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Abstract 

Over 14,000 porous, three-dimensional metal-organic framework structures are compiled and 

analyzed as part of an update to the Computation-Ready, Experimental Metal-Organic Framework 

Database (CoRE MOF Database). The updated database includes additional structures that were 

contributed by CoRE MOF users, obtained from updates of the Cambridge Structural Database 

and a Web of Science search, and derived through semi-automated reconstruction of disordered 

structures using a topology-based crystal generator. In addition, value is added to the CoRE MOF 

database through new analyses that can speed up future nanoporous materials discovery activities, 

including open metal site detection and duplicate searches. Crystal structures (only for the subset 

that underwent significant changes during curation), pore analytics, and physical property data are 

included with the publicly available CoRE MOF 2019 database. 
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INTRODUCTION 

Metal-organic frameworks (MOFs) are a class of porous materials assembled from inorganic 

clusters (“secondary building units”) and organic building blocks, where these building blocks are 

arranged to form an extended 3-dimensional (or 2-dimensional) crystalline solid material.1-2 This 

class of materials generally has high porosity, large internal surface area, and often contains active 

sites that can be used for site-specific adsorption and catalysis. These properties make MOFs 

attractive platform materials for applications in gas storage,3 chemical separation4-5, catalysis6, 

drug delivery7, and chemical sensing.8 There are many types of organic and inorganic building 

blocks that can be used for MOF synthesis, and a large number of new MOFs can be rationally 

designed using different combinations of organic and inorganic building blocks. Because of this, 

the number of MOFs reported in the literature has seen rapid growth in recent years, and tens of 

thousands of porous MOFs and MOF-type structures have been synthesized to date.9 A challenge 

associated with such a large number of reported structures is to find high-performing materials for 

an application of interest. 

One possible avenue to speed up the discovery of high-performing MOFs is to create a machine-

readable database for already synthesized MOFs. As a part of the Nanoporous Materials Genome 

Center (NMGC), some of us previously created such a database, called the Computation-Ready, 

Experimental MOF database (CoRE MOF 2014 Database)10 derived from structures deposited in 

the Cambridge Structural Database (CSD).11 Unlike other porous materials databases where the 

structures have been generated using computer algorithms,12 MOF structures in the CoRE MOF 

database are derived from synthesized materials and the synthesis protocols (and sometimes also 

the activation procedures used to remove solvent molecules trapped in the MOF structure) are 

usually available; this knowledge can facilitate the synthesis and subsequent testing of high-
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performing MOFs emerging from computational high-throughput screening studies. The utility of 

the CoRE MOF Database has been demonstrated by its use in a growing number of 

computationally-guided screening studies and materials discovery activities (largely focused on 

adsorption properties of MOFs) for methane storage,13 natural gas storage14 and purification,15 

carbon capture16 and separation,17-18 Xe/Kr separation,19 xylene separations,20 olefin/paraffin 

separations,21-22 conductivity,23 oxidative catalysis,24 and hexane isomer separations.25 Moreover, 

the CoRE MOF database has been used to obtain adsorption properties in deformed MOFs,26 to 

predict gas adsorption properties in MOFs upon introducing defect sites,27 and to determine the 

possible crystal structures of synthesized MOFs.28 These selected examples demonstrate that the 

CoRE MOF database can help researchers to discover new utility for already existing MOFs.  

Several subsets of the CoRE MOF Database have been refined since publication of the database 

in 2014.10 Based on the original CoRE MOF structures, Nazarian and co-workers determined 

partial atomic charges using density functional theory (DFT) calculations for more than 50% of 

the CoRE MOF structures.29 This subset is referred to as the CoRE MOF 2014-DDEC database, 

and it can be used to screen MOFs where first-order electrostatic interactions are important, such 

as adsorption of molecules with large dipole or quadrupole moments. In another work, the original 

CoRE MOF structures were optimized using DFT calculations to investigate structural relaxation 

and, in particular, the effect of solvent removed during the generation of the CoRE MOF structures 

and also to probe the differences in the adsorption properties (CH4 and CO2 guest molecules) in 

the as-is and optimized structures.30  

In 2017, a collection of MOF and MOF-type structures found within the CSD was reported 

independently and incorporated into the CSD itself as a separate MOF database.9 This was done 

using a different procedure and a broad definition of what constitutes a MOF and led to the 
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inclusion of 1D, 2D, and 3D structures even when they have no apparent porosity. Recently, 

Altintas et al. investigated the adsorption of CH4 and H2 in 3,490 structures present in both the 

CSD and the CoRE MOF 2014 databases and found that 387 MOFs yield significantly different 

loadings for the structures taken from the two databases for five reasons (missing hydrogen atoms, 

removal of unbound solvent molecules, removal of bound solvent molecules, removal of 

(disordered) charge-balancing ions, and removal of MOF fragments).31 This study illustrates the 

challenges encountered in the preparation of large databases.  

The updated CoRE MOF 2019 Database (as also the CoRE MOF 2014 Database), on the other 

hand, aims to be a more targeted selection of 3D porous MOFs and is prepared to be directly used 

in molecular simulations or electronic structure calculations for applications involving storage, 

separation, and chemical transformations of guest molecules. It should be emphasized that the 

main purpose of the CoRE MOF database is to allow for high-throughput screening of a large 

number of MOF structures to find a subset of potentially promising structures for a specific 

application. Subsequently, this smaller subset of potentially promising structures needs to be 

analyzed in more detail, e.g., checking for stability of these structures and feasibility of solvent 

removal, performing geometry optimization, and re-computing properties for optimized structures. 

Such more detailed analysis would be computationally prohibitive for the entire CoRE MOF 

database. 

In this work, we report a significant update of the CoRE MOF 2014 Database, that nearly triples 

the number of structures to over 14,000. The additional structures originated from several different 

sources (contributed by CoRE MOF users, obtained from updates of the Cambridge Structural 

Database, and a Web of Science search). The updated database is called the CoRE MOF 2019 

Database. Following the compilation of the new MOF structures for the database, we analyze the 
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complete set of structures for the presence of open metal sites (OMS), investigate the effect of 

bound solvent removal on the calculated geometric properties, and consider how many real MOFs 

can be found in a set of computer-generated, hypothetical MOFs using a newly introduced 

molecular fingerprint approach. The atomic structures contained in the CoRE MOF 2019 Database 

are publicly available at http://dx.doi.org/10.11578/1118280. In cases where entries in the database 

have been modified from entries in the CSD or are materials not included in the CSD, the full 

crystal structure of the material is available. In instances where no modifications to the CSD 

structure was required, our database simply provides the CSD REFCODE. 

COMPUTATIONAL METHODS 

Datasets in the CoRE MOF 2019 Database. Reported MOF crystal structures often contain 

coordinates for solvent molecules in the pores. In the CoRE MOF 2014 Database, these solvent 

molecules were removed, including both molecules that were bound directly to an otherwise 

under-coordinated metal site and “free” solvent molecules that interact only loosely with the 

framework. The solvent removal procedure mimics the outcome of the experimental “activation” 

procedure and creates OMSs in some MOF crystals. Removing the bound solvent can help 

discover MOFs that would otherwise be labeled as non-porous (defined here as pore size < 2.4 Å; 

see below) during high-throughput characterization. However, removal of bound (and free) solvent 

molecules may have a profound impact on the MOF structures because the presence of these 

solvent molecules may be essential to the framework stability in some MOF crystals or to stabilize 

charge-balancing ions in their crystallographic locations. In addition, important geometric 

properties, such as the pore limiting diameter (PLD), largest cavity diameter (LCD), gravimetric 

and volumetric surface areas (GSA and VSA, respectively)32 will change upon removal of bound 

solvent molecules. Since these geometric properties are typically the first descriptor for selecting 

http://dx.doi.org/10.11578/1118280
http://dx.doi.org/10.11578/1118280
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promising MOF candidates from a pool of MOF structures, it is important to assess the effect of 

bound solvent removal on the abovementioned physical properties.  

To investigate the effect of removing bound solvents on geometric properties, we prepared the 

following two sets of the CoRE MOF 2019 Database: (a) Free Solvent Removed (FSR), for which 

only the free solvent molecules are removed from the structures, and (b) All Solvent Removed 

(ASR), for which both bound and free solvent molecules are removed from the structures (Figure 

1a). The structures in the CoRE MOF Database 2019-ASR set have undergone the same curation 

procedures as the structures in the CoRE MOF 2014 database. Briefly, the curation process 

proceeds as follows: 1) removing coordinates with low partial occupancies (as marked by an 

asterisk next to the atom type in the CSD CIF files), 2) converting the structure to P1 symmetry, 

3) removing free solvent molecules, and 4) removing bound solvent molecules. (Removing 

coordinates for atoms with low occupancy carries the risk of generating partially incomplete 

structures that cannot be synthesized in the computer-generated form.) The following compounds 

are the most common solvent molecules removed by the procedure: water, dimethylformamide, 

N-ethylpropanoamide, dimethyl sulfoxide, 2-imidazolidone, and lone oxygen atom originating, 

presumably, from a water molecule with crystallographically unresolved hydrogen atoms. On the 

other hand, when detected, non-neutral hydroxyl groups (-OH) were not removed. A solvent 

molecule is considered as bound when the metal-oxygen distance is less than the sum of their 

atomic radii plus 0.4 Å. The atomic radii used in this work are the same as the covalent radii 

defined by Cordero and coworkers.33 Following these steps, the structures were passed through 

the open source code PorousMaterials.jl34 to check for disordered structures. We marked 

the structure as disordered if the distance between two atoms for a given crystal structure is less 

than 0.1 Å, as implemented in the PorousMaterials.jl function atomic_overlap. 
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Figure 1a illustrates how these different subsets were created. Only porous MOFs were kept in 

each set, a choice that results in a larger number of MOFs in the ASR set than in the FSR set. A 

material was considered nonporous if its PLD is less than 2.4 Å. Further details on these methods 

are given in the CoRE MOF 2014 work.10  

MOF Structures from the Cambridge Structural Database. The CSD contains the largest 

number of experimental crystal structures11, 35,36 of any extant material database. The structures 

from the CoRE MOF 2014 Database were derived exclusively from the CSD database. However, 

the CSD continues to update the list of crystal structures and, thus, includes many MOF structures 

added since 2014. To include these newly reported MOF structures, we obtained the updated 

crystal structures from the CSD that were included in the November 2017 release. We carried out 

the same procedure as we did for the CoRE MOF 2014 Database10 on the newly obtained 

structures, which includes solvent removal (both bound and free), ion retention, and manual 

structure adjustments. Based on this procedure, we added more than 9,000 MOF structures to the 

CoRE MOF 2019-ASR Database. 

MOF Structures from the Literature and Duplicate Removal. Not all crystal structures of 

experimentally synthesized MOFs are available from the CSD. Many MOF crystal structures are 

deposited to the CSD because some publishers (e.g., Royal Society of Chemistry) require authors 

to deposit the structures to the CSD before the articles can be published in their journals. Other 

journals do not have such requirements, which means that some MOF structures may not be 

deposited in the CSD. In such instances, the authors typically append CIF files as supporting 

information, or the information is provided as part of the main manuscript. To include some of 

these experimentally synthesized MOF structures from the literature, we collected missing MOF 

structures as identified based on their Digital Object Identifier (DOI) strings. Specifically, we 
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obtained the DOI strings for MOF-related publications by searching the Web of Science (WoS) 

for the terms “porous organic polymer,” and “metal-organic frameworks” (Figure 1c). It should be 

noted that this search is not exhaustive and some MOF structures described by authors using other 

terms will be missed, but the effort increases exponentially when including less common search 

terms to avoid misidentifications (e.g., a significant fraction of “covalent organic frameworks” do 

not constitute MOFs). Ensuring that every synthesized MOF is included would be an impossible 

task. To make sure we did not download structures that we already obtained from the CSD, we 

compared the DOI strings between the structures from the CSD and the Web of Science. We 

removed DOI strings for structures that were already in the CSD. After this procedure, we 

manually downloaded the structures, and carried out solvent removal (both bound and free) and 

manual structure fixing procedures. We note that the ion retention algorithm, which relies on the 

known stoichiometry information provided by the CSD, was not performed for the structures 

obtained in this manner because the stoichiometry information is not readily available for these 

structures. In order to make sure we do not report the same structure multiple times with different 

filenames, we developed a procedure to compare CIF files to find identical structures.  Briefly, the 

procedure checks the volume, chemical composition, lattice constants, and the position of atoms 

for a CIF file with the original CIFs from the CSD to determine if the structures are the same or 

not.  A similar method is available from the Pymatgen StructureMatcher algorithm,37 and we 

cross-checked both methods as a consistency test. A Python script that implements our own 

procedure is available as a Jupyter Notebook.38 Finally, we manually checked the structures that 

were downloaded from the web against the dataset obtained from CSD and removed the CSD 

structures if an overlap was found. We added 900 new MOF structures to the CoRE MOF 2019 

update using this WoS method. 
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User Contributions. Since publication of the CoRE MOF 2014 Database, we have received inputs 

from the user community regarding disorder and errors associated with a number of these 

structures. Some structures (e.g., the MIL-53 series) were missing hydrogen atoms on the bridging 

hydroxyl group, others did not contain organic subunits. Nearly 100 MOF structures that were 

manually fixed by users are updated in the CoRE MOF 2019 Database. We encourage the user 

community to continue to contribute to the CoRE MOF database by contacting one of the 

corresponding authors if any problems with structures in the database are found, or by directly 

submitting the request via the Github repository for the CoRE MOF database. The Github 

repository can be accessed from the link provided in  http://dx.doi.org/10.11578/1118280. 

Semi-Automated Corrections to Crystal Structures. Many CIF files obtained from the CSD 

and the Web of Science search contain a degree of disorder, such as partial occupancies and 

missing hydrogen atoms, that make them unsuitable for computational screening. Indeed, 

Moghadam et al. provided a smaller subset of structures identified as non-disordered MOFs.9 

Fixing disorder in MOF structures to generate simulation-ready structures typically requires time-

consuming manual work. Instead of relying solely on adjustments by hand, we created a workflow 

to reconstruct disordered crystal structures by combining a topology-based crystal generator and 

the Materials Studio Forcite Module (Figure 1b). Briefly, the code constructs a crystal structure 

based on a given topology, nodes, and edges. Here, nodes and edges are derived from the chemical 

building blocks that form MOF structures, and topology is a blueprint on which the nodes and 

edges are placed. Details of the algorithms are reported by Colón and co-workers.39 Crystal 

structures were reconstructed based on the topological blueprints obtained from the Reticular 

Chemistry Structure Resource (RCSR)40 if not already available in the library of topologies 

included with the crystal generator. Following the reconstruction of the crystal structure, energy 

http://dx.doi.org/10.11578/1118280
http://dx.doi.org/10.11578/1118280
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minimization based on Universal Force Field (UFF) parameters,41 that are available from the 

Materials Studio Forcite module, was carried out while holding the experimentally reported lattice 

constants and cell angles constant (i.e., only positions of atoms were allowed to relax). We 

restricted ourselves to curate MOF crystals with building blocks that are available within the 

crystal generator. Using this approach, we generated 28 MOF crystal structures, which are listed 

in Table S1. We have excluded the disordered structures that we were not able to fix using this 

method and placed them in a folder named “disorder”. The total number of structures that are 

marked as disordered is 331 for the FSR dataset and 455 for the ASR dataset (including the 331 

disordered structures also in the FSR dataset). 

Geometric and Topological Analyses. The open-source program Zeo++42 was used to compute 

geometric properties of the structures in the CoRE MOF 2019 Database. The PLD, LCD, GSA, 

and VSA of MOF crystals were calculated using high-accuracy settings (-ha flag), and a hard 

sphere with a diameter of 3.31 Å (the Lennard-Jones 𝜎 parameter of nitrogen in the TraPPE 

model)43 was used in computing the surface areas. The underlying topologies of the crystal 

structures in the CoRE MOF 2019-ASR Database were determined using the ToposPro software 

program44-45 with known topologies from the RCSR and EPINET databases.40, 46 

Linkers in MOFs. Information on the organic building blocks in a subset (~5,000) of the CoRE 

MOF 2019-ASR Database was identified through a substructure search using the Cambridge 

Crystallographic Data Centre (CCDC) software’s ConQuest program.47 We restricted the search 

to the structures with CSD REFCODEs (i.e., no WoS structures) and that were updated from CSD 

up to March 2016. Common linkers, such as terephthalic acid and trimesic acid, were drawn and 

identified in the database first. Each linker structure was drawn in the program, which searched 

through all CoRE MOFs for a given ligand structure to find a match. The hydroxyl hydrogen of 
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an alcohol or carboxylic acid group was not included in the search because the metal often binds 

to the oxygen of these functional group via replacement of a proton. Additionally, multiple search 

queries were performed for a ligand structure with the same atom connectivity to account for 

delocalized bonds and resonance structures. The search results for a given linker structure included 

the MOFs that contain the searched subunit structure as a linker as well as MOFs with the structure 

as a moiety of a larger linker. These were manually distinguished from one another. Many of the 

MOFs had two types of linkers, and the linker that was not searched for was identified and a 

substructure search for that linker was performed on all other MOF structures. Based on this 

search, the ligands from all CoRE MOF structures were grouped by organic linker and common 

linkers were identified. The list of organic linkers tabulated in this way is not comprehensive given 

that we only searched for linkers that we considered to be common. 

Open Metal Site (OMS) Detection Algorithm. We developed an algorithm to detect the presence 

of (potential) OMSs in MOFs. The coordinates and unit cell vectors of a MOF structure were read 

from the CIF files of the CoRE MOF 2019 Database. All metal atoms in the structure were detected 

together with all atoms in their first coordination spheres, i.e., the framework atoms directly 

bonded to the metal. A framework atom was considered bonded to a metal atom if the distance 

between them was smaller than the sum of their covalent radii plus a tolerance that was taken to 

be 0.2 Å for metal atoms with covalent radius smaller than 1.95 Å and 0.4 Å for larger metal atoms. 

The covalent radii were taken from Cordero and co-workers,33 who analyzed crystallographic data 

for all elements with an atomic number up to 96. The bond detection can, in certain cases, 

incorrectly detect bonds between atoms that are not truly bonded, and thus incorrectly include 

these atoms in the first coordination sphere. To eliminate such cases, we checked if any atoms in 

the coordination sphere are bonded to each other, and if such a case was found we removed the 
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atom further away from the metal. This rule was not applied to carbon atoms to correctly identify 

the coordination spheres of metallocene. Metal atoms of the same type were also excluded from 

this rule to ensure that environments belonging to metal acetate-type (“paddle wheel”) building 

units were described correctly and not considered as tetra-coordinated metals.  

Two approaches considering only the geometry of the atoms within the first coordination sphere 

were used to identify OMSs. The first, plane-based, criterion was tuned to give a binary decision 

on whether a metal site is open or not. The second metric was based on bending angles and 

provides a numerical value (τ-factor) that represents the distortion of the first coordination sphere 

away from a closed configuration and is only applicable to tetra-, penta- and hexa-coordinated 

metals. The expression for the τ-factors for the tetra-coordinated (τ4)48 and penta-coordinated (τ5)49 

metals were taken from the literature, whereas we developed a new expression for the hexa-

coordinated metals (τ6). Details on both metrics are discussed in Supporting Information Section 

S5. Typically, there are multiple OMSs in a given MOF structure, but some of them could be 

symmetrically equivalent. For example, M-MOF-74 has only one unique OMS.50 Knowing which 

sites are unique in each structure allows for a better representation of the variety of sites found in 

MOFs and enables a more efficient examination of these OMSs in the computational screening 

processes. For this reason, all of the unique metal sites in each MOF were identified using their 

coordination sequence.51  The OMS code can be accessed from 

https://github.com/emmhald/open_metal_detector.  

Molecular Fingerprint and Overlap between Hypothetical and CoRE MOFs. We developed 

a molecular fingerprint based on a MOF’s elemental composition and geometric properties to 

determine the overlap between the hypothetical MOFs generated by Wilmer and coworkers12 and 

the structures in the CoRE MOF 2019-ASR Database.  Our approach begins with the material’s 

https://github.com/emmhald/open_metal_detector
https://github.com/emmhald/open_metal_detector
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stoichiometry and incrementally considers other geometric properties of MOFs (such as the 

surface area, density, and pore limiting diameter). As a first step, the chemical formula of each 

MOF is compared by reducing the stoichiometric coefficients of the elements to their lowest 

possible integer values. Hydrogen atoms must also be included in the molecular formula to capture 

the subtle differences between bond order of ligands. For example, PCN-11 and PCN-16 differ by 

a single bond in their organic ligand. Stoichiometry coefficients of the elements are not enough as 

a complete fingerprint to identify identical MOF structures from two databases. For example, 

multiple MOF polymorphs can exist with the same chemical composition. One possible way to 

recognize the effect of atomic packing inside a crystal structure is to use the crystal density as a 

descriptor. Depending on the crystal density, the same molecular formula may represent a different 

structure – for example, interpenetrated MOFs will have the same stoichiometry of elements, but 

their densities will be different by a factor of two. Since the density is a continuous variable, we 

must find a threshold tolerance for the property. If the tolerance is too narrow, then the same MOF 

will be incorrectly classified as distinct, and if the tolerance is too large, then we will not be able 

to achieve enough resolution to differentiate MOFs. To establish a reasonable density threshold, 

five common MOFs (HKUST-1, IRMOF-1, MIL-47, MIL-53, and UiO-66) were grouped together 

with the molecular formula and density filters. Total counts of true duplicates were assigned based 

on the molecular formula filter and the results were manually checked. Details are provided in the 

Supporting Information Section S6. 

Computational Screening. Grand canonical Monte Carlo (GCMC) simulations were carried out 

to investigate the effect of bound solvent removal on the adsorption properties of a 20:80 mixture 

of xenon and krypton at 298 K and 1 bar. Lennard-Jones (LJ) potentials were used to model the 

van der Waals interaction between atoms using a 12.8 Å cut-off without tail-corrections. LJ 
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parameters for xenon and krypton were taken from Rutkai and coworkers, where the values of the 

LJ well depth (ε/kB) and the LJ diameter (σ) are 226.14 K for xenon and 162.58 K for krypton, 

and 3.949 Å for xenon and 3.627 Å for krypton, respectively.52  MOF atoms were modeled using 

the LJ parameters from the UFF force field.41 The Lorentz-Berthelot53 mixing rules were used to 

determine the cross interaction parameters between unlike atoms. The Peng-Robinson equation of 

state54 was used to convert the pressure to fugacity necessary to compute the chemical potential of 

the system. Simulations were carried out on the structures with a PLD value greater than the vdW 

diameter (as specified in the forcefield) of a xenon atom (3.97 Å). A total of 4,517 structures were 

examined. GCMC simulations were carried out using the RASPA software package.55 

Stability Calculations. Calculations of the binding energies of bound solvent molecules, i.e., 

dimethylformamide (DMF) in FIJDOS50 and diethyl formamide (DEF) in ja300034j_si_00256, 

were performed using the CP2K code (version 6.0), which uses a mixed Gaussian/plane-wave 

basis set57-58. We employed double-ζ polarization quality Gaussian basis sets59 and a 600 Ry plane-

wave cutoff for the auxiliary grid, in conjunction with the Goedecker-Teter-Hutter (GTH) 

pseudopotentials60-61. A convergence threshold of 1.0 x 10-6 Hartree was used for the self-

consistent field cycle; structural optimizations were considered as converged when the maximum 

force on atoms fell below 4.5 x 10-4 Hartree/Bohr. All calculations were performed in the Γ-point 

approximation for sufficiently large cells, i.e., the total number of atoms (including DMF or DEF 

solvent molecules) in the FIJDOS and ja300034j_si_002 cells are 252 and 384, respectively. All 

DFT calculations, including single-point energies and geometry/cell optimizations, were 

performed using the PBE functional62, with Grimme’s D3 van der Waals correction (PBE+D3)63. 

DMF, DEF, and water molecules were fully optimized in an empty box. The energy of bound 

solvent removal was computed using the following equation: 
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∆𝐸solvent removal = 𝐸MOF+solvent − (𝐸MOF + 𝐸solvent) 

Here, EMOF+solvent is the energy of MOF plus solvent, EMOF is the energy of the optimized MOF 

without solvent, and Esolvent is the energy of the optimized solvent molecules in an empty box.  

RESULTS 

Structures in the CoRE MOF Database. Table 1 summarizes the different CoRE MOF 

databases. The CoRE MOF 2014-DDEC and CoRE MOF 2014-DFT-optimized datasets do not 

cover all the structures found in the CoRE MOF 2014-ASR dataset, because these derived datasets 

require periodic DFT calculations. The MOFs that are not included in these datasets are those for 

which DFT calculations were not able to converge in a reasonable amount of time.29-30  

For the CoRE MOF 2019 Database, we prepared two separate datasets denoted as 2019-FSR and 

2019-ASR. There are fewer structures in the CoRE MOF 2019-FSR dataset than in the 2019-ASR 

dataset since some structures are deemed non-porous (i.e., pore limiting diameter < 2.4 Å) if the 

bound solvent molecules are not removed. The CoRE MOF 2019-ASR Database is expanded by 

more than 9,000 additional MOF structures beyond those found in the CoRE MOF 2014-ASR 

Database. As noted above, all structures that were modified in a significant way from the CIF files 

in the CSD or were not obtained from the CSD have their atomic coordinates available from 

http://dx.doi.org/10.11578/1118280. Scripts for detection of OMSs, duplicate structures, and 

bound/unbound solvent removal are available from the same location. 

It must be emphasized that the solvent removal procedure applied to generate the CoRE MOF 

2019-ASR dataset (as also for the 2014-ASR dataset) is on purpose inclusive with the aim to yield 

a maximal dataset for the purpose of high-throughput computational screening. Computational 

removal of bound solvent molecules may go beyond what can be achieved during experimental 

activation procedures and may lead to structures that are not mechanically stable.  Such unstable 

http://dx.doi.org/10.11578/1118280
http://dx.doi.org/10.11578/1118280
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structures would then undergo significant changes either to other crystalline forms potentially with 

a loss of porosity or convert to disordered structures. Thus, when computational screening of the 

2019-ASR dataset yields promising candidate structures not included in the 2019-FSR dataset, 

then additional steps should be taken by the researcher to assess the stability of the ASR structure. 

Our prior work using DFT optimization on the 2014-ASR dataset indicated that a fraction of the 

structures undergo large changes in structure or the optimization did not even converge to a stable 

structure.30 Given the computational expense of the DFT optimization, we favor carrying out these 

optimizations on a case-by-case basis. 

The numbers of structures included in the CoRE MOF 2019-ASR and 2019-FSR datasets 

(14,142 and 9,869 structures, respectively) are about a factor of 5 smaller than the total number of 

structures included in the MOF dataset reported by Moghadam et al.9 The primary reasons for this 

difference are that the CoRE MOF 2019 datasets only include structures that are a) three-

dimensional and b) porous, where we define porous as having a PLD greater than 2.4 Å. Note that 

by applying a PLD  filter of >3.7 Å, the CSD yields a subset with ~9,000 porous two- and three-

dimensional MOFs. 

Solvent Removal Effect on Textural Properties. Following the synthesis of MOFs, the solvent 

molecules used for the synthesis are generally trapped inside the pores, and in some cases, the 

residual solvent molecules form a coordination bond with exposed metal sites of the inorganic 

nodes. These coordinated solvent molecules (“bound” solvents) could be used to stabilize the 

framework or removed during the activation procedure to leave the metal sites exposed for 

selective adsorption and catalysis. Removal of such “bound” solvents changes the underlying 

physical properties, such as the surface area and pore size, of MOFs. Figure 2 compares the 

geometric properties of CoRE MOF 2019-ASR and 2019-FSR datasets to analyze the effect of 
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solvent removal on some key geometric properties of synthesized MOFs. In comparing the effect 

of bound solvent removal on geometric properties, we did not include user contributed, manually 

fixed, and structures with ions. We also did not include structures with disorder. In total, we 

compared 8,815 structures that are in both the ASR and FSR datasets. Figure 2a and Figure 2b 

compare the LCD and PLD values from the ASR and FSR sets. We found only 1,426 (or 1,366) 

structures (~16 % of 8,815 structures) that showed more than a 0.5 Å increase or decrease in LCD 

(or PLD) value when the bound solvent was removed, with an average increase of ~1.5 Å for both 

LCD and PLD for the ~ 1,400 structures exceeding the 0.5 Å limit. One of the largest increases in 

the LCD value with bound solvent removal was observed in FIJDOS (Zn-MOF-74),50 where the 

LCD value increased from ~5.0 Å to ~12.0 Å upon removal of dimethylformamide. Similarly, the 

largest increase in the PLD value was observed in ja300034j_si_002 (Mg2(dobpdc)),56 where the 

PLD value increased from ~10 Å to ~17 Å upon removal of dimethylformamide.  

The removal of bound solvents can have a large impact on the accessible volumetric surface area 

(AVSA), for example, by exposing blocked pores (which will increase the overall surface area) or 

by flattening the protruding solvents (which may decrease the overall surface area). Figure 2c 

shows the comparison between the AVSA values from the ASR and FSR sets. In general, we find 

that the AVSA increases with the removal of bound solvents. 1,738 structures showed at least a 

100 m2/cm3 increase in their AVSA. The surface area of the structures in this group increased, on 

average, by 677 m2/cm3. The largest increase in surface area was observed for MAGNEQ.64 We 

also find that the accessible volumetric surface area decreases more than 100 m2/cm3 for 168 

structures (~1.9% of 8,815) upon removal of bound solvent. This is because the loss of surface 

area from the solvent molecules is greater than the MOF surface area exposed upon removing the 

bound solvent. Of the 168 structures, the average decrease was 167 m2/cm3.  
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Impact of Bound Solvent Removal on Xe/Kr Separation Performance. The removal of bound 

solvents changes the underlying potential energy surface within the pore, which in turn changes 

the adsorption properties of the material. The two datasets that we have prepared provide 

opportunities to test the impact of solvent removal on adsorption properties for many structures 

with diverse physical properties. As an illustrative example, we have carried out high-throughput 

computational screening of the ASR and FSR datasets for a 20:80 mixture of xenon and krypton. 

Figure 3 compares the Xe uptake, Kr uptake and Xe/Kr selectivity at 1 bar between ASR and FSR 

datasets. From the screening results, we find that the presence of bound solvent sometimes 

increases and sometimes decreases the Xe/Kr selectivity. For instance, the presence of coordinated 

water molecules in AVAGIP (red square) lowers the adsorption of xenon, and because of 

decreased adsorption of xenon molecules inside the pore, the Xe/Kr selectivity is lower for 

AVAGIP structure from the FSR dataset (~9) than from the ASR dataset (~21). If the coordinated 

water molecules are removed (mimicking “activated” condition in experiments), the selectivity of 

the material increases two-fold from 9 to 21. The increased selectivity is due to increased 

adsorption of xenon within AVAGIP following the removal of coordinated water molecules (0.44 

versus 1.86 mmol/g for FSR and ASR, respectively). On the contrary, the presence of coordinated 

solvent sometimes increases the selectivity of a material. FEYQIK (blue inverted triangle) is an 

example where the presence of coordinated water molecules prevents the adsorption of krypton, 

which leads to higher Xe/Kr selectivity in FEYQIK structure from FSR dataset (~23) than in ASR 

dataset (~12). 

To obtain molecular-level information on the changes of xenon and krypton adsorption, the 

potential energy surfaces (PES) for AVAGIP and FEYQIK are computed and compared in Figure 

S6.  Figures S6a and c show the PES of ASR and FSR structures of AVAGIP for xenon and 
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krypton, respectively, which clearly demonstrates that the removal of water molecules creates 

more favorable adsorption sites for xenon and krypton within the pores. Figure S6e shows a 

comparison between the computed mixture isotherms for the ASR and FSR structures, which 

demonstrates that the uptakes of both xenon and krypton are increased over the complete range of 

pressures for the ASR structure; this can be attributed to the creation of more favorable adsorption 

sites as indicated in Figure S6a and c. While krypton uptake stays relatively constant before and 

after the removal of coordinated solvents (0.4 mmol/g for FSR and 0.2 mmol/g for ASR) at the 

adsorption pressure (1 bar), considerable changes are observed in xenon uptake from 0.44 mmol/g 

to 1.88 mmol/g at 1 bar. The increased xenon uptake leads to increased Xe/Kr selectivity from 9 

to 21. 

The removal of coordinated water molecules can also lead to a decrease in the selectivity of the 

material by altering the underlying PES to make it less favorable for adsorption of xenon. Figures 

S6b and d show the PES of FEYQIK FSR (left) and ASR (right) structures for xenon (Figure S6b) 

and krypton (Figure S6d). In this case, the presence of water molecules in FSR facilitates the 

adsorption of xenon, leading to a high Xe/Kr selectivity. Upon the removal of coordinated water 

molecules, the underlying PES changes and makes it less favorable for xenon adsorption. The 

mixture isotherms show that the uptake at 1 bar decreases from 2.04 mmol/g to 1.94 mmol/g for 

xenon and increases from 0.35 mmol/g to 0.59 mmol/g for krypton in FSR and ASR, respectively. 

The selectivity is decreased from 23 (FSR) to 13 (ASR) because of the increased adsorption of 

krypton.  

Simon and co-workers previously screened the CoRE MOF 2014 dataset to find materials with 

high Xe/Kr selectivity.13 The MOF with the highest selectivity found in their work was KAXQIL, 

also known as SBMOF-1, a calcium based MOF synthesized by Banerjee et al.65 As shown in 
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Table 2 and Figure S6, our screening of the CoRE MOF 2019-ASR dataset found a number of 

materials with higher Xe/Kr selectivity and/or higher Xe uptake than KAXQIL. Table 2 lists some 

selected MOFs with high selectivity and high Xe uptake at 1 bar, which are important metrics for 

screening materials for Xe/Kr separation applications. The results show that several materials with 

better performance have been synthesized since the computational screening of Simon et al. We 

find that the presence of solvent molecules sometimes decreases and sometimes increases 

materials properties due to changes in the PES of the pores and tuning the PES could potentially 

be achieved by leaving the coordinated solvents intact. We note that blocking of non-accessible 

pores was not performed for the current study; additional computational and experimental work is 

needed to validate the high Xe/Kr selectivity for these materials. Data for high-throughput 

simulation of both the ASR and FSR CoRE MOF datasets for Xe/Kr are available as part of the 

Supporting Information.  

Stability of Selected MOFs Upon Solvent Removal.  Removal of both bound and unbound 

solvents is necessary to utilize the empty space in MOFs for adsorption and catalysis applications, 

but the removal of solvents within the framework sometimes lead to framework collapse66-68. We 

carried out periodic DFT calculations on three MOFs (FIJDOS, ja300034j_si_002, and AVAGIP) 

to compute the energy cost to remove solvent molecules. FIJDOs and ja30034j_si_002 were 

chosen because these MOFs showed largest changes in their LCD values upon bound solvent 

removal. AVAGIP was chosen on the basis of large increase in Xe/Kr selectivity. The changes in 

the unit cell volume and physical properties were calculated. Because of the additional 

computational complexity associated with the Cu/Pr magnetic centers in DFT calculations, we did 

not attempt to estimate the binding energies of bound solvent molecules in MAGNEQ and 

FEYQIK. In addition, DFT calculations were not performed for KAXQIL, because it does not 
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contain bound solvent molecules. The results are summarized in Table 3. DFT calculations show 

that the energy cost of solvent removal is ~113 kJ/mol of dimethylformamide for FIJDOS (with 

~0.3% volume decrease) and ~123 kJ/mol of diethyl formamide for ja300034j_si_002 (with 1.4% 

volume decrease). For the calculation of solvent removal in the FIJDOS, we found that a hydrogen 

atom was missing from dimethylformamide in the FIJDOS-FSR structure, and we have corrected 

the chemical structure of dimethylformamide before carrying out the DFT calculations. Based on 

the minimal volume changes upon solvent removal in these two materials, it is likely that these 

materials will not collapse upon solvent removal. For AVAGIP, we find the energy of removing 

the bound solvent (water) is ~45 kJ/mol, and the volume change before/after the bound solvent 

removal is ~2%. Visualization of DFT-optimized ASR and FSR structures are shown in Figures 

S8 – S10. Experimental validation is necessary to confirm if the calculated ∆𝐸solvent removal and 

the relative volume changes before/after the solvent removal are good descriptors of the framework 

stability. 

Common Topologies. The underlying topologies of the CoRE MOF 2019-ASR dataset were 

determined using the ToposPro software program.45 The CoRE MOF 2014 and CoRE MOF 2019 

databases include more than 350 topologies. In the CoRE MOF 2019 database, more than 80 of 

these topologies are represented by 10 or more structures. Figure 4 shows the 40 most common 

topologies that together represent more than 50% of the CoRE MOF 2019-ASR dataset. The five 

most common topologies are pcu (26.7 %), dia (12.8 %), rtl (4.1 %), ths (3.9 %), and bcu (3.7 

%). The 10 most common nets found from the CoRE MOF 2019 Database include all five regular 

nets reported in the literature (srs, nbo, dia, pcu, and bcu).69 From the topological perspective, 

these nets are the simplest possible nets with minimal transitivity and maximal symmetry.70 Also, 

we find the tbo net to be quite common in the CoRE MOF databases. This may be due to the 
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popularity of synthesizing Cu-BTC (HKUST-1)71 among MOF researchers, as more than 50 Cu-

BTC structures were reported in the CoRE MOF 2019-ASR database. We also find that edge-

transitive nets (or “default” nets) appear quite frequently. These nets are tbo, pts, stp, sod, lvt, 

rht, acs, fcu, the, flu, pyr, qtz, sit, pto, and ctn.  

Common Linkers. Table 4 summarizes the statistics of some organic linkers contained in the 

MOFs in the CoRE MOF 2019-ASR dataset. One would expect organic ligands that can be used 

to construct pcu, dia, bcu, and tbo topologies to be popular since organic ligands and topologies 

are closely related to one another. These topologies require building blocks with two or three 

“binding points,” so we searched for common bidentate or tridentate ligands, such as terephthalic 

acid, 4,4-bipyridine, and trimesic acid. According to the minimal transitivity principle, the 

popularity of pcu, dia, bcu, and tbo topologies in the CoRE MOF database could be directly linked 

with the popularity of the linkers with two or three binding points because these are the simplest 

and most highly symmetric nets that are more likely to be synthesized.  

Open Metal Sites. We screened all structures within the CoRE MOF 2019-ASR and 2019-FSR 

datasets for OMSs. This was done by applying the plane-based criterion and the angle-based 

metrics (τ-factors) as described in the Methods section and Supporting Information. In total, we 

found that, out of the 13,687 MOFs in the 2019-ASR dataset, 8,470 (~61.9%) contained at least 

one OMS. Out of 9,538 MOFs in the 2019-FSR dataset, 3,274 (~34.3%) contained at least one 

OMS (see Figure S5 for details of number of MOFs). This is a factor of 2.6 smaller than for the 

2019-ASR dataset. We would like to emphasize that even 34.2% is a very large fraction and 

indicates the potential of MOFs for site-specific separation, via dative bonding of guest molecules, 

and for catalysis. The 2019-ASR dataset contains 8,815 structures that overlap with the FSR 

dataset and satisfied our porosity constraint only after removal of bound solvent. For the sake of 
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fair comparison, these 8,815 structures do not include MOFs that have gone through different 

structure curation procedures, such as ion retention, manual structure modification, and topology-

based curation. For this subgroup (8,815 structures), 2,986 (~34%) and 5,219 (~59%) structures 

were found to include at least one OMS for FSR and ASR datasets, respectively. In other words, 

2,233 structures that did not have OMSs in the FSR dataset now have OMSs following the bound 

solvent removal.  

The structural (and chemical) stability of many of the open metal sites in the ASR dataset is 

questionable since it is unknown if the required activation can take place without framework 

collapse. Nazarian and coworkers found numerous examples from the CoRE MOF 2014 Database 

that undergo very significant structural changes during DFT optimization for materials in which 

the original crystal structure included bound solvents.30 The OMSs that do not require additional 

bound solvent molecules to be removed (beyond those removed in experiments before structure 

determination), found in both the 2019-ASR and 2019-FSR datasets, provide important 

information about potential stability of the material, since these can more likely be activated under 

conditions described by the reported experimental procedures. However, the computational study 

of a diverse range of OMSs, even if some are unstable, can still lead to the identification of motifs 

with desirable properties. 

The percentages of unique metal sites found to have specific τ4, τ5 or τ6 values are presented as 

histograms in Figure 5 for the 2019-ASR and 2019-FSR datasets. The colors of the bars indicate 

whether the sites were identified as open (blue) or not (red) using the plane-based criterion. As 

discussed in the Methods section (and in more detail in the Supporting Information Section S5), 

metal sites with τ-factor values of one, in general, correspond to symmetries that fully surround 
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the metal site (no open metal site). Deviations from these closed symmetries result in smaller τ-

factor values and the presence of OMSs.  

It is evident from the figure that indeed almost all coordination spheres with a τ-factor value of 

zero are identified as open by the plane-based criterion and those with a τ-factor value of one as 

not open. Since there is a continuous deviation from a closed coordination sphere towards a more 

exposed environment and the two methods are independent, there are coordination spheres in-

between that have the same τ-factor value but a different classification. In addition, the threshold 

for the plane-based criterion was chosen to be loose to avoid false negatives. 

For example, tetra-coordinated metals with τ4 = 0.0 correspond to a square planar, fully open 

geometry. Increasing τ4 values correspond to deviations of the coordination sphere as it approaches 

a tetrahedral symmetry (τ4 = 1.0), a closed configuration. This transition can be observed in Figure 

5, with sites having τ4 > 0.9 being mostly identified as closed. The most frequent geometry of the 

penta-coordinated sites, in both datasets, is the square pyramidal (D4h symmetry) which is fully 

open and has a value of τ5 = 0.0. Only a small number of sites are found to deviate substantially 

from this geometry. For the hexa-coordinated metal sites, we observed for the ASR dataset a small 

broad peak around τ6 = 0.4, which corresponds to the “see-saw” type coordination sphere (C2v 

symmetry). Most sites were found to have τ6 values greater than 0.7 and were mostly identified as 

closed. 

Among the penta-coordinated metal sites, 85% are identified as open within the ASR dataset (N 

= 13,687) and 68% within the FSR dataset (N = 9,538). In contrast, only 13% (ASR) and 1.6% 

(FSR) of the hexa-coordinated metal sites are found to be open. The tetra-coordinated metals are 

more varied with open percentages of 61% (ASR) and 48% (FSR). This data is presented in Tables 

S3. The data for ASR and FSR overlaps (N = 8,815) is presented in Table S4. The classification 
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of the metal coordination spheres used each MOF structure as it is found in each dataset. This 

means that for the ASR dataset the coordination spheres have undergone bound solvent removal 

while in the FSR, they have not. This can result in cases where a metal site which, for example, is 

classified as penta-coordinated in the ASR set may have higher coordination number in the FSR 

set. 

It should be noted that we found a few rare coordination spheres with τ-factors that did not 

follow the trend that values of zero correspond to open metal sites and values of one to closed 

sites. This is most clearly seen in Figure 5 for the tetra-coordinated sites in the ASR set. There is 

a small percentage of open metal sites with a τ4 value of one. In these cases, the geometry of the 

first coordination sphere falls outside the range of deviations that can be captured correctly by the 

τ-factor formulations. More details on this and examples of such geometries are presented in the 

Supporting Information Scheme S4. 

Figure 6 presents an elemental breakdown of the number of unique metal sites found in the ASR 

and FSR datasets. Although all metal atoms with an atomic number as large as 96 were included 

in the search, only atoms up to the fifth row of the periodic table, having more than 50 unique sites, 

are shown in Figure 6. The complete information regarding the number of MOFs and sites found 

for each element are included in the Supporting Information Tables S6 – S9. 

The most common metals identified in both the ASR and FSR datasets are Zn, Cu, Cd, and Co. 

Together they account for approximately 50% of the metal sites in both the ASR and FSR datasets. 

In the FSR dataset, these elements also make up most of the open metal sites found (69%). Na, Li, 

K and Ag are also to a large extent open in both sets, and this is because they often act as charge-

balancing ions (i.e., similar to cation exchanged zeolites).  
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Estimated Number of Distinct CoRE MOFs. The CoRE MOF 2014 and 2019 databases contain 

MOFs for which multiple crystallographic structures are reported in the literature, such as IRMOF-

1 and Cu-BTC. This observation was already made in the original paper.10 Recently, Barthel et 

al.72 applied a computational methodology to distinguish MOFs in 502 structures from the CoRE 

MOF 2014-DDEC dataset and found that 78 structures are duplicates, and they also identified 60 

structures with problems in network topology and composition. In a similar manner, the molecular 

fingerprint method outlined in the Methods section was used here to estimate the number of distinct 

MOFs in the much larger CoRE MOF 2019-ASR dataset. Table 5 summarizes the results by 

classifying the structures based on different levels of molecular fingerprints. As more layers are 

added to the fingerprint, MOFs are increasingly categorized as distinct, until the limit of 

distinguishing them by their CIF file name. Depending on the fingerprint parameters chosen, there 

are an estimated 11,000 – 12,000 distinct MOFs in the CoRE MOF 2019 dataset, which 

corresponds to ~79% of the structures. 

Barthel and coworkers70 deem “duplicate” structures with minor variations in atomic coordinates 

as redundant. We would like to point out that for high-throughput screening of rigid structures, 

“duplicates” should not be removed because they provide important information. Similar to the 

CoRE MOF 2014 and 2019 Databases, the IZA Database73 of zeolite structures contains multiple 

variants for many of the topologies resulting from differences in the synthesis conditions and the 

composition of the tetrahedral atoms and their charge-balancing cations, as well as idealized all-

silica structures for zeolites not yet synthesized in all-silica form. Screening is sometimes sensitive 

to rather small changes in structure (for example, significant differences in water/alcohol 

adsorption and in performance for sour gas sweetening have been found for different variants of 

the same zeolite framework topologies74-75). That is, when searching for optimal nanoporous 
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structures, a hit that includes all of the structural variants of the same topology provides much 

higher degree of certainty that this topology or MOF or zeolite would actually perform well, 

whereas disagreement between different variants is a good cautionary flag. 

 

Overlap Between Hypothetical MOFs and CoRE MOFs. We also used the molecular 

fingerprint method outlined in the Methods section to compare the CoRE MOF 2019-ASR dataset 

and the hypothetical MOF database of Wilmer and co-workers.12 The algorithm identified 144 

families as potentially overlapping between the hypothetical MOF and CoRE MOF 2019-ASR 

datasets. By visually inspecting these candidates, we confirmed that 19 of these MOFs were true 

overlaps, and the remaining 125 were false positives (See discussion in the Supporting 

Information Section S6). The results illustrate the challenges of identifying MOFs based on 

composition and topology. We note that 3 of the 19 structures obtained from the literature are 

hypothetical MOFs that were reported in the Supporting Information of a paper. This leaves us 

with 16 synthesized hMOFs. SUMOF-3, HKUST-1 (Zn), HKUST-1 (Cu), IRMOF-1, IRMOF-3, 

IRMOF-9, IRMOF-14, SUMOF-4, BMOF-1-bpdc, interpenetrated IRMOF-1, MIL-47, 

Zn2(NDC)2(DPNI), and VO(BPDC) are some experimentally reported MOFs that are also found 

in the hypothetical MOF database based on our molecular fingerprint approach. The summary of 

confirmed overlap between CoRE MOF 2019-ASR and Wilmer’s hypothetical MOF database is 

provided in the Supporting Information Table S10. 

CONCLUSIONS 

We have reported an updated version of the Computation-Ready, Experimental (CoRE) MOF 

database with additional analyses and ~ 9,000 additional structures. The detailed analyses of open 

metal sites presented in this work show that a large fraction of the CoRE MOF structures (34% for 
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FSR and 62% for ASR) contain at least one open metal site, and researchers are already using this 

knowledge to screen the database for selective adsorption of small molecules and catalysis 

applications.24 As an example application of the database, we screened it to find materials for 

Xe/Kr separation. We compared our results with previous work of Simon and coworkers, who had 

computationally screened the CoRE MOF 2014 Database for Xe/Kr separation and found 

SBMOF-1 (CSD REFCODE: KAXQIL) as the MOF with the highest Xe/Kr selectivity.19 In our 

screening of the CoRE MOF 2019 databases, we discovered a number of structures with similar 

selectivity as that of SBMOF-1 but with higher capacity, which is an important metric in lowering 

the total operating cost of the adsorption unit for industrial application. The results also show that 

the Xe/Kr adsorption properties in MOFs are sensitive to the presence of coordinated solvent 

molecules and the presence (or absence) of coordinated solvents can sometimes increase the 

selectivity of materials. This paves a new avenue to tune the adsorption selectivity of materials for 

new separation applications. Finally, based on a molecular fingerprint approach, we compared the 

CoRE MOF 2019 Database with a database of hypothetical MOFs. We found that there are at least 

16 synthesized MOFs present in the hypothetical MOF database of Wilmer et al. Although it is 

unlikely that any MOF database can ever be comprehensive, the results we have reported here 

represent the most extensive collection of simulation-ready three-dimensional porous MOF 

structures available to date. We anticipate that these structures will be of considerable value in 

computational modeling of MOFs for a diverse range of possible applications and in efforts to 

compare the structures of putatively new materials in future synthesis studies to the large number 

of materials that are already known. 
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Supporting Information. The following files are available free of charge.  

Details of Crystal Reconstruction; Potential Energy Surfaces and Mixture Adsorption Isotherms 

for Xe/Kr from GCMC Simulations; Additional High-throughput Screening Data for CoRE MOF 

2019-ASR Dataset for Xe/Kr; Optimized ASR and FSR Structurse; Open Metal Site Detection; 

Molecular Fingerprints (PDF) 

CoRE MOF properties dataset (XLSX) 

Overlapping Hypothetical and CoRE MOF Structures (ZIP) 

Input Files for ToBaCCo for Structure Restoration (ZIP) 
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Figures 

 

Figure 1. Preparation methods for structures in the CoRE MOF 2019 database: a. Solvent removal 

is performed in two stages: first removing “free” solvents (CoRE MOF 2019-FSR), then also 

removing bound solvent molecules (CoRE MOF 2019-ASR); b. Semi-automated restoration of 28 

disordered MOFs using a crystal generator39 and structure optimizations using the Materials Studio 

Forcite Module. The cartoon shows the restoration procedure of MOF-177 with the qom net 

(ja512311a_si_003_auto); c. Schematic of MOF structure collection from the literature.  
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Figure 2. Comparison between the geometric properties of CoRE MOF 2019-ASR and 2019-FSR 

datasets (N = 8,815): a. Largest Cavity Diameter (LCD), b. Pore Limiting Diameter (PLD), c. 

Accessible Volumetric Surface Area (AVSA).  



 39 

 

Figure 3. Comparison of 20:80 xenon:krypton mixture adsorption properties at T = 298 K and P 

= 1 bar for ASR and FSR structures (N = 4,517 for the subset of CoRE MOF 2019 ASR and FSR 

overlap with PLD > 3.97 Å, which is the vdW diameter of a xenon atom). a. Xenon uptake; b. 

Krypton uptake; and c. Xe/Kr Selectivity. Blue data points: Xe/Kr SelectivityFSR / Xe/Kr 

SelectivityASR > 2; Red data points: Xe/Kr SelectivityASR / Xe/Kr SelectivityFSR > 2.  
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Figure 4. Histogram of 40 most common topologies in the CoRE MOF 2019-ASR database. 

Regular nets with transitivity 1111 (pcu, dia, bcu, nbo, srs) are highlighted in red; edge-transitive 

nets with transitivity p1rs (where p can be 1 or 2) are highlighted in yellow. 
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Figure 5. Percentage of unique metal sites with 𝜏4, 𝜏5, and 𝜏6 factors for CoRE MOF 2019-ASR 

(left) and 2019-FSR (right) datasets.  
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Figure 6. Breakdown by element of unique open and fully coordinated metal sites in the CoRE 

MOF 2019-ASR (right) and 2019-FSR (left) datasets. Only elements up to the fifth row of the 

periodic table having more than 50 unique sites are shown. 
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Tables 

Table 1. Summary of the Computation-Ready, Experimental Metal-Organic Framework 

Databases1 

Datasets Cambridge 

Structural 

Database 

Web of 

Science 

Number of MOFs Reference 

CoRE MOF 2014-ASR 5,109 0 5,109 (4,764) 10 

CoRE MOF 2014-DDEC 2,932 0 2,932 (2,932) 29 

CoRE MOF 2014-DFT-optimized 832 0 832 (832) 30 

CoRE MOF 2019-FSR 9,317 552 9,869 (7,061) This work 

CoRE MOF 2019-ASR 13,596 5462 14,142 (12,020) This work 

1The CoRE MOF 2014-ASR dataset is reported by Chung et al.,10 the CoRE MOF 2014-DDEC 

dataset is reported by Nazarian et al.,29 and the CoRE MOF 2014-DFT-optimized dataset is 

reported by Nazarian et al.30 All structures in the CoRE MOF 2019-FSR and CoRE MOF 2019-

ASR datasets have a pore limiting diameter (PLD) greater than 2.4 Å, which corresponds to 

approximately the van der Waals diameter of a hydrogen molecule.  The numbers in parenthesis 

provide the number of MOFs for which atomic coordinates are provided in the CoRE MOF 

databases; the remaining structures are defined via a CSD REFCODE. 2The number of Web of 

Science structures decreases from 552 to 546 because some of the MOFs are no longer 3D 

following the bound solvent removal. 
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Table 2. Summary of Xe/Kr Adsorption Properties of Selected MOFs from the CoRE MOF 

2019-ASR Dataset1 
MOF ID Xe Uptake at 1 

bar (mmol/g) 

Kr Uptake  

at 1 bar 

(mmol/g) 

Selectivity  

at 1 bar 

LCD (Å) PLD  (Å) GSA (m2/g) VSA (m2/cm3) Pore 

Volume 

(cm3/g) 

KAXQIL2 1.46 (1.45) 0.25 (0.25) 23 (24) 4.1 (4.1) 4.5 (4.5) 254  

(276) 

397 (431) 0.22 (0.22) 

KEVCEV 7.98 (7.92) 1.88 (1.89) 17 (17) 5.7 (5.7) 4.3 (4.3) 2521  

(2521) 

2230  

(2 230) 

0.60 (0.60) 

TOXNIF 7.37 (7.42) 1.69 (1.66) 17 (18) 7.0 (7.0) 6.8 (6.8) 1458  

(1458) 

1556 (1556) 0.58 (0.58) 

QOZDOY 3.80 (3.80) 0.50 (0.50) 30 (30) 5.2 (5.2) 4.7 (4.7) 937  

(937) 

1090 (1090) 0.45 (0.45) 

GUMDEZ 3.09 (3.09) 0.41 (0.41) 31 (31) 5.3 (5.3) 4.8 (4.8) 885  

(885) 

1198 (1198) 0.38 (0.38) 

VAZROF 3.00 (3.00) 0.39 (0.40) 31 (31) 5.0 (5.0) 4.6 (4.6) 663  

(663) 

820 (820) 0.37 (0.37) 

MIJBAK03 2.91 (2.91) 0.38 (0.38) 31 (31) 6.1 (6.1) 5.5 (5.5) 658  

(658) 

953 (953) 0.29 (0.29) 

FEYQIK 1.94 (2.04) 0.59 (0.35) 13 (23) 5.7 (5.7) 4.2 (4.2) 1102 (858) 1433  

(1229) 

0.44 (0.36) 

AVAGIP 1.86 (0.44) 0.36 (0.18) 21 (9) 4.8 (4.8) 4.7 (4.6) 571  

(264) 

803  

(387) 

0.33 (0.29) 

1Values in parentheses are for FSR structures; adsorption properties are reported at 298 K and 

1 bar for a gas-phase composition of 20:80 Xe:Kr 2SBMOF-1 (CoRE-MOF ID: ncomm11831-

s3) 
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Table 3. Summary of the DFT Energies and the Changes in the Cell Volumes Upon Bound Solvent 

Removal for Some MOFs. 

MOF ID Volume from CSD 

(Ang3) 

Volume After Cell 

Optimization 

(Ang3) 

Energy Cost to 

Remove Solvent 

Molecules (kJ/mol) 

Relative 

Volume 

Change (%) 

FIJDOS_clean 2654.31 2736.44 
113.7 0.3 

FIJDOS_freeONLY 2654.31 2729.39 

ja300034j_clean 5601.36 5738.97 
123.6 –1.4 

ja300034j_freeONLY 5601.36 5818.31 

AVAGIP_clean 15443.51 15192.3 
44.6 2.4 

AVAGIP_freeONLY 15443.51 14836.94 
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Table 4. Some Organic Linkers Found in a Subset of the CoRE MOF 2019-ASR dataset. 

Common Name Molecular Structure # of entries 

Terephthalic acid 
 

344 

4,4-Bipyridine 
 

265 

Trimesic acid 

 

209 

Isonicotinic acid 

 

179 

2,6-Naphthalenedicaboxylic acid 

(H2NDC) 
 

77 

1,3,5-Tris(4-carboxyphenyl)benzene 

(H3BTB) 

 

54 

4,5-Imidazoledicarboxylic acid 

 

45 

Oxalic acid 

 

45 

Phthalic acid 

 

30 

Biphenyl-3,4’,5-tricaboxylic acid 

 

22 
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Table 5. The Number of Unique MOFs Estimated Based on the MOF Fingerprint Using +/- 10% 

Threshold for Textural Properties 

Methods Number of Groups 

Molecular formula (no hydrogens) 9,593 (out of 14,845) 

Molecular formula with hydrogen 10,667 (out of 14,845) 

Molecular formula with hydrogen and crystal density 11,209 (out of 14,845) 

Molecular formula with hydrogen, crystal density, and other 

textural properties 
11,923 (out of 14,845) 

Individual CIF files 14,845 (out of 14,845) 
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