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Abstract

When a confined long gas bubble rises in a vertical tube in a co-current liquid flow, its transla-

tional velocity is the result of both buoyancy and mean motion of the liquid. A thin film of liquid

is formed on the tube wall and its thickness is determined by the interplay of viscous, inertial,

capillary and buoyancy effects, as defined by the values of the Bond number (Bo ≡ ρgR2/σ with ρ

being the liquid density, g the gravitational acceleration, R the tube radius and σ the surface ten-

sion), capillary number (Cab ≡ µUb/σ with Ub being the bubble velocity and µ the liquid dynamic

viscosity) and Reynolds number (Reb ≡ 2ρUbR/µ). We perform experiments and numerical simu-

lations to investigate systematically the effect of buoyancy (Bo = 0− 5) on the shape and velocity

of the bubble and on the thickness of the liquid film for Cab = 10−3− 10−1 and Reb = 10−2− 103.

A theoretical model, based on an extension of Bretherton’s lubrication theory, is developed and

utilized for parametric analyses; its predictions compare well with the experimental and numerical

data. This study shows that buoyancy effects on bubbles rising in a co-current liquid flow make

the liquid film thicker and the bubble rise faster, when compared to the negligible gravity case. In

particular, gravitational forces impact considerably the bubble dynamics already when Bo < 0.842,

with Bocr = 0.842 being the critical value below which a bubble does not rise in a stagnant liquid

in a circular tube. The liquid film thickness and bubble velocity in a liquid co-flow may vary by

orders of magnitude as a result of small changes of Bo around this critical value. The reduction

of the liquid film thickness for increasing values of the Reynolds numbers, usually observed for

Reb . 102 when Bo � 1, becomes more evident at larger Bond numbers. Buoyancy effects also

have a significant influence on the features of the undulation appearing near the rear meniscus of

the bubble, as they induce a substantial increase in its amplitude and decrease in its wavelength.

∗ m.magnini@imperial.ac.uk
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I. INTRODUCTION

The flow of an elongated gas bubble in a narrow gap is of interest to many diverse processes

that span different science and engineering fields, e.g. microchannel two-phase cooling [1],

transport of pollutants in unsaturated soil [2], cleaning of bacterial cells from medical surfaces

[3], medical therapy [4] and membrane-less electrolyzers for hydrogen production [5]. As the

bubble progresses through a liquid-filled duct, capillary and viscous forces promote the

formation of a thin film of liquid between the liquid-gas interface and the channel wall and

its thickness impacts the wall-fluid exchanges. Manifestations of this are exemplified by the

fact that the heat transfer coefficient in a slug flow boiling regime is inversely proportional to

this thickness [6], while the mass transfer from the gas to the walls of a multiphase monolith

reactor is enhanced by a short diffusion path [7, 8]. Gas bubbles generated in water-saturated

soil are effective in detaching micron-sized colloids adhering on the pore walls due to surface

tension forces, if the liquid film is thinner than the particle size [9]. In medical practice,

air bubbles are introduced in pulmonary airways by mechanical ventilation of a collapsed

lung, and the consequent shear stress exerted on the airway walls may injure the lung tissues

[10]. Therefore, the ability to predict the dynamics of long bubbles traveling in a confined

geometry attracts attention from a diverse range of research fields.

The present work focuses on vertically-oriented channels with a circular cross-section.

When a long gas bubble travels upward in a vertical tube in the presence of a co-current

liquid flow, its translational velocity, Ub, is a superposition of the bubble velocity in a

stagnant liquid Ub,0 and a contribution due to the liquid flow rate [11]:

Ub = Ub,0 + ΓUl, (1)

where Ul is the mean liquid velocity in the tube and Γ is an empirical coefficient that depends

on the dimensionless parameters of the problem. Within the assumption of an axisymmetric

flow, the thickness of the liquid film surrounding the bubble is constant along the perimeter

of the tube, as shown in the schematic depicted in Fig. 1. The impact of buoyancy on the

dynamics of the rising bubble may be quantified by the Bond number, Bo ≡ ρgR2/σ, where

ρ denotes the liquid density (the density of the gas is considered negligible in this work), g

the gravitational acceleration, R the tube radius and σ the surface tension. The dynamics of

long gas bubbles translating in a vertical tube has been investigated extensively in the limits
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Table I. Selected studies on the dynamics of isolated long bubbles in co-current liquid flows and

circular tubes. References on bubble-trains or bubbles rising in a stagnant liquid are not considered

here. The nondimensional groups appearing below are defined as follows: Bo ≡ ρgR2/σ, Cab ≡

µUb/σ, Reb ≡ 2ρUbR/µ, Rel ≡ 2ρUlR/µ and Web ≡ Cab Reb.

Bo� 1

Reference Flow parameters Methodology Main observations

Bretherton [12]
Cab ≤ 0.005, Lubrication theory applied to h0

R
= 1.34Cab

2/3
Reb � 1 the flow in the liquid film

Taylor [13]
Cab up to 2 Experimental measurement

h0 → R/3 as Cab → 2
Reb � 1 of liquid film thickness

Aussillous and Quéré [14]
Cab . 2 Experimental measurements h0

R
=

1.34Cab
2/3

1 + 3.35Cab
2/3Reb � 1 and fit to Taylor’s data

de Ryck [15]
Cab ≤ 2 Lubrication theory Data of [13] and [14]

Reb . 103 including inertia well predicted by the model

Han and Shikazono [16]
Cab ≤ 0.2 Experimental measurement h0

R
≈

Cab
2/3

1 + Cab
2/3 + f(Cab,Reb)− g(Web)Reb . 103 of liquid film thickness

Magnini et al. [17]
Cab ≤ 0.1 Lubrication theory and When Web ≥ 1, undulations appear

Reb ≤ 103 numerical simulations at the rear meniscus and λ = λ(Web)

Bo� 1, vertical tubes

Reference Flow conditions Study performed Main observations

Nicklin et al. [11]
Rel up to 60000 Experimental measurement Ub,0 = 0.35(2gR)1/2. Γ = 1.2

Bo = 22 of bubble velocity for Rel > 8000, Γ→ 1.8 as Ul → 0

Collins et al. [18]
Rel up to 20000 Potential flow theory Γ = 2.27 if laminar flow

Bo > 90 and experiments and Γ = 1.2− 1.4 if turbulent flow

Bendiksen [19]
Reb > 100 Potential flow theory including Both Ub,0 and Γ decrease as

Bo > 10 surface tension effects Bo decreases

Bo ∼ 1, vertical tubes

Reference Flow conditions Study performed Main observations

Bretherton [12]
Cab ≤ 0.005, Lubrication theory applied to h0/R is increased by a factor

Reb � 1 the flow in the liquid film 1± 2
3

Bo for upward/downward flow

Thulasidas et al. [7]
0.004 ≤ Cab ≤ 3, Experimental measurement h0 at the lowest Cab tested does not agree

Reb ≤ 2, Bo = ±0.43 of liquid film thickness with Bretherton’s correction factor

Bo� 1 (large tubes), and Bo� 1, where gravity effects vanish and the pipe orientation is

not important. A summary of the most relevant works is provided in Table I.

The Bo � 1 regime (where Ub,0 = 0) is pertinent to flow in tubes with radii smaller

than the capillary length
√
σ/(ρg), e.g. the flow of a bubble in an aqueous solution with

ρ = 1000 kg/m3, σ = 0.073 N/m in a tube of diameter 2R = 1 mm gives Bo = 0.03 at
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terrestrial gravity, and it was originally studied as a model for enhanced oil recovery and

flow in porous media [20]. In this regime, the bubble dynamics is fully determined by the

interplay between viscous and capillary forces, characterized by the bubble capillary number

Cab ≡ µUb/σ (with µ being the liquid dynamic viscosity), and by the ratio of inertial to

viscous effects expressed by the bubble Reynolds number, Reb ≡ 2ρUbR/µ. In the visco-

capillary regime Reb � 1, the theoretical analysis of Bretherton [12] was based on the model

of an annular liquid film region separating the front and rear menisci of the bubble, where in

the limit that Cab . 10−3 the thickness of the film can be predicted as h0/R = 1.34Cab
2/3.

Later, Aussillous and Quéré [14] performed a scaling analysis of the forces acting on the front

meniscus of the bubble and utilized the film thickness measurements of Taylor [13] for very

viscous liquids to set an empirical constant in their scaling law. In the visco-inertial regime

Reb � 1, inertial forces tend to reduce the liquid film thickness at intermediate values of the

Reynolds number (Reb . 102) and to increase it when Reb > 102 [8, 16]. The theoretical

models of de Ryck [15] and Magnini et al. [17] adopted a lubrication approximation to

describe the dynamics of the free-surface in the presence of inertia and derived a third-order

ordinary differential equation for the liquid film thickness; solution of this equation yielded

the entire profiles of the front and rear menisci of the bubble.

The Bo� 1 regime is obtained in large vertical tubes (Bo > 10 for an aqueous solution in

a tube of diameter 2R > 20 mm) and it was originally motivated by submarine applications

[21, 22]. The main focus of the studies in this regime was on the determination of Ub,0 and of

the coefficient Γ in Eq. (1) for co-current flows. The first study for co-current flow conditions

was apparently performed by Nicklin et al. [11], who reported values of Γ = 1.2 for turbulent

flows (Rel ≡ 2ρUlR/µ > 8000) and values converging to about 1.8 as the liquid flow rate

was reduced to zero. Theoretical analyses were limited to the inertia-controlled regime,

which was assumed to occur when Reb > 105 and Bo > 25 [18]. Collins et al. [18] adopted

potential flow theory to study the inviscid axisymmetric flow of liquid around the bubble

nose, which was assumed spherical. They obtained the theoretical values of Γ = 2.27 for

laminar flow (Rel < 2100) and Γ = 1.2− 1.4 for turbulent flow (Rel > 2100) which matched

their experimental data well. Bendiksen [19] included the effect of surface tension on the

bubble profile in the theory developed by Collins et al. [18], and proposed a correlation to

evaluate Γ as a function of Bo for Bo > 10. More recently, new empirical correlations have

been obtained to estimate Γ, albeit in the limit of large tubes and large Reynolds numbers
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[23–25].

In contrast, the vertical flow of individual long bubbles in co-current liquid for Bo ∼ 1

has received far less attention. This is now of interest for a number of applications such as

compact heat exchangers, where the refrigerants utilized (hydro-fluoro-carbons and hydro-

fluoro-olefins) have values of the liquid density marginally above that of water but much

smaller surface tensions, typically in the range of σ = 0.01 − 0.02 N/m, thus giving Bond

numbers within the range Bo = 0.1 − 5 for tubes of diameter 2R = 1 − 5 mm. In the low

capillary number limit, Bretherton [12] proposed to correct the film thickness by a factor

1 ± 2
3
Bo for upward and downward flow, respectively. He compared this corrected scaling

with the results of experiments performed in a vertical tube, however the scatter of the data

available makes it difficult to draw clear conclusions regarding the validity of the correction

term. Thulasidas et al. [7] performed experiments in vertical capillaries with isolated bubbles

at Bo = 0.43 by systematically varying Cab. They observed that, at the lowest experimental

Cab (Cab ≈ 0.01), the film thicknesses for both upward and downward flow did not agree

with Bretherton’s correction term when compared to the horizontal flow case. The same

observation was reported in the numerical study of Hazel and Heil [26] with Bo = 0.45.

Also, it is worthwhile to mention that, in the second part of his classical paper, Bretherton

[12] modified his theory to analyze the upward motion of a long bubble in a stagnant liquid

and observed that no steady solution for the profile of the bubble nose exists if the Bond

number is below a critical value, Bocr = 0.842, as confirmed in other experimental studies

[27–29]. This critical value of the Bond number is often assumed as the lower limit for the

importance of gravitational effects also in the presence of a bulk liquid flow [30].

The objective of the present work is to investigate the dynamics of individual long bubbles

rising in a vertical circular channel in a co-current laminar liquid flow, for values of the Bond

number around the critical condition Bocr = 0.842. In particular, we assess the influence of

buoyancy effects when the Bond number transitions across the critical value (Bo = 0 − 5).

This study adopts a combination of theory, experiments and numerical simulations. The

theoretical model is based on an extension of the Bretherton theory to describe the flow

in the liquid film surrounding the bubble, and incorporates the effects of capillary, viscous,

inertial and gravitational forces. The experiments are based on a refractive-index-matching

technique, and are employed for a quantitative analysis of the bubble shape and velocity in

the Reb � 1 regime. The numerical simulations are based on a Volume-Of-Fluid (VOF)
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method [31], and are utilized to explore the Reb � 1 regime. Experiments and numerical

simulations also provide validation to the theoretical model. The rest of this article is

organized as follows: in Sec. II, a description of the flow problem is presented; the results

of the theoretical and experimental analyses for flows with negligible inertia are discussed

in Sec. III; in Sec. IV, the outcome of the theoretical model and numerical simulations for

flows with inertial effects are described.

II. PROBLEM FORMULATION

We consider an elongated gas bubble rising at a steady velocity Ub in a vertical channel

of circular cross-section of radius R. The tube is filled with liquid, which flows with an

average velocity denoted Ul in the same direction as the bubble. The flow is subject to a

gravitational force acting downward with acceleration g, so that buoyancy contributes to

the upward motion of the bubble. Figure 1 shows a sketch of the flow configuration under

consideration, in a reference frame attached to the gas bubble. The bubble profile and the

flow field are assumed to be axisymmetric. In order to describe the thin liquid film, the

radial direction y is chosen from the tube wall inwards. The axial coordinate x is directed

upward, and the reference x = 0 will be changed, as convenient, during this work. In

these coordinates, the axial and radial liquid velocity components are defined as u and v,

respectively, with v being positive when directed towards the axis of the tube. The walls

move with velocity (u, v) = (−Ub, 0), in accordance with the no-slip and no-penetration

conditions. At steady-state, the gas-liquid interface is located at h(x).

Following the notation and description of Bretherton [12], we assume that there exists

a region of uniform film thickness, region CD in Fig. 1, where the liquid moves parallel to

the wall of the tube and the film has a uniform film thickness h0. From point C, moving

towards its nose, the bubble presents a front dynamic meniscus region indicated as AC, with

A identified as the intersection between the interface profile and the axis of the pipe. Here,

the liquid film thickness increases monotonically from h = h0 at C to h = R at A. From

point D, moving towards the bubble rear, there exists a dynamic meniscus region DF where

the liquid film thickness first undulates around h0 [17] then eventually grows monotonically

to h = R at point F , thus forming the rear cap.

We assume that the flow is laminar, steady, and incompressible, and that the fluid is
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Figure 1. Sketch of a confined elongated bubble flowing within a vertical tube and notation used

in this work. Regions AC and DF represent the front and rear menisci, respectively; region CD

represents the uniform film zone. Points B and E, which in the original work of Bretherton [12]

defined static menisci regions AB (front) and EF (rear), are not included in the figure because

under the conditions presently studied the bubble profile does not necessarily end with two static

menisci regions.

Newtonian. The steady-state Navier-Stokes equations governing the flow in the liquid film

surrounding the bubble are reported in Appendix A in dimensional form. We nondimen-

sionalize according to:

û =
u

U
, v̂ =

v

V
, x̂ =

x

`
, ŷ =

y

h0

, p̂ =
p

µU`/h2
0

, ĥ =
h

h0

, κ̂ =
κ

h0/`2
, (2)

where p denotes the pressure, µ the dynamic viscosity of the liquid and κ the interface curva-

ture. We assume that the uniform film thickness h0 is much smaller than the characteristic
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length of the dynamic meniscus `, i.e. ε = h0/` � 1, so that from the continuity equation

it follows that V = εU . The bubble velocity Ub is used hereafter as a velocity scale, so that

U = Ub. We now suppress the hat decoration. The dimensionless Navier-Stokes equations,

written in the axisymmetric, cylindrical coordinates introduced in Fig. 1, are given by

ux + vy − v
H

1−Hy
= 0, (3a)

εRebH

2
(uux + vuy) = −px + ε2uxx + uyy − uy

H

1−Hy
− BoH2

Cab

, (3b)

ε3RebH

2
(uvx + vvy) = −py + ε4vxx + ε2vyy − ε2vy

H

1−Hy
− ε2v H2

(1−Hy)2
, (3c)

where the subscripts indicate derivatives and the nondimensional groups are

H ≡ h0

R
, Cab ≡

µUb
σ
, Reb ≡

2ρUbR

µ
, Bo ≡ ρgR2

σ
, (4)

with ρ being the liquid density and σ the surface tension. The no-slip and no-penetration

conditions apply at the channel wall:

u = −1 and v = 0, at y = 0. (5)

When neglecting the viscous stress within the gas phase, and setting the pressure within the

bubble to a zero reference value, the tangential and normal-stress conditions at the interface

are given by

uy + ε2vx +
2ε2hx

1− ε2h2
x

(vy − ux) = 0, at y = h(x), (6)

and p− 2ε2vy +
(
ε2uy + ε4vx

)
hx = − ε3

Cab

κ, at y = h(x). (7)

The unit normal vector at the interface is directed into the bubble (see Fig. 1) and has

components

n =
1

(1 + ε2h2
x)

1/2
(−εhx, 1) , (8)

and the interface curvature is

κ = κ1 + κ2 =
hxx

(1 + ε2h2
x)

3/2
+
H

ε2
1

(1−Hh)(1 + ε2h2
x)

1/2
, (9)

where κ1 indicates the curvature in the x− y plane and κ2 the contribution due to the axial

symmetry.
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III. FLOWS WITH NEGLIGIBLE INERTIA

In this section, we study the dynamics of the bubble in the Reb � 1 regime. Sections III A

and B illustrate the theoretical model; the experimental setup adopted to analyze the bubble

dynamics in the absence of inertial effects is described in Sec. III C; the results obtained with

the model and experiments are compared and discussed in Sections III D and E.

A. Approximate model

We develop a model to derive the shape of the front meniscus of the rising bubble, based

on the numerical solution of an approximate set of equations governing the steady flow in the

liquid film. Starting from the complete nondimensional equations formulated in Section II,

we assume that ε = h0/`� 1. The capillary number is considered to scale as Cab = O(ε3),

so that it follows from Eq. (7) at leading-order that pressure and surface tension forces are

balanced at the interface. This choice determines the scaling of the length of the dynamic

meniscus, ` = h0Cab
−1/3. According to the theory of Bretherton [12] for Cab � 1, we

set the nondimensional film thickness to scale as H = O(ε2). In this section, we neglect

the contribution of inertial forces by assuming Reb = O(1) or smaller. We assume that

Bo = O(ε−1), so that the buoyancy term in Eq. (3b) appears with the same order as the

streamwise pressure gradient. At leading-order in ε, Eq. (3) becomes

ux + vy = 0, (10a)

uyy = px + T 2, (10b)

py = 0, (10c)

where

T 2 ≡ H2 Bo

Cab

. (11)

At the tube wall, the no-slip and no-penetration boundary conditions expressed in Eq. (5)

apply. The boundary conditions at the gas-liquid interface are rewritten from Eqs. (6) and

(7) at leading-order in ε:

uy = 0, at y = h(x), (12)

and p = −κ, at y = h(x). (13)
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A consistent leading-order expression for the interface curvature is κ = hxx + H/Cab
2/3,

which is accurate in the thin-film region, where |hx| � 1. However, near the bubble front

and rear caps, |hx| becomes large. Therefore, to obtain a set of equations that describe

the liquid flow both in the thin-film and the bubble caps regions, we retain the complete

expression of the interface curvature [32, 33]

κ =
hxx

(1 + Cab
2/3h2

x)
3/2

+
H

Cab
2/3

1

(1−Hh)(1 + Cab
2/3h2

x)
1/2
. (14)

By integrating once the y−momentum Eq. (10c) along y and using the boundary condition

Eq. (13) to fix the integration constant, the pressure gradient along x in Eq. (10b) can be

written as px = −κx. Integrating the x−momentum equation twice along y, with the

boundary conditions expressed in Eqs. (5) and (12), the velocity profile in the dynamic

meniscus is derived:

u(x, y) =
(
−κx + T 2

)(y2

2
− hy

)
− 1. (15)

At steady-state, the volume-flux of liquid across the dynamic meniscus region AC equals

the flux of liquid across the flat-film region CD:

Q =

h∫
0

u(x, y)dy =

1∫
0

uCD(y)dy, (16)

where uCD is the liquid velocity profile in the flat-film region

uCD(y) = T 2

(
y2

2
− y
)
− 1. (17)

Introducing Eqs. (15) and (17) into Eq. (16), calculating the integrals and rearranging the

terms, a third-order nonlinear ordinary differential equation (ODE) for the liquid film profile

is obtained:

κx = 3
(h− 1)

h3︸ ︷︷ ︸
viscous term

+T 2 (h3 − 1)

h3︸ ︷︷ ︸
buoyancy term

. (18)

In Eq. (18), the first term on the right-hand side is the standard leading-order viscous term

that enters the Bretherton problem, while the last term introduces the gravitational force.

Using the complete expression of the interface curvature shown in Eq. (14), the left-hand

side of Eq. (18) reads as:

κx =
hxxx

f
3/2
1

− 3Cab
2/3hxh

2
xx

f
5/2
1︸ ︷︷ ︸

curvature, first term

+
Hhx

Cab
2/3(1−Hh)2f

3/2
1

[
Hf1 − Cab

2/3(1−Hh)hxx

]
︸ ︷︷ ︸

curvature, second term

, (19)
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where

f1 = 1 + Cab
2/3h2

x. (20)

A detailed analysis of the importance of the various terms appearing in Eqs. (18) and (19)

is included in the Supplemental Material.

The presence of a liquid upflow with average velocity Ul does not appear explicitly in

Eq. (18). However, Ul and Ub are linked via the material balance of the liquid flow (see

Appendix B for full derivation)

Cab =
Cal

(1−H)2
+ Bo

[
−(1−H)2 log(1−H)

2
− 1

2
+

1

8(1−H)2
+

3(1−H)2

8

]
, (21)

where Cal ≡ µUl/σ. The ODE can be solved for independent values of Cab and Bo to

yield the uniform film thickness H, then utilizing Eq. (21) to extract an estimate of Cal.

Alternatively, we assume that Cal is known, then Eqs. (18) and (21) can be solved iteratively

to yield converged values of both H and Cab.

B. Numerical integration

The profile of the front meniscus of the elongated bubble, for a given set of Cab and Bo

numbers, can be obtained by a numerical integration of Eq. (18). The numerical integration

is performed by means of the Matlab solver ode45. The integration starts from the flat-

film region, point C in Fig. 1, where the boundary conditions h(xC) = 1, hx(xC) = 0

and hxx(xC) = 0 apply, and proceeds towards x → +∞. The initial conditions for the

numerical solution are derived as a linear perturbation of the boundary conditions above,

h(x) = 1 + esx, hx(x) = sesx, hxx(x) = s2esx, where δ = esx is a small perturbation (set to

10−4 in our calculation) and s is the solution of the following equation derived by linearization

of Eq. (18):

s3 +
H2

Cab
2/3(1−H)2

s− 3
(
1 + T 2

)
= 0. (22)

The bubble cap does not end with a static meniscus region when the capillary number is

increased above 10−3 (see Fig. 1(f) in the Supplemental Material), and hence the matching to

a static profile as done by Bretherton [12] cannot be used. Therefore, Eq. (18) is integrated

until the interface profile reaches the channel axis, point A in Fig. 1, where h = 1/H.
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Since the nondimensional film thickness H depends on both Cab and Bo and is not known

beforehand, the first numerical integration is performed with an initial guess for the value

of H. Once terminated, the numerical integration is repeated by updating the value of H,

according to an iterative procedure. This procedure has the objective to find the value of

H that yields an interface profile that satisfies the asymptotic condition [15, 17]

κ1 = κ2, when h =
1

H
. (23)

The results of validation tests conducted versus literature data for the Bo � 1 regime are

reported in the Supplemental Material. The bubble profiles and uniform film thickness

obtained utilizing the approximate model in the Bo ∼ 1 regime will be compared with

experimental results in Section III D.

C. Experimental setup

Experiments in the Reb � 1 (Reb ≈ 10−2) regime were performed using glycerol as the

liquid phase (density ρ = 1186 kg/m3, viscosity µ = 0.84 Pa · s and surface tension σ =

0.063 N/m) and air as the gas phase. Three different radii of glass tubes R = 1.01, 1.51 and

2.91 mm corresponding to Bo = 0.19, 0.42 and 1.56 were tested, thus allowing investigation

of bubble dynamics as the Bond number transitions from below to above the critical value

of 0.842 [12]. The tube diameters were measured optically using pre-calibrated microscope

objectives. The glass tubes were 30 cm long and were held vertical within a refractive-index-

matching box that ensured no optical deformation in the images due to the curvature of the

tube wall [34]. The rigid glass capillary was connected to a syringe pump using flexible

tubings to inject liquid at constant flow rate. A long air bubble was injected through a

T-junction upstream of the glass capillary. This setup was used to study only the Reb � 1

regime due to the large flow development length required in Reb � 1 conditions.

The region of interest (ROI) was illuminated from the back using a LED light panel and

shadowgraph images, see examples in Fig. 2, were captured at the rate of 30 frames per

second through the front side of the refractive-index-matching box using a Nikon D5100

camera. A horizontal homemade tube microscope with 10X and 5X objectives was used

for imaging the ROI on the centreplane of the glass capillaries of R = 1.01 and 1.51 mm,

respectively, whilst a macrolens was used for the larger radius tube. These configurations
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Figure 2. Examples of bubble shapes extracted from experiments in the R = 1.51 mm tube (Bo =

0.42) at different liquid flow rates (Rel � 1). Images contain visualization of the nose and of the

central part of the bubble, where the film thickness is uniform.

ensured a minimum number of 10 pixels in the film region, so that the relative error in the film

thickness measurement never exceeded 10 %. The interface between the air bubble and the

liquid phase was detected in the thresholded image sequence using a Canny edge detection

algorithm [34]. The flow rate of the liquid phase, thus Cal, was the control parameter in all

experiments, whilst the corresponding Cab (Cab = 10−3 − 0.15) was measured by tracking

the nose of the bubble at each test condition. The experimental uncertainties for the average

liquid velocity, bubble velocity, liquid viscosity and surface tension are 0.5 %, 1 %, 4 % and

1 %, respectively, that yield less than 5 % uncertainty in the calculated values of Cal and

Cab. The steady-state motion of the bubble at the measurement section was verified by

calculating the velocity of the bubble nose frame-by-frame while the bubble crossed the

ROI.

D. Theoretical predictions and experimental results

The theoretical model based on the numerical integration of Eq. (18) is utilized to obtain

predictions of the profile of the bubble nose, bubble velocity and uniform film thickness

under the experimental conditions. In the experiments, the liquid capillary number Cal is the
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control parameter, while the solution of the ODE requires knowledge of Cab. Therefore, the

theoretical model is run iteratively, according to the following steps: (i) the input values of

Cal and Bo are defined; (ii) at the first iteration, Cab is taken equal to Cal; (iii) Equation (18)

is solved iteratively, starting with a guess value of H, to find the value of H that satisfies

the asymptotic condition Eq. (23); (iv) the material balance in Eq. (21) is used, with the

converged value of H from the previous iteration, to update Cab; (v) steps (iii) and (iv) are

repeated until the relative variation of Cab between two consecutive iterations is below 10−3.

The profile of the bubble nose, the nondimensional film thickness H and bubble capillary

number Cab at convergence are the final results corresponding to Cal and Bo.

The shapes of the bubble nose predicted by the model and extracted from the experiments

for selected values of Cal and Bo are presented in Fig. 3. It can be seen that as the Bond

number is increased, the liquid film becomes thicker as more liquid flows downwards through

the film region. A comparison of the entire experimental database with the liquid film
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Figure 3. Comparison of shapes of the bubble front predicted by the theoretical model (solid lines)

and shapes extracted from the experiments (symbols). Flow conditions all refer to Cal ≈ 0.005

(Rel � 1). In this figure, x and h indicate dimensional quantities.
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Figure 4. Comparison of the (a) thickness of the uniform film region and (b) capillary number

associated to the bubble velocity given by the model (solid lines) and experiments (symbols),

Rel � 1. The error bars (in some cases obscured by the solid symbols) refer to the experimental

uncertainty measured by taking the average of three measurements for each test condition.

thickness and bubble velocity obtained with the theoretical model is provided in Fig. 4. The

results are displayed as a function of Cal because, for a given geometry, the average liquid

velocity was the control parameter. The predictions for negligible gravity effects, Bo = 0,

are also reported as a reference.

When the capillary number of the liquid is increased (see Fig. 4(a)), i.e. when the average

velocity of the liquid in the experiment is increased, the liquid film becomes thicker as

expected from the traditional capillary theory. The nondimensional film thickness increases

with the Bond number, i.e. the diameter of the tube in the experiment, and already at the

lowest Bond number tested H is larger than the value predicted for Bo = 0. Hence, buoyancy

influences the flow even when Bo < 0.842. The results for different Bond numbers seem to

converge at high Cal, thus indicating that viscous forces overcome buoyancy forces. However,

as the average liquid velocity (Cal) is reduced, both the nondimensional film thickness and

bubble velocity (Cab) exhibit very different trends depending on the Bond number. For

Bo = 0.19 and 0.42, Cab → 0 as Cal → 0 (the bubble slows down) and the film thickness
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decreases continuously following a Cal
2/3 scaling analogous to the Bo = 0 case (assuming

that Cab ≈ Cal as Cab → 0). Therefore, as the liquid velocity decreases, buoyancy alone is

not sufficient to sustain the upward motion of the bubble, although the liquid film remains

thicker than the case where gravity is negligible. In contrast, for Bo = 1.56 as the liquid

flow rate is decreased both the bubble speed and film thickness decrease down to asymptotic

values. This result is in line with Bretherton’s theory, for which if Bo > Bocr = 0.842, the

bubble would still rise in the absence of a mean liquid flow.

The theoretical model captures well the experimental trends of liquid film thickness and

bubble speed; the model slightly underpredicts H at lower Bo and overpredicts it at larger

Bo. Nonetheless, the average deviations between experimental data and theoretical results

are 10 % for H and 5.3 % for Cab, which are within the experimental uncertainties. In order

to better understand the dynamics of the bubble in the Bo ∼ 1 regime, in the next section

we outline the results of a parametric analysis conducted by using the theoretical model.

E. Discussion

A parametric analysis was performed by utilizing the theoretical model to systematically

explore the range Cal = 10−6 − 10−1 and Bo = 0 − 2.5. The predictions for the liquid

film thickness as a function of Cal are presented in Fig. 5(a). In agreement with the trends

observed in Fig. 4, the following three regimes are identified: (i) when Cal approaches a

value of about 0.1, the trends of the liquid film thickness for different Bond numbers tend

to converge as viscous forces become dominant over buoyancy effects; (ii) when Cal → 0

and Bo < Bocr, the curves follow the same trend as the Bo = 0 case, although H increases

considerably with Bo; (iii) when Cal → 0 and Bo > Bocr, the uniform film thickness (and the

bubble speed, not shown here) decreases down to an asymptotic value, which is a function

of Bo. The results recompiled as a function of the Bond number are illustrated in Fig. 5(b).

When the liquid capillary number is decreased below 0.1, the liquid film thickness may vary

by orders of magnitude as the Bond number crosses the critical value Bocr = 0.842. This

transition becomes steeper as the capillary number of the liquid is further reduced; the

highest rate of change of H versus Bo is always detected at Bo = Bocr.

We have verified that the correction term proposed by Bretherton [12] to include buoyancy

effects in his lubrication theory for bubbles displaced by a flowing liquid in a vertical tube,
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Figure 5. Predictions of the thickness of the uniform film region given by the theoretical model

when varying (a) the capillary number of the liquid flow and (b) the Bond number, for Rel � 1.

H(Bo > 0)/H(Bo = 0) = 1 + 2
3
Bo, agrees with the model’s predictions in the asymptotic

limit that Cab → 0 and Bo→ 0. Deviations are below 10 % when Cab . 10−3 and Bo . 0.4.

A further analysis of the transition value of the Bond number was performed by running

the theoretical model with a very small value of the liquid capillary number, Cal = 10−10,

to simulate the limit of no imposed liquid flow. The results are reported in Fig. 6. The

predictions of the present model confirm the critical value derived by Bretherton [12], as

the values of the bubble capillary number sharply deviate from the Bo = 0 case (where

Cab ≈ Cal = 10−10) as the Bond number is increased above the value 0.842. Figure 6 includes

also a curve depicting the capillary number of the bubble estimated using a relationship

derived in the second part of Bretherton’s paper:

Bo− 0.842 = 1.25Cab
2/9 + 2.24Cab

1/3. (24)

Equation (24) agrees remarkably well with the results of the present model for 0.842 <

Bo . 1, while deviations quickly grow above 10 % when Bo is increased above 1. As pointed

out by Bretherton, the deviations may be attributed to his assumption that the interface

curvature due to the axial symmetry, κ2, is constant along the thin-film.
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Figure 6. Trends of the bubble capillary number versus Bond number predicted by the model (blue

line) when the liquid capillary number is set to a very small value, Cal = 10−10 (and Rel � 1). The

black dashed line indicates the results of the theory developed by Bretherton [12] for long bubbles

rising in a stagnant liquid, Eq. (24).

Following the approach of Aussillous and Quéré [14], a scaling analysis for the liquid film

thickness in the Bo < Bocr regime is developed (Reb � 1). Balancing the viscous force

with the pressure gradient and buoyancy term in the equation of motion along the dynamic

meniscus at the bubble front yields

µUb
h2

0

≈ 1

`

σ

R− h0

+ ρg, (25)

where the characteristic length of the dynamic meniscus ` can be derived by matching the

curvatures of the dynamic and static menisci,

h0

`2
+

1

R− h0

≈ 2

R− h0

− 1

a
, (26)

with a =
√
σ/(ρg) being the capillary length scale. Equation (26) is expected to hold as

long as buoyancy effects are mild (Bo . Bocr), because the curvature of the static menisci is

calculated as the curvature of the bubble nose in the absence of gravity effects, 2/(R− h0),
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with the correction −1/a, which accounts for the linear curvature reduction induced by

buoyancy (see Fig. 1(d) in the Supplemental Material). Using Eq. (26) to extract ` and

substituting it into Eq. (25), an implicit scaling law for the nondimensional film thickness is

derived:

H ≈ Cab
2/3

Cab
2/3 +

[√
1− (Bo′)

1/2
+ Bo′

(
H

1−H

)1/2
]2/3

, (27)

where Bo′ ≡ ρg(R− h0)2/σ. Using Aussillous and Quéré’s [14] scaling for the film thickness

at large capillary numbers to express the term H/(1 −H) at the denominator of Eq. (27),

the following scaling law is finally obtained:

H ≈ Cab
2/3

Cab
2/3 +

[√
1− (Bo′)

1/2
+ Bo′Cab

1/3

]2/3
. (28)
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Figure 7. Scaling performance of Eq. (28) versus the theoretical and experimental data

(Rel � 1) for Bo < Bocr. The rescaled film thickness H∗ is defined as H∗ =

H

[
3.35Cab

2/3 +
(√

1− 1.12Bo1/2 +
√

1.34Bo Cab
1/3
)2/3

]
. The rescaled data collapse along a

Cab
2/3 line.
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The entire experimental and theoretical film thickness database for Bo < Bocr, rescaled

as indicated in Eq. (28), is plotted in Fig. 7. For simplicity, it is assumed that Bo′ ≈ Bo. The

rescaled data collapse along a Cab
2/3 line. The coefficients 3.35 and

√
1.34 used to rescale the

data in Fig. 7 derive from Aussillous and Quéré’s [14] fit of Taylor’s data and Bretherton’s

law, respectively, while the coefficient 1.12 is obtained by a best fit of the present database.

IV. FLOWS WITH INERTIA

In this section, we investigate the dynamics of the bubble in the Reb � 1 regime. The

theoretical model including inertial effects is developed in Sections IV A and B; the numer-

ical model for the VOF-based solution of the full Navier-Stokes equations is described in

Sec. IV C; the results obtained with the theoretical model and the full numerical simulations

are compared and discussed in Sections IV D and E.

A. Approximate model

Inertial forces are introduced in the theoretical model based on Eqs. (3)-(7) with the

assumption that Reb = O(ε−3), so that the inertial term in the x−momentum equation

is of the same order as the pressure gradient while that in the y−momentum equation is

negligible. Hence, the nondimensional x−momentum equation at leading-order in ε becomes

1

2
Cab

1/3RebH (uux + vuy) = −px + uyy − T 2, (29)

while the other equations governing the flow at leading-order, Eqs. (10a) and (10c), and the

boundary conditions, Eqs. (5), (12) and (13), remain unchanged.

Due to the presence of the nonlinear inertial term on the left-hand side of Eq. (29),

the procedure to derive the ODE governing the film profile differs from the Reb � 1 case.

We adopt the methodology originally introduced by Shkadov [35] to study the nonlinear

dynamics of waves appearing on the surface of a thin liquid film flowing along a vertical
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plate. The continuity and x−momentum equations are integrated from y = 0 to y = h(x):

h∫
0

uxdy +

h∫
0

vydy = 0, (30a)

1

2
Cab

1/3RebH

 h∫
0

uuxdy +

h∫
0

vuydy

 =

h∫
0

κxdy +

h∫
0

uyydy −
h∫

0

T 2dy, (30b)

where px = −κx has been used. In order to evaluate the integrals appearing in the equations

above, a closure relationship for the velocity profile in the liquid film u(x, y) is necessary.

This profile must satisfy the boundary conditions u = −1 at y = 0 and uy = 0 at y = h(x),

and continuity as expressed in Eq. (16), and therefore the following parabolic profile is

chosen:

u(x, y) =
3

h3

(
T 2

3
+ 1− h

)(
y2

2
− hy

)
− 1. (31)

Using Eq. (31) to express u and its derivatives, and the continuity Eq. (30a) to derive a

relationship for v, Eq. (30b) yields a new third-order ODE for the liquid film profile in the

presence of inertial effects:

κx = 3
(h− 1)

h3︸ ︷︷ ︸
viscous term

+T 2 (h3 − 1)

h3︸ ︷︷ ︸
buoyancy term

+
1

10
HCa

1/3
b Reb

(
h2 − 6− 4T 2 − 2

3
T 4

)
hx
h3︸ ︷︷ ︸

inertial term

, (32)

while κx can be expressed as indicated in Eq. (19). A detailed analysis of the importance of

the various terms appearing in Eq. (32) is included in the Supplemental Material.

B. Numerical integration

The numerical integration of Eq. (32) is performed as for the Reb � 1 case, see Sec-

tion III B. The linearized conditions to start the integration procedure, appropriate to the

uniform film region, are now extracted from the solution of the equation:

s3 +

[
H2

Cab
2/3(1−H)2

+
1

10
HCa

1/3
b Reb

(
5 + 4T 2 +

2

3
T 4

)]
s− 3

(
1 + T 2

)
= 0. (33)

The numerical integration for the front meniscus starts from the flat-film region and proceeds

towards x → +∞. The iterative procedure adopted to fix the value of H is the same as

explained in Section III B.
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Inertial effects have been demonstrated to yield significant undulations on the surface of

the elongated bubble [17], near its rear meniscus. Therefore, the combined effect of buoyancy

and inertial forces on the profile of the rear meniscus is of interest. The profile of the rear

meniscus of the bubble in the presence of inertia can be calculated by numerical integration

of Eq. (32), starting from close to the flat-film region (point D in Fig. 1) and proceeding

towards x → −∞. The nondimensional film thickness H is now fixed by the solution at

the front meniscus. As discussed by Magnini et al. [17], the linearized initial condition for

the solution at the bubble back is a sinusoidal function that contains a phase shift ϕ as an

integration constant. Different values of ϕ yield interface profiles that are shifted along x.

Therefore, an iterative procedure is utilized to find the value of ϕ which gives a profile of

the rear meniscus that satisfies the asymptotic condition reported in Eq. (23). Profiles of

the bubble rear obtained by numerical integration will be compared with the results of full

numerical simulations in Section IV D.

C. Numerical simulations

Numerical simulations of the co-current flow of liquid and an elongated bubble in the

Reb � 1 regime were performed by means of the open-source CFD package ESI OpenFOAM,

release 2.3.1. The unsteady Navier-Stokes equations are solved for both the liquid and gas

phases, which are treated as a single mixture fluid according to a Volume-Of-Fluid (VOF)

[31] formulation. The flow is assumed incompressible and the fluid Newtonian. The surface

tension force is included within the momentum equation as a body force according to the

Continuum Surface Force (CSF) method [36]. The self-developed flexCLV (flexible coupled

Level Set and VOF) [37] algorithm is adopted to enhance the calculation of the surface

tension force. This routine reconstructs a level set function (distance from the liquid-gas

interface) from the VOF volume fraction field at every time-step, and then evaluates the

interface topology (curvature and normal vector) based on derivatives of the level set.

The numerical simulations are run with an axisymmetric flow model. An elongated

bubble is initialized near the inlet boundary of the domain (as in Fig. 1). The initial bubble

length is of about 20R, in order to ensure that a flat-film region is formed between the front

and rear caps. At the inlet boundary, liquid enters the domain with a parabolic velocity

profile. A no-slip condition is set at the wall. At the outflow section, the pressure is set to a
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zero reference value while the velocity gradient along the stream direction is set to zero [38].

The gravitational force acts parallel to the axis of the tube and is directed towards the inlet

boundary. The liquid to gas density and viscosity ratios are respectively fixed to 1000 and

100. These ratios ensure that the results are independent of the bubble density and viscosity

as indicated by the numerical study of Kang et al. [39]. The simulations are run forward in

time until the bubble translates with a constant velocity. The independent parameters in

the numerical model are Cal, Rel and Bo. A parametric analysis is conducted by varying

these groups within the range Cal = 0.00464− 0.069, Rel = 0.07− 1400 and Bo = 0− 5.

D. Theoretical predictions and results of numerical simulations

The theoretical model based on the numerical integration of Eq. (32) is utilized to obtain

predictions of the profiles of the bubble nose and rear, bubble velocity and uniform film

thickness under the range of conditions explored by the numerical simulations. The Bond

number and the liquid capillary and Reynolds numbers are the independent parameters. For

each set of Bo, Cal and Rel, the model is run iteratively until converged values of H, Cab

and Reb are achieved, as was done for the Reb � 1 case (see Section III D).

Examples of the profiles of the rear meniscus obtained with the theoretical model and

the full simulations for fixed values of Cal and Rel and increasing values of Bo are illustrated

in Fig. 8. When Bo = 0, the undulation at the bubble rear exhibits only one crest, which

suggests that inertial effects are weak [17]. This response is consistent with the Weber

number of the flow being smaller than 1, as Web ≡ Cab Reb = 0.5. As the Bond number

is increased, a significant increase of the amplitude of the undulation and a slight decrease

of its wavelength are evident, with three crests becoming apparent near the bubble tail.

The theoretical model based on the solution of Eq. (32) predicts very well the value of the

uniform film thickness and the entire profile of rear meniscus and undulations for the three

cases shown in Fig. 8, with a slight tendency to overestimate the undulation amplitude at

larger Bond numbers.

A systematic analysis of the trends of the nondimensional film thickness H, bubble to

liquid speed ratio Ub/Ul and nondimensional wavelength λ/` (see Fig. 1) of the interface

undulation at the rear meniscus (with ` = h0Cab
−1/3) has been performed by varying Rel

and Bo, for three constant values of Cal. The results for both the numerical simulations and

24



0 0.2 0.4 0.6 0.8 1

h/R

-1

0

1

2

3

4

[x
-x

(h
m

in
)]

/R

Bo=0

Bo=1.25

Bo=1.87

Figure 8. Comparison of shapes of the bubble rear predicted as solution of Eq. (32) (solid lines) and

shapes extracted from the full numerical simulations (symbols). Flow conditions are: Cal = 0.00464

and Rel = 92.8. x(hmin) denotes the axial location where the minimum value of the film thickness

is measured. In this figure, x and h indicate dimensional quantities.

the theoretical model are summarized in Fig. 9, where they are compiled as a function of

Rel, which is an independent parameter in the analysis. From the numerical simulations and

theoretical profiles, the wavelength of the undulation is calculated as the distance between

the two most upstream crests; see the sketch in Fig. 1.

As a general trend, the liquid film thickness and speed ratio increase with the Bond num-

ber. Relative to the case of negligible gravity, Bo = 0, buoyancy effects are more apparent

at smaller capillary numbers, which is consistent with the buoyancy term in Eq. (32) being

proportional to Bo/Cab. The reduction of H with increasing Reb at intermediate values

of the Reynolds number becomes more pronounced as Bo is increased; for instance, when

Bo = 1.25 and Cal = 0.069 (see the orange triangles in Fig. 9(g)), H decreases by more than

20 % within the range Rel = 10−1 − 102. The velocity ratio follows the same trends versus

Rel and Bo as the nondimensional film thickness.

Magnini et al. [17] showed that in the Bo = 0 case the wavelength of the undulations on

25



10
0

10
1

10
2

10
3

Re
l

0.04

0.06

0.08

0.1

0.12

H
=

h
0
/R

Ca
l
=0.00464

(a)

10
0

10
1

10
2

10
3

Re
l

1

1.2

1.4

1.6

U
b
/U

l

Ca
l
=0.00464

(b)

10
0

10
1

10
2

10
3

Re
l

1

2

3

4

5

λ
/
ℓ

Ca
l
=0.00464

Bo=0

Bo=0.25

Bo=0.5

Bo=1

Bo=1.25

(c)

10
0

10
1

10
2

10
3

Re
l

0.06

0.08

0.1

0.12

0.14

0.16

H
=

h
0
/R

Ca
l
=0.0165

(d)

10
0

10
1

10
2

10
3

Re
l

1.1

1.2

1.3

1.4

1.5

1.6

U
b
/U

l
Ca

l
=0.0165

(e)

10
0

10
1

10
2

10
3

Re
l

1

2

3

4

5

λ
/
ℓ

Ca
l
=0.0165

Bo=0

Bo=0.25

Bo=0.5

Bo=1

Bo=1.25

(f)

10
-1

10
0

10
1

10
2

Re
l

0.14

0.16

0.18

0.2

0.22

0.24

H
=

h
0
/R

Ca
l
=0.069

(g)

10
-1

10
0

10
1

10
2

Re
l

1.4

1.6

1.8

2

U
b
/U

l

Ca
l
=0.069

(h)

10
-1

10
0

10
1

10
2

Re
l

1

2

3

4

5

λ
/
ℓ

Ca
l
=0.069

Bo=0

Bo=0.25

Bo=0.5

Bo=1

Bo=1.25

(i)

Figure 9. Comparison of the thickness of the uniform film region H, bubble to average liquid

velocity Ub/Ul and wavelength λ/` of the ripples appearing at the rear meniscus of the bubble, for

three constant values of the liquid capillary number. Full markers identify the results of numerical

simulations and solid lines are the predictions of the model, Eq. (32).

the surface of the bubble decreases as Web increases above 0.1 due to the effects of inertial

forces, while it reaches an asymptotic value λ/` ≈ 4.8 − 5 (approximately independent of
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Cab) as Reb → 0. The present analysis demonstrates that buoyancy effects have a significant

impact on the dynamics of the interfacial ripples. When inertial forces are negligible (Rel . 1

in Figs. 9(c), (f) and (i)), the asymptotic value of the nondimensional wavelength decreases as

Bo is increased. However, no appreciable change of the amplitude of the ripple is observed

when increasing Bo from 0 to 1.25, so that only one undulation crest is clearly visible.

When inertial forces are important (Rel & 10− 100), gravitational effects further reduce the

wavelength of the interfacial ripple and we observe that the amplitude of the undulation

grows considerably. This feature cannot be attributed solely to the larger bubble velocity

(i.e. larger Weber number, which increases the amplitude of the ripple and decreases its

wavelength), but it represents a direct effect of buoyancy on the dynamics of the undulation.

The results of a systematic analysis of the influence of the Bond number in the range

Bo = 0 − 5, while keeping constant Cal and Rel, are reported in Fig. 10. The effect of

buoyancy on the flow is substantial, as the film thickens by a factor of about 4 between

Bo = 0 and Bo = 5. The bubble velocity increases mildly with Bo as long as Bo < Bocr and

more steeply at larger values of the Bond number. The wavelength of the undulation at the

bubble rear diminishes considerably as gravitational forces become important, see Fig. 10(c),
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Figure 10. Comparison of the (a) thickness of the uniform film region H, (b) bubble to average

liquid velocity Ub/Ul and (c) wavelength λ/` of the ripples appearing at the rear meniscus of

the bubble obtained as solution of Eq. (32) (solid lines) and numerical simulations (symbols), for

Cal = 0.00464 and Rel = 92.8. The numerical simulation for Bo = 5 gave time-dependent profiles

of the bubble rear, the value of the wavelength reported in the figure is an average in time.
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while the amplitude of the undulation grows as shown in Figure 8. In the range Bo = 0− 5,

the Weber number of the bubble increases from about 0.5 to 5. The data of Magnini et al.

[17] for Bo = 0 and similar capillary numbers indicate that, in the same range of Weber

numbers (i.e. inertial effects of comparable magnitude), the nondimensional wavelength of

the ripple decreases from about λ/` = 4.5 to 3.5, which is a substantially smaller variation

than that observed in Fig. 10(c). This further confirms that gravitational forces directly

impact the profile of the undulation at the rear meniscus of the bubble.

The average deviation between the results of the numerical simulations and theoretical

model for all the data points included in Figs. 9 and 10 is 4.8 % for the film thickness, 2.2 %

for the bubble velocity and 15.3 % for the undulation wavelength.

E. Discussion

The scaling analysis for the film thickness in the negligible inertia regime proposed in

Section III E is now corrected to account for inertial effects. Inertial forces tend to increase

the curvature of the bubble nose [16, 40], which is here accounted for by introducing a

correction to the curvature matching condition Eq. (26):

h0

`2
+

1 + fk
R− h0

≈ 2(1 + fk)

R− h0

− 1

a
, (34)

where fk can be estimated as fk ≈ CabRe0.9
b according to the empirical fit of Han and

Shikazono [16] to their experimental film thickness data. Balancing viscous, inertial and

gravitational forces and the pressure gradient in the equation of motion along the dynamic

meniscus yields

µUb
h2

0

≈ 1

`

σ(1 + fk)

R− h0

+ ρg − 1

`
ρU2

b . (35)

Using Eq. (34) to express ` in the equation above, the following scaling law is obtained:

H ≈ Cab
2/3

Cab
2/3 +

[
(1 + fk −We′b)

√
1 + fk − (Bo′)1/2 + Bo′Cab

1/3

]2/3
, (36)

where We′b ≡ ρU2
b (R− h0)/σ. Equation (36) can be used to infer the influence of capillary,

viscous, inertial and buoyancy forces on the uniform liquid film thickness trends presented

in Figs. 9 and 10. For simplicity, we assume that Bo′ ≈ Bo and We′b ≈ Web. For small
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values of the capillary number, the positive term Bo Cab
1/3 is small and the thickening of the

liquid film due to buoyancy (relative to the Bo = 0 case) is more apparent. As the capillary

number is increased, the relative impact of the Bond number is reduced due to the presence

of the positive Cab
2/3 term in the denominator.

When Reb . 1, inertial forces are negligible; Web � 1 and fk � 1 so that Eq. (36)

reduces to Eq. (28). For increasing values of Reb, fk increases and the argument of the

square root becomes less sensitive to Bo; therefore, the values of H for different Bo numbers

tend to get closer, as observed in particular in Fig. 9(g) at Rel ≈ 100. This mixed effect

of inertia and buoyancy forces makes the decreasing trend of H with increasing Rel more

evident for larger Bo numbers, as demonstrated in the previous section. As Reb is increased

further, fk � Bo1/2 and inertial effects overcome buoyancy; eventually, at large Reb the film

thickness curves for different Bond numbers tend to converge as indicated in Fig. 9.

V. CONCLUSIONS

In this paper we performed a systematic analysis of the effect of buoyancy on the dynamics

of long gas bubbles rising in a vertical circular channel in a co-current liquid flow. The bubble

speed, shape, uniform film thickness and features of the undulation appearing nearby the

rear meniscus have been quantified for a range of capillary numbers Cab = 10−3 − 10−1,

Reynolds numbers from Reb � 1 to about 103, and Bond numbers Bo = 0 − 5. We

carried out experiments to explore the Reb � 1 regime and numerical simulations to study

the Reb � 1 regime. A theoretical model that implements inertial and buoyancy effects to

extend the classical Bretherton theory was developed and utilized to run parametric analyses

across the entire range of dimensionless parameters of interest. In general, when bubbles rise

in a co-current liquid flow buoyancy effects are manifest already when Bo < Bocr = 0.842,

with a substantial increase of the film thickness compared to the Bo = 0 case. As the

capillary number of the liquid tends to zero, the bubble velocity and uniform film thickness

decrease indefinitely when Bo < Bocr, whereas they decrease down to non-zero asymptotic

values when Bo > Bocr. As a consequence, when Cal ≤ 10−3 small variations of the Bond

number across the critical value may induce orders of magnitude changes in the liquid film

thickness and bubble velocity. In the Reb � 1 regime, the reduction of the liquid film

thickness and bubble velocity observed for increasing values of the Reynolds number (up
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to Reb = 100 − 500) is largely amplified when Bo > 0. The undulation at the rear end

of the bubble exhibits higher amplitude and smaller wavelength as the Bond number is

increased. The theoretical model developed in this work quantitatively predicts the present

experimental and numerical database within a 10 % error with respect to the uniform film

thickness and 5 % for the bubble velocity.

SUPPLEMENTAL MATERIAL

Supplemental Material associated with this article includes a detailed analysis of the

forces acting along the front meniscus of the bubble and the validation of the theoretical

model versus literature data in the case of negligible buoyancy effects.

Appendix A: Equations governing the flow in the liquid film

The equations governing the flow in the liquid film in the axisymmetric, cylindrical co-

ordinates introduced in Fig. 1, in dimensional form are

ux + vy −
v

R− y
= 0, (A1a)

ρ (uux + vuy) = −px + µ

(
uxx + uyy −

uy
R− y

)
− ρg, (A1b)

ρ (uvx + vvy) = −py + µ

[
vxx + vyy −

vy
R− y

− v

(R− y)2

]
. (A1c)

At the wall boundary,

u = −Ub and v = 0, at y = 0, (A2)

while at the gas-liquid interface

uy + vx +
2hx

1− h2
x

(vy − ux) = 0, at y = h(x), (A3)

and p+ σκ+ µhx (uy + vx)− 2µvy = 0, at y = h(x). (A4)

The unit normal vector at the interface has components

n =
1

(1 + h2
x)

1/2
(−hx, 1) , (A5)

and the interface curvature is

κ = κ1 + κ2 =
hxx

(1 + h2
x)

3/2
+

1

(R− h)(1 + h2
x)

1/2
. (A6)
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Appendix B: Liquid mass conservation

In a stationary reference frame, the liquid swept out by the rising bubble must equal the

sum of liquid flow rate in the tube and liquid flow rate within the film; in dimensional units:

Ubπ (R− h0)2 = UlπR
2 − Ufπ

[
R2 − (R− h0)2] , (B1)

where Uf is the average velocity of the liquid in the uniform film region, which can be

obtained by integrating the liquid velocity profile u(y) in the uniform film region CD:

Uf =
2

R2 − (R− h0)2

h0∫
0

u(y) (R− y) dy. (B2)

In the uniform film region (hx = hxx = 0), ux = uxx = 0, v = 0 and px = 0 because the

curvature of the interface is constant. Therefore, the x−momentum Eq. (A1b) simplifies as

µ

(
uyy −

uy
R− y

)
= ρg. (B3)

This equation is integrated twice along y with the boundary conditions

u = 0, at y = 0, (B4)

and uy = 0, at y = h0, (B5)

thus leading to the following expression for the velocity profile in CD:

u(y) =
ρgR2

µ

[
y2 − 2Ry

4R2
+

(1−H)2

2
log

(
R

R− y

)]
. (B6)

Substituting Eq. (B6) in Eq. (B2) and integrating gives:

Uf =
ρgR2

µ

1

H(2−H)

[
(1−H)4 log(1−H)

2
+

(1−H)2

2
− 1

8
− 3(1−H)4

8

]
, (B7)

so that Eq. (B1) can be finally rearranged to express the bubble velocity as a function of

the average liquid velocity in the tube and the dimensionless uniform film thickness:

Ub =
Ul

(1−H)2
+
ρgR2

µ

[
−(1−H)2 log(1−H)

2
− 1

2
+

1

8(1−H)2
+

3(1−H)2

8

]
. (B8)

The first term on the right-hand side of Eq. (B8) represents the contribution to the bubble

motion given by the liquid flow rate within the tube, while the second term brings in the

contribution of buoyancy. Since the term between square brackets is always positive, if
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buoyancy and liquid flow have the same direction, g > 0 with the present notation, the

bubble moves faster compared to the g = 0 case, while for g < 0 the bubble moves slower. A

dimensionless form of Eq. (B8) can be derived by multiplying both the left- and right-hand

side terms by µ/σ, thus leading to Eq. (21) in the manuscript.
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