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Global oceanic mesoscale eddies trajectories
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Abstract—Efficient eddy trajectory prediction driven by multi-
information fusion can facilitate the scientific research of
oceanography, while the complicated dynamics mechanism makes
this issue challenging. Benefiting from ocean observing technol-
ogy, the eddy trajectory dataset can be qualified for data-intensive
research paradigms. In this paper, the dynamics mechanism is
used to inspire the design idea of the eddy trajectory prediction
neural network (termed EddyTPNet) and is also transformed
into prior knowledge to guide the learning process. This study
is among the first to implement eddy trajectory prediction with
physics informed neural network. First, an in-depth analysis of
the kinematic characteristics indicates that the longitude and
latitude of the trajectory should be decoupled; Second, the di-
rectional dispersion prior knowledge of global eddy propagation
is embedded into the decoder of the EddyTPNet to improve the
performance; Finally, EddyTPNet is implemented to predict the
trajectories of global long-lived eddies. The extensive experimen-
tal results indicate that EddyTPNet can reliably forecast the eddy
motion for the following 7 days and ensure a promising daily
mean geodetic error of roughly 7.18 km. This exploratory study
provides valuable insights into solving the prediction problem of
ocean phenomena by using knowledge-based time series neural
networks.

Index Terms—Eddy trajectory prediction, Directional diver-
gence physical information, Deep learning, Knowledge-fused
neural network.

[. INTRODUCTION

IG data oceanography is a fertile domain for interdisci-

plinary research. Mesoscale eddies, the oceanic counter-
part of atmospheric storms, are common and complex oceanic
flow phenomena [1], [2], with the vast majority of them
propagating westward at velocities comparable to those of long
Rossby waves [3]. As the crucial link in the ocean’s energy
cascade, their movement propels the transmission of salt [4],
[5], heat [6], carbon [7], [8], and other marine resources.
Consequently, mesoscale eddy trajectories are of significant
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scientific interest [9], [10], climate change modeling [11], [12],
and marine ecosystem improvement [13]. The patterns and
dynamic mechanism of eddy motion are complicated [14],
in this context, the efficient prediction of eddy has been a
challenge [15].

Essentially, trajectory prediction is a complex time series
prediction problem [16], [17]. In other words, the propagation
trend of eddy can be predicted by using historical eddy motion
data, but its uncertainty is higher than that of ordinary time
series problems. The particularity of the detailed problem can
be summarized in the following aspects. (1) Eddies vary in
their rotation patterns, lifetimes, and survival intervals [18]. In
addition, each form of eddies moves uniquely at various times
and places, as depicted in Fig.1, increasing the difficulty of in-
terpreting and forecasting movement; (2) Complex background
fields, such as current, wind, and topography, strengthen the
nonlinearity of mesoscale eddy and the complexity of the
problem [19]; (3) Most mesoscale eddies propagate westward
at a speed similar to that of Rossby waves, while only a few
traveling eastward. The imbalance of data sets also makes
track prediction more challenging.
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Fig. 1. The distribution of global mesoscale eddy motion trajectories for 2019-
2020. The red and blue solid circles indicate the distribution of anticyclonic
eddies and cyclonic eddies respectively. The color lightens as the life cycle
decreases.

Theoretically, the assurance of ocean data products depends
on the utilization of multiple observational data and synchro-
nization techniques [20]-[22]. Furthermore, the prediction of
oceanic phenomena has been enhanced through the use of
numerical simulations [23]-[26], physical theories [27], and
dynamic statistical analysis [28], [29], leading to substantial
achievements and the enrichment of existing knowledge. Ad-
ditionally, deep learning methods [30]-[32] have been success-
fully implemented in specific domains to improve effectiveness
by integrating prior knowledge [33], [34].
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Benefiting from the intensive trajectory data of oceanic
eddies, various learning architectures have been applied to
the Earth observation [35], [36] with the rise of artificial
intelligence [37], [38]. As for the prediction of eddy trajecto-
ries, multiple linear regression techniques were employed to
create straightforward statistical prediction models [39] and
correlate them with changes in eddy propagation position and
other ocean parameters [40]. The method for predicting eddy
properties and propagation trajectories using long short-term
memory (LSTM) [41] and extra tree algorithms were proposed
[27]. By combining data from different sources, the gate
recurrent units (GRU)-based deep learning framework was
applied to the prediction of eddy trajectories [42]. In addition,
the new loss function called weighted mean square estima-
tion was also proposed to improve model performance. The
previous studies in artificial intelligence oceanography have
demonstrated that deep learning methods yielded impressive
performance [32], [43]. These studies focus mainly on data
correlation analyses and do not consider the influence of time
series on the prediction of eddy trajectories, nor the limitation
of the prediction region and the lack of consideration of the
influence of the external physical environment. Nevertheless,
these results demonstrate the interpretability of the mesoscale
eddy trajectory prediction problem and provide important
insights for our research.

The objective of this paper is to implement oceanic
mesoscale eddies trajectory prediction with the knowledge-
fused neural network. Specifically, the proposed approach is
to use historical data spanning 10 days to predict the trajectory
of the next 7 days. The main contributions can be briefly
summarized as follows.

1) The angular momentum propagation mechanism of ed-
dies is embedded as the physical constraint into the
proposed EddyTPNet to capture the dynamic character-
istics, thereby improving prediction accuracy.

2) EddyTPNet is first trained using global data to predict
the propagation process of long-lived eddies on a global
scale, and then is transferred to complicated local re-
gions with fine-tuning strategies.

3) Extensive experiments have been conducted to evaluate
the proposed method for eddy trajectory prediction.
The results demonstrate that the method can achieve
promising performance both globally and locally.

The remainder of the paper is organized as follows. Section

II formulates the problem definition and explains the idea
of dynamics mechanism factorization. The proposed method-
ology is illustrated in section III, including trajectory data
preprocessing, the architecture of the Knowledge-fused deep
neural network, and the loss function. Section IV indicates
the comprehensive experiments in detail. Finally, section V
concludes and discusses the present work.

II. PRELIMINARIES
A. Problem definition

As previously stated, the task of this study is to predict
the trajectory of the next 7 days using 10 days of historical
data. In this exploratory study, eddies with lifetimes of more
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Fig. 2. Decomposition of mesoscale eddy motion trajectories. The red solid
point A is the position of the eddy’s starting point and the yellow solid
point B is the position of the eddy’s ending point. The angle formed by
the Cartesian coordinate system with the east direction is the instantaneous
eddy movement angle. The vertical and lateral movement distances are the
meridional displacement and zonal displacement respectively.

than one year were chosen as the main research objects for the
consideration of observation reliability, generalization, and the
limitation of Graphic Processing Unit (GPU) memory. Specif-
ically, the main reasons are as follows: (1) short-lived eddies
are unstable, and the evolution process of short-lived eddies is
easily affected by the external environment. Considering the
merging and splitting of eddies, short-lived eddies may survive
in another form. (2) There are certain errors in the observation
of short-lived eddies. Usually, the scales of short-lived eddies
are small, and there are some errors in satellite observation and
tracking algorithms. (3) The related studies have demonstrated
that the behaviors of short-lived and long-lived eddies are very
different in terms of population, migration, and evolution [18].
(4) So using all eddies trajectories simultaneously to train a
deep neural network will increase the computational cost but
result in poor generalization.

EddyTPNet takes 10 days of historical trajectory
(X g, X" g, ..., X{) as input to predicts the next 7
days locations (Y%, Y/, ..., Y/} ;) of the eddy propagation,
as described in following Eq.1.

(Y41, Yo - Yii7) = BEddyTPNet(X;" g, Xi' g, ..., X}')
ey

Where n denotes the nth eddy and ¢ denotes the ¢th time
within that trajectory. The relevant data processing and the
specific training test procedure within EddyTPNet will be

described specifically in Section III.

B. Dynamics mechanism factorization towards network design

Through an in-depth analysis of the dynamics of eddy prop-
agation, it is noted that the planetary gradient of the Coriolis
parameter creates a mass imbalance in the eddy, causing it to
move westward. Furthermore, in the radial motion, the eddy
is subjected to the baroclinic shear of the flow field and the
eddy diverges towards the poles and the equator, respectively
[44]. The knowledge is factorized into two parts, one for the
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longitude and latitude decoupling of the trajectory, the other
is divergence priority.

The main idea of trajectory latitude and longitude decou-
pling is to predict zonal and meridional displacements rather
than positions. The zonal and meridional displacements can
determine the position of the eddy motion at the next step, as
shown in Fig .2. Meanwhile, divergence knowledge plays an
important role in weighing the dominance of the radial and
latitudinal directions of the eddy. In addition, the directional
dispersion can effectively guide the model in making more
accurate predictions of propagation when the external factors
are unknown.

I1I. METHODOLOGY

This section presents the overall pipeline for implementing
eddy trajectories prediction. Specifically, section III-B intro-
duces the materials and data processing method in detail.
The structure of the EddyTPNet, the training process, and
the testing process are detailed in section III-C. And the loss
function is formulated in section III-D.

A. Overall pipeline

ude

EddyTPNet

Fig. 3. Pipeline of the proposed methodology for global oceanic mesoscale
eddies trajectories prediction.

The pipeline of the entire study is shown in Fig.3. First,
based on the prior knowledge of the eddy dynamic mecha-
nism and the divergence of eddy propagation direction, the
directional divergence of global eddy propagation (DDGEP)
grid data is constructed to simulate the physical background
field and eddy propagation direction, which is used to guide
and match the deep learning model [45]. Second, following
the encoder-decoder structure, EddyTPNet is proposed for the
mesoscale prediction of eddy propagation, which integrates
LSTM cells [46] and GRU units [47] for the dynamic interac-
tion of information. The decoder cyclic prediction (CP) mod-
ule uses a combination of spatio-temporal trajectory data and
directional divergence of global eddy propagation (DDGEP)
data as input. The encoder consists of two modules: one
focused on eddy current characteristics (EP) and the other
focused on spatio-temporal trajectory characteristics (ST). A

3

self-attention mechanism [48] is added between the encoder
and the decoder to extract important information from the time
series. Finally, the loss function of the optimized network is the
mean absolute geodetic error (MAGE) loss, which combines
earth distance and L1 regularized loss.

B. Data preprocessing

1) Materials and processing: The materials used in this
study are obtained from the Satellite altimetric Mesoscale
Eddy Trajectories Atlas, which cover the years from 1993
to 2022 and include amplitude, radius, speed-average, lati-
tude, longitude, and time data. The data consists of Absolute
Dynamic Topography (ADT) maps as input, which are first
filtered by Lanczos, and then the eddy detection algorithm
is used to outline the eddy closure contours. The center of
the eddy is defined as the center of the circle which fits best
with the contour of the maximum speed. Finally, the eddies
are correlated by a tracking algorithm. This dataset is stored in
the form of sequence points, and eddy information is recorded
for each spatio-temporal state. Based on this dataset, the eddy
characteristic dataset and spatio-temporal trajectory dataset are
created.

Eddy properties dataset. This dataset comprises eddy
properties because faster-moving and more energetic eddies
typically have greater radius, amplitudes, and velocities [49],
and the historical variance in these properties mostly indicates
the stability of the eddy trajectory.

Spatio-temporal trajectory dataset. The eddy characteris-
tics of the time, longitude, and latitude are crucial to estimating
the eddy movement patterns. The input of longitude, latitude,
and time can determine the precise place and time of eddy,
as eddy motion is affected by geographical location, time,
topography, and seasonality [50]. The motion of the eddies can
be represented by the values of motion angle and displacement,
as shown in Fig.2, so the meridional displacement, zonal
displacement, and direction of motion are used to extend the
spatial and temporal information. The detailed process can be
formulated as Eq.2-4.

Zy = long — long 1, 2)

Mt = latt — latt,h (3)

A = Z(arctan 1Zi) ). 4)
| M|

Where t, lon, and lat are t — step, longitude, and latitude,
respectively. The zonal displacement, meridional displace-
ment, and motion direction are represented by Z, M, and A,
respectively. Eq.2 and Eq.3 are the differences between the
zonal and meridional displacements respectively, and instead
of using longitude and latitude, the prediction of the merid-
ional and zonal displacements is executed. The reason is that
the input to the neural network is normalized data, and the
amount of variation in longitude and latitude is negligible after
normalization. Here arctan function is used as the solution
in Eq.4, and the relationship between meridional and zonal
displacements can be more clearly reflected. The meridional
and zonal displacements are utilized to determine the final
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angle, which is then calculated using the Cartesian coordinate
system as a base and used to match the newly generated
DDGEP data. It is worth noting that the eddy polarity can
always be guaranteed throughout the encoding and decoding
process by incorporating polarity into the dataset along with
state flag bits O and 1, respectively, as inputs to the neural
network.

(c) )

0° 4 90 13 18 2250 270° 315 360°

Angular divergence direction

Fig. 4. Global cyclone and anticyclone eddy directional dispersion grid
plots. (a) and (c) represent the statistical grid maps of the global 1993-2022
anticyclonic and cyclonic eddy directional dispersion grid maps, respectively.
(b) and (d) record the anticyclonic and cyclonic eddy directional dispersion
grid maps for January-December, respectively.

2) Directional divergence grid data: The idea of directional
divergence comes from the physical mechanism of divergence
in the direction of propagation of mesoscale eddy trajectories.
First, the motion from one trajectory point to another can
be determined by the amount of displacement and the angle,
where the displacement in different directions is represented
by the meridional displacement and the zonal displacement.
The relationship between the meridional and the zonal motions
is not isolated, they interact with each other, thus the usage
of angles to model the dynamic connection between the rela-
tionship can guide the direction of eddy propagation. Second,
mesoscale eddy trajectories are significantly influenced by
wind, currents, and topography, leading to their irregular mo-
tion. Typically, the introduction of information from external
background ficlds is necessary to enhance the accuracy of
eddy trajectory predictions. Systematic analysis of the physical
and data-driven dispersion of eddy propagation directions
suggests that both physical and data-driven directional dis-
persion appropriately capture the influence of external forces
[51]. Moreover, historical eddies tend to traverse regions with
similar propagation directions, exhibiting minimal variability
in external factors. Therefore, in the absence of incorporating
multiple sources of data, such as external background fields,
the creation of DDGEP data serves to reduce data usage while
maintaining a high level of accuracy. It is known that cyclonic
and anticyclonic eddies have different motion mechanisms and
a strong correlation with seasons. Here DDGEP data with the
size of 2 x 12 was synthesized based on the eddy polarity
and different months. Each DDGEP data is calculated from
eddy data of the same month and polarity. Specifically, the
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directional dispersion data within each grid is calculated by
the following Eq.5-8.

(longy1 + long) — (longs + lons—1)

Ton, = - .6
mz _ (lCLtt+1 S latt) ; (lCLtt aF latt_l)’ (6)

) )lati
A}, = £ | arctan —; | , (N

’loni

1 &
_ N

DDGEPy = Nz_:l AN 8)

Where A% denotes the ith angular value within the kth grid,
C denotes the number of angular values within each grid,
and DDGEP), means the calculated angular value within
the kth grid. The data is a matrix of size 2880x 1440 with
1/8° x 1/8° spatial resolution and the calculation process is
slightly different from that of the angles, with the amount of
data involved in each grid being determined by the number
of eddies passing through. Specifically, Eq.5 and Eq.6 are
averaged over the two consecutive days of each eddy’s position
to avoid transient noise. Eq.7 indicates that the angular value
of each eddy is calculated. The grid region in which that
eddy is located is determined, and then Eq.8 is calculated by
averaging the angular values already within each grid so that
the divergence angle within that grid matches the direction
of propagation of most eddies, thus avoiding the effect of
trajectory anomalous eddies. Due to the small amount of
variation in latitude and longitude and the constant querying of
data during the test, we eventually determined a grid accuracy
of 1/8° for the angular data, while ensuring accuracy and
efficiency. We superimpose each DDGEP in Fig 4, it can reveal
that most of the grid divergence tends to the west and a
small portion to the east, which is consistent with the theory
related to eddy propagation. The final directional dispersion
will provide some guidance in the prediction process for the
proportional distribution of the meridional and zonal displace-
ments of the eddies and the prediction of the direction of the
eddy propagation.

C. Knowledge-fused deep neural network

The overall architecture of the proposed EddyTPNet is
presented in Fig.5. EddyTPNet is composed of three pri-
mary parts, namely the EP module, which focuses on eddy
properties, the ST module, which can extract spatio-temporal
trajectory information, and the CP module, which possesses
mesoscale prediction capability.

1) Eddy properties module: LSTM has been utilized for
capturing temporal information, and empirical findings suggest
that the characteristics of eddies do exert a certain level of
influence on their trajectory based on the analysis of variable
importance. However, the magnitude of this influence is rela-
tively minor [27]. The stable state of the eddy is constrained by
the attributes of the eddy, and inputting it together with time-
space information such as longitude and latitude may lose the



oNOULLDh WN =

\e]

Transactions on Geoscience and Remote Sensing

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

5

Cyclic Prediction Module

¥

/ /o > ()~ @)

& @
& &
> (GRU)—>(GRU )—> +++—>{( GRU )~
&

> (GR)—> (GRU)—> +++—>(GRU) 1

Amplitude

|
I
1

¥
)4

v

Eddy Property Module \
...-)—.] e AE & CE Result

L)

Eddy features

Angular divergence

N

s+ S |

")
—(+)

Spatio-temporal
Spatio-Temporal Trajectory Module features,

| Meridional & Zonal displacement |
4

AN

FC
FC

.o
43

ALIMIAQ

LSTM 2%2

¥
EMIES -3 7 ¥ 3
Pt t P .
. H . > > ? ? f =
90 120 150 180 210 240 270 300 330 360 . =
2 e 2 % by O L [LSTMji[LSTm)i .. .i[LSTM] Y
| el t t DS ES 5
[ Meridional displ & Zonal displ 2&11‘”2 2@ > -
3 2
»l Longitude & Latitude ! ' v #
L2 RN Spatio-temporal features
[ Angle \ g = Time & Flag
3 1 1 8 Longitude & Latitude
: — Meridional displ & Zonal displ
| =

Fig. 5. The overall architecture of Knowledge-fused deep neural network for trajectory prediction of the global mesoscale eddy. The ST module, EP module,
and CP module are each represented by a red, blue, and green box. Self-attention connects the modules while GRU extracts the eddy properties and LSTM
derives the spatio-temporal information. DDGEP data embeds the CP module for continuous indexing.

state constraint information. The GRU unit, which also has
an excellent performance in capturing timing information, has
fewer parameters and is faster to train. Therefore, the GRU
unit is employed in the EP module to capture the eddy energy
changes of the historical sequence to constrain the state trend
of the eddy in the future. Additionally, the future state of
eddies is unknown, so it needs to be separated. The internal
structure is shown in Fig.6(a), where the input is e;, containing
the radius, amplitude, and speed-average at step ¢, and the
hidden state at step —1 is represented by h;_1. The processing
of the GRU unit can be expressed as Eq.9-11.

Zt - U(WZ . [eta ht—l] + bz)a (9)
Ry =0 (W, -[e, hy—1] +by), (10)
ht = (1 — Zt) * ht—l + Zt *tanh(W . [Rt * ht_l,et] + b) .

an

The reset gate R and the update gate Z determine the degree
of retention of historical and current attributes. W and b denote
the weights and biases of the corresponding gates respectively.
o is the sigmoid activation function and * is the Hadamard
product. h; is used as an output to represent the current state
and provide the basis for the predictions of the CP module.
However, the spatio-temporal information is more important
in influencing the eddy trajectory.

2) Spatio-temporal information module: The ST module
uses LSTM units to memorize and encode historical spatio-
temporal trajectory features. Time and eddy polarity are em-
bedded to capture seasonal information for different eddies.
We use the spatio-temporal trajectory information at time ¢t — 1
as the input to the ST module at time ¢, denoted by s;. The
output of the module can be formulated as Eq.12-16.

Fy=0 Wy [he_1,8:] +by) | (12)
I =0 (W; - [he—1,8) + bs), (13)
Cy=I xtanh (W - [hi—1,8¢] + be) + Fr *xCi—1,  (14)
Oy =0 (W, - [hi—1, 5] + bo), (15)
ht = O x tanh (Cy) . (16)

LSTM generally performs better than GRU on the finer tasks
such as latitude and longitude prediction because of the large
number of parameters. Compared to GRU units, the LSTM
unit is divided into three gates: input gate I;, which determines
the amount of input information at time ¢, forgetting gate F},
which determines the amount of information forgotten at time
t — 1, and output gate O;, which determines the amount of
output, as shown in Fig.6(b). A separate memory unit C; is
used to save the current LSTM state information and pass it
to the LSTM the next time.
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Fig. 6. (a) GRU unit structure diagram. (b) LSTM unit structure diagram. (c) Self-attention structure diagram.

3) Cyclic prediction module: The encoder-decoder with
the self-attention mechanism often achieves better results.
Attention as shown in Fig.6(c) is used as part of the input to the
CP module, extracting key information from the last-moment
hidden states of the EP and ST modules respectively. The
calculation of the self-attention mechanism is as the following
Eq.17.

Attention = Wyx * softmax (qu * [sz]T) a7

Where = represents the output of the Eddy Properties
Module and the Spatio-temporal Information Module, W, W},
and W, correspond to weight vectors associated with value,
query, and key, respectively. These weight vectors are used
to calculate the weighted sum of the value vectors based on
attention weights, thereby assigning varying importance to
different positions and enhancing the model’s capability to
model long-range dependencies.

The CP module acts as a decoder with a built-in unit of
LSTM and the initial states h and c are the last layers of
hidden states of the ST module. The inputs are longitude,
latitude, meridional displacement, zonal displacement, angle,
time, and the self-attention outputs of the other two models.
After preliminary experiments, it is not ideal to directly
predict the eddy trajectory for the next 7 days, so we split
the multi-step prediction problem [52] into multiple single-
step prediction problems. The decoder is designed to predict
a l-day trajectory using 5 days of historical data, and the
implicit state of this time is used as the initial state for
the next prediction, and the prediction process is carried out
iteratively through a sliding window technique, resulting in a
total of 7 consecutive predictions. In the prediction process
that follows, where the input data remains unknown, the 5-
day data undergoes a continuous update utilizing predicted
values, alongside calculations and lookup operations. This
iterative approach ultimately ensures data integrity and fosters
accurate prediction outcomes. After introducing the divergence
of physical information, the physical embedding process of
the training procedure is derived from the given angular
scattering features. On the contrary, the testing procedure is
comparatively complex. The specific algorithmic flow of the

CP module, taking the testing process as an example, is shown
in Algorithm. 1.

Algorithm 1 CP Module with the Directional Divergence
Algorithm
Input:
Trajectory characteristics:
(Tn)rlfz0 = (latn, long, Zn, M, ty,y Gn, fn)rlf:(),
Encoder information: (s, :rn)4
Encoder status: h,,, c,;
Output:
for t =0;t < 7;t+ + do
/I5 days of data assignment;
Input = (Tn)fzi§7 (Smxn)i:o;
//Forecast;
Output, hy,, ¢, = Decoder Net(Input, by, cp);
//Storing predicted values;
(2zn, mn)ﬁlig+5 = Output;
//Inverse normalization; .
z,m = InvNorm((zn, qu)3L13+5); .
lat,lon, f,t = InuNorm((lat,,, lon,, fn, tn)£L+:3+4);
//Summation;
lat,lon = z,m + lat,lon;
//Normalized for next prediction;
(laty, lonn)Z;6j+5 = Norm(lat,lon);
//Search DDGEP data;
a = Search(lat,lon, f,t);
//Normalized for next prediction;
(an)f;3+5 = Norm(a);
end for
return (lat,,, lon,)->

n=0"’

u, v, z, m, t, f, and a represent latitude, longitude,
meridional displacement, zonal displacement, time, angle, and
flag respectively. In this process, the predicted meridional and
zonal displacements are added to the previous day’s longitude
and latitude to generate the new predicted longitude and
latitude, and then the eddy polarity, month, and predicted
longitude and latitude are used to find the corresponding value
in the DDGEP data for the next prediction input, which is used
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to guide the model prediction.

D. Mean absolute geodetic error loss

The accuracy of the model prediction depends heavily on
the loss function, and since the geodetic distance [40] enables a
practical test of the accuracy of the eddy trajectory prediction,
the MAGE loss function [53] adopted in this paper can be
expressed as Eq.18.

MAGE = L1Loss + MGDLoss (18)

MAGE consists of two components, the L1 and mean
geodetic distance (MGD) losses, respectively. Specifically, the
L1 loss as Eq.19 is used to reduce the Euclidean distance
between the predicted and true values, and the MGD loss as
Eq.20 is adopted to model the physical environment in which
the predicted and true values are located.

7 1 n 1 m . .
Ll-i;(m;'% wl) a9

i=

I, e
MGDLoss = — ;(m > Aal) xR (20)

= t=1

Where m denotes the mth day, n is the amount of data in
a batch, and zt,yf, and Ac! indicate the predicted and true
values and the central angle between them at time ¢, and the
1th time, respectively. This central angle can be specified as
Eq.21 and Eq.22, which are derivable and continuous in the
domain of definition, thus the whole function is differentiable.

Ao = arctan x (21)

\/(cos 2 sin A’y)2 + €os 2 8in 1 — sin @y cos g cos Ay
Tr=

sin 1 sin @2 + cos @1 cos Y2 cos Ay
(22)

Where ~ and ¢ denote longitude and latitude, respectively.
A~ denotes the difference in longitude between the predicted
and true values.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Implementation details

1) Datasets partitioning: The datasets employed in this
study consist of the eddy properties dataset and the spatio-
temporal trajectory dataset. To explore the influence of his-
torical sequence length on prediction, each entry in the eddy
properties dataset includes 30 days of historical feature data.
In contrast, the spatio-temporal trajectory dataset comprises 30
days of historical trajectory data and 7 days of future actual
data. A total of 400,648 data sequences were randomly divided
(with a random seed set to 42), with 280,453 sequences
allocated for training, 60,098 sequences for validation, and
60,097 sequences for testing. The data was subsequently
normalized and fed into the model for training.

7

TABLE I
THE PREDICTION RESULTS FOR EDDYTPNET VARIANTS.
Method MGD(km) SGD(km)  Precision(%)
EddyTPNet-CP 7.30 51.08 84.58
EddyTPNet-ET 7.28 50.96 84.66
EddyTPNet-ST 7.20 50.37 84.90
EddyTPNet-10-7 7.18 50.28 84.99
EddyTPNet-20-7 7.19 50.36 84.91
EddyTPNet-30-7 717 50.16 85.10

2) Experimental setup: The proposed EddyTPNet was im-
plemented on the PyTorch deep learning library. The experi-
ments were performed under Windows 11 (Nvidia GeForce
RTX 3090GPU). The hidden states of the EP module, ST
module, and CP module were set to 64, 128, and 128,
respectively, and the network layers were set to 4 layers. Due
to the abundance of data, the direction of model descent is
more accurate when more training data is obtained in each
batch, and the processing speed can be accelerated, we finally
set the batch size to 2048. The initial value of the learning
rate was set to 0.0005 to ensure accurate convergence of the
network and was adjusted using the ReducelLRPlateau strategy,
with the patience value set to 5. The optimizer was Adam, and
the number of training rounds was 50.

The final model predicts the trajectory for the next 7 days
by learning 10 days of historical data. We will demonstrate the
feasibility of the proposed method by comparing with different
models in terms of the length of the history sequence, the
presence or absence of physical information, and the ability
to generalize the local region.

3) Baselines: To evaluate the performance of the proposed
method, Extra Trees [27], Multiple Linear Regression [40],
Random Forest [27], Gradient Boosting [27], MesoGRU [42],
MesoLSTM [42], Seq2Seq [54], EddyTPNet-ST, EddyTPNet-
EP, and EddyTPNet-CP models were selected as the state-of-
the-art baselines.

Extra Trees, Random Forest, Gradient Boosting and
Multiple Linear Regression. Traditional machine learning
models. One model was built for each prediction day, for a
total of seven models.

MesoLSTM and MesoGRU. The MesoGRU model is a
variant of the GRU model, consisting of 4 layers of GRU. It
utilized historical data from the previous three days to predict
future data for the next day. To achieve multi-step prediction,
this model employed a sliding window approach for training
and testing. For this experiment, the hidden state was set to
128. Additionally, the experimental setup for the MesoLSTM
model was the same as the MesoGRU model, except for the
substitution of GRU units with LSTM units.

Seq2Seq. The Seq2Seq model employs an encoder-decoder
architecture composed of 4 recurrent neural networks (RNNs).
The encoder encoded historical data of the past 10 days of
eddies, while the decoder performed daily predictions using a
sliding window approach, making a total of 7 predictions. The
network was configured with 128 hidden states.

EddyTPNet-CP. EddyTPNet-CP, as a variant of EddyTP-
Net, removed the encoding part of the Eddy attribute module
and the spatio-temporal module. However, as the decoder of
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Fig. 7. Global geodetic distance distribution of test sets. (a) and (b) represent the Geodetic Distance (GD) distribution of the next day prediction results for
Anticyclonic eddies and Cyclonic eddies respectively. (c) and (d) denote the Mean Geodetic Distance (MGD) distribution of the 7-day forecast results for

Anticyclonic eddies and Cyclonic eddies respectively.

TABLE II
PREDICTION ERRORS OF MODELS UNDER DIRECTIONAL DIVERGENCE PHYSICAL INFORMATION.
Method MGD(km) SGD(km) Precision(%)
Angular  Without angular | Angular  Without angular | Angular  Without angular
MesoGRU 8.02 8.87 56.12 62.05 82.20 79.29
MesoLSTM 8.02 8.86 56.13 62.00 82.20 79.37
Seq2Seq 7.44 7.67 52.04 53.70 84.19 83.80
EddyTPNet-CP 7.30 771 51.08 54.37 84.58 83.47
EddyTPNet-ET 7.28 7.75 50.96 54.22 84.66 83.54
EddyTPNet-ST 7.20 7.67 50.37 53.60 84.90 83.84
EddyTPNet 7.18 7.63 50.28 53.38 84.99 83.97

EddyTPNet, it still possesses the ability of multi-step predic-
tion. The training and prediction processes remain the same as
the CP module while maintaining the same hyperparameters
as EddyTPNet.

EddyTPNet-ST. The model conformed to the basic archi-
tecture of the Seq2Seq and was based on EddyTPNet with the
EP module removed and other parameters set in the same way
as EddyTPNet.

EddyTPNet-EP. This model was a model where only the
EP module and the CP module are retained, the encoder-
decoder structure is split, and the parameter settings remain
unchanged. The eddy properties were used as input to the EP
module, with self-attention as the connection between the EP
module and the CP module.

4) Evaluation metrics: Applying the above model, the
evaluation indicators used for the assessment of the results
were accuracy, geographical MGD, and summed geodetic
distance (SGD) respectively.

MGD and SGD. MGD and SGD are the mean geodetic

distance and the sum of 7-day geodetic distances, respectively.
They can reflect the error between the predicted and true values
by the true Earth distance.

Precision. As grid data with 12.5km or 25km resolution can
be applied to real scenarios, we define trajectories with MGD
errors below 12.5km as prediction accuracy.

B. Comparison and analysis of prediction results

To facilitate marine exploration tasks, it is customary to
deploy equipment in advance, hence the establishment of a
7-day prediction window. The decoding module utilizes a
recurrent encoder to generate the next predicted value, ensur-
ing that long-term predictions do not compromise short-term
accuracy. The trajectory is only predicted for the following
day, and the distribution of geographic distances (GD) is
depicted in Fig. 7(a-b), showcasing highly accurate prediction
results. Furthermore, Fig. 7(c-d) presents the distribution of
the average geographic distance (MGD) within the 7-day
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prediction window, highlighting the strong predictive efficacy
of the proposed EddyTPNet.

Here, we label the error as MGD > 12.5km, and the poor
forecast area mainly exists near the shore, the equator, and
poles, as shown in Fig.8. Nevertheless, it can be seen that
the error distributions are relatively uniform and there are no
problems with regional failures. To further demonstrate the ef-
fectiveness and complexity of the method, several comparative
experiments were conducted.

Truth
® Error

e

Latitude

90 120 150 180 210 240 270 300 330 360

Longitude
(@)

Latitude

90 120 150 180 210 240 270 300 330 360

Longitude
(b)

Fig. 8. Global distribution of test sets and errors. (a) denotes Anticyclonic
eddies and (b) denotes Cyclonic eddies. Among them, the trajectory of the
Mean Geodetic Distance (MGD) > 12.5km is marked as an error.

1) Global Comparative Experiment: The EddyTPNet vari-
ants are first compared. On the one hand, EddyTPNet-10-7,
EddyTPNet-20-7, and EddyTPNet-30-7 are used to represent
the prediction ability of EddyTPNet for different lengths of
historical sequences, which provide the encoder with 10, 20,
and 30 days of historical spatio-temporal and eddy state
information, respectively. After introducing the directional
divergence physics information, Table I shows that 30 days
has the best prediction effect on 7 days, but in general,
different lengths of historical sequences do not have much
effect on EddyTPNet. The reason is that the orientation
information embedded by the neural network largely replaces
the encoding process. Therefore, the subsequent experiments
are still based on 10 days predicting 7 days. On the other
hand, EddyTPNet-CP, EddyTPNet-ST, and EddyTPNet-EP are
used to demonstrate the importance of each module. Table I
also indicates that each module is effective in improving the
network accuracy when directional dispersion is included, and
the ST module is more important than the ET module, as
illustrated in Table II.

9

The experimentation now shifts towards comparing the
MesoGRU, MesoLLSTM, and Seq2Seq models. Combined with
Fig.9 and Table II, it can be found that MesoLSTM and
MesoGRU are less expressive and not sensitive enough to the
motion distance of eddy currents. In contrast, the prediction
accuracy of the Seq2Seq model, the basic architecture of
EddyTPNet, is much higher than that of LSTM and GRU,
indicating that the encoder part can remember and extract the
historical propagation distance of eddy motion.

The most expressive EddyTPNet has good prediction per-
formance in predicting both motion distance and motion
trajectory direction. The physical information of the direction
dispersion is crucial for the accuracy of the eddy trajectory
prediction. Table II presents the statistical results for different
models with and without the introduction of directionally
dispersive physical information. The results imply that the
introduction of directionally dispersive physical information
can improve the effectiveness of the deep neural network, and
the angular dispersion information shown in Fig.9 can greatly
fit the dispersion ratios of the true values, which solves the
problem of the imbalance between the westward and eastward
eddy data.

Further, some examples of single trajectories are plotted
in Fig.10. A closer look reveals that the prediction results
without the introduction of the directional dispersion physical
information are more inclined to smooth and less varied
trajectories. whereas, with the introduction of the directional
dispersion physical information, the network can accurately
capture the instantaneous variations of the eddies. The results
indicate that EddyTPNet has the highest prediction accuracy
and the smallest prediction error of 84.99%, while MGD and
SGD are 7.18 km and 50.28 km, respectively.

The daily prediction errors and accuracies of each model
were calculated separately to fully demonstrate the advantages
of each model in the time series task, as shown in Table III.

The prediction accuracy of each model decreases over time
due to the accumulation of errors. Nevertheless, the results
show that EddyTPNet still outperforms the other models in
different periods, and still achieves a trajectory prediction rate
of 71.26% on the seventh day. Furthermore, in contrast to
other models, EddyTPNet exhibits a consistent increase in
daily prediction errors, with a difference of approximately 1.4
km. This observation suggests that the model demonstrates
greater stability in forecasting long sequences.

2) Local Regional Prediction Results: To examine the
generalizability of the proposed method, we opted to focus our
research on the South China Sea and the North Atlantic region
[55]. The South China Sea stands out due to its distinctive
geographical location and intricate topography, which has led
to the development of prediction methods specifically tailored
to this area’s eddy trajectories. Moreover, the North Atlantic
also serves as a significant source region for eddies of varying
lifespan scales. For our study, we gathered data from the South
China Sea region (5° — 25°N, 105° — 125° ) and the North
Pacific region (20° — 40°N, 20° — 40°W) spanning a period
of 30 years (1993-2022). This data was divided into 31,050
and 80,751 trajectory data, respectively. Subsequently, these
datasets were partitioned into training, validation, and testing
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28 dispersion information.

29
30 TABLE III
31 DAILY PREDICTION ERRORS UNDER DIFFERENT MODELS.
32 MesoLSTM MesoGRU Seq2Seq EddyTPNet-CP EddyTPNet-ET EddyTPNet-ST EddyTPNet
33 Days | MGD  Presion | MGD  Presion | MGD  Presion | MGD  Presion | MGD  Presion | MGD  Presion | MGD  Presion
34 (km) (%) (km) (%) (km) (%) (km) (%) (km) (%) (km) (%) (km) (%)
35 1 3.24 96.30 3.25 96.28 3.07 96.44 3.02 96.51 3.02 96.50 3.00 96.50 3.00 96.51
36 2 4.89 92.44 4.90 92.41 4.53 93.26 444 93.38 445 93.22 441 93.33 441 93.34
37 3 6.51 87.74 6.52 87.77 5.98 89.39 5.87 89.44 5.88 89.45 5.80 89.63 5.80 89.69
38 4 8.04 82.74 8.05 82.79 7.39 84.97 7.26 85.24 7.25 85.22 7.17 85.49 7.16 85.50
39 5 9.60 77.16 9.60 77.38 8.86 80.12 8.71 80.44 8.69 80.54 8.58 80.87 8.56 80.89
40 6 11.15 71.73 11.15 71.92 10.36 74.87 10.17 75.54 10.13 75.70 10.00 76.15 9.97 76.19
41 7 12.68 66.43 12.67 66.72 11.86 69.72 11.62 70.58 11.56 71.00 11.40 71.21 11.37 71.37
42
43 sets with a ratio of 7:1.5:1.5. In both regions, we employed TABLE IV
44 various methods, including Extra Tree [27], Multiple Linear PREDICTION RESULTS OF DIFFERENT MODELS IN THE SOUTH CHINA SEA
45 Regression [40], Random Forest [27], Gradient Boosting [27], Y
46 and MesoGRU [42], to predict eddies trajectories. However, The South China Sea MGD(km) | SGD(km) | Preicision(%)
47 there are complex background fields in different oceanic re- Extra Trees 3475 243.25 28.98
48 gions, which result in significant differences in local areas. To MesoGRU 32.09 224.63 42.98
49 accommodate these regional differences, EddyTPNet migrates Multiple Linear Regression 24.05 168.35 63.03
50 the model trained on a global scale to local regions for fine- ~ Random Forest 23.17 162.20 65.67
51 tuning experiments, with an initial learning rate set to 0.00001 G;Zdlem LEtosiiey iigz ig;:: 2; ;i
52 [56]. Ultimately, results with prediction errors of less than 25 ECE,INEe| . - - L
53 . . .. The North Atlantic MGD(km) | SGD(km) | Preicision(%)
kilometers are considered accurate predictions. A summary of
54 Rk Extra Trees 15.47 108.29 88.74
the 7-day forecast outcomes can be found in Table IV. MesoGRU 14.92 104.44 8741
55 : : ’
56 Meanwhile, the daily evaluations for prediction results of Multiple Linear Regression 10.42 72.94 93.49
57 the South China Sea and the North Atlantic region are summa- Random Forest 10.21 71.49 93.76
58 rized in Table V and Table VI for more efficient comparisons. il oasiing ar 0.1 CENE
I b hat EddyTP s dicti d EddyTPNet 8.77 61.39 94.72
59 t can be seen that yTPNet’s prediction accuracy exceeds
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Fig. 10. Examples of trajectory prediction by different methods under directional divergence and without directional divergence.

that of the competing models. Nevertheless, there is still much
room for improvement in detailed positioning accuracy. On the
one hand, there are abundant types of eddy tracks in the South
China Sea and the North Atlantic region, and the mechanism
of each eddy is different. The insufficient number of eddy
track data of each type makes it difficult to fit the eddy tracks,
and it is unscientific to embed all the data into a lightweight
model. On the other hand, there is a large discrepancy between
the historical data and the predicted data, which reflects the
complexity of the evolution of eddy motion and its dynamical
mechanisms.

Consequently, we try to determine the inconsistent eddy tra-
jectories and conduct elementary statistics on eddy trajectories,
and preliminary classification of the phenomenon of complex
eddy trajectories. The inconsistent trajectory cases that can be
used to prove our hypothesis are shown in Fig.11, here we
temporarily define them as anomalous eddy trajectories [57].

It is necessary to trace the complex ocean dynamics mech-
anism [58] for the cause of the anomalous eddy trajectory.
The conclusion can be drawn that the introduction of prior
knowledge has indeed solved the influence caused by uncertain
factors. It is undeniable that the exploration of anomalous
eddy trajectories still requires further research. In general,
the proposed EddyTPNet with the introduction of directional
divergence physical information can achieve promising pre-
diction results.

V. CONCLUSIONS AND FUTURE WORK

The trajectory prediction of the oceanic eddy is a scientific
issue that has not been well tackled in oceanography. With the
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Fig. 11. Schematic diagram of the classification of eddy trajectories.

idea of artificial intelligence for science in mind, this paper
proposes a deep learning model for the estimation of eddy
trajectories in oceans. It combines different modules using
recurrent neural networks (GRU, LSTM) and self-attention
modules to forecast the trajectory location of eddies up to
7 days in the future, based on 10 days of data (the data is
mainly the amplitude, the radius, the speed average, the current
displacement, the current location, the time). Moreover, a
map created by averaging the past eddy trajectories (angular
divergences) at every grid location was used to help the
network. The results are promising and the comparison with
state-of-the-art are performed.
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TABLE V
DAILY PREDICTION RESULTS OF DIFFERENT MODELS IN THE SOUTH CHINA SEA.
Extra Trees MesoGRU Mutiple Linear Regression Random Forest Gradient Boosting EddyTPNet
Days | MGD Presion | MGD  Presion | MGD Presion MGD  Presion | MGD Presion MGD  Presion
(km) (%) (km) (%) (km) (%) (km) (%) (km) (%) (km) (%)
1 14.81 84.89 21.4 70.74 9.61 93.80 9.21 93.82 10.59 93.71 8.28 94.74
2 21.83 69.29 21.23 70.50 14.43 85.10 14.50 85.32 14.71 85.77 12.74 87.27
3 29.44 51.93 21.53 69.90 19.29 75.10 19.62 74.67 19.08 96.00 17.25 78.34
4 35.09 40.34 36.64 38.45 23.39 64.80 24.21 63.31 23.10 65.89 21.32 69.15
5 41.33 33.21 36.79 38.04 27.76 56.68 29.14 53.11 27.34 56.85 25.87 60.82
6 47.59 25.89 36.82 37.81 31.76 48.30 33.61 45.28 31.41 48.60 29.90 52.92
7 53.13 20.46 50.25 23.08 35.96 40.79 38.09 37.81 35.34 41.76 34.12 46.46
TABLE VI
DAILY PREDICTION RESULTS OF DIFFERENT MODELS IN THE NORTH ATLANTIC.
Extra Trees MesoGRU Mutiple Linear Regression Random Forest Gradient Boosting EddyTPNet
Days | MGD  Presion | MGD  Presion | MGD Presion MGD  Presion | MGD Presion MGD  Presion
(km) (%) (km) (%) (km) (%) (km) (%) (km) (%) (km) (%)
1 7.29 95.72 9.92 93.91 4.57 98.06 4.86 97.76 7.23 97.96 4.06 98.07
2 10.36 92.19 9.90 93.84 6.65 96.28 6.80 96.24 8.59 96.29 5.72 96.73
3 13.08 87.72 9.95 93.87 8.61 94.45 8.58 94.37 10.05 94.39 7.29 95.08
4 15.59 82.90 16.97 81.85 10.47 91.97 10.25 92.19 11.34 92.17 8.74 93.23
5 18.32 77.30 16.93 81.44 12.35 88.97 11.93 89.88 12.83 89.52 10.26 90.91
6 20.57 71.20 17.10 81.30 14.23 85.64 13.67 86.86 14.32 86.61 11.86 88.50
7 23.09 64.96 23.71 62.79 16.07 81.38 15.40 83.49 15.75 83.25 13.43 85.26

The limitation of this study is that despite directional
divergence information being used to fit the eddy movement
trend, there are still eastward moving trajectories with low
accuracy. As shown in Fig.9, the number of predicted east-
ward trajectories is significantly reduced. Possible reasons and
future research may exist in:

(1) Since most trajectories are westward, the neural network
neutralizes the predictions of east-west trajectories to ensure
a high fit. Due to the difference in dynamic mechanism, the
prediction distance of the westward trajectory is shortened and
the ability to represent the eastward trajectory is decreased;

(2) The DDGEP data can guarantee the motion trend of
most eddies while can not accurately represent the few east-
ward trajectories as the data are averaged. The more detailed
dynamic mechanism and motion rules should be embedded to
enhance the prediction ability;

(3) The discovery of anomalous eddy trajectories will lead
to a deeper understanding of the movement of eddies. The
causes of the abrupt changes and the environmental impact
are also worthy of further study.

Notwithstanding these limitations, this exploratory study
offers some insight into the feasibility of solving the prediction
problem of ocean phenomena based on knowledge-fused time
series deep neural networks. Within this knowledge-fused deep
learning framework, there are various potentials to obtain
a better outlook for oceanic eddy trajectory prediction and
explore the model’s generalization capability in other oceanic
phenomena prediction.
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Global oceanic mesoscale eddies trajectories
prediction with knowledge-fused neural network

Xinmin Zhang, Baoxiang Huang, Member, IEEE, Ge Chen, Linyao Ge, Milena Radenkovic, and Guojia Hou

Abstract—Efficient eddy trajectory prediction driven by multi-
information fusion can facilitate the scientific research of
oceanography, while the complicated dynamics mechanism makes
this issue challenging. Benefiting from ocean observing technol-
ogy, the eddy trajectory dataset can be qualified for data-intensive
research paradigms. In this paper, the dynamics mechanism is
used to inspire the design idea of the eddy trajectory prediction
neural network (termed EddyTPNet) and is also transformed
into prior knowledge to guide the learning process. This study
is among the first to implement eddy trajectory prediction with
physics informed neural network. First, an in-depth analysis of
the kinematic characteristics indicates that the longitude and
latitude of the trajectory should be decoupled; Second, the di-
rectional dispersion prior knowledge of global eddy propagation
is embedded into the decoder of the EddyTPNet to improve the
performance; Finally, EddyTPNet is implemented to predict the
trajectories of global long-lived eddies. The extensive experimen-
tal results indicate that EddyTPNet can reliably forecast the eddy
motion for the following 7 days and ensure a promising daily
mean geodetic error of roughly 7.18 km. This exploratory study
provides valuable insights into solving the prediction problem of
ocean phenomena by using knowledge-based time series neural
networks.

Index Terms—Eddy trajectory prediction, Directional diver-
gence physical information, Deep learning, Knowledge-fused
neural network.

[. INTRODUCTION

IG data oceanography is a fertile domain for interdisci-

plinary research. Mesoscale eddies, the oceanic counter-
part of atmospheric storms, are common and complex oceanic
flow phenomena [1], [2], with the vast majority of them
propagating westward at velocities comparable to those of long
Rossby waves [3]. As the crucial link in the ocean’s energy
cascade, their movement propels the transmission of salt [4],
[5], heat [6], carbon [7], [8], and other marine resources.
Consequently, mesoscale eddy trajectories are of significant
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scientific interest [9], [10], climate change modeling [11], [12],
and marine ecosystem improvement [13]. The patterns and
dynamic mechanism of eddy motion are complicated [14],
in this context, the efficient prediction of eddy has been a
challenge [15].

Essentially, trajectory prediction is a complex time series
prediction problem [16], [17]. In other words, the propagation
trend of eddy can be predicted by using historical eddy motion
data, but its uncertainty is higher than that of ordinary time
series problems. The particularity of the detailed problem can
be summarized in the following aspects. (1) Eddies vary in
their rotation patterns, lifetimes, and survival intervals [18]. In
addition, each form of eddies moves uniquely at various times
and places, as depicted in Fig.1, increasing the difficulty of in-
terpreting and forecasting movement; (2) Complex background
fields, such as current, wind, and topography, strengthen the
nonlinearity of mesoscale eddy and the complexity of the
problem [19]; (3) Most mesoscale eddies propagate westward
at a speed similar to that of Rossby waves, while only a few
traveling eastward. The imbalance of data sets also makes
track prediction more challenging.

AE 10 days - 30 d
1ye

latitude

0 30 60 90 120 150 180 210 240 270 300 330 360

longitude

Fig. 1. The distribution of global mesoscale eddy motion trajectories for 2019-
2020. The red and blue solid circles indicate the distribution of anticyclonic
eddies and cyclonic eddies respectively. The color lightens as the life cycle
decreases.

Theoretically, the assurance of ocean data products depends
on the utilization of multiple observational data and synchro-
nization techniques [20]-[22]. Furthermore, the prediction of
oceanic phenomena has been enhanced through the use of
numerical simulations [23]-[26], physical theories [27], and
dynamic statistical analysis [28], [29], leading to substantial
achievements and the enrichment of existing knowledge. Ad-
ditionally, deep learning methods [30]-[32] have been success-
fully implemented in specific domains to improve effectiveness
by integrating prior knowledge [33], [34].
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Benefiting from the intensive trajectory data of oceanic
eddies, various learning architectures have been applied to
the Earth observation [35], [36] with the rise of artificial
intelligence [37], [38]. As for the prediction of eddy trajecto-
ries, multiple linear regression techniques were employed to
create straightforward statistical prediction models [39] and
correlate them with changes in eddy propagation position and
other ocean parameters [40]. The method for predicting eddy
properties and propagation trajectories using long short-term
memory (LSTM) [41] and extra tree algorithms were proposed
[27]. By combining data from different sources, the gate
recurrent units (GRU)-based deep learning framework was
applied to the prediction of eddy trajectories [42]. In addition,
the new loss function called weighted mean square estima-
tion was also proposed to improve model performance. The
previous studies in artificial intelligence oceanography have
demonstrated that deep learning methods yielded impressive
performance [32], [43]. These studies focus mainly on data
correlation analyses and do not consider the influence of time
series on the prediction of eddy trajectories, nor the limitation
of the prediction region and the lack of consideration of the
influence of the external physical environment. Nevertheless,
these results demonstrate the interpretability of the mesoscale
eddy trajectory prediction problem and provide important
insights for our research.

The objective of this paper is to implement oceanic
mesoscale eddies trajectory prediction with the knowledge-
fused neural network. Specifically, the proposed approach is
to use historical data spanning 10 days to predict the trajectory
of the next 7 days. The main contributions can be briefly
summarized as follows.

1) The angular momentum propagation mechanism of ed-
dies is embedded as the physical constraint into the
proposed EddyTPNet to capture the dynamic character-
istics, thereby improving prediction accuracy.

2) EddyTPNet is first trained using global data to predict
the propagation process of long-lived eddies on a global
scale, and then is transferred to complicated local re-
gions with fine-tuning strategies.

3) Extensive experiments have been conducted to evaluate
the proposed method for eddy trajectory prediction.
The results demonstrate that the method can achieve
promising performance both globally and locally.

The remainder of the paper is organized as follows. Section

II formulates the problem definition and explains the idea
of dynamics mechanism factorization. The proposed method-
ology is illustrated in section III, including trajectory data
preprocessing, the architecture of the Knowledge-fused deep
neural network, and the loss function. Section IV indicates
the comprehensive experiments in detail. Finally, section V
concludes and discusses the present work.

II. PRELIMINARIES
A. Problem definition

As previously stated, the task of this study is to predict
the trajectory of the next 7 days using 10 days of historical
data. In this exploratory study, eddies with lifetimes of more
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Fig. 2. Decomposition of mesoscale eddy motion trajectories. The red solid
point A is the position of the eddy’s starting point and the yellow solid
point B is the position of the eddy’s ending point. The angle formed by
the Cartesian coordinate system with the east direction is the instantaneous
eddy movement angle. The vertical and lateral movement distances are the
meridional displacement and zonal displacement respectively.

than one year were chosen as the main research objects for the
consideration of observation reliability, generalization, and the
limitation of Graphic Processing Unit (GPU) memory. Specif-
ically, the main reasons are as follows: (1) short-lived eddies
are unstable, and the evolution process of short-lived eddies is
easily affected by the external environment. Considering the
merging and splitting of eddies, short-lived eddies may survive
in another form. (2) There are certain errors in the observation
of short-lived eddies. Usually, the scales of short-lived eddies
are small, and there are some errors in satellite observation and
tracking algorithms. (3) The related studies have demonstrated
that the behaviors of short-lived and long-lived eddies are very
different in terms of population, migration, and evolution [18].
(4) So using all eddies trajectories simultaneously to train a
deep neural network will increase the computational cost but
result in poor generalization.

EddyTPNet takes 10 days of historical trajectory
(Xmg, X" g,..., X[*) as input to predicts the next 7
days locations (Y}, Y/%,,..., Y1) of the eddy propagation,
as described in following Eq.1.

(Y1, Y, Y y) = EddyT PNet(X] o, X" g, ..., X{)

ey

Where n denotes the nth eddy and ¢ denotes the ¢th time

within that trajectory. The relevant data processing and the

specific training test procedure within EddyTPNet will be
described specifically in Section III.

B. Dynamics mechanism factorization towards network design

Through an in-depth analysis of the dynamics of eddy prop-
agation, it is noted that the planetary gradient of the Coriolis
parameter creates a mass imbalance in the eddy, causing it to
move westward. Furthermore, in the radial motion, the eddy
is subjected to the baroclinic shear of the flow field and the
eddy diverges towards the poles and the equator, respectively
[44]. The knowledge is factorized into two parts, one for the
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longitude and latitude decoupling of the trajectory, the other
is divergence priority.

The main idea of trajectory latitude and longitude decou-
pling is to predict zonal and meridional displacements rather
than positions. The zonal and meridional displacements can
determine the position of the eddy motion at the next step, as
shown in Fig .2. Meanwhile, divergence knowledge plays an
important role in weighing the dominance of the radial and
latitudinal directions of the eddy. In addition, the directional
dispersion can effectively guide the model in making more
accurate predictions of propagation when the external factors
are unknown.

I1I. METHODOLOGY

This section presents the overall pipeline for implementing
eddy trajectories prediction. Specifically, section III-B intro-
duces the materials and data processing method in detail.
The structure of the EddyTPNet, the training process, and
the testing process are detailed in section III-C. And the loss
function is formulated in section III-D.

A. Overall pipeline

ude

EddyTPNet

Fig. 3. Pipeline of the proposed methodology for global oceanic mesoscale
eddies trajectories prediction.

The pipeline of the entire study is shown in Fig.3. First,
based on the prior knowledge of the eddy dynamic mecha-
nism and the divergence of eddy propagation direction, the
directional divergence of global eddy propagation (DDGEP)
grid data is constructed to simulate the physical background
field and eddy propagation direction, which is used to guide
and match the deep learning model [45]. Second, following
the encoder-decoder structure, EddyTPNet is proposed for the
mesoscale prediction of eddy propagation, which integrates
LSTM cells [46] and GRU units [47] for the dynamic interac-
tion of information. The decoder cyclic prediction (CP) mod-
ule uses a combination of spatio-temporal trajectory data and
directional divergence of global eddy propagation (DDGEP)
data as input. The encoder consists of two modules: one
focused on eddy current characteristics (EP) and the other
focused on spatio-temporal trajectory characteristics (ST). A

3

self-attention mechanism [48] is added between the encoder
and the decoder to extract important information from the time
series. Finally, the loss function of the optimized network is the
mean absolute geodetic error (MAGE) loss, which combines
earth distance and L1 regularized loss.

B. Data preprocessing

1) Materials and processing: The materials used in this
study are obtained from the Satellite altimetric Mesoscale
Eddy Trajectories Atlas, which cover the years from 1993
to 2022 and include amplitude, radius, speed-average, lati-
tude, longitude, and time data. The data consists of Absolute
Dynamic Topography (ADT) maps as input, which are first
filtered by Lanczos, and then the eddy detection algorithm
is used to outline the eddy closure contours. The center of
the eddy is defined as the center of the circle which fits best
with the contour of the maximum speed. Finally, the eddies
are correlated by a tracking algorithm. This dataset is stored in
the form of sequence points, and eddy information is recorded
for each spatio-temporal state. Based on this dataset, the eddy
characteristic dataset and spatio-temporal trajectory dataset are
created.

Eddy properties dataset. This dataset comprises eddy
properties because faster-moving and more energetic eddies
typically have greater radius, amplitudes, and velocities [49],
and the historical variance in these properties mostly indicates
the stability of the eddy trajectory.

Spatio-temporal trajectory dataset. The eddy characteris-
tics of the time, longitude, and latitude are crucial to estimating
the eddy movement patterns. The input of longitude, latitude,
and time can determine the precise place and time of eddy,
as eddy motion is affected by geographical location, time,
topography, and seasonality [50]. The motion of the eddies can
be represented by the values of motion angle and displacement,
as shown in Fig.2, so the meridional displacement, zonal
displacement, and direction of motion are used to extend the
spatial and temporal information. The detailed process can be
formulated as Eq.2-4.

Zy = long — long 1, 2)

Mt = latt — latt,h (3)

A = Z(arctan 1Zi) ). 4)
| M|

Where t, lon, and lat are t — step, longitude, and latitude,
respectively. The zonal displacement, meridional displace-
ment, and motion direction are represented by Z, M, and A,
respectively. Eq.2 and Eq.3 are the differences between the
zonal and meridional displacements respectively, and instead
of using longitude and latitude, the prediction of the merid-
ional and zonal displacements is executed. The reason is that
the input to the neural network is normalized data, and the
amount of variation in longitude and latitude is negligible after
normalization. Here arctan function is used as the solution
in Eq.4, and the relationship between meridional and zonal
displacements can be more clearly reflected. The meridional
and zonal displacements are utilized to determine the final
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angle, which is then calculated using the Cartesian coordinate
system as a base and used to match the newly generated
DDGEP data. It is worth noting that the eddy polarity can
always be guaranteed throughout the encoding and decoding
process by incorporating polarity into the dataset along with
state flag bits O and 1, respectively, as inputs to the neural
network.

(c) )

L R
Angular divergence direction

Fig. 4. Global cyclone and anticyclone eddy directional dispersion grid
plots. (a) and (c) represent the statistical grid maps of the global 1993-2022
anticyclonic and cyclonic eddy directional dispersion grid maps, respectively.
(b) and (d) record the anticyclonic and cyclonic eddy directional dispersion
grid maps for January-December, respectively.

2) Directional divergence grid data: The idea of directional
divergence comes from the physical mechanism of divergence
in the direction of propagation of mesoscale eddy trajectories.
First, the motion from one trajectory point to another can
be determined by the amount of displacement and the angle,
where the displacement in different directions is represented
by the meridional displacement and the zonal displacement.
The relationship between the meridional and the zonal motions
is not isolated, they interact with each other, thus the usage
of angles to model the dynamic connection between the rela-
tionship can guide the direction of eddy propagation. Second,
mesoscale eddy trajectories are significantly influenced by
wind, currents, and topography, leading to their irregular mo-
tion. Typically, the introduction of information from external
background ficlds is nccessary to enhance the accuracy of
eddy trajectory predictions. Systematic analysis of the physical
and data-driven dispersion of eddy propagation directions
suggests that both physical and data-driven directional dis-
persion appropriately capture the influence of external forces
[51]. Moreover, historical eddies tend to traverse regions with
similar propagation directions, exhibiting minimal variability
in external factors. Therefore, in the absence of incorporating
multiple sources of data, such as external background fields,
the creation of DDGEP data serves to reduce data usage while
maintaining a high level of accuracy. It is known that cyclonic
and anticyclonic eddies have different motion mechanisms and
a strong correlation with seasons. Here DDGEP data with the
size of 2 x 12 was synthesized based on the eddy polarity
and different months. Each DDGEP data is calculated from
eddy data of the same month and polarity. Specifically, the
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directional dispersion data within each grid is calculated by
the following Eq.5-8.

(longy1 + long) — (long + long—1)

loni = 3 NS
Ei _ (latt+1 + latt) — (latt + latt_l)’ (6)

2

) ‘lati
A}, = Z | arctan = |, @)

‘lonz

1 C
_ N

DDGEP;, = ¥ Nz_:l AN, (®)

Where A% denotes the ith angular value within the kth grid,
C denotes the number of angular values within each grid,
and DDGFEPj, means the calculated angular value within
the kth grid. The data is a matrix of size 2880x 1440 with
1/8° x 1/8° spatial resolution and the calculation process is
slightly different from that of the angles, with the amount of
data involved in each grid being determined by the number
of eddies passing through. Specifically, Eq.5 and Eq.6 are
averaged over the two consecutive days of each eddy’s position
to avoid transient noise. Eq.7 indicates that the angular value
of each eddy is calculated. The grid region in which that
eddy is located is determined, and then Eq.8 is calculated by
averaging the angular values already within each grid so that
the divergence angle within that grid matches the direction
of propagation of most eddies, thus avoiding the effect of
trajectory anomalous eddies. Due to the small amount of
variation in latitude and longitude and the constant querying of
data during the test, we eventually determined a grid accuracy
of 1/8° for the angular data, while ensuring accuracy and
efficiency. We superimpose each DDGEP in Fig.4, it can reveal
that most of the grid divergence tends to the west and a
small portion to the east, which is consistent with the theory
related to eddy propagation. The final directional dispersion
will provide some guidance in the prediction process for the
proportional distribution of the meridional and zonal displace-
ments of the eddies and the prediction of the direction of the
eddy propagation.

C. Knowledge-fused deep neural network

The overall architecture of the proposed EddyTPNet is
presented in Fig.5. EddyTPNet is composed of three pri-
mary parts, namely the EP module, which focuses on eddy
properties, the ST module, which can extract spatio-temporal
trajectory information, and the CP module, which possesses
mesoscale prediction capability.

1) Eddy properties module: LSTM has been utilized for
capturing temporal information, and empirical findings suggest
that the characteristics of eddies do exert a certain level of
influence on their trajectory based on the analysis of variable
importance. However, the magnitude of this influence is rela-
tively minor [27]. The stable state of the eddy is constrained by
the attributes of the eddy, and inputting it together with time-
space information such as longitude and latitude may lose the
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Fig. 5. The overall architecture of Knowledge-fused deep neural network for trajectory prediction of the global mesoscale eddy. The ST module, EP module,
and CP module are each represented by a red, blue, and green box. Self-attention connects the modules while GRU extracts the eddy properties and LSTM
derives the spatio-temporal information. DDGEP data embeds the CP module for continuous indexing.

state constraint information. The GRU unit, which also has
an excellent performance in capturing timing information, has
fewer parameters and is faster to train. Therefore, the GRU
unit is employed in the EP module to capture the eddy energy
changes of the historical sequence to constrain the state trend
of the eddy in the future. Additionally, the future state of
eddies is unknown, so it needs to be separated. The internal
structure is shown in Fig.6(a), where the input is e;, containing
the radius, amplitude, and speed-average at step t, and the
hidden state at step t—1 is represented by h;_1. The processing
of the GRU unit can be expressed as Eq.9-11.

Zt - U(WZ : [eta ht—l] + bz)a (9)
Ry =0 (W, -[e, hy—1] +by), (10)
ht = (1 — Zt) * ht—l + Zt *tanh(W . [Rt * ht_l,et] + b) .

an

The reset gate R and the update gate Z determine the degree
of retention of historical and current attributes. W and b denote
the weights and biases of the corresponding gates respectively.
o is the sigmoid activation function and * is the Hadamard
product. h; is used as an output to represent the current state
and provide the basis for the predictions of the CP module.
However, the spatio-temporal information is more important
in influencing the eddy trajectory.

2) Spatio-temporal information module: The ST module
uses LSTM units to memorize and encode historical spatio-
temporal trajectory features. Time and eddy polarity are em-
bedded to capture seasonal information for different eddies.
We use the spatio-temporal trajectory information at time ¢t — 1
as the input to the ST module at time ¢, denoted by s;. The
output of the module can be formulated as Eq.12-16.

Fy=0 Wy [he_1,8:] +by) | (12)
I =0 (W; - [he—1,8) + bs), (13)
Cy=I xtanh (W - [hi—1,8¢] + be) + Fr *xCi—1,  (14)
Oy =0 (W, - [hi—1, 5] + bo), (15)
ht = O x tanh (Cy) . (16)

LSTM generally performs better than GRU on the finer tasks
such as latitude and longitude prediction because of the large
number of parameters. Compared to GRU units, the LSTM
unit is divided into three gates: input gate I;, which determines
the amount of input information at time ¢, forgetting gate F},
which determines the amount of information forgotten at time
t — 1, and output gate O;, which determines the amount of
output, as shown in Fig.6(b). A separate memory unit C; is
used to save the current LSTM state information and pass it
to the LSTM the next time.
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Fig. 6. (a) GRU unit structure diagram. (b) LSTM unit structure diagram. (c) Self-attention structure diagram.

3) Cyclic prediction module: The encoder-decoder with
the self-attention mechanism often achieves better results.
Attention as shown in Fig.6(c) is used as part of the input to the
CP module, extracting key information from the last-moment
hidden states of the EP and ST modules respectively. The
calculation of the self-attention mechanism is as the following
Eq.17.

Attention = Wyx * softmax (anj * [sz]T) a7

Where = represents the output of the Eddy Properties
Module and the Spatio-temporal Information Module, W,, W},
and W, correspond to weight vectors associated with value,
query, and key, respectively. These weight vectors are used
to calculate the weighted sum of the value vectors based on
attention weights, thereby assigning varying importance to
different positions and enhancing the model’s capability to
model long-range dependencies.

The CP module acts as a decoder with a built-in unit of
LSTM and the initial states h and c are the last layers of
hidden states of the ST module. The inputs are longitude,
latitude, meridional displacement, zonal displacement, angle,
time, and the self-attention outputs of the other two models.
After preliminary experiments, it is not ideal to directly
predict the eddy trajectory for the next 7 days, so we split
the multi-step prediction problem [52] into multiple single-
step prediction problems. The decoder is designed to predict
a l-day trajectory using 5 days of historical data, and the
implicit state of this time is used as the initial state for
the next prediction, and the prediction process is carried out
iteratively through a sliding window technique, resulting in a
total of 7 consecutive predictions. In the prediction process
that follows, where the input data remains unknown, the 5-
day data undergoes a continuous update utilizing predicted
values, alongside calculations and lookup operations. This
iterative approach ultimately ensures data integrity and fosters
accurate prediction outcomes. After introducing the divergence
of physical information, the physical embedding process of
the training procedure is derived from the given angular
scattering features. On the contrary, the testing procedure is
comparatively complex. The specific algorithmic flow of the

CP module, taking the testing process as an example, is shown
in Algorithm. 1.

Algorithm 1 CP Module with the Directional Divergence
Algorithm
Input:
Trajectory characteristics:
(Tn)rlfzo = (latn, long, Zn, M, ty,y Gn, fn)rlfzo;
Encoder information: (s, :rn)izo;
Encoder status: h,,, c,;
Output:
for t =0;t < 7;t+ + do
/I5 days of data assignment;
Input = (Tn)fz:;v (Smxn)i:o;
//Forecast;
Output, hy,, ¢, = Decoder Net(Input, by, cp);
//Storing predicted values;
(%, mn)i:;3+5 = Qutput;
//Inverse normalization; .
z,m = InvNorm((zn, m,L)ZL1§+5); .
lat,lon, f,t = InuNorm((lat,,, lon,, fn, tn)£L+:3+4);
//Summation;
lat,lon = z,m + lat,lon;
//Normalized for next prediction;
(laty, lonn)Z;6j+5 = Norm(lat,lon);
//Search DDGEP data;
a = Search(lat,lon, f,t);
//Normalized for next prediction;
(an)3;§+5 = Norm(a);
end for
return (lat,,, lon,)->

u, v, z, m, t, f, and a represent latitude, longitude,
meridional displacement, zonal displacement, time, angle, and
flag respectively. In this process, the predicted meridional and
zonal displacements are added to the previous day’s longitude
and latitude to generate the new predicted longitude and
latitude, and then the eddy polarity, month, and predicted
longitude and latitude are used to find the corresponding value
in the DDGEP data for the next prediction input, which is used



oNOULLDh WN =

\e]

Transactions on Geoscience and Remote Sensing

JOURNAL OF KTgX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015
to guide the model prediction.

D. Mean absolute geodetic error loss

The accuracy of the model prediction depends heavily on
the loss function, and since the geodetic distance [40] enables a
practical test of the accuracy of the eddy trajectory prediction,
the MAGE loss function [53] adopted in this paper can be
expressed as Eq.18.

MAGE = L1Loss + MGDLoss (18)

MAGE consists of two components, the L1 and mean
geodetic distance (MGD) losses, respectively. Specifically, the
L1 loss as Eq.19 is used to reduce the Euclidean distance
between the predicted and true values, and the MGD loss as
Eq.20 is adopted to model the physical environment in which
the predicted and true values are located.

7 1 n 1 m . .
Ll—nz[)(m;'% wl) a9

i=

I, e
MGDLoss = — ;(m > Aal) xR (20)

= t=1

Where m denotes the mth day, n is the amount of data in
a batch, and zt,yf, and Ac! indicate the predicted and true
values and the central angle between them at time ¢, and the
1th time, respectively. This central angle can be specified as
Eq.21 and Eq.22, which are derivable and continuous in the
domain of definition, thus the whole function is differentiable.

Ao = arctan x (21)

\/(cos pg sin A’y)2 + oS (g sin (1 — sin 1 cos o cos Ay
Tr=

sin 1 sin a2 + cos @1 cos pa cos Ay
(22)

Where ~ and ¢ denote longitude and latitude, respectively.
A~ denotes the difference in longitude between the predicted
and true values.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Implementation details

1) Datasets partitioning: The datasets employed in this
study consist of the eddy properties dataset and the spatio-
temporal trajectory dataset. To explore the influence of his-
torical sequence length on prediction, each entry in the eddy
properties dataset includes 30 days of historical feature data.
In contrast, the spatio-temporal trajectory dataset comprises 30
days of historical trajectory data and 7 days of future actual
data. A total of 400,648 data sequences were randomly divided
(with a random seed set to 42), with 280,453 sequences
allocated for training, 60,098 sequences for validation, and
60,097 sequences for testing. The data was subsequently
normalized and fed into the model for training.

7

TABLE I
THE PREDICTION RESULTS FOR EDDYTPNET VARIANTS.
Method MGD(km) SGD(km)  Precision(%)
EddyTPNet-CP 7.30 51.08 84.58
EddyTPNet-ET 7.28 50.96 84.66
EddyTPNet-ST 7.20 50.37 84.90
EddyTPNet-10-7 7.18 50.28 84.99
EddyTPNet-20-7 7.19 50.36 84.91
EddyTPNet-30-7 717 50.16 85.10

2) Experimental setup: The proposed EddyTPNet was im-
plemented on the PyTorch deep learning library. The experi-
ments were performed under Windows 11 (Nvidia GeForce
RTX 3090GPU). The hidden states of the EP module, ST
module, and CP module were set to 64, 128, and 128,
respectively, and the network layers were set to 4 layers. Due
to the abundance of data, the direction of model descent is
more accurate when more training data is obtained in each
batch, and the processing speed can be accelerated, we finally
set the batch size to 2048. The initial value of the learning
rate was set to 0.0005 to ensure accurate convergence of the
network and was adjusted using the ReducelLRPlateau strategy,
with the patience value set to 5. The optimizer was Adam, and
the number of training rounds was 50.

The final model predicts the trajectory for the next 7 days
by learning 10 days of historical data. We will demonstrate the
feasibility of the proposed method by comparing with different
models in terms of the length of the history sequence, the
presence or absence of physical information, and the ability
to generalize the local region.

3) Baselines: To evaluate the performance of the proposed
method, Extra Trees [27], Multiple Linear Regression [40],
Random Forest [27], Gradient Boosting [27], MesoGRU [42],
MesoLSTM [42], Seq2Seq [54], EddyTPNet-ST, EddyTPNet-
EP, and EddyTPNet-CP models were selected as the state-of-
the-art baselines.

Extra Trees, Random Forest, Gradient Boosting and
Multiple Linear Regression. Traditional machine learning
models. One model was built for each prediction day, for a
total of seven models.

MesoLSTM and MesoGRU. The MesoGRU model is a
variant of the GRU model, consisting of 4 layers of GRU. It
utilized historical data from the previous three days to predict
future data for the next day. To achieve multi-step prediction,
this model employed a sliding window approach for training
and testing. For this experiment, the hidden state was set to
128. Additionally, the experimental setup for the MesoLSTM
model was the same as the MesoGRU model, except for the
substitution of GRU units with LSTM units.

Seq2Seq. The Seq2Seq model employs an encoder-decoder
architecture composed of 4 recurrent neural networks (RNNs).
The encoder encoded historical data of the past 10 days of
eddies, while the decoder performed daily predictions using a
sliding window approach, making a total of 7 predictions. The
network was configured with 128 hidden states.

EddyTPNet-CP. EddyTPNet-CP, as a variant of EddyTP-
Net, removed the encoding part of the Eddy attribute module
and the spatio-temporal module. However, as the decoder of
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Fig. 7. Global geodetic distance distribution of test sets. (a) and (b) represent the Geodetic Distance (GD) distribution of the next day prediction results for
Anticyclonic eddies and Cyclonic eddies respectively. (c) and (d) denote the Mean Geodetic Distance (MGD) distribution of the 7-day forecast results for

Anticyclonic eddies and Cyclonic eddies respectively.

TABLE I
PREDICTION ERRORS OF MODELS UNDER DIRECTIONAL DIVERGENCE PHYSICAL INFORMATION.
Method MGD(km) SGD(km) Precision(%)
Angular ~ Without angular | Angular ~ Without angular | Angular ~ Without angular
MesoGRU 8.02 8.87 56.12 62.05 82.20 79.29
MesoLSTM 8.02 8.86 56.13 62.00 82.20 79.37
Seq2Seq 7.44 7.67 52.04 53.70 84.19 83.80
EddyTPNet-CP 7.30 7.77 51.08 54.37 84.58 83.47
EddyTPNet-ET 7.28 7.75 50.96 54.22 84.66 83.54
EddyTPNet-ST 7.20 7.67 50.37 53.60 84.90 83.84
EddyTPNet 7.18 7.63 50.28 53.38 84.99 83.97

EddyTPNet, it still possesses the ability of multi-step predic-
tion. The training and prediction processes remain the same as
the CP module while maintaining the same hyperparameters
as EddyTPNet.

EddyTPNet-ST. The model conformed to the basic archi-
tecture of the Seq2Seq and was based on EddyTPNet with the
EP module removed and other parameters set in the same way
as EddyTPNet.

EddyTPNet-EP. This model was a model where only the
EP module and the CP module are retained, the encoder-
decoder structure is split, and the parameter settings remain
unchanged. The eddy properties were used as input to the EP
module, with self-attention as the connection between the EP
module and the CP module.

4) Evaluation metrics: Applying the above model, the
evaluation indicators used for the assessment of the results
were accuracy, geographical MGD, and summed geodetic
distance (SGD) respectively.

MGD and SGD. MGD and SGD are the mean geodetic

distance and the sum of 7-day geodetic distances, respectively.
They can reflect the error between the predicted and true values
by the true Earth distance.

Precision. As grid data with 12.5km or 25km resolution can
be applied to real scenarios, we define trajectories with MGD
errors below 12.5km as prediction accuracy.

B. Comparison and analysis of prediction results

To facilitate marine exploration tasks, it is customary to
deploy equipment in advance, hence the establishment of a
7-day prediction window. The decoding module utilizes a
recurrent encoder to generate the next predicted value, ensur-
ing that long-term predictions do not compromise short-term
accuracy. The trajectory is only predicted for the following
day, and the distribution of geographic distances (GD) is
depicted in Fig. 7(a-b), showcasing highly accurate prediction
results. Furthermore, Fig. 7(c-d) presents the distribution of
the average geographic distance (MGD) within the 7-day



oNOULLDh WN =

\e]

Transactions on Geoscience and Remote Sensing

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

prediction window, highlighting the strong predictive efficacy
of the proposed EddyTPNet.

Here, we label the error as MGD > 12.5km, and the poor
forecast area mainly exists near the shore, the equator, and
poles, as shown in Fig.8. Nevertheless, it can be seen that
the error distributions are relatively uniform and there are no
problems with regional failures. To further demonstrate the ef-
fectiveness and complexity of the method, several comparative
experiments were conducted.

Truth
® Error
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Fig. 8. Global distribution of test sets and errors. (a) denotes Anticyclonic
eddies and (b) denotes Cyclonic eddies. Among them, the trajectory of the
Mean Geodetic Distance (MGD) > 12.5km is marked as an error.

1) Global Comparative Experiment: The EddyTPNet vari-
ants are first compared. On the one hand, EddyTPNet-10-7,
EddyTPNet-20-7, and EddyTPNet-30-7 are used to represent
the prediction ability of EddyTPNet for different lengths of
historical sequences, which provide the encoder with 10, 20,
and 30 days of historical spatio-temporal and eddy state
information, respectively. After introducing the directional
divergence physics information, Table I shows that 30 days
has the best prediction effect on 7 days, but in general,
different lengths of historical sequences do not have much
effect on EddyTPNet. The reason is that the orientation
information embedded by the neural network largely replaces
the encoding process. Therefore, the subsequent experiments
are still based on 10 days predicting 7 days. On the other
hand, EddyTPNet-CP, EddyTPNet-ST, and EddyTPNet-EP are
used to demonstrate the importance of each module. Table I
also indicates that each module is effective in improving the
network accuracy when directional dispersion is included, and
the ST module is more important than the ET module, as
illustrated in Table II.

9

The experimentation now shifts towards comparing the
MesoGRU, MesoLSTM, and Seq2Seq models. Combined with
Fig.9 and Table II, it can be found that MesoLSTM and
MesoGRU are less expressive and not sensitive enough to the
motion distance of eddy currents. In contrast, the prediction
accuracy of the Seq2Seq model, the basic architecture of
EddyTPNet, is much higher than that of LSTM and GRU,
indicating that the encoder part can remember and extract the
historical propagation distance of eddy motion.

The most expressive EddyTPNet has good prediction per-
formance in predicting both motion distance and motion
trajectory direction. The physical information of the direction
dispersion is crucial for the accuracy of the eddy trajectory
prediction. Table II presents the statistical results for different
models with and without the introduction of directionally
dispersive physical information. The results imply that the
introduction of directionally dispersive physical information
can improve the effectiveness of the deep neural network, and
the angular dispersion information shown in Fig.9 can greatly
fit the dispersion ratios of the true values, which solves the
problem of the imbalance between the westward and eastward
eddy data.

Further, some examples of single trajectories are plotted
in Fig.10. A closer look reveals that the prediction results
without the introduction of the directional dispersion physical
information are more inclined to smooth and less varied
trajectories. whereas, with the introduction of the directional
dispersion physical information, the network can accurately
capture the instantaneous variations of the eddies. The results
indicate that EddyTPNet has the highest prediction accuracy
and the smallest prediction error of 84.99%, while MGD and
SGD are 7.18 km and 50.28 km, respectively.

The daily prediction errors and accuracies of each model
were calculated separately to fully demonstrate the advantages
of each model in the time series task, as shown in Table III.

The prediction accuracy of each model decreases over time
due to the accumulation of errors. Nevertheless, the results
show that EddyTPNet still outperforms the other models in
different periods, and still achieves a trajectory prediction rate
of 71.26% on the seventh day. Furthermore, in contrast to
other models, EddyTPNet exhibits a consistent increase in
daily prediction errors, with a difference of approximately 1.4
km. This observation suggests that the model demonstrates
greater stability in forecasting long sequences.

2) Local Regional Prediction Results: To examine the
generalizability of the proposed method, we opted to focus our
research on the South China Sea and the North Atlantic region
[55]. The South China Sea stands out due to its distinctive
geographical location and intricate topography, which has led
to the development of prediction methods specifically tailored
to this area’s eddy trajectories. Moreover, the North Atlantic
also serves as a significant source region for eddies of varying
lifespan scales. For our study, we gathered data from the South
China Sea region (5° — 25°N, 105° — 125°F) and the North
Pacific region (20° — 40°N, 20° — 40°W) spanning a period
of 30 years (1993-2022). This data was divided into 31,050
and 80,751 trajectory data, respectively. Subsequently, these
datasets were partitioned into training, validation, and testing

Page 54 of 59



Page 55 of 59 Transactions on Geoscience and Remote Sensing

oNOULLDh WN =

\e]

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

1 ) 1
 11.49% 37.57% - 11.37% 38.10% - 1+ 10.45%
& 54 " X ;
305
B % i ity ‘ T =0 7]
ks : . R 05 i ) 0. iy ik 05 ’
L13834% 1 11.27%|  [39.49% I 11.30%|  [39.79% | 12.19% 39.43% U 11.63% 40.42% ! 11.03%
1.5 -1 -0.5 0)100.5 1 15 ~15 1 -05 YO )00.5 1 1.5 _-11.5 -1 -05 YO 00.5 1 1.5 _—11.5 -1 -05 YO y00.5 1 1.5 -1.5 -1 -05 YO 00.5 1 1.5
- -y -y - -y
Seq2Seq MesoLSTM MesoGRU EddyTPNet-ET EddyTPNet(WA)
0‘ 37.57% | - 1098%| |37A47% 1. 1144%| [38.49% -1 11.38% ! 38.56%- 1 10.96%| [37.53% 1 T 11.88%
2 2] ' . ; <"
=0 BEAE w OT ~ g SR~~~ — ] [0 7]
0510 0.5 5 -0.5 4 - os] E -0.5
L4031% ) 11.14%[  139.50% |  11.60% 138.22% L 11.91% 39.56% 1 10.92% 38.69% 11.92%
15 -1 05 Y0 voo.s 1 15 -15 -1 -05 Yo yOo.s 1 15 -15 -1 -05 Y0 vo0.5 1 15 05 1 05 Yo 00.5 T 15 15 1 05 Yo 00,5 1 15
- - R -V -y
Seq2Seq(WA) MesoLSTM(WA) MesoGRU(WA) EddyTPNet-ET(WA) EddyTPNet
s 1 o 1 - v 1
1.61%| - T375406 1 1090%| [37.52% |  11.86% 1 1129% 1247%
i . 0.5 ¥ 0.5 i 0.5 0.5¢ % .
s 3 e %
BPL [ ® T i
05 iy o | 05 0.5 05 i -0.
L303% | 1LT79%| - 140.90% 1T 10.66%| [39.01% I 11.61%| _[38.95% 11.39%|
L5 1 -05 0 00.5 1 15 '_11.5 1 -05 YO 00,5 1 15 -15 -1 -05 Yo 00,5 1 15 -15 1 -05 Yo 00.5 T 15 -15 -1 -05 YO 00.5 1 15
-y -y -y -y
EddyTPNet-CP EddyTPNet-CP(WA) EddyTPNet-ST EddyTPNet-ST(WA) Truth
Number of Eddies
| ]

0 1% 3% 6% 10% 30% 60% 1

Fig. 9. Distribution of eddy trajectories predicted by different methods. Each grid is populated by the number of coordinates consisting of the meridional and
zonal displacements of the eddy. Where the color indicates the number of eddies per unit grid, decreasing from purple to blue, respectively. The percentages
in the figure indicate the proportion of the number of eddies accounted for by the four quadrants in the Cartesian coordinate system. (WA) denotes no angle
dispersion information.

TABLE III
DAILY PREDICTION ERRORS UNDER DIFFERENT MODELS.

MesoLSTM MesoGRU Seq2Seq EddyTPNet-CP EddyTPNet-ET EddyTPNet-ST EddyTPNet
Days | MGD  Presion | MGD  Presion | MGD  Presion | MGD  Presion | MGD  Presion | MGD  Presion | MGD  Presion
(km) (%) (km) (%) (km) (%) (km) (%) (km) (%) (km) (%) (km) (%)

1 3.24 96.30 3.25 96.28 3.07 96.44 3.02 96.51 3.02 96.50 3.00 96.50 3.00 96.51
2 4.89 92.44 4.90 92.41 4.53 93.26 444 93.38 445 93.22 441 93.33 441 93.34
3 6.51 87.74 6.52 87.77 5.98 89.39 5.87 89.44 5.88 89.45 5.80 89.63 5.80 89.69
4 8.04 82.74 8.05 82.79 7.39 84.97 7.26 85.24 7.25 85.22 7.17 85.49 7.16 85.50
5 9.60 77.16 9.60 77.38 8.86 80.12 8.71 80.44 8.69 80.54 8.58 80.87 8.56 80.89
6 11.15 71.73 11.15 71.92 10.36 74.87 10.17 75.54 10.13 75.70 10.00 76.15 9.97 76.19
7 12.68 66.43 12.67 66.72 11.86 69.72 11.62 70.58 11.56 71.00 11.40 71.21 11.37 71.37

sets with a ratio of 7:1.5:1.5. In both regions, we employed TABLE IV

various methods, including Extra Tree [27], Multiple Linear PREDICTION RESULTS OF DIFFERENT MODELS IN THE SOUTH CHINA SEA
Regression [40], Random Forest [27], Gradient Boosting [27], AND THE NORTH ATLANTIC.

and MesoGRU [42], to predict eddies trajectories. However, The South China Sea MGD(km) | SGD(km) | Preicision(%)
there are complex background fields in different oceanic re- Extra Trees 3475 243.25 28.98
gions, which result in significant differences in local areas. To MesoGRU 32.09 224.63 42.98
accommodate these regional differences, EddyTPNet migrates Multiple Linear Regression 24.05 168.35 63.03
the model trained on a global scale to local regions for fine- ~ Random Forest 23.17 162.20 65.67
Gradient Boosting 23.07 161.49 65.52

tuning experiments, with an initial learning rate set to 0.00001

[56]. Ultimately, results with prediction errors of less than 25 Eddﬁpli}et AT Mé})‘;’: 5 Sé‘g(’;:s) 5 ‘6,9’,32(17)
. . . . € INOr antic m m reicision( 7o
kilometers are considered accurate predictions. A summary of

he 7-day forecast outcomes can be found in Table IV Extra Trees 1347 10829 5874
the /-day ' MesoGRU 1492 104.44 §7.41
Meanwhile, the daily evaluations for prediction results of Multiple Linear Regression 10.42 72.94 93.49
the South China Sea and the North Atlantic region are summa- Random Forest 10.21 71.49 93.76
rized in Table V and Table VI for more efficient comparisons. Gradient Boosting 11.44 80.11 93.73
EddyTPNet 8.77 61.39 94.72

It can be seen that EddyTPNet’s prediction accuracy exceeds
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Fig. 10. Examples of trajectory prediction by different methods under directional divergence and without directional divergence.

that of the competing models. Nevertheless, there is still much
room for improvement in detailed positioning accuracy. On the
one hand, there are abundant types of eddy tracks in the South
China Sea and the North Atlantic region, and the mechanism
of each eddy is different. The insufficient number of eddy
track data of each type makes it difficult to fit the eddy tracks,
and it is unscientific to embed all the data into a lightweight
model. On the other hand, there is a large discrepancy between
the historical data and the predicted data, which reflects the
complexity of the evolution of eddy motion and its dynamical
mechanisms.

Consequently, we try to determine the inconsistent eddy tra-
jectories and conduct elementary statistics on eddy trajectories,
and preliminary classification of the phenomenon of complex
eddy trajectories. The inconsistent trajectory cases that can be
used to prove our hypothesis are shown in Fig.11, here we
temporarily define them as anomalous eddy trajectories [57].

It is necessary to trace the complex ocean dynamics mech-
anism [58] for the cause of the anomalous eddy trajectory.
The conclusion can be drawn that the introduction of prior
knowledge has indeed solved the influence caused by uncertain
factors. It is undeniable that the exploration of anomalous
eddy trajectories still requires further research. In general,
the proposed EddyTPNet with the introduction of directional
divergence physical information can achieve promising pre-
diction results.

V. CONCLUSIONS AND FUTURE WORK

The trajectory prediction of the oceanic eddy is a scientific
issue that has not been well tackled in oceanography. With the
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-37.88.
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Fig. 11. Schematic diagram of the classification of eddy trajectories.

idea of artificial intelligence for science in mind, this paper
proposes a deep learning model for the estimation of eddy
trajectories in oceans. It combines different modules using
recurrent neural networks (GRU, LSTM) and self-attention
modules to forecast the trajectory location of eddies up to
7 days in the future, based on 10 days of data (the data is
mainly the amplitude, the radius, the speed average, the current
displacement, the current location, the time). Moreover, a
map created by averaging the past eddy trajectories (angular
divergences) at every grid location was used to help the
network. The results are promising and the comparison with
state-of-the-art are performed.
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TABLE V
DAILY PREDICTION RESULTS OF DIFFERENT MODELS IN THE SOUTH CHINA SEA.
Extra Trees MesoGRU Mutiple Linear Regression Random Forest  Gradient Boosting EddyTPNet
Days | MGD  Presion | MGD  Presion | MGD Presion MGD  Presion | MGD Presion MGD  Presion
(km) (%) (km) (%) (km) (%) (km) (%) (km) (%) (km) (%)
1 14.81 84.89 21.4 70.74 9.61 93.80 9.21 93.82 10.59 93.71 8.28 94.74
2 21.83 69.29 21.23 70.50 14.43 85.10 14.50 85.32 14.71 85.77 12.74 87.27
3 29.44 51.93 21.53 69.90 19.29 75.10 19.62 74.67 19.08 96.00 17.25 78.34
4 35.09 40.34 36.64 38.45 23.39 64.80 2421 63.31 23.10 65.89 21.32 69.15
5 41.33 3321 36.79 38.04 27.76 56.68 29.14 53.11 27.34 56.85 25.87 60.82
6 47.59 25.89 36.82 37.81 31.76 48.30 33.61 45.28 31.41 48.60 29.90 52.92
7 53.13 20.46 50.25 23.08 35.96 40.79 38.09 37.81 35.34 41.76 34.12 46.46
TABLE VI
DAILY PREDICTION RESULTS OF DIFFERENT MODELS IN THE NORTH ATLANTIC.
Extra Trees MesoGRU Mutiple Linear Regression Random Forest Gradient Boosting EddyTPNet
Days | MGD  Presion | MGD  Presion | MGD Presion MGD  Presion | MGD Presion MGD  Presion
(km) (%) (km) (%) (km) (%) (km) (%) (km) (%) (km) (%)
1 7.29 95.72 9.92 93.91 4.57 98.06 4.86 97.76 7.23 97.96 4.06 98.07
2 10.36 92.19 9.90 93.84 6.65 96.28 6.80 96.24 8.59 96.29 5.72 96.73
3 13.08 87.72 9.95 93.87 8.61 94.45 8.58 94.37 10.05 94.39 7.29 95.08
4 15.59 82.90 16.97 81.85 10.47 91.97 10.25 92.19 11.34 92.17 8.74 93.23
5 18.32 77.30 16.93 81.44 12.35 88.97 11.93 89.88 12.83 89.52 10.26 90.91
6 20.57 71.20 17.10 81.30 14.23 85.64 13.67 86.86 14.32 86.61 11.86 88.50
7 23.09 64.96 23.71 62.79 16.07 81.38 15.40 83.49 15.75 83.25 13.43 85.26

The limitation of this study is that despite directional
divergence information being used to fit the eddy movement
trend, there are still eastward moving trajectories with low
accuracy. As shown in Fig.9, the number of predicted east-
ward trajectories is significantly reduced. Possible reasons and
future research may exist in:

(1) Since most trajectories are westward, the neural network
neutralizes the predictions of east-west trajectories to ensure
a high fit. Due to the difference in dynamic mechanism, the
prediction distance of the westward trajectory is shortened and
the ability to represent the eastward trajectory is decreased;

(2) The DDGEP data can guarantee the motion trend of
most eddies while can not accurately represent the few east-
ward trajectories as the data are averaged. The more detailed
dynamic mechanism and motion rules should be embedded to
enhance the prediction ability;

(3) The discovery of anomalous eddy trajectories will lead
to a deeper understanding of the movement of eddies. The
causes of the abrupt changes and the environmental impact
are also worthy of further study.

Notwithstanding these limitations, this exploratory study
offers some insight into the feasibility of solving the prediction
problem of ocean phenomena based on knowledge-fused time
series deep neural networks. Within this knowledge-fused deep
learning framework, there are various potentials to obtain
a better outlook for oceanic eddy trajectory prediction and
explore the model’s generalization capability in other oceanic
phenomena prediction.
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