
GORENSTEIN SPHERICAL FANO VARIETIES

GIULIANO GAGLIARDI AND JOHANNES HOFSCHEIER

Abstract. We obtain a combinatorial description of Gorenstein spherical
Fano varieties in terms of certain polytopes, generalizing the combinatorial
description of Gorenstein toric Fano varieties by reflexive polytopes and its
extension to Gorenstein horospherical Fano varieties due to Pasquier. Using
this description, we show that the rank of the Picard group of an arbitrary
d-dimensional Q-factorial Gorenstein spherical Fano variety is bounded by
2d. This paper also contains an overview of the description of the natural
representative of the anticanonical divisor class of a spherical variety due to
Brion.

1. Introduction

A complete complex algebraic variety is called Gorenstein Fano if it is normal
and its anticanonical divisor is Cartier and ample. For toric varieties one has
a nice characterization of Gorenstein Fano varieties by convex geometry, namely
one has a bijective correspondence between Gorenstein toric Fano varieties and
reflexive polytopes, i. e. lattice polytopes whose dual is a lattice polytope as well (see
[Bat94, Theorem 4.1.9]). Generalizing the notion of a reflexive polytope, Pasquier
established a similar correspondence for horospherical varieties in [Pas08]. In this
paper, we extend this correspondence to (arbitrary) spherical varieties.

In [Bri97], Brion determined a natural representative of the anticanonical divi-
sor class for any spherical variety X, on which our combinatorial description of
Gorenstein spherical Fano varieties essentially depends. For this reason, we have
found it useful to give a self-contained overview of Brion’s as well as some related
results of Luna, together with some motivation. The new results of this paper,
i. e. Theorem 1.9 and Theorem 1.10, are stated afterwards.

Let G be a connected reductive complex algebraic group and B ⊆ G a Borel
subgroup. A closed subgroup H ⊆ G is called spherical provided that the homoge-
neous space G/H contains an open B-orbit. Let H ⊆ G be a spherical subgroup. A
G-equivariant open embedding G/H ↪→ X into a normal irreducible G-variety X is
called a spherical embedding, and X is called a spherical variety.

An anticanonical divisor is a Weil divisor −KX of X such that OX(−KX) = ω̌X
where ω̌X is the anticanonical sheaf of X, i. e. the reflexive sheaf coinciding with the
top exterior power of the tangent sheaf on the smooth locus of X. It is equipped
with a natural G-linearization (see Section 3).

It is known that the open B-orbit U is isomorphic to (C∗)r × Cs (see [Ros63,
Theorem 5]) and hence has trivial divisor class group. In particular, the invertible
sheaf ω̌G/H is trivial on U , and we might ask whether there is a natural choice of a
generator s ∈ Γ(U, ω̌G/H).

We first recall the well-known case where G = B = T is a torus and H is trivial
(see, for instance, [Ful93, Section 4.3]). A spherical embedding G/H ↪→ X is then
simply a toric variety X with embedded torus U = G/H ∼= T , and it is possible to
show that there is a unique generator s ∈ Γ(U, ω̌G/H) which is T -invariant. This
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generator can be explicitly written as

s = x1
∂

∂x1
∧ . . . ∧ xn

∂

∂xn

where x1, . . . , xn is a choice of coordinates for the torus T . In addition to being
T -invariant, this section has the important property that it has a zero of order 1
along every T -invariant divisor in X.

In general, however, there need not be any B-invariant section s ∈ Γ(U, ω̌G/H)
as the following example shows.

Example 1.1. Let G = SL2 and H ⊆ G a Borel subgroup. Then the open B-orbit
U in G/H is isomorphic to C. It is not difficult to see that there is only one
B-semi-invariant section in Γ(U, ω̌G/H) and that it is not B-invariant.

As we cannot expect a B-invariant section, we have to look for something else.
An equivalent characterization for a homogeneous space G/H to be spherical is that
the G-module Γ(G/H,L ) is multiplicity-free for every G-linearized invertible sheaf
L , i. e. the multiplicity of any simple G-module in the decomposition of the module
of global sections is at most 1. We obtain

Γ(G/H, ω̌G/H) ∼=
⊕

Vχ,

where χ runs over pairwise different dominant weights of B and Vχ is the simple
G-module of highest weight χ.

This decomposition is very simple when H ⊆ G is a parabolic subgroup since
then Γ(G/H, ω̌G/H) is a simple G-module by the Borel-Weil-Bott theorem (see
[Dem68, Dem76]). In particular, exactly one dominant weight occurs (compare
this with Example 1.1), and there is a unique choice (up to a constant factor)
of a B-semi-invariant section s ∈ Γ(G/H, ω̌G/H) which restricts to a generator
s ∈ Γ(U, ω̌G/H).

LetG/H again be an arbitrary spherical homogeneous space. We denote by P ⊆ G
the stabilizer of the open B-orbit U . If H contains a maximal unipotent subgroup
of G, the homogeneous space G/H is called horospherical, and the normalizer of
H in G is a parabolic subgroup conjugated to the opposite parabolic of P , which
we denote by P−. Hence there is a natural morphism π : G/H → G/P−, which is
known to be a torus fibration. Therefore π∗(ω̌G/P−) = ω̌G/H , the simple G-module
Γ(G/P−, ω̌G/P−) is a direct summand of Γ(G/H, ω̌G/H), and a unique B-semi-
invariant section s ∈ Γ(G/P−, ω̌G/P−) ⊆ Γ(G/H, ω̌G/H) exists, whose weight we
denote by κP ∈ X(B).

For arbitrary spherical homogeneous spaces G/H, there is no natural morphism
π : G/H → G/P−, but the following statement is nevertheless valid.

Theorem 1.2 ([Bri97, 4.1 and 4.2]). The simple G-module Γ(G/P−, ω̌G/P−) is a
direct summand of Γ(G/H, ω̌G/H). Equivalently, there exists a B-semi-invariant
section

s ∈ Γ(G/H, ω̌G/H)

of weight κP , which restricts to a generator s ∈ Γ(U, ω̌G/H). For any spherical
embedding G/H ↪→ X the section s extends to a global section on X, and we have

div s =
k∑
i=1

miDi +
n∑
j=1

Xj

where D1, . . . , Dk are the B-invariant prime divisors in G/H (identified with their
closures in X), the mi are positive integers depending only on the homogeneous
space G/H, and X1, . . . , Xn are the G-invariant prime divisors in X.
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Remark 1.3. The weight κP is the weight π(div s) in the sense of [Bri89, 3.3].

The fact from Theorem 1.2 that the section s has a zero of order 1 along any G-
invariant prime divisor actually characterizes this section. This is a straightforward
application of basic facts from the embedding theory of spherical homogeneous
spaces.

Theorem 1.4. Let s ∈ Γ(U, ω̌G/H) be a generator (which is automatically B-semi-
invariant). Then the following conditions are equivalent:

(1) The section s is of B-weight κP .
(2) For any spherical embedding G/H ↪→ X the section s has a zero of order 1

along any G-invariant prime divisor.

We denote by D = {D1, . . . , Dk} the set of B-invariant prime divisors in G/H,
whose elements are called the colors of G/H. In order to obtain an explicit formula
for the coefficients mi in Theorem 1.2, Brion divided the colors into several types
(see [Bri97, 4.2]). These types are in agreement with the definition of the types of
colors due to Luna (see [Lun97, 2.7], [Lun01, 2.3], see also [Tim11, Section 30.10]),
which we now explain. For additional information on the types of colors, we refer
the reader to Section 5.

We choose a maximal torus T ⊆ B, denote by R ⊆ X(T ) = X(B) the associated
root system, and write S ⊆ R for the set of simple roots corresponding to B.
For α ∈ S we denote by Pα ⊆ G the corresponding minimal parabolic subgroup
containing B, and define

D(α) := {Di ∈ D : Pα ·Di 6= Di}.
As the colors are not G-stable, every color is moved by at least one minimal parabolic
subgroup, so that we have D =

⋃
α∈S D(α). Moreover, the stabilizer P ⊆ G of

the open B-orbit is the parabolic subgroup containing B corresponding to the set
Sp := {α ∈ S : D(α) = ∅}.

We denote byM⊆ X(B) the weight lattice of B-semi-invariants in the function
field C(G/H) and by N := Hom(M,Z) the dual lattice together with the natural
pairing 〈·, ·〉 : N×M→ Z. We denote by V the set of G-invariant discrete valuations
on C(G/H), and define the map ι : V → N by 〈ι(ν), χ〉 := ν(fχ) where fχ ∈ C(G/H)
is B-semi-invariant of weight χ ∈ M and unique up to a constant factor. As the
map ι is injective, we may consider V as a subset of the vector space NQ := N ⊗ZQ.
It is known that V is a cosimplicial cone (see [Bri90]), called the valuation cone of
G/H. In particular, the valuation cone is full-dimensional. By Σ we denote the set
of primitive generators inM of the extremal rays of the negative of the dual of the
valuation cone V. The elements in Σ are called the spherical roots of G/H.

The type of a color Di ∈ D(α) is defined as follows: If α ∈ Σ, we say that Di

is of type a. If 2α ∈ Σ, we say that Di is of type 2a. Otherwise, we say that Di

is of type b. The type does not depend on the choice α ∈ S such that Di ∈ D(α).
Moreover, we have |D(α)| ≤ 2 with |D(α)| = 2 if and only if α ∈ Σ (i. e. the colors
in D(α) are of type a).

We can now state the explicit formula for the coefficients mi in the expression
for div s due to Brion and Luna.

Theorem 1.5 ([Bri97, Theorem 4.2], [Lun97, 3.6]). We have
mi = 1

2 〈α
∨, κP 〉 = 1 for Di of type a or 2a,

mi = 〈α∨, κP 〉 ≥ 2 for Di of type b.

This concludes the overview, so that we are now able to explain the combinatorial
description of Gorenstein spherical Fano varieties. Let m1, . . . ,mk ∈ Z>0 be
the coefficients of the colors in the expression for the anticanonical divisor from
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Theorem 1.2. We define the map ρ : D → N by 〈ρ(Di), χ〉 := νDi(fχ) where νDi is
the discrete valuation associated to Di ∈ D.

Definition 1.6. Let G/H ↪→ X be a complete spherical embedding, and let
X1, . . . , Xn be the G-invariant prime divisors in X. We define the polytope

QX := conv
(
ρ(D1)
m1

, . . . ,
ρ(Dk)
mk

, νX1 , . . . , νXn

)
⊆ NQ.

Remark 1.7. The polytope introduced in Definition 1.6 has been used by Alexeev
and Brion to prove boundedness of spherical Fano varieties in [AB04].

The generalization of the notion of a reflexive polytope to the theory of spherical
varieties is the following (it is a generalization of [Pas08, Définition 3.3]). For a
polytope Q we denote by Q∗ its dual polytope, and for a face F � Q we denote by
F̂ � Q∗ its dual face.

Definition 1.8. A polytope Q ⊆ NQ is called G/H-reflexive if the following
conditions are satisfied:

(1) ρ(Di)/mi ∈ Q for every i = 1, . . . , k.
(2) 0 ∈ int(Q).
(3) Every vertex of Q is contained in {ρ(Di)/mi : i = 1, . . . , k} or N ∩ V.
(4) Every vertex v ∈ Q∗ satisfying relint(cone(v̂)) ∩ V 6= ∅ lies in the latticeM.

Note that cone(v̂) is a full-dimensional cone in NQ for every vertex v ∈ Q∗.

Theorem 1.9. The assignment X 7→ QX induces a bijection between isomorphism
classes of Gorenstein spherical Fano embeddings G/H ↪→ X and G/H-reflexive
polytopes.

Using Theorem 1.9, one may translate questions about Gorenstein spherical Fano
varieties into the realm of convex combinatorics. Applying this approach, we are
going to prove the following bound on the Picard number.

Theorem 1.10. Let X be a Q-factorial Gorenstein spherical Fano variety of
dimension d and Picard number ρX . Then we have

ρX ≤ 2d,

with ρX = 2d if and only if d is even and X ∼= (S3)d/2 where S3 is the blowup of P2

at three non-collinear points.

Theorem 1.10 has been proven by Casagrande in the case of a toric variety X
(see [Cas06]) and by Pasquier in the case of a horospherical variety X (see [Pas08]).
Our proof is inspired by the two previous works. Observe that Theorem 1.10 does
not hold for an arbitrary variety X, e. g. if S is the surface given by blowing-up P2

in eight general points, the variety Sm has Picard number 9m (see [Deb03]).

List of general notation.
X(G) character lattice of a connected algebraic group G,
Q∗ dual polytope to a polytope Q in a vector space V , i. e.

Q∗ = {v ∈ V ∗ : 〈u, v〉 ≥ −1 for every u ∈ Q},
F̂ dual face to a face F of a polytope Q, i. e.

F̂ := {v ∈ Q∗ : 〈u, v〉 = −1 for every u ∈ F},
int(A) topological interior of a subset A in some finite-dimensional vector

space,
relint(A) relative interior of a subset A in some finite-dimensional vector

space, i. e. topological interior of A in the affine span of A.
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2. Notation and generalities

Spherical embeddings admit a combinatorial description due to the Luna-Vust
theory (see [LV83, Kno91]). Similarly to the theory of toric varieties, one obtains a
description of spherical embeddings of G/H by colored fans, which are combinatorial
objects living in the vector space NQ.

Definition 2.1. A colored cone is a pair (C,F) where F ⊆ D and C ⊆ NQ is a
cone generated by ρ(F) and finitely many elements of V. A colored cone is called
supported if relint(C) ∩ V 6= ∅. A colored cone is called strictly convex if C is strictly
convex and 0 /∈ ρ(F).

Definition 2.2. A face of a colored cone (C,F) is a colored cone (C′,F ′) such that
C′ is a face of C and F ′ = F ∩ ρ−1(C′). It is called a supported face if it is supported
as a colored cone.

Definition 2.3. A colored fan is a nonempty finite collection F of strictly convex
colored cones such that for every (C,F) ∈ F every face of (C,F) is also in F and for
every v ∈ NQ there is at most one (C,F) ∈ F with v ∈ relint(C). A colored fan F is
called complete if suppF :=

⋃
(C,F)∈F C = NQ.

Definition 2.4. A supported colored fan is a nonempty finite collection F of strictly
convex supported colored cones such that for every (C,F) ∈ F every supported
face of (C,F) is also in F and for every v ∈ V there is at most one (C,F) ∈ F with
v ∈ relint(C). A supported colored fan F is called complete if suppF ⊇ V.

Remark 2.5. We have defined the terms “colored cone” and “colored fan” with
and without the adjective “supported”. In the literature, only the supported versions
are usually defined (and without the adjective “supported”).

Remark 2.6. There is a natural map

{colored fans} → {supported colored fans}
F 7→ Fsupp := {σ ∈ F : σ is supported}.

If F is complete, every point in V is contained in relint(C) for exactly one (C,F) ∈ F,
which is supported, so Fsupp is complete as well (as a supported colored fan).
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Theorem 2.7 ([Kno91, Theorem 3.3]). Supported colored fans are in bijective corre-
spondence with isomorphism classes of spherical embeddings G/H ↪→ X. Moreover,
X is complete if and only if the corresponding supported colored fan is complete.

We now recall some results on divisors in spherical varieties due to Brion
(see [Bri89]). We use [Tim11, Section 17] as general reference. Let G/H ↪→ X be a
complete spherical embedding and F the corresponding supported colored fan. Let
E be a B-stable Weil divisor. The Weil divisor E is Q-Cartier (resp. Cartier) if and
only if for every maximal supported colored cone (C,F) ∈ F there exists vC ∈MQ

(resp. vC ∈ M) such that for every B-stable prime divisor D which contains the
G-orbit in X corresponding to (C,F) the multiplicity of D in E is 〈ρ(D), vC〉 if D is
a color and 〈νD, vC〉 if D is G-stable. The linear functions 〈·, vC〉 : C ∩ V ⊆ NQ → Q

may be pasted together to a piecewise linear function ψE : V → Q.

Proposition 2.8 ([Bri89, Proposition 3.1]). X is Q-factorial (resp. locally factorial)
if and only if for every maximal (C,F) ∈ F the cone C is spanned by a part of a
Q-basis of NQ (resp. by a part of a Z-basis of N ) containing ρ(F) and ρ|F is
injective.

Proposition 2.9 ([Bri89, Théorème 3.3], see also [Tim11, Corollary 17.24]). Let
E be a Q-Cartier divisor on the complete spherical variety X and ψE : V → Q the
associated piecewise linear function. Then E is ample if and only if

(1) the piecewise linear function ψE is strictly convex, i. e. for every u ∈ C \ C′
we have 〈u, vC〉 > 〈u, vC′〉 for any two maximal (C,F), (C′,F ′) ∈ F, and

(2) for every maximal (C,F) ∈ F and every D ∈ D \ F the multiplicity of D in
E is strictly greater than 〈ρ(D), vC〉.

Finally, we will require the following definition.

Definition 2.10. Let Q ⊆ NQ be a polytope with 0 ∈ int(Q). We associate to
it the colored fan F(Q) consisting of the colored cones (cone(F ), ρ−1(F )) for all
proper faces F of Q. As Q is full-dimensional, the colored fan F(Q) is complete.
The colored fan F(Q) is called the colored face fan of Q. We write Fsupp(Q) for
(F(Q))supp.

3. The co- and tangent sheaves of a smooth G-variety

In this section, let X be an arbitrary smooth G-variety for an arbitrary algebraic
group G. Then G acts on X by an action morphism α : G×X → X. We denote
by µ : G × G → G the multiplication morphism of the algebraic group G and by
πX : G×X → X (resp. πG×X : G×G×X → G×X) the natural projection on
the second (resp. on the second and third) factor. Let us repeat the definition of
a G-linearization of a quasicoherent sheaf (see [Tim11, Definition C.2] or [MFK94,
Definition 1.6]).

Definition 3.1. A G-linearization of a quasicoherent sheaf F on X is an isomor-
phism of quasicoherent sheaves α̂ : π∗XF

∼−→ α∗F satisfying the cocycle condition,
i. e. the diagram in Figure 1 commutes.

Recall that the cotangent sheaf ΩX of X is, locally on affine open neighbourhoods
U , given as the sheaf associated to the module of Kähler differentials ΩOX(U)/C.
The pullback of differential forms with respect to the action morphism α yields the
inverse of a G-linearization of the cotangent sheaf, namely α̂−1 : α∗ΩX

∼−→ π∗XΩX .
As X is smooth, we may dualize α̂−1 and obtain a G-linearization of the tangent
sheaf TX := HomOX (ΩX ,OX), namely β̂ := (α̂−1)∨ : π∗XTX

∼−→ α∗TX .
For an affine open subset U ⊆ X and g ∈ G, let us denote the coordinate

rings of U and g · U by A and B respectively. The element g ∈ G acts on a local
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(πX ◦ πG×X)∗F
π∗G×X α̂ // (α ◦ πG×X)∗F

(
πX ◦ (idG×α)

)∗
F

(idG×α)∗α̂ //
(
α ◦ (idG×α)

)∗
F

(
πX ◦ (µ× idX)

)∗
F

(µ×idX)∗α̂ //
(
α ◦ (µ× idX)

)∗
F

Figure 1. The cocycle condition.

section δ ∈ DerC(A,A) = Γ(U,TX) by restricting the G-linearization to {g} ×X,
i. e. g · δ := β̂|{g}×X(δ). It is straightforward to check that

g · δ = λ#
g ◦ δ ◦ λ

#
g−1 ∈ DerC(B,B) = Γ(g · U,TX),

where λg : X → X is given by x 7→ g−1 · x.
Let G = (C,+) or G = (C∗, ·) be a one-dimensional connected algebraic group

with neutral element e ∈ G. We will recall how one can associate a global vector
field u ∈ Γ(X,TX) to a one-parameter subgroup u : G→ G. The coordinate ring of
G is either the polynomial ring C[t] or the Laurent polynomial ring C[t±1]. In both
cases, we have a natural choice of a basis of the tangent space of G over the point e,
namely ∂

∂t

∣∣
e
∈ TG|e. Let U be an affine open subset of X with coordinate ring A.

The restriction of u to U lies in DerC(A,A) and is given by(
u|Uf

)
(x) := ∂

∂t

∣∣∣∣
e

f
(
u(t) · x

)
for f ∈ A, x ∈ U . It is straightforward to check that these local sections are
well-defined and glue to a global section u ∈ Γ(X,TX).

Remark 3.2. Assume that X = G and G acts on itself by left translation. It is
then straightforward to check that u is an invariant vector field, i. e. ρ#

g ◦u◦ρ
#
g−1 = u

for all g ∈ G, where ρg : G→ G is given by h 7→ hg. Moreover, u|e ∈ Lieu(G).

4. The anticanonical sheaf of a spherical variety

From now on, we continue to use the notation and the assumptions from the
introduction. In this section, we reproduce (with more detail) the proof of [Bri97,
4.1].

Let G/H ↪→ X be a spherical embedding. We denote the G-invariant prime
divisors in X by X1, . . . , Xn. As we are interested in the anticanonical sheaf of X,
we may assume that X does not contain G-orbits of codimension two or greater. In
particular, X is smooth toroidal and Pic(X) = Cl(X).

Since X is a smooth toroidal variety, it has the following local structure (see
[Tim11, Theorem 29.1]): The set X0 := X r

⋃k
i=1Di is stable by P . Let L be the

Levi subgroup of P containing T . There exists a closed L-stable subvariety Z of X0

such that
Ru(P )× Z → X0

(u, z) 7→ u · z
is a P -equivariant isomorphism. The kernel of the L-action on Z, which we denote
by L0, contains (L,L) and Z is a toric embedding of L/L0. Every G-orbit intersects
Z in a unique L/L0-orbit.
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Any x0 ∈ U corresponds to some (u0, z0) ∈ Ru(P )× Z under the isomorphism
above. We fix x0 such that u0 is the neutral element of Ru(P ). By replacing H
with a conjugate, we may assume that x0 has stabilizer H ⊆ G.

We denote by ω̌X :=
∧dimX TX , i. e. the top exterior power of the tangent

sheaf, the anticanonical sheaf of X. It is an invertible sheaf and carries a natural
G-linearization induced from the G-linearization of TX .

The variety Z is a toric variety for a quotient torus of T . Let T0 be the kernel of
the T -action on Z and let T1 be a subtorus of T with T = T0T1 such that T0 ∩ T1 is
finite. We have a commutative diagram of equivariant morphisms with respect to
the action of B0 := Ru(P )T1:

B0 //

%%

B · x0

B0/(T0 ∩ T1)

The arrows are finite coverings. In particular, the tangent space of X at (u0, z0)
is isomorphic to the direct sum of the tangent spaces of Ru(P ) and T1 at the
corresponding neutral elements. This is the lie algebra of B0 which decomposes as

LieB0 = LieT1 ⊕
⊕

α∈R+\〈Sp〉

gα

where 〈Sp〉 denotes the root system generated by Sp and gα denotes the subspace
of T -semi-invariant vectors of weight α in g := LieG. Choose a realization (uα)α∈R
of the root system R (see [Spr09, §8.1]) and choose a basis λ1, . . . , λr of the lattice
of one-parameter multiplicative subgroups of T1. In Section 3 we have seen how to
associate a global vector field uα (resp. l1, . . . , lr) to the one parameter subgroup
uα (resp. λ1, . . . , λr). We obtain a global section

s :=

 ∧
α∈R+\〈Sp〉

uα

 ∧ l1 ∧ . . . ∧ lr ∈ Γ(X, ω̌X).

Proposition 4.1 ([Bri97, Proposition 4.1]). The zero set of s is exactly the union
of the closures of the colors Di and the boundary divisors Xj.

Proof. Let u be a one-parameter subgroup used in the definition of s, i. e. u = uα
or u ∈ {λ1, . . . , λr}. Let Y be a B-stable divisor, i. e. Y = Di or Y = Xj . Since u
maps into B, by construction, u|y ∈ TY |y for all y ∈ Y . Since Y has codimension 1
in X and the number of vector fields which have been wedged to obtain s is dimX,
the global section s vanishes on Y .

We now show that s vanishes nowhere on the open B-orbit. Since u maps into
B0, we may define a global vector field u′ on B0. By the local structure theorem,
B0 is a finite covering of B · x0. In particular, we have a well-defined pushforward
of vector fields, and u|B·x0 is the pushforward of u′. Since u′ is T0 ∩ T1-invariant
(see Remark 3.2), it suffices to show that s′ ∈ Γ(B0, ω̌B0), i. e. the global section of
the anticanonical sheaf of B0 which arises by wedging all the global vector fields u′,
vanishes nowhere.

Since u′|e ∈ Lieu(G), it follows that s′|e arises by wedging a basis of LieB0. In
particular, s′ does not vanish at e. Since s′ is invariant, it follows that it vanishes
nowhere. �

Recall from the introduction that, by the Borel-Weil-Bott theorem, the space
Γ(G/P−, ω̌G/P−) is a simple G-module, whose highest weight we denote by κP .
Then the following result implies Theorem 1.2.



GORENSTEIN SPHERICAL FANO VARIETIES 9

Proposition 4.2 ([Bri97, Proof of Theorem 4.2]). The global section s ∈ Γ(X, ω̌X)
is B-semi-invariant of weight κP .

Proof. Since U has trivial Picard group, every B-linearized invertible sheaf on U
is B-equivariantly isomorphic to OU (χ) for some χ ∈ X(B). We have maps ω̌U →
OU (χ) → OU , where the first map is chosen to be a B-equivariant isomorphism,
and the second map is canonical, but not necessarily B-equivariant. Let f be the
image of s under the composed map. By [KKV89, Proposition 1.3, (ii)], the regular
function f is B-semi-invariant. It follows that s is B-semi-invariant as well, where
the weight has to be corrected by the twist χ.

Next, we determine the weight of s. Let w ∈ T , f ∈ Γ(U,OU ), and x ∈ U . Then
we have (

(w · uα)(f)
)
(x) =

((
λ#
w ◦ uα ◦ λ

#
w−1

)
(f)
)

(x)

= ∂

∂t

∣∣∣∣
e

f(wu(t)w−1 · x)

= ∂

∂t

∣∣∣∣
e

f(u(α(w)t) · x)

=
((
α(w)uα

)
(f)
)

(x).

Hence uα is T -semi-invariant of weight α. Analogously, one can show that li is
T -invariant. In particular, the weight of s depends only on the set Sp. As G/P− and
X have the same stabilizer of the open B-orbit, it follows that s is B-semi-invariant
of weight κP . �

Remark 4.3. For I ⊆ S we denote by ρI the half-sum of the positive roots in the
root system generated by I. It is also known that ρI is the sum of the fundamental
dominant weights of the root system generated by I (see [Hum78, Lemma 13.3A]).
By Proposition 4.2, we have κP = 2ρS − 2ρSp .

Remark 4.4. A nonzero B-semi-invariant rational section of ω̌X is uniquely deter-
mined by its weight χ ∈ X(B) up to a constant factor, and such a rational section
exists if and only if χ ∈ κP +M (see also Section 9).

Corollary 4.5 ([Bri97, Proposition 4.1]). We have

div s =
k∑
i=1

miDi +
n∑
j=1

Xj

with mi ∈ Z>0.

Proof. Since s is a B-semi-invariant section, it follows that its divisor is a linear
combination of the B-invariant divisors of X, i. e.

div s =
k∑
i=1

miDi +
n∑
j=1

rjXj

for integers mi and rj . Since s vanishes on every B-invariant divisor, it follows
that the mi and rj are positive. To show that rj = 1, we consider the restriction
s′ := s|X0 . Above, we have seen that the open subset X0 is isomorphic to the
product variety Ru(P )×Z. In particular, ω̌X0 ∼= π∗1 ω̌Ru(P )⊗π∗2 ω̌Z where πi denotes
the projection onto the i-th factor. The section s′ behaves well under this product
decomposition. Indeed, set s1 :=

∧
α∈R+\〈Sp〉 uα|Ru(P ) and s2 := l1|Z ∧ . . . ∧ lr|Z .
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Then under the isomorphism above the section s′ corresponds to the section s1 ⊗ s2.
Since s1 does not vanish on Ru(P ), we obtain

n∑
j=1

rjXj = (div s)|X0 = div s′ = div(s1 ⊗ s2) = π∗2 div s2.

Now, Z is a toric variety with respect to the quotient torus T1/(T0 ∩ T1), and the
pullback under π2 of its torus-invariant divisors are exactly the G-invariant divisors
Xj of X. Since σ2 is invariant under the action of the torus T1/(T0 ∩ T1), it follows,
by toric geometry, that rj = 1. �

Proof of Theorem 1.4. By Corollary 4.5, it follows that the B-semi-invariant section
s of Theorem 1.2 has a zero of order 1 along any G-invariant prime divisor in any
spherical embedding G/H ↪→ X.

Now assume that s′ is a generator of Γ(U, ω̌G/H) which has a zero of order 1 along
any G-invariant prime divisor in any spherical embedding G/H ↪→ X. Since the open
B-orbit U of G/H has trivial divisor class group, we have maps ω̌U → OU (χ)→ OU ,
where the first map is chosen to be a B-equivariant isomorphism, and the second
map is canonical, but not necessarily B-equivariant. Under this isomorphism s and
s′ correspond to functions f, f ′ ∈ Γ(U,OG/H). Since s and s′ are generators, the
functions f and f ′ are invertible. In particular, f/f ′ ∈ Γ(U,O∗G/H). By [KKV89,
Proposition 1.3, (ii)], f/f ′ is B-semi-invariant and hence its B-weight is contained
inM.

Take any spherical embedding G/H ↪→ X which contains exactly two orbits,
namely G/H and a G-invariant prime divisor X1. The colored fan corresponding to
X is given by the ray Q≥0ν1 where ν1 ∈ N denotes the G-invariant valuation induced
by X1. Since s and s′ have a zero of order 1 along X1, we obtain 〈f/f ′, ν1〉 = 0.

It follows that the valuation cone V of G/H is contained in the subspace {w ∈
NQ : 〈f/f ′, w〉 = 0}. Since V is a full-dimensional cone, this is only possible if the
B-weight of f/f ′ is 0, i. e. f and f ′ coincide up to a scalar multiple. �

5. Types of colors

In [Bri97, 4.2], Brion has defined colors of types II, III, and IV. These types
are equivalent to the types b, a, and 2a due to Luna respectively, which means
that Theorem 1.5 is equivalent to [Bri97, Theorem 4.2]. We will, however, prove
Theorem 1.5 by reducing it to the situation of [Lun97, 3.6], i. e. to the case of a
wonderful variety (and afterwards it will be easy to see that the types of colors due
to Brion and Luna coincide).

A wonderful variety is a spherical variety which is complete, smooth, simple, and
toroidal. We explain (from [Lun01, 6.1]) how to associate to the spherical variety
X a wonderful variety Y . We identify the G-equivariant automorphism group of
G/H with NG(H)/H. Then NG(H) acts on D, and we define H ⊆ NG(H) to be
the kernel of this action. It contains H and is called the spherical closure of H.
There exists a (unique) spherical embedding G/H ↪→ Y such that Y is a wonderful
variety. We denote its set of colors by D = {D1, . . . , Dk}, which is in bijection with
the set of colors D = {D1, . . . , Dk} of G/H via π : G/H → G/H. We denote the
stabilizer of the open B-orbit in Y by P and the coefficients of the colors in the
expression for the anticanonical divisor from Theorem 1.2 by m1, . . . ,mk.

Theorem 5.1 ([Lun97, 3.6]). We have

mi = r(Di) := 1
2 〈α
∨, κP 〉 = 1 for Di of type a or 2a,

mi = r(Di) := 〈α∨, κP 〉 ≥ 2 for Di of type b.
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Proof. By [Lun97, Proposition 3.6(2)], an anticanonical divisor of Y is given by∑k
i=1 r(Di)Di +

∑l
j=1 Yj where Y1, . . . , Yl are the G-invariant prime divisors in Y .

The result now follows from the fact that D is a basis of Pic(Y ) = Cl(Y ). �

Proof of Theorem 1.5. Let s ∈ Γ(G/H, ω̌G/H) and s ∈ Γ(G/H, ω̌G/H) be B-semi-
invariant sections of weights κP and κP respectively. As P = P , we have π∗s = s (up
to a constant), and hence, for the pullback of Cartier divisors, π∗ div s = div s. On
the other hand, we have the pullback of Cartier divisors π∗Di = Di (apply [Fos98,
Section 2.2, Theorem 2.2], see also [Tim11, Lemma 30.24]), hence mi = mi. �

Remark 5.2. Replacing G with a finite cover, we may assume G = Gss × C
where Gss is semisimple simply-connected and C is a torus. Then, by [KKLV89,
Proposition 2.4 and Remark after it], every invertible sheaf on the normal variety X
can be G-linearized. There exist (unique) G-linearizations of the invertible sheaves
OX(Di) and OX(Xj) such that their canonical sections are C-invariant. With these
linearizations, Brion’s description of the anticanonical sheaf

ω̌X = OX(D1)⊗m1 ⊗ . . .⊗OX(Dk)⊗mk ⊗OX(X1)⊗ . . .⊗OX(Xn)

of an arbitrary spherical variety X is not only valid inside Pic(Xreg), but even inside
the group of isomorphism classes of G-linearized invertible sheaves PicG(Xreg).

Proposition 5.3. The types of colors II, III, and IV due to Brion coincide with
the types of colors b, a, and 2a due to Luna respectively.

Proof. A color Di ∈ D is of type II if and only if it is of type b as both situations
are characterized by mi ≥ 2. Now let D ∈ D be of type III (resp. of type IV),
and let C be a basic curve representing D in the sense of [Bri97, 4.2]. The kernel
of the B-action on C is the radical of a (unique) minimal parabolic subgroup Pα
(see [Bri97, 1.1]), and we have D ∈ D(α) (see [Bri93, Proposition 3.6]). According
to [Bri97, Proposition 1.2], the spherical variety G · C contains a color of type a
(resp. of type 2a) which is moved by Pα. By [GH15, Theorem 1.1], this is only
possible if α ∈ Σ (resp. if 2α ∈ Σ), i. e. D is of type a (resp. of type 2a). �

Finally, it will be helpful to explain one further approach due to Knop to
characterize the types of colors, which is easier to apply in certain situations (see the
examples in Section 6). We fix a point x0 ∈ U in the open B-orbit. Let α ∈ S such
that D(α) 6= ∅. We have Pα/B ∼= P1 and the natural action of Pα on P1 yields a
morphism φα : Pα → PGL2. Let Hα be the stabilizer of x0 inside Pα. Then φα(Hα)
is a proper spherical subgroup of PGL2 (see [Kno95, Lemma 3.1]), i. e. φα(Hα) is
either a maximal torus, the normalizer of a maximal torus, or contains a maximal
unipotent subgroup (see [Kno95, Lemma 3.2]).

Theorem 5.4 ([Kno14, Section 2]). A color D ∈ D(α) is

of type a if Φα(Hα) is a maximal torus,
of type 2a if Φα(Hα) is the normalizer of a maximal torus,
of type b if Φα(Hα) contains a maximal unipotent subgroup.

6. Examples illustrating Theorem 1.5

In this section, we compute the coefficients mi for several well-known spherical
homogeneous spaces. In 6.1, 6.2, and 6.3 we give examples for every type of color.
Example 6.4 illustrates Sp 6= ∅ and mi > 2. Observe that in 6.1, 6.3, and 6.4 the
computation is simplified by applying Theorem 5.4.



12 GIULIANO GAGLIARDI AND JOHANNES HOFSCHEIER

Example 6.1. Consider G := SLn × SLn and H := SLn ⊆ G diagonally embedded.
Then G/H is isomorphic to SLn where G acts with the first factor from the
left and with the second factor from the right after inverting. We denote by
Dn ⊆ SLn the subgroup of diagonal matrices, by Tn ⊆ SLn the subgroup of upper
triangular matrices, and by T−n ⊆ SLn the subgroup of lower triangular matrices.
We define B := T−n ×Tn and T := Dn×Dn, and obtain the set of simple roots
S = {α1, . . . , αn−1, β1, . . . , βn−1}.

The homogeneous space G/H is spherical, and there are n − 1 colors of G/H,
i.e. D = {D1, . . . , Dn−1}, given by Di = V(fi) where fi ∈ C[SLn] is the upper-left
principal minor of size i× i. It is not difficult to see that D(αi) = D(βi) = {Di}.
Furthermore, all colors are of type b since for every αi the image of H ∩ Pαi under
Φαi : Pαi → PGL2 is a Borel subgroup of PGL2 and therefore contains a maximal
unipotent subgroup.

The stabilizer of the open B-orbit in G/H is B itself. Therefore we have Sp = ∅
and κP = 2ρS . Since ρS is equal to the sum of the fundamental dominant weights,
we obtain mi = 〈α∨i , 2ρS〉 = 2 for 1 ≤ i ≤ n− 1.

Example 6.2. Consider G := SL2 × SL2 × SL2 and H := SL2 ⊆ G diagonally
embedded. We denote by B ⊆ G the Borel subgroup of lower triangular matrices
and by T ⊆ B the maximal torus of diagonal matrices. We obtain the set of simple
roots {α, β, γ} corresponding to the three factors in G.

The homogeneous space G/H is spherical, and there are 3 colors of G/H, i. e. D =
{D12, D13, D23}. To be more precise, let Aij for 1 ≤ i < j ≤ 3 be the 2× 2 matrix
whose rows are given by the first rows of the i-th and j-th factor of G. Then
detAij is an equation for Dij . It is not difficult to see that D(α) = {D12, D13},
D(β) = {D12, D23}, and D(γ) = {D13, D23}. In particular, it follows that all colors
are of type a, and therefore mij = 1 for 1 ≤ i < j ≤ 3.

By the definition of the types of colors due to Luna (see Section 1), it follows
that α, β, γ are contained inM, and the valuation cone is given by

V = {v ∈ NQ : 〈v, α〉 ≤ 0, 〈v, β〉 ≤ 0, 〈v, γ〉 ≤ 0}.

Example 6.3. Consider G := SLn for n ≥ 3 and H := SOn, the subgroup of
orthogonal matrices. Let G act on the space Sym(n) of symmetric n× n matrices
via A ·M = AMAT . Then the stabilizer of the identity matrix is H. We denote by
B ⊆ G the Borel subgroup of lower triangular matrices and by T ⊆ B the maximal
torus of diagonal matrices. We obtain the set of simple roots {α1, . . . , αn−1}.

The homogeneous space G/H is spherical, and there are n − 1 colors of G/H,
i.e. D = {D1, . . . , Dn−1}, given by Di = V(fi) where fi ∈ C[SLn] is again the
upper-left principal minor of size i× i. It is not difficult to see that D(αi) = {Di}.
Furthermore, all colors are of type 2a since for every αi the image of H ∩ Pαi under
Φαi : Pαi → PGL2 is the normalizer of a maximal torus. It follows that mi = 1 for
1 ≤ i ≤ n− 1.

As in the previous example, it follows that 2αi is contained inM for 1 ≤ i ≤ n−1,
and the valuation cone is given by

V = {v ∈ NQ : 〈v, 2αi〉 ≤ 0 for every 1 ≤ i ≤ n− 1}.

Example 6.4. Consider G := SLn for n ≥ 3 and H := SLn−1 embedded as the
block diagonal matrices with entries on the lower-right of SLn. Let B ⊆ G be the
Borel subgroup of upper triangular matrices and T ⊆ G the subgroup of diagonal
matrices. We obtain the set of simple roots S = {α1, . . . , αn−1}.

Let G act on Cn × Cn by acting naturally on the first factor and with the
contragredient action on the second factor. Denoting the coordinates of the first
factor by X1, . . . , Xn and the coordinates of the second factor by Y1, . . . Yn, we
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obtain
G/H ∼= V(X1Y1 + . . .+XnYn − 1) ⊆ Cn × Cn.

There are two colors D1 := V(Xn) and D2 := V(Y1). It is not difficult to see that
D(αn−1) = {D1}, D(α1) = {D2}, and Sp = {α2, . . . , αn−2}. We see that both
colors are of type b as in the previous example, but we have to suitably conjugate
H first since the basepoint does not lie in the open B-orbit. We obtain

m1 = 〈α∨n−1, 2ρS − 2ρSp〉 =
〈
α∨n−1,

n−1∑
i=1

i∑
j=1

αj +
n−2∑
i=1

i∑
j=1

αn−j

〉
= n− 1,

and similarly m2 = n− 1.

7. Q-Gorenstein spherical Fano varieties

We continue to use the notation from the introduction. In particular, G/H is a
spherical homogeneous space, D = {D1, . . . , Dk} is the set of colors, and mi ∈ Z>0
are the coefficients of the colors in the expression for the anticanonical divisor from
Theorem 1.2.

Definition 7.1. A polytope Q ⊆ NQ is called Q-G/H-reflexive if the following
conditions are satisfied:

(1) ρ(Di)/mi ∈ Q for every i = 1, . . . , k.
(2) 0 ∈ int(Q).
(3) Every vertex of Q is contained in {ρ(Di)/mi : i = 1, . . . , k} or a primitive

element in N ∩ V.

Proposition 7.2. Let G/H ↪→ X be a Q-Gorenstein spherical Fano embedding.
Then the polytope QX ⊆ NQ is Q-G/H-reflexive.

Proof. Let X1, . . . , Xn be the G-invariant prime divisors in X. It follows from the
completeness of X that

cone(ρ(D1), . . . , ρ(Dk), νX1 , . . . , νXn) = NQ,
and therefore 0 ∈ int(QX). �

Proposition 7.3. Let Q ⊆ NQ be a Q-G/H-reflexive polytope. Then Fsupp(Q)
is a complete supported colored fan such that the associated spherical embedding
G/H ↪→ XFsupp(Q) is Q-Gorenstein Fano.

Proof. As Q is full-dimensional, F(Q) is complete (see Definition 2.10), and therefore,
by Remark 2.6, Fsupp(Q) is complete as well. Let X := XFsupp(Q). Every maximal
cone (C,F) ∈ Fsupp(Q) is given by C = cone(v̂C) and F = ρ−1(v̂C) for a vertex
vC ∈ Q∗. We define a piecewise linear function ψ : V → Q by ψ|C∩V := −〈·, vC〉. It
is straightforward to check that ψ is the piecewise linear function corresponding
to the Q-Cartier divisor −KX . As Q is a polytope, the piecewise linear function
ψ is strictly convex. Together with property (1) of Definition 7.1, it follows from
Proposition 2.9 that −KX is ample, and hence X = XFsupp(Q) is Fano. �

Proposition 7.4. The assignments X 7→ QX and Q 7→ XFsupp(Q) define a bijection
between isomorphism classes of Q-Gorenstein spherical Fano embeddings of G/H
and Q-G/H-reflexive polytopes.

Proof. The well-definedness of the two maps follows from Proposition 7.2 and
Proposition 7.3. It remains to show that the maps are inverse to each other.

Let Q ⊆ NQ be a Q-G/H-reflexive polytope and G/H ↪→ X the spherical
embedding corresponding to the colored fan Fsupp(Q). Let u ∈ Q be a vertex. By
property (3) of Definition 7.1, we have u ∈ QX , hence Q ⊆ QX . Now, let u ∈ QX
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be a vertex. If u = ρ(Di)
mi

for some i ∈ {1, . . . , k}, then u ∈ Q because of property
(1) of Definition 7.1. Otherwise, the vertex u is the primitive generator of a ray in
Fsupp(Q), in which case the definition of the face fan also implies u ∈ Q. Hence we
have QX ⊆ Q.

Let G/H ↪→ X be a Q-Gorenstein spherical Fano embedding with associated
supported colored fan F and ψ : V → Q the strictly convex piecewise linear function
associated to the anticanonical divisor −KX . It suffices to show that the maximal
cones of Fsupp(QX) and F coincide. Let (C,F) be a maximal cone in F. Then
ψ|C∩V = −〈·, vC〉 for some vC ∈MQ. We obtain that F := {u ∈ QX : 〈u, v〉 = −1}
is a facet of QX such that cone(F ) = C and F = ρ−1(F ). In particular, it follows
that all maximal cones of F are in Fsupp(QX). �

8. Gorenstein spherical Fano varieties

Let Q ⊆ NQ be a Q-G/H-reflexive polytope. In this section, we investigate when
the associated Q-Gorenstein spherical Fano embedding G/H ↪→ X is Gorenstein,
i. e. the anticanonical divisor is Cartier. Recall that the vertices of Q∗ correspond
to the colored cones of maximal dimension in F(Q).

Definition 8.1. A vertex v ∈ Q∗ is called supported if the corresponding colored
cone in F(Q) is supported. In this case, the corresponding facet v̂ � Q is called
supported as well. The set of supported vertices of Q∗ is denoted by Vsupp(Q∗).

Lemma 8.2. Let C ⊆ NQ be a cone of maximal dimension. Then the following
statements are equivalent:

(1) relint(C) ∩ V = ∅.
(2) There exists v ∈MQ such that 〈·, v〉|C ≥ 0 and 〈·, v〉|V ≤ 0.
(3) cone(Σ) ∩ C∨ 6= {0}.

Proof. (1) ⇒ (2) follows from the Hahn-Banach separation theorem since relint(C)
is open in NQ, and (2) ⇒ (3) is obvious. In order to show (3) ⇒ (1), let 0 6= v ∈
cone(Σ) ∩ C∨ and u ∈ relint(C). As C is full-dimensional, i. e. C⊥ = {0}, we obtain
〈u, v〉 > 0. It follows that u /∈ V. �

Proposition 8.3. A vertex v ∈ Q∗ is supported if and only if Q∗ ∩ (v+ cone(Σ)) =
{v}.

Proof. Let v ∈ Q∗ be a vertex and C := cone(v̂) ⊆ NQ the corresponding cone in
F(Q). We denote by

TvQ
∗ := {v + λ · (v′ − v) : v′ ∈ Q∗, λ ≥ 0}

the tangent cone of Q∗ in v, which is an affine cone with apex v. By [HUL01,
Corollary 5.2.5], we have TvQ

∗ − v = C∨ since C is the normal cone of Q∗ along the
vertex v. The statement now follows from Lemma 8.2 since TvQ

∗ ∩ (v+ cone(Σ)) =
{v} if and only if Q∗ ∩ (v + cone(Σ)) = {v}. The last statement follows since any
v′ ∈ TvQ

∗ ∩ (v + cone(Σ)) may be rescaled to be arbitrarily near to v. �

Definition 8.4. The Q-G/H-reflexive polytope Q is called G/H-reflexive if every
supported vertex of Q∗ lies in the latticeM.

We will show in Proposition 8.6 that this definition is in agreement with Defini-
tion 1.8.

Theorem 8.5. Recall that X is a Q-Gorenstein spherical Fano variety by assump-
tion. The variety X is Gorenstein if and only if the polytope Q is G/H-reflexive. In
particular, there is a bijection between isomorphism classes of Gorenstein spherical
Fano embeddings of G/H and G/H-reflexive polytopes.
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Proof. Let ψ : V → Q be the piecewise linear function corresponding to the Q-Cartier
divisor −KX . If Cv ⊆ NQ is the cone corresponding to the vertex v ∈ Q∗, we have
ψ|Cv∩V = −〈·, v〉. Then −KX is Cartier if and only if v ∈M for every v where Cv is
in Fsupp(Q), i. e. if and only if the supported vertices of Q∗ lie in the latticeM. �

Proposition 8.6. A polytope Q ⊆ NQ is G/H-reflexive if and only if the following
conditions are satisfied:

(1) ρ(Di)/mi ∈ Q for every i = 1, . . . , k.
(2) 0 ∈ int(Q).
(3) Every vertex of Q is contained in {ρ(Di)/mi : i = 1, . . . , k} or N ∩ V.
(4) Every supported vertex of Q∗ lies in the latticeM.

Proof. Let Q ⊆ NQ be a full-dimensional polytope satisfying the above conditions
and u ∈ Q a vertex not contained in {ρ(Di)/mi : i = 1, . . . , k}. Then we have
u ∈ V, which implies that there exists a supported full-dimensional cone C in F(Q)
having Q≥0u as extremal ray. Let v ∈ Q∗ be the supported vertex corresponding to
C. Then 〈u, v〉 = −1, and, as u ∈ N and v ∈M, we obtain that u is primitive. �

9. Global sections of the anticanonical sheaf

In this section, we recall from [Bri89, 3.3] the G-module structure of the space
of global sections of a B-invariant Cartier divisor on a spherical variety X. For
simplicity, we assume that X is complete. We then investigate the special case of
the anticanonical sheaf when X is Gorenstein Fano. We use [Tim11, Section 17.4]
as a general reference.

Let G/H ↪→ X be an arbitrary spherical embedding with associated supported
colored fan F. We denote byD1, . . . , Dk the colors and byX1, . . . , Xn theG-invariant
prime divisors in X. Consider a B-invariant Cartier divisor

δ :=
k∑
i=1

aiDi +
n∑
j=1

bjXj

on X. For every maximal supported colored cone (C,F) ∈ F we write vC ∈ M
as in the last part of Section 2. As in Remark 5.2, we may assume G = Gss × C
where Gss is semisimple simply-connected and C is a torus, and then the invertible
sheaf OX(δ) can be G-linearized. Let sδ be a rational section of OX(δ) satisfying
div sδ = δ. As δ is B-invariant, the section sδ is B-semi-invariant of some weight
κδ ∈ X(B) (not necessarily contained inM). We write Fmax for the set of maximal
cones of F, and we set DX :=

⋃
(C,F)∈Fmax

F . If we define

Pδ :=

u ∈ ⋂
(C,F)∈Fmax

(
−vC + C∨

)
: 〈ρ(D), u〉 ≥ −mD for every D ∈ D \ DX

,

then (κδ + Pδ) ∩ X(B) is contained in the set of dominant weights, and we have

Γ(X,OX(δ)) ∼=
⊕

χ∈(κδ+Pδ)∩X(B)

Vχ

where Vχ denotes the irreducible G-module of highest weight χ.

Remark 9.1. Let G/H ↪→ X be a Gorenstein spherical Fano embedding with
associated G/H-reflexive polytope Q, and let δ be the anticanonical divisor of
Theorem 1.2 equipped with the canonical G-linearization. It is straightforward to
check that we have κδ = κP and Pδ = Q∗.
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10. Examples illustrating Theorem 1.9

Example 10.1. Let G := SL2 × C∗ and consider H := N × {1} where N ⊆ SL2
is the normalizer of a maximal torus. Fix some maximal torus contained in some
Borel subgroup, and denote by α the unique simple root of SL2. Denote by ε a
primitive character of C∗. Then there is exactly one spherical root γ := 2α and
(γ, ε) is a basis of the lattice M. We denote by (γ∗, ε∗) the corresponding dual
basis of the lattice N . There is exactly one color D1 (of type 2a) with ρ(D1) = 2γ∗.
Then Q := conv(2γ∗, ε∗,−γ∗,−ε∗) ⊆ NQ is a G/H-reflexive polytope, and its dual
polytope is Q∗ = conv(γ− ε, γ+ ε,− 1

2γ+ ε,− 1
2γ− ε). The polytopes Q and Q∗ are

illustrated in Figure 2. The valuation cone is shown in grey, and the dashed arrow
is the image of the color under ρ in N . The dotted arrows are translates of the
spherical root γ ∈M showing that exactly the circled vertices of Q∗ are supported
(see Proposition 8.3).

Q ρ(D1) Q∗

Figure 2. Illustration to Example 10.1.

Example 10.2. Let G := Spin5 × Spin5. Fix some maximal torus contained
in some Borel subgroup, and denote by α1, α2 (resp. α′1, α′2) the simple roots of
the first (resp. the second) simple factor Spin5 where α2 (resp. α′2) is the shorter
root. According to the third entry in [Was96, Table B], there exists a spherical
homogeneous space G/H with spherical roots γ1 := α2 +α′2 and γ2 := α1 +α′1, such
that (γ1, γ2) is a basis of the latticeM. We denote by (γ∗1 , γ∗2) the corresponding
dual basis of the lattice N . We have Sp = ∅, and there are exactly two colors D1,
D2 (both of type b) with ρ(D1) = −γ∗1 + 2γ∗2 and ρ(D2) = 2γ∗1 − 2γ∗2 . As Sp = ∅, we
have κP = 2ρS (see Remark 4.3), so that the coefficients in the expression for the
canonical divisor are m1 = m2 = 2. Then Q := conv(γ∗1 − γ∗2 ,− 1

2γ
∗
1 + γ∗2 ,−γ∗1 ,−γ∗2 )

is a G/H-reflexive polytope, and its dual polytope is Q∗ = conv(γ1 − 1
2γ2, γ1 +

γ2, γ2,−4γ1 − 3γ2). The polytopes Q and Q∗ are illustrated in Figure 3. The
valuation cone is shown in grey, and the dashed arrows are the images of the colors
under ρ in N . The dotted arrows are translates of the spherical roots γ1, γ2 ∈M
showing that exactly the circled vertex of Q∗ is supported (see Proposition 8.3).

11. Polytopes with simplicial facets

The purpose of this section is to prove an auxiliary result on polytopes (Proposi-
tion 11.1), which will be used in the proof of Theorem 1.10.

Let V ∼= Qn be a vector space of dimension n and Q ⊆ V a full-dimensional
polytope with 0 ∈ int(Q).

Proposition 11.1. There exists a simplicial polytope Qs ⊆ V containing Q such
that the simplicial facets of Q are facets of Qs.
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Q

ρ(D1)

ρ(D2)

Q∗

Figure 3. Illustration to Example 10.2.

We denote the facets ofQ by F1, . . . , Fr. For every facet Fi we choose a hyperplane
Hi with normal vector ni ∈ V ∗, i. e.Hi = {v ∈ V : 〈ni, v〉 = 1} such that Fi = Q∩Hi.
Each hyperplane determines two open half-spaces

H−i := {v ∈ V : 〈ni, v〉 < 1} and
H+
i := {v ∈ V : 〈ni, v〉 > 1},

such that H−1 ∩ . . . ∩H−r = int(Q).
Definition 11.2. We say that v ∈ V is beneath (resp. is beyond) Fi if v belongs to
H−i (resp. to H+

i ).
We will use the following result.

Theorem 11.3 ([Grü03, Theorem 5.2.1]). Let v ∈ V such that v is a vertex of
Q′ := conv({v} ∪Q). Then

(1) a face F of Q is a face of Q′ if and only if there exists a facet E � Q such
that F ⊆ E and v is beneath E,

(2) if F is a face of Q, then F ′ := conv({v} ∪ F ) is a face of Q′ if and only if
(a) either v is contained in the affine span of F ,
(b) or among the facets of Q containing F there is at least one such that v

is beneath it and at least one such that v is beyond it.
Moreover, each face of Q′ is of one and only one of those types.

The following definitions are taken from [Ewa96, Chapter III, Sections 1 and 2].
Definition 11.4. Let F be a fan in V and σ ∈ F. Then we set

st(σ,F) := {σ′ ∈ F : σ ⊆ σ′} (the star of σ in F),
st(σ,F) := {σ′′ ∈ F : σ′′ ⊆ σ′ ∈ st(σ,F)} (the closed star of σ in F).

Definition 11.5. Let σ ⊆ V be a cone and v ∈ V not contained in σ. Then we
call v · σ := cone({v} ∪ σ) the join of v and σ.
Definition 11.6. Let F be a fan in V and v ∈ V . Assume that v · σ is defined for
every σ ∈ F and that relint(v · σ) ∩ relint(v · σ′) = ∅ whenever σ, σ′ ∈ F are distinct.
Then the fan v · F := {v · σ : σ ∈ F} is called the join of v and F.
Definition 11.7. Let F be a fan in V and v ∈ V a point such that there exists an
(automatically uniquely determined) cone σ ∈ F with v ∈ relint(σ). Then we call
the transition

F 7→ v ? F := (F \ st(σ,F)) ∪ v · (st(σ,F) \ st(σ,F))
the stellar subdivision of F in direction of v.

For a full-dimensional polytope Q′ ⊆ V with 0 ∈ int(Q′) we denote by F(Q′) its
face fan in V .
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Lemma 11.8. Let F � Q be a non-simplicial face and v ∈ relint(F ). Then there
exists a polytope Q′ ⊆ V containing Q such that

F(Q′) = v ? F(Q)
and the simplicial facets of Q are facets of Q′.

Proof. Let Fs1 , . . . , Fsk be the facets not containing F . Choose t > 1 such that
〈tv, nsj 〉 < 1 for j = 1, . . . , k and set v′ := tv. Then v′ is beneath the facets not
containing F and beyond the facets containing F . We set Q′ := conv({v′} ∪Q). As
simplicial facets of Q do not contain F , it follows from Theorem 11.3(1) that the
simplicial facets of Q are facets of Q′.

We now verify that F(Q′) = v ?F(Q). It suffices to check that the sets of maximal
cones coincide.

By Theorem 11.3(1), a facet Fi � Q does not contain F if and only if Fi is a
facet of Q′. Furthermore, the facets of Q not containing F are in correspondence
with the maximal cones in F(Q) \ st(Q≥0F,F(Q)).

Let F ′ be a facet of Q′ which is not a facet of Q. By Theorem 11.3(2), we
have F ′ = conv({v′} ∪ F ′′) where F ′′ � Q is a face of codimension 2 such that
among the facets of Q containing F ′′ there is at least one beneath and at least
one beyond v′. Such faces F ′′ are in correspondence with the maximal cones in
st(Q≥0F,F(Q)) \ st(Q≥0F,F(Q)). The result follows from the equality Q≥0F

′ =
v ·Q≥0F

′′. �

Proof of Proposition 11.1. We can transform the fan F(Q) into a simplicial one by
successively applying stellar subdivision to non-simplicial cones. By Lemma 11.8,
we also obtain a corresponding polytope. �

12. Proof of Theorem 1.10: the inequality ρX ≤ 2d

Let G/H ↪→ X be a Gorenstein spherical Fano embedding with associated G/H-
reflexive polytope Q. The condition for Q-factoriality from Proposition 2.8 can be
straightforwardly translated into the setting of G/H-reflexive polytopes as follows:

Proposition 12.1. X is Q-factorial if and only if every facet v̂ of Q for v ∈
Vsupp(Q∗) has exactly rankX vertices in V (Q), where such a vertex can not be equal
to ρ(D) for more than one D ∈ D.

Now assume that X is Q-factorial, of rank r, and of dimension d. The proof of
the inequality ρX ≤ 2d appearing here is an extended version of the proof of the
horospherical case in [Pas08]. Note that, in contrast to the horospherical case, not
all facets of the polytope Q are necessarily simplicial (only the facets dual to the
supported vertices of Q∗ are).

Lemma 12.2. Let v ∈ Vsupp(Q∗) and u ∈ V (Q) ∩N . If 〈u, v〉 = 0, then there is a
facet F � Q containing u and intersecting v̂ in a face of codimension 2 of Q, i. e. u
is adjacent to v̂.

Proof. Let e1, . . . , er be the vertices of the facet v̂ � Q. By [Grü03, Theo-
rem 3.1.6], for all j = 1, . . . , r there is exactly one facet Fj � Q containing
e1, . . . , ej−1, ej+1, . . . , er being distinct from v̂. Let uj be a vertex of Fj not contained
in v̂ ∩ Fj . Then (e1, . . . , ej−1, uj , ej+1, . . . , er) is a basis of NQ.

Let (e∗1, . . . , e∗r) be the basis ofMQ dual to (e1, . . . , er). Let j = 1, . . . , r. Then
〈e∗j , uj〉 6= 0 (otherwise uj would be contained in the hyperplane spanned by {ei}i 6=j).
We define

λj := −1− 〈uj , v〉
〈uj , e∗j 〉

and vj := v + λje
∗
j .
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Then we have 〈ei, vj〉 = −1 for i 6= j and 〈uj , vj〉 = −1. It follows that vj is a (not
necessarily supported) vertex of Q∗ and Fj = v̂j . We have λj > 0 as −1 < 〈ej , vj〉.
Then 〈u, vj〉 = λj〈u, e∗j 〉 and hence

u 6∈ Fj if and only if 〈u, e∗j 〉 ≥ 0.

If u 6∈ Fj for all j = 1, . . . , r, then 〈u, e∗j 〉 ≥ 0 for all j = 1, . . . , r and therefore
u ∈ cone(e1, . . . , er), which implies u = ej ∈ Fj for some j = 1, . . . , r, a contradiction.
We obtain u ∈ Fj for some j = 1, . . . , r. �

Corollary 12.3. Let v ∈ Vsupp(Q∗). Then we have |V (v̂)| = r and

|{u ∈ V (Q) ∩ V ∩ N : 〈u, v〉 = 0}| ≤ r.

Proof. As v̂ is a simplex, it has r vertices, which we denote by u1, . . . , un, and the
first assertion follows. For the second assertion, by Proposition 11.1, we may replace
the polytope Q by a simplicial polytope Q′ such that

V (Q) ∩ V ∩ N = V (Q′) ∩ V ∩ N and Vsupp(Q∗) ⊆ V ((Q′)∗).

Let u ∈ V (Q) ∩ V ∩ N with 〈u, v〉 = 0. By Lemma 12.2, there exists a facet
Fu � Q adjacent to v̂ and containing u. As Q is assumed simplicial, Fu has vertices
u1, . . . , ui−1, u, ui+1, . . . , ur for some i = 1, . . . , r. Since there are r facets adjacent
to v̂, the result follows. �

Lemma 12.4. Let Q ⊆ NQ be a G/H-reflexive polytope. Then 0 is contained in
the interior of the convex hull of the supported vertices of Q∗ and −Σ.

Proof. We set σ := cone(Vsupp(Q∗) ∪ (−Σ)) and show σ∨ = 0. Then σ = (σ∨)∨ =
0∨ =MQ, and hence 0 ∈ int(conv(Vsupp(Q∗) ∪ (−Σ))).

Assume 0 6= u ∈ σ∨. Since 〈u,−Σ〉 ≥ 0, we have u ∈ V . Then there is a supported
facet F � Q and a rational number t > 0 such that tu ∈ F . Let v be the supported
vertex of Q∗ such that v̂ = F . Then we have 0 ≤ 〈tu, v〉 = −1, a contradiction. �

It follows from Lemma 12.4 that there exist positive natural numbers mv and lγ
such that

0 =
∑

v∈Vsupp(Q∗)

mvv −
∑
γ∈Σ

lγγ.

We define M :=
∑
v∈Vsupp(Q∗)mv.

Proposition 12.5. We have

|V (Q) ∩ V ∩ N| ≤ 3r +
∑
γ∈Σ

∑
u∈V (Q)∩V∩N

lγ〈u, γ〉
M

.

Proof. For u ∈ V (Q) ∩ V ∩ N we define

A(u) := {v ∈ Vsupp(Q∗) : 〈u, v〉 = −1} and B(u) := {v ∈ Vsupp(Q∗) : 〈u, v〉 = 0}.

Then we have

0 =
∑

v∈Vsupp(Q∗)

mv〈u, v〉 −
∑
γ∈Σ

lγ〈u, γ〉

≥ −
∑

v∈A(u)

mv +
∑

v/∈A(u)∪B(u)

mv −
∑
γ∈Σ

lγ〈γ, u〉

= M − 2
∑

v∈A(u)

mv −
∑

v∈B(u)

mv −
∑
γ∈Σ

lγ〈u, γ〉
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and hence M ≤ 2
∑
v∈A(u)mv +

∑
v∈B(u)mv +

∑
γ∈Σ lγ〈u, γ〉. Summing up this

inequality over all u ∈ V (Q) ∩ V ∩ N , we obtain

|V (Q) ∩ V ∩ N|M ≤
∑
u

∑
v∈A(u)

2mv +
∑
u

∑
v∈B(u)

mv +
∑
u

∑
γ∈Σ

lγ〈u, γ〉

=
∑

v∈Vsupp(Q∗)

∑
〈u,v〉=−1

2mv +
∑

v∈Vsupp(Q∗)

∑
〈u,v〉=0

mv +
∑
γ∈Σ

∑
u∈V (Q)∩V∩N

lγ〈u, γ〉.

For a fixed v the number of vertices u of V with 〈u, v〉 = −1 is equal to the number
of vertices of the facet v̂, which is exactly r. By Corollary 12.3, the number of
u ∈ V (Q) ∩ V ∩ N with 〈u, v〉 = 0 is less than or equal to r. Hence the result
follows. �

Proposition 12.6. We have ρX ≤ 2r + |D| ≤ 2r + 2|S \ Sp| ≤ 2d.

Proof. As 〈u, γ〉 ≤ 0 for every γ ∈ Σ, u ∈ V, it follows from Proposition 12.5 that
|V (Q) ∩ V ∩N| ≤ 3r. Let r′ be the number of G-invariant prime divisors in X. It
follows from [Bri07, Proposition 4.1.1] that

ρX = r′ + |D| − r ≤ |V (Q) ∩ V ∩ N|+ |D| − r ≤ 2r + |D|.

By [Tim11, Theorem 30.22], we obtain |D| ≤ 2|S \ Sp|, and by [Tim11, Corol-
lary 15.18], we obtain r + |S \ Sp| ≤ d. �

13. Proof of Theorem 1.10: the extreme case ρX = 2d

Let G/H ↪→ X be a Q-factorial Gorenstein spherical Fano embedding of rank r
and of dimension d with ρX = 2d.

Proposition 13.1. We have |S \ Sp| = |R+ \ R+
Sp | where RSp denotes the root

system generated by Sp.

Proof. According to Proposition 12.6, we have d = r + |S \ Sp|. On the other hand,
we have d = r + dimG/P = r + |R+ \R+

Sp |. �

Proposition 13.2. The root system R is of type Ak1 ×RSp for some k ∈ Z≥0.

Proof. As S ⊆ R+ and Sp ⊆ R+
Sp , it follows from Proposition 13.1 that R+ \R+

Sp =
S \ Sp, which means that every positive root not contained in R+

Sp is simple. Let
α ∈ S \ Sp. Then the irreducible factor of R which contains α must be of type A1
as it can not contain any non-simple positive root. �

As in Remark 5.2, we may assume G = Gss ×C where Gss is semisimple simply-
connected and C is a torus. According to Proposition 13.2, we have Gss ∼= SLk2 ×G′
where G′ is the factor corresponding to RSp .

Corollary 13.3. We may assume G = SLk2 × C.

Proof. Let P = LnPu be the Levi decomposition with T ⊆ L. According to [Tim11,
Theorem 4.7], [L,L] acts trivially on the open B-orbit in X. The result follows from
the observation G′ = [L,L]. �

Corollary 13.4. We have V (Q) ∩ V ⊆ N consists of all primitive ray generators
where the rays correspond to G-invariant prime divisors.

Proposition 13.5. We have Σ = ∅.
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Proof. According to the proof of Proposition 12.6, we must have |V (Q)∩V∩N| = 3r.
Taking into account Proposition 12.5, this implies∑

γ∈Σ

∑
u∈V (Q)∩V∩N

lγ〈u, γ〉
M

= 0.

By Proposition 12.6 and 13.2, we obtain |D| = 2|S \ Sp| = 2k and thus all colors
are of type a, Σ ⊂ S and D(α) ∩ D(β) = ∅ for two distinct α, β ∈ S. In particular,
〈ρ(D), α〉 ≤ 1 for all D ∈ D and all α ∈ Σ with equality if and only if D ∈ D(α). As
ρ(D′)+ρ(D′′) = α∨ for D(α) = {D′, D′′}, we obtain 〈ρ(D), α〉 = 0 for all D 6∈ D(α).
Since X is complete, for every α ∈ Σ there exists a primitive ray generator v ∈ V
such that 〈v, α〉 < 0. As lα > 0, we obtain Σ = ∅. �

By Proposition 13.5, X is horospherical, and therefore the last part of Theo-
rem 1.10 follows from [Pas08, Théorème 1.2].
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