the eikonal
equation itself, in the form

p2
0 +q2

0 = 1, (2.8)

and the second is obtained by differentiation of the boundary data u0 (s) (which is assumed to be pre-
scribed or calculable) to give

u′0 = x′0 p0 + y′0q0. (2.9)

These are solved in terms of the local tangent vector ttt =
(
x′0,y

′
0
)

and normal vector nnn =
(
−y′0,x

′
0
)

to
give

ppp0 = u′0ttt(s)±nnn(s)
√

1−
(
u′0
)2
, (2.10)

where the ambiguity in sign is resolved in any particular instance by requiring that any scattered rays
obey the radiation condition and propagate away from the boundary.

Noting also that since ∇∇∇u =
dxxx
dτ

along Γ (s,τ), equation (2.3) implies that
dv
dτ

= 0, so that v is
invariant along the rays, i.e.

v(s,τ) = v0(s), (2.11)
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where v0 (s) is the value of v on ∂D.

Calculating ∇2u and ∇∇∇v in terms of the ray coordinates (s,τ) shows that A0 satisfies the first-order
differential equation

2
∂A0

∂τ
+A0 (s,τ)

[
1

τ +a
+

ib

(τ +a)2

]
= 0, (2.12)

along the rays Γ . This is easily solved and has the solution

A0 (s,τ) = A0 (s,0)
√

a
τ +a

exp
(
− iτb

2a(τ +a)

)
, (2.13)

with

a =
q0x′0− p0y′0
q0 p′0− p0q′0

and b =

(
v′0

q0 p′0− p0q′0

)2

, (2.14)

and A0 (s,0) (which is either known or calculable) being the amplitude along the boundary. Higher-
order corrections can be determined by solving the recursive relation given by the transport equation
(2.5). This now completes solution to the leading-order Friedlander-Keller ray expansion.

The three classes of problems considered here are reflection from and transmission through an irreg-
ular boundary of the profile given by boundary (1.2) which separates two wave-bearing media supporting
either (i) acoustic waves, (ii) electromagnetic waves, or (iii) a single incident wave giving rise to two
types of reflected wave as is the case with an incident wave in a semi-infinite elastic solid. In any case,
the aim is to determine the contribution that this class of boundary makes to the reflected and transmitted
fields.

The method to determine the required solutions will involve balancing, firstly, the O(k) terms, and
secondly the O

(
k1/2

)
terms which arise in the various exponents, as well as, thirdly, the terms which

appear at O(1) in the amplitude pre-factor to the exponential phase. This is achieved by taking a Taylor
series expansion of the phase functions (for any wave) about the unperturbed boundary, giving[

iku+ ik1/2v
]

∂ D̂
∼ iku0 + ik1/2 [v0 + ppp0 · x̂xx0]

+
i(q0x̂0− p0ŷ0)

2p0 nnn ··· ppp0

(
2p0v′0− (q0x̂0− p0ŷ0)q′0

)
, (2.15)[

i
k
γ

u+ i
(

k
γ

)1/2

v

]
∂ D̂

∼ ik
u0

γ
+ ik1/2 γ1/2 v0 + ppp0 · x̂xx0

γ

+
i(q0x̂0− p0ŷ0)

2γ p0 nnn ··· ppp0

(
2γ

1/2 p0v′0− (q0x̂0− p0ŷ0)q′0
)
, (2.16)

where a zero subscript denotes the value of that quantity when evaluated along the unperturbed boundary
∂D. Note that, for example, the terms appearing at O

(
k1/2

)
in expansion (2.15) - expansion (2.16)

contain two terms, one of which is the second term Taylor series expansion of u and the other term is
the leading-order term from the Taylor series expansion for v. The O(1) terms in expansion (2.15) -
expansion (2.16) form part of the boundary data for the leading-order amplitude term A0.
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3. Reflection and transmission of acoustic waves at a perturbed boundary of general curvature

3.1 The boundary value problem for acoustic waves

The total potential within the domain D̂, φ T , is given by the superposition of the incident field,
φ (inc), and the reflected field, φ r, and satisfies the Helmholtz equation (1.1)

∂ 2φ T

∂x2 +
∂ 2φ T

∂y2 + k2
φ

T = 0. (3.1)

The total potential in the remaining region, φ t , is given solely by the transmitted disturbance and satisfies
the second Helmholtz equation (1.3)

∂ 2φ t

∂x2 +
∂ 2φ t

∂y2 +
k2

γ2 φ
t = 0, (3.2)

with γ defining the ratio of the speed of sound within the two regions. The aim is to determine the
leading-order solution for both φ r and φ t by solving both Helmholtz equations (3.1) and (3.2), subject
to the coupled boundary data [

∂φ t

∂ n̂

]
∂ D̂

= α

[
∂φ T

∂ n̂

]
∂ D̂

, (3.3)[
φ

t]
∂ D̂ = β

[
φ

T ]
∂ D̂ . (3.4)

Here, α and β are both O(1) constants and are left general to maximise applicability; taking α = 1 and
β to be a ratio of fluid densities would model the interfacial conditions valid between two compressible
fluids.

3.2 Plane wave incidence

Guided by all of the above, the leading-order solution for the reflected and transmitted fields are
written in the form

φ
T ∼ F (x tan(θ)+ y)exp(ik [xcos(θ)− ysin(θ)])+Ar

0 exp
(

ikur + ik1/2vr
)
, (3.5)

φ
t ∼ At

0 exp

(
i
k
γ

ut + i
(

k
γ

)1/2

vt

)
, (3.6)

in which Ar
0 and At

0 are the leading-order amplitudes for the reflected and transmitted fields respectively.
The potentials φ T and φ t satisfy the coupled boundary conditions (3.3) - (3.4), where all phase terms
must be balanced (using either expansion (2.15) or expansion (2.16) where appropriate). At O(k), these
expansions provides the two boundary values for ur and ut . Likewise, at O

(
k1/2

)
, these expansions

provide the boundary data for vr and vt . Hence, the problem for ur and ut is to solve the eikonal
equation (2.2) for each of these two functions subject to the boundary data

ur
0 = x0 cos(θ)− y0 sin(θ) and ut

0 = γ [x0 cos(θ)− y0 sin(θ)] , (3.7)

so that the full solutions for ur and ut are

ur (s,τr) = x0 cos(θ)− y0 sin(θ)+ τ
r and ut (s,τ t)= γ [x0 cos(θ)− y0 sin(θ)]+ τ

t , (3.8)
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with τr and τ t being the arc-lengths of the reflected and transmitted rays respectively. With ur and ut

now known, the ray directions can be fixed from identity (2.10) with respect to the radiation condition
assuring that the reflected and transmitted rays are emitted way from ∂ D̂ into and out of D̂ respectively,
the directions being

pr
0 = cos(θ)

((
x′0
)2−

(
y′0
)2
)
−2sin(θ)x′0y′0, (3.9)

qr
0 = sin(θ)

((
x′0
)2−

(
y′0
)2
)
+2cos(θ)x′0y′0, (3.10)

pt
0 = γx′0

(
cos(θ)x′0− sin(θ)y′0

)
+ y′0

√
1− γ2

(
cos(θ)x′0− sin(θ)y′0

)2
, (3.11)

qt
0 = γy′0

(
cos(θ)x′0− sin(θ)y′0

)
− x′0

√
1− γ2

(
cos(θ)x′0− sin(θ)y′0

)2
. (3.12)

These directions now provide the boundary data (and therefore the full solution) to vr and vt , which are

vr (s) =−2(nnn ··· pppr
0)(nnn ··· x̂xx0) and vt (s) =−γ

−1/2 (nnn ··· x̂xx0)
(
nnn ···
[
γ pppr

0 + pppt
0
])
, (3.13)

and now the remaining items to find are the two boundary values for the leading-order amplitudes.
These are determined by simultaneously solving boundary condition (3.3) - boundary condition (3.4)
(discarding the exponential terms at O(k) and O

(
k1/2

)
as these have just been dealt with). Doing so

gives that

Ar
0 (s,0) =

F (x0 tan(θ)+ y0)
([

αγ pppr
0 +β pppt

0
]
···nnn
)[

αγ pppr
0−β pppt

0
]
···nnn

exp

(
2i(qr

0x̂0− pr
0ŷ0)

(
nnn ··· x̂xx′0

)
− i

(qr
0x̂0− pr

0ŷ0)
2

κ0

nnn ··· pppr
0

)
, (3.14)

At
0 (s,0) =

2αβγ (nnn ··· pppr
0)F (x0 tan(θ)+ y0)[

αγ pppr
0−β pppt

0
]
···nnn

exp

(
i
(
qt

0x̂0− pt
0ŷ0
)([

γ pppr
0 + pppt

0
]
···nnn
)

γ
(
nnn ··· pppt

0
) [(

nnn ··· x̂xx′0
)
−

κ0
(
qt

0x̂0− pt
0ŷ0
)

2
(
nnn ··· pppt

0
) ])

, (3.15)

where κ0 is the curvature of the unperturbed boundary. The full solution for the two leading-order ampli-
tudes of the reflected and transmitted fields are now given by solution (2.13) with the above boundary
values and

ar =− 1
2κ0

nnn ··· pppr
0 and br =

(
qr

0x̂0− pr
0ŷ0−

1
κ0

(nnn ··· pppr
0)
(
nnn ··· x̂xx′0

))2

, (3.16)

at =−
(
nnn ··· pppt

0
)2

κ0
[
γ pppr

0 + pppt
0
]
···nnn

and bt =
1
γ

(
qt

0x̂0− pt
0ŷ0−

1
κ0

(
nnn ··· pppt

0
)(

nnn ··· x̂xx′0
))2

. (3.17)

3.3 Cylindrical wave incidence

The total disturbance within D̂ is given as

φ
T ∼ Fc (Θ)√

R
exp(ikR)+Ar

0 exp
(

ikur + ik1/2vr
)
, (3.18)
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with the first term of which specifies incident cylindrical wave and the second term representing the
reflected field, and the transmitted field out of D̂ is given by

φ
t ∼ At

0 exp

(
i
k
γ

ut + i
(

k
γ

)1/2

vt

)
. (3.19)

These two potentials φ T and φ t satisfy boundary conditions (3.3) and (3.4). The methodology is as
before; the three phase terms appearing in the two potentials will be evaluated along ∂ D̂ by use of
expansion (2.15) or expansion (2.16). Balancing the terms appearing at O(k) give the boundary data for
ur and ut as

ur
0 = R0 and ut

0 = γ R0, (3.20)

in which R0 =
√

x2
0 +(y0−h)2. Thus, the general solutions for ur and ut are given as

ur (s,τr) = R0 + τ
r and ut (s,τ t)= γ R0 + τ

r, (3.21)

with τr and τ t being the arc-length of the reflected and transmitted ray respectively. The ray directions
can then be determined complying with the radiation condition for both sets of rays, which give the
directions

pr
0 =

1
R0

(
2(y0−h)x′0y′0 + x0

((
x′0
)2−

(
y′0
)2
))

, (3.22)

qr
0 =

1
R0

(
2x0x′0y′0− (y0−h)

((
x′0
)2−

(
y′0
)2
))

, (3.23)

for the reflected waves, and

pt
0 = γ R′0x′0 + y′0

√
1− γ2

(
R′0
)2
, (3.24)

qt
0 = γ R′0y′0− x′0

√
1− γ2

(
R′0
)2
, (3.25)

for those which are transmitted.

Comparison of the phase terms at O
(
k1/2

)
give the boundary data (and therefore the full solution)

for vr and vt , which are

vr =
RRR0 · x̂xx0

R0
− x̂xx0 · pppr

0 and vt =

√
γ (RRR0 · x̂xx0)

R0
− x̂xx0 · pppt

0√
γ

, (3.26)

where RRR0 = (x0,y0−h).

Solving now the two boundary equations simultaneously whilst ignoring the exponential terms
appearing at O(k) and O

(
k1/2

)
(as these have just been dealt with) gives the leading-order amplitude of
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the reflected and transmitted waves along the boundary, which are

Ar
0 (s,0) =

Fc
(
θ

i)([
βR0 pppt

0−αγ RRR0
]
···nnn
)

R3/2
0

([
αγ pppr

0−β pppt
0
]
···nnn
)

exp

(
i(x0ŷ0− (y0−h) x̂0)

2

2R3
0

+
i(qr

0x̂0− pr
0ŷ0)

nnn ··· pppr
0

[
(x̂xx000 ···RRR0)(ttt ··· pppr

0)

R2
0

− 1
R0

d
ds

[RRR0 · x̂xx0]+ x̂xx′0 ··· pppr
0−

(qr
0x̂0− pr

0ŷ0)κ0

2
+

qr
0x̂0− pr

0ŷ0

2
(
nnn ··· pppr

0

) R′′0

])
, (3.27)

At
0 (s,0) =

αβγFc
(
θ

i)([R0 pppr
0−RRR0] ···nnn)

R3/2
0

([
αγ pppr

0−β pppt
0
]
···nnn
)

exp

(
i(x0ŷ0− (y0−h) x̂0)

2

2R3
0

+
i
(
qt

0x̂0− pt
0ŷ0
)

nnn ··· pppt
0

[
(x̂xx000 ···RRR0)

(
ttt ··· pppt

0
)

γ R2
0

− 1
R0

d
ds

[RRR0 · x̂xx0]+
1
γ

(
x̂xx′0 ··· pppt

0
)
−
(
qt

0x̂0− pt
0ŷ0
)

κ0

2γ

+
qt

0x̂0− pt
0ŷ0

2
(
nnn ··· pppt

0

) R′′0

])
. (3.28)

The full solution for the two leading-order amplitudes of the reflected and transmitted waves are now
given by solution (2.13) with the above boundary values and, with κ0 denoting the curvature of the
unperturbed boundary:

ar = − (nnn ··· pppr
0)

2

κ0 (nnn ··· pppr
0)−R′′0

, (3.29)

br =

(
qr

0x̂0− pr
0ŷ0−

nnn ··· pppr
0

κ0 (nnn ··· pppr
0)−R′′0

(
pppr

0 · x̂xx′0−
1

R0

d
ds

[RRR0 · x̂xx0]+
(RRR0 · x̂xx0)(ttt ··· pppr

0)

R2
0

))2

,(3.30)

at = −
(
nnn ··· pppt

0
)2

κ0
(
nnn ··· pppt

0
)
− γ R′′0

, (3.31)

bt =
1
γ

(
nnn ··· pppt

0

κ0
(
nnn ··· pppt

0
)
− γ R′′0

)2((
pppt

0 · x̂xx′0
)
−
(
qt

0x̂0− pt
0ŷ0
)

κ0−
γ

R0

d
ds

[RRR0 · x̂xx0]

+
(RRR0 · x̂xx0)

(
ttt ··· pppt

0
)

R2
0

+
γ
(
qt

0x̂0− pt
0ŷ0
)

nnn ··· pppt
0

R′′0

)2

, (3.32)

and both solutions are now complete to leading-order.
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4. Reflection and transmission of electromagnetic waves at a perturbed boundary of general cur-
vature

4.1 The boundary value problem for electromagnetic waves

In an isotropic, homogeneous, and charge-free vacuum, Maxwell’s equations for the electric EEE (xxx)e−iωt

and magnetic BBB(xxx)e−iωt fields are

∇∇∇×××EEE = iωBBB and ∇∇∇×××BBB =− iω
c2 EEE, (4.1)

∇∇∇ ···EEE = 0 and ∇∇∇ ···BBB = 0, (4.2)

with c being the speed of light. Strictly speaking, the divergence-free conditions (4.2) are both imme-
diate consequences of the partial differential equations (4.1) in this time-harmonic context, but they can
be used to show that EEE satisfies the vector Helmholtz equation

∂ 2EEE
∂x2 +

∂ 2EEE
∂y2 + k2EEE = 000, (4.3)

where k =
ω

c
and that BBB satisfies the same vectorial Helmholtz equation and is related to EEE by

BBB = − i
ck

∇∇∇×EEE. (4.4)

It now follows that each component of EEE and BBB must now satisfy their own scalar Helmholtz equation
(1.1), and so applying a Friedlander-Keller expansion of the form given by ansatz (2.1) to each of these
components allows the theory leading to solution (2.13) to be applied. It follows that the exponents
and square-root amplitude terms appearing in the solution to each component would necessarily be
identical, allowing the components to be recombined and the leading-order vectorial amplitude to be
written directly as

EEE0 (s,τ) = EEE0 (s,0)
√

a
τ +a

exp
(
− iτb

2a(τ +a)

)
, (4.5)

with a and b defined by those formulae in (2.14), and with an exactly similar result holding for BBB0.
These results can also be obtained directly by assuming Friedlander-Keller ray expansions for EEE and BBB
in a vectorial form of the ansatz (2.1) with An replaced by EEEn and BBBn respectively, and substituting them
into Maxwell’s equations (4.1) and (4.2). It is important to note that this procedure will only work if the
“phase exponents” u and v are the same for both EEE and BBB. Hence, the algebraic and exponential factors
- and the functions contained within them - appearing in the right-hand side of the solution (4.5) will
also be the same in both cases.

In fact, this procedure very quickly reveals that, at leading-order, Maxwell equation (4.1) yields

BBB0 =
1
c
(∇∇∇u×××EEE0) and EEE0 = c(BBB0×××∇∇∇u) . (4.6)

Eliminating either EEE0 or BBB0 quickly confirms the eikonal equation (2.2) for u. Also notice that once u
(and hence ∇∇∇u) and EEE0 have been computed, then BBB0 follows immediately from the first of the equations
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in (4.6). It also follows that EEE0, BBB0, and ∇∇∇u (the direction of propagation along the rays) form a mutually
orthogonal set establishing (at leading-order) the transverse nature of these electromagnetic wave fields.
Given this, and the fact that attention has been restricted to incident electric, EEE, fields - the case of an
incident magnetic, BBB, field is procedurally identical - allowing the determination of BBB0 to be ignored
henceforth, as it is a consequence of EEE0.

In fact, since equation (4.6) implies that ∇∇∇u ···EEE0 = 0, and since ∇∇∇u = ppp0 = (p0,q0), in this two-
dimensional case, the calculation of two components of EEE0 can be reduced to the single scalar amplitude
E0 (s,τ) given by

EEE0 (s,τ) = E0 (s,τ)(q0 (s) ,−p0 (s)) , (4.7)

once p0 and q0 are known. Equation (4.7) yields that EEE0 (s,0) = E0 (s,0)(q0 (s) ,−p0 (s)), and the
plan is to calculate each E0 (s,0) appropriate for the reflected and transmitted electric fields, given the
equivalent for the incident field, via the two boundary conditions[

t̂tt ···EEE(i)
]i=2

i=1
= 0, (4.8)[

εin̂nn ···EEE(i)
]i=2

i=1
= 0, (4.9)

in which [A]i=2
i=1 = 0 implies continuity of the quantity A across the perturbed boundary ∂ D̂, EEE(i) is

the total electric field, and ε is the electric permittivity on either side of that boundary, with t̂tt and n̂nn
being the local boundary tangential and normal vectors. These boundary conditions can be simplified to
leading-order by noting that, in this two-dimensional case, t̂tt ∼ ttt =

(
x′0,y

′
0
)
, n̂nn∼ nnn =

(
−y′0,x

′
0
)
, EEE(i) ∼

EEE(inc)
0 +EEEr

0, and EEE(2) ∼ EEEt
0, where the superscripts “(inc)”, “r”, and “t” refer to incident, reflected,

and transmitted electric fields, respectively. Also notice that the EEEt
0 field propagated in a vacuum of

refractive index γ−1, so that k is replaced by
k
γ

in the relevant Friedlander - Keller ray expansions.

4.2 Plane wave incidence

In the case of an incident plane electromagnetic wave, the leading-order electric fields are, in the
previous notation

EEE(1) ∼ Er
0 (q

r
0,−pr

0)exp
(

ikur + ik1/2vr
)

−Fp (x tan(θ)+ y)(sin(θ) ,cos(θ))exp(ik [xcos(θ)− ysin(θ)]) , (4.10)

EEE(2) ∼ Et
0
(
qt

0,−pt
0
)

exp

(
i
k
γ

ut + i
(

k
γ

)1/2

vt

)
, (4.11)

where the arbitrary function Fp determines the amplitude profile of the incident wave. The expo-
nents which appear in these two fields are exactly similar to those appearing in the case of an inci-
dent plane acoustic wave, and so it follows that the four phase functions and the ray directions are
given by solutions (3.7) - (3.13) inclusive. The boundary amplitudes EEEr

0 and EEEt
0 (so that, for example,

EEEr
0 (s,0) = Er

0 (s,0)(q
r
0 (s) ,−pr

0 (s))) are now calculated by simultaneously solving boundary conditions
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(4.8) and (4.9), giving

EEEr
0 (s,0) =

Fp (x0 tan(θ)+ y0)
[
ε1 (ttt ··· pppr

0)
(
nnn ··· pppt

0
)
+ ε2

(
ttt ··· pppt

0
)
(nnn ··· pppr

0)
]([

γε2 pppr
0− ε1 pppt

0

]
···nnn
)(

ttt ··· pppr
0

) (qr
0,−pr

0)

exp

(
2i(qr

0x̂0− pr
0ŷ0)

(
nnn ··· x̂xx′0

)
− i(qr

0x̂0− pr
0ŷ0)

2
κ0

nnn ··· pppr
0

)
, (4.12)

EEEt
0 (s,0) =

2ε1Fp (x0 tan(θ)+ y0)(nnn ··· pppr
0)[

γε2 pppr
0− ε1 pppt

0

]
···nnn

(
qt

0,−pt
0
)

exp

(
i
(
qt

0x̂0− pt
0ŷ0
)([

γ pppr
0 + pppt

0
]
···nnn
)

γ
(
nnn ··· pppt

0
) [

nnn ··· x̂xx′0−
κ0
(
qt

0x̂0− pt
0ŷ0
)

2
(
nnn ··· pppt

0
) ])

. (4.13)

The leading-order solutions for the reflected and transmitted fields are now given by the solution (4.5)
with the a and b functions defined as in solutions (3.16) and (3.17) respectively.

4.3 Cylindrical wave incidence

Following an identical methodology, the leading-order total and transmitted fields are contained
within

EEE(1) ∼ Er
0 (q

r
0,−pr

0)exp
(

ikur + ik1/2vr
)
+

Fc (Θ)

R3/2 (y−h,−x)exp(ikR) , (4.14)

EEE(2) ∼ Et
0
(
qt

0,−pt
0
)

exp

(
i
k
γ

ut + i
(

k
γ

)1/2

vt

)
, (4.15)

where Fc (Θ) is the angular directivity of the cylindrically-spreading incident field emanating from the
source point (0,h). Again, the exponents which appear in these two fields are exactly similar to those
appearing in the case of an incident acoustic cylindrical wave, and so it follows that the four phase func-
tions and the ray directions are given by the formulae appearing in (3.20) - (3.26).

The boundary amplitudes EEEr
0 and EEEt

0 are now calculated in the same manner as in the previous
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subsection, giving that

EEEr
0 (s,0) =

Fc (Θ)
[
ε1 (ttt ···RRR0)

(
nnn ··· pppt

0
)
− ε2

(
ttt ··· pppt

0
)
(nnn ···RRR0)

]
R3/2

0

([
γε2 pppr

0− ε1 pppt
0

]
···nnn
)(

ttt ··· pppr
0

) (qr
0,−pr

0)

exp

(
i(x0ŷ0− (y0−h) x̂0)

2

2R3
0

+
i(qr

0x̂0− pr
0ŷ0)

nnn ··· pppr
0

[
(x̂xx000 ···RRR0)(ttt ··· pppr

0)

R2
0

− 1
R0

d
ds

[RRR0 · x̂xx0]+ x̂xx′0 ··· pppr
0−

(qr
0x̂0− pr

0ŷ0)κ0

2
+

qr
0x̂0− pr

0ŷ0

2
(
nnn ··· pppr

0

) R′′0

])
, (4.16)

EEEt
0 (s,0) =

ε1Fc (Θ) [qr
0x0− pr

0 (y0−h)]

R3/2
0

([
γε2 pppr

0− ε1 pppt
0

]
···nnn
)(

ttt ··· pppr
0

) (qt
0,−pt

0
)

exp

(
i(x0ŷ0− (y0−h) x̂0)

2

2R3
0

+
i
(
qt

0x̂0− pt
0ŷ0
)

nnn ··· pppt
0

[
(x̂xx000 ···RRR0)

(
ttt ··· pppt

0
)

γ R2
0

− 1
R0

d
ds

[RRR0 · x̂xx0]+
1
γ

x̂xx′0 ··· pppt
0−

(
qt

0x̂0− pt
0ŷ0
)

κ0

2γ
+

qt
0x̂0− pt

0ŷ0

2
(
nnn ··· pppt

0

) R′′0

])
. (4.17)

The leading-order solutions for the reflected and transmitted fields are now given by the solution (4.5)
with the a and b functions defined as those in solutions (3.29) - (3.32).

5. Reflection and transmission of elastic waves at a perturbed boundary of general curvature

5.1 The boundary value problem for elastic waves

The elastic displacement vector, uuu(xxx)e−iωt , can, via the Helmholtz decomposition, always be writ-
ten in the form

uuu(xxx) = ∇∇∇φ (xxx)+(∇∇∇×χχχ (xxx)) ; ∇∇∇ ···χχχ (xxx) = 0, (5.1)

and in the situation of plane strain that is considered here, φ and χχχ can be taken to be φ = φ (x,y), and
χχχ = χ (x,y)eeez (so that ∇∇∇ ··· χχχ = 0 is automatically satisfied). The ∇∇∇φ term in the first equation of (5.1)
contributes a longitudinal disturbance to the displacement field uuu, while χ yields a vertically polarised
shear wave component. It is well known that all of these different wave modes can arise when an elastic
field is incident upon a free surface, even if only one such field is incident (Brekhovskikh (1980), Graff
(1991), and Howell et al (2008)). At such a free surface, where the traction vanishes, the boundary
condition to be satisfied can (Gregory (1970)) be expressed in terms of φ and χ in the form

2
∂

∂ n̂
[∇∇∇φ +(∇∇∇χ× eeez)]+

(
2k2

l − k2
s
)

n̂nnφ + k2
s χ (n̂nn× eeez) = 000, (5.2)

in which kl and ks are the wave-numbers of the reflected longitudinal and shear waves respectively.

The following examples contain only an incident longitudinal wave, and so the incident term is
present in the φ field. In the case of an incident shear wave, the incident term would be present in the χ

field, but the methodology would be the identical.
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5.2 Longitudinal plane wave incidence

Consider a plane wave propagated longitudinally which is incident upon a free surface, ∂ D̂. This
gives rise to two reflected waves, one which is also longitudinal, and another which is a vertically
polarised shear wave. Thus, since φ is the superposition of longitudinal waves, it is written as

φ ∼ Fp (x tan(θ)+ y)exp(ik [xcos(θ)− ysin(θ)])

+Al
0 exp

(
ikul + ik1/2vl

)
, (5.3)

where Fp specifies the amplitude profile of the incident longitudinal wave, and χ represents the reflected
shear wave, and so has the leading-order form

χ ∼ As
0 exp

(
i
k
γ

us + i
(

k
γ

)1/2

vs

)
. (5.4)

Comparing this situation to, say, the acoustic scattering considered previously, the “reflected” quanti-
ties there are the longitudinal quantities here, as are the “transmitted” and shear quantities. Balancing
the exponents terms at O(k) along the boundary ∂ D̂ gives the boundary data for ul and ut , which are
indifferent to the boundary values given in (3.7) if the “r” and “t” superscripts are replaced by “l” and
“s” respectively, and so the solution for these two functions is given as those appearing in solution (3.8),
again with the change in superscripts, with τ l and τs now denoting the arc-length of the reflected lon-
gitudinal and shear waves respectively. This also implies that the ray directions for the longitudinally
reflected waves are the same as the ray directions appearing in (3.9) and (3.10), but the ray directions
of the reflected shear waves differs from those in (3.11) and (3.12) as the sign of the second terms are
changed to respect the decaying condition imposed on equation (2.10). This arises as both sets of rays
are propagated back into the same medium (rather than only one reflecting back and then having one
escape the medium as was the case for the acoustic scenario).

Furthermore, this also implies that both equations (3.13) still hold, again with the change in super-
script. Simultaneously solving the boundary condition (5.2) for the leading-order amplitudes of the two
sets of waves gives that

Al
0 (s,0) =

Fp (x0 tan(θ)+ y0)

[
4γ
(
nnn ··· pppl

0
)(

nnn ··· ppps
0
)(

ttt ··· ppps
0
)2

+
[
1+2

(
ttt ··· ppps

0
)2
]2
]

4γ
(
nnn ··· pppl

0

)(
nnn ··· ppps

0

)(
ttt ··· ppps

0

)2
+
[
1−2

(
ttt ··· ppps

0

)2
]2

exp

(
i
(
ql

0x̂0− pl
0ŷ0
)

nnn ··· pppl
0

[
2
(

nnn ··· pppl
0

)(
nnn ··· x̂xx′0

)
−
(

ql
0x̂0− pl

0ŷ0

)
κ0

])
, (5.5)

As
0 (s,0) =

4γ2Fp (x0 tan(θ)+ y0)
(
ttt ··· pppl

0
)(

nnn ··· pppl
0
)[

1−2
(
ttt ··· ppps

0
)2
]

4γ
(
nnn ··· pppl

0

)(
nnn ··· ppps

0

)(
ttt ··· ppps

0

)2
+
[
1−2

(
ttt ··· ppps

0

)2
]2

exp

(
i
(
qs

0x̂0− ps
0ŷ0
)

nnn ··· ppps
0

[((
x̂xx0 · pppl

0
)(

ttt ··· ppps
0
)

2
(
nnn ··· ppps

0

) − ttt ··· x̂xx0

2γ
(
nnn ··· ppps

0

) − qs
0x̂0− ps

0ŷ0

2

)
κ0

+
1
γ

([
γ pppl

0 + ppps
0

]
···nnn
)(

nnn ··· x̂xx′0
)])

, (5.6)
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with the full field solution for Al
0 and As

0 being given by the solution (2.13) with the a and b functions
defined as those appearing in (3.16) and (3.17) (with the superscripts interchanged).

5.3 Longitudinal cylindrical wave incidence

Following the same methodology as before, consider an incident longitudinal wave spreading cylin-
drically from the Cartesian point (0,h) which is incident upon a free surface and will give rise to both a
longitudinal and shear reflected waves. In this case φ and χ have the leading order forms

φ ∼ Fc (Θ)√
R

exp(ikR)+Al
0 exp

(
ikul + ik1/2vl

)
, (5.7)

χ ∼ As
0 exp

(
ik

us

γ
+ ik1/2 vs

γ1/2

)
, (5.8)

where Fc specifies the angular directivity of the cylindrically-spreading incident field. This situation can
be compared to the case of an incident cylindrical acoustic wave, with the “reflected” quantities there
becoming the longitudinal quantities here, as with the “transmitted” and the shear quantities. Balancing
the exponential terms at O(k) of the leading-order forms (5.7) and (5.8) along the boundary ∂ D̂ yield the
boundary data for ul and us. It turns out that the boundary data for ul and us are mathematically similar
to boundary data (3.20) (simply replacing the superscripts “r” with “l” and “t” with “s” throughout).
This means two things: Firstly, the solution for ul and us are given by solution (3.21). Secondly, the ray
directions for the longitudinally reflected waves are also given by equations (3.22) and (3.23). However,
the ray directions for the shear reflected waves differ from those in equations (3.24) and (3.25) as the
sign of the second term is negated. This negation is required to obey the radiation condition imposed on
equation (2.10), which arises as both sets of rays are reflected back into the medium, rather than one set
of rays leaving the medium.

Moreover, when evaluating the lower-order exponents terms of the leading-order solutions (5.7) and
(5.8), these too are identical to those given by the solution (3.26) (again with the change of superscripts
“r” and “t” with “l” and “s”). Solving the boundary condition (5.2) for the two boundary amplitude
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values gives that

Al
0 (s,0) =

Fc (Θ)

R5/2
0

×
R2

0
[
2
(
ttt ··· ppps

0
)
−1
]
+2γ2 (ttt ···RRR0)

[
(ttt ···RRR0)

(
1−2

(
ttt ··· ppps

0
)2
)
−2
(
nnn ··· ppps

0
)(

ttt ··· ppps
0
)
(nnn ···RRR0)

]
1+4

(
ttt ··· ppps

0

)2
[(

ttt ··· ppps
0

)2
+ γ
(
nnn ··· ppps

0

)(
nnn ··· pppl

0

)
−1
]

exp

(
i(x0ŷ0− x̂0 (y0−h))2

2R3
0

+
i
(
ql

0x̂0− pl
0ŷ0
)

nnn ··· pppl
0

[(
ttt ··· pppl

0
)
(RRR ··· x̂xx0)

R2
0

+ pppl
0 · x̂xx′0

−
ql

0x̂0− pl
0ŷ0

2
− 1

R0

d
ds

[RRR0 · x̂xx0]+
ql

0x̂0− pl
0ŷ0

2
(
nnn ··· pppl

0

) R′′0

])
, (5.9)

As
0 (s,0) =

2γ2Fc (Θ)

R5/2
0

×

(
nnn ··· pppl

0
)(

ttt ··· pppl
0
)[

R2
0−2γ2 (ttt ···RRR0)

2
]
− (nnn ···RRR0)(ttt ···RRR0)

[
1−2

(
ttt ··· ppps

0
)2
]

R5/2
0

[
1+4

(
ttt ··· ppps

0

)2
[(

ttt ··· ppps
0

)2
+ γ
(
nnn ··· ppps

0

)(
nnn ··· pppl

0

)
−1
]]

exp

(
i(x0ŷ0− x̂0 (y0−h))2

2R3
0

+
i
(
qs

0x̂0− ps
0ŷ0
)

nnn ··· ppps
0

[(
ttt ··· ppps

0
)
(RRR ··· x̂xx0)

γ R2
0

+
1
γ

(
ppps

0 · x̂xx′0
)

−
ql

0x̂0− pl
0ŷ0

2γ
− 1

R0

d
ds

[RRR0 · x̂xx0]+
qs

0x̂0− ps
0ŷ0

2
(
nnn ··· ppps

0

) R′′0

])
, (5.10)

from which the full field solution for Al
0 and As

0 can be determined by solution (2.13) with the a and b
functions defined as those appearing in (3.29) - (3.32), with the change of superscripts mentioned above.

6. Discussion and concluding remarks

The first comment regards the leading-order amplitude, which would be excited by the profile of
an unperturbed boundary (occurring when τ = −a(s) in solution (2.13), for example). This remains
the case if small-scale undulations of O

(
k−1/2

)
perturb the boundary. However, these perturbations

introduce a phase correction which is given by the exponents in solution (2.13), and in which τ =−a(s)
would now cause singularities in the phase.

It was stated at the outset of this paper that the case of N = 2 (in boundary (1.2), for example) is a dis-
tinguished value, as this value was shown to be the only instance when there is precisely one additional
term in the exponents (in addition to the term appearing at O(k)), and so a possible extension which
isn’t considered here is the application of scattering of acoustic, electromagnetic, and elastic waves for
a different value of N. Tew (2018) considered the reflection of incident plane and incident cylindrical
scalar waves against a boundary with N = 3 in boundary (1.2) (on which Neumann data was imposed),
and then found the three phase functions and the leading-order amplitude of the reflected field. The
conclusion made there was that the case of N = 3 sets a paradigm for larger values of N, and each value
of N must then be considered separately. However, as Fp and Fc (in the notation of expansions (1.4)
and (1.5)) are expanded about the unperturbed boundary, and which have boundary data on τ = 0, these
leading-order amplitudes are independent of the value of N. The O(1) exponential pre-factor to these
amplitudes will change, however, as these arise form the O(1) terms in the Taylor series expansion of the

N phase functions in
∞

∑
n=0

An (x,y)
kn/N exp

(
i

N

∑
m=1

k(N+1−m))/Nvm (x,y)

)
. This leads, naturally, to consider



REFLECTION AND TRANSMISSION AT A CLASS OF CURVED BOUNDARIES 17 of 17

the relationship between a general case of N = N0 and then the case of N = N0 +1.

Another extension to the work presented here (and which is currently under investigation) is the
application of the Friedlander-Keller treatment to vectorial waves rather than to the scalar waves. This
would involve the fully vectorial equations of Maxwell, rather than exploiting the “compartmentalisa-
tion” method which was used in Section 4, and would subsequently allow for the understanding of how
the electric EEE and the magnetic BBB fields are affected by the presence of a two-dimensionally perturbed
boundary, rather than considering a two-dimensional problem with a one-dimensional boundary. This
would also allow for a full solution to the equations of Maxwell in the short wave-limit by considering
the leading-order solution, and then arriving at a vectorial equivalent of the transport equations (2.5)
which would involve decoupling entirely the EEE and BBB fields. The three-dimensional problem would
involve a boundary of the form considered by boundary (1.2), but with two parameters (one for each
principal direction of the two-dimensional boundary). This will be reported on in due course.
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