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Abstract—Model predictive control (MPC) has been widely
applied to AC electric drives over the last decade. Despite extreme
efforts and proposed effective solutions, the researchers are still
seeking to find more effective solutions for weighting factor
(WF) design, parameter dependency, current/torque harmonics,
variable switching frequency, and computational complexity. This
paper presents a review of the WF design techniques of MPC
strategies for AC electric drives. Thus, it aims to inform readers
about the proposed techniques for WF design of MPC strategies
and to accelerate their future research in this promising area.

Index Terms—Electric drives, finite control set, model predic-
tive control, power converters, weighting factor design.

I. INTRODUCTION

TODAY, the electrification trend in transportation and the
demand for renewable energy sources have increased

attention to AC electric drives and accelerated the research
in this field [1]–[5]. Even if AC electric drives are a mature
technology, today, they combine all state-of-the-art methods in
electric machines, control, power electronics, and microchip
technology. The progress in one of these research areas has
led to advances in others. The most significant multiplier in
the design of more advanced control techniques and more
optimized electric machines is undoubtedly the development
of higher-capacity and lower-cost microprocessors [6]. Model
predictive control (MPC) of AC electric drives is a good sam-
ple of this progress. Compared to mature control techniques,
field-oriented control (FOC) and direct torque control (DTC),
MPC has an easy concept with straightforward implementation
and can manage system nonlinearities and multiple control
objectives with ease [7]. These features are in accord with
AC electric machines that have highly non-linear models
with unknown load inputs and time-varying electrical and
mechanical parameters. This is why MPC has been widely
applied to AC electric drives in the last decade.

Despite the mentioned advantages of MPC, some challenges
have been reported in the literature regarding weighting factor
(WF) design, parameter dependency, current/torque harmon-
ics, variable switching frequency, and computational complex-
ity [8], [9]. Many effective solutions to these problems have
been reported in the literature, but researchers are still seeking
to find more effective solutions. Therefore, MPC applications
for electric drives are still open to research. MPC strategies
use discrete system models to predict the future behavior of
electric drive systems. Time-varying changes in electrical (re-
sistances, inductances, and flux linkage of permanent magnets)
and mechanical (inertia and viscous friction) parameters are
inevitable. To deal with the parameter dependency problem,
incremental model-based MPCs [10]–[12], model-free MPCs
[13]–[15], disturbance observer-based MPCs [16]–[18], and

MPCs combined with parameter estimation [19] have been
proposed. MPC strategies directly control the switching states
of power converters but the availability of the switching
combinations for a power converter is limited, resulting in high
current/torque harmonics in electric drives. To suppress these
harmonics, multi-vector-based MPCs [20], [21] and modulated
MPCs [22], [23] have been reported. The modulated MPCs
also help to prevent variable switching frequency problems.
The computational complexity of MPC strategies, particularly
in the presence of more power switches, is extremely high.
To reduce the computational load, voltage vector elimination
techniques, which allow for reducing the number of candidate
voltage vectors, have been proposed [24]–[27].

As for the weight factor design problem, it directly affects
the performance of MPCs and even causes stability problems.
The conventional MPCs use the scalarization method, which
consists of the weighted sum of the main and auxiliary
control objectives, in generating the cost function. This flexible
structure, the biggest advantage of MPC strategies, brings
with it the problem of the WF selection, which is the main
motivation of this paper. There is no systematic way of
choosing weight factors. Therefore, researchers have proposed
different effective ways to deal with this problem. These
methods can be divided into two main groups as in Fig. 1:
WF selection and WF elimination methods. The first group
consists of classic approaches, numerical/algebraic methods,
meta-heuristic optimization methods, and artificial intelligence
(AI)-based methods, while the second group includes MPCs
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with unifying cost functions, direct vector selection meth-
ods, sequential/parallel MPC strategies, and decision-making
(DM)-based approaches.

Several valuable reviews on MPC applications of power
converters and electric drives have already been covered [28]–
[34]. But these papers introduce the concept, applications,
challenges, solutions and latest trends, i.e. they address all
these issues mentioned above. A recent study in [35] reduces
the scope to WF selection techniques for MPC of power
electronics and motor drives. Unlike [35], this paper focuses
specifically on WF design techniques for AC electric drives
and aims to accelerate readers’ future research in this promis-
ing area.

II. CONVENTINAL FSC-MPC STRATEGIES FOR AC
ELECTRIC DRIVES

There are three basic MPC strategies commonly applied to
AC electric drives: model predictive current control (MPCC),
model predictive torque control (MPTC), and model predictive
direct speed control (MPDSC). MPCC and MPTC have a cas-
caded form: the inner control loop for current/torque control
and the outer control loop for speed control. To overcome
the limitations of the speed control loop caused by the linear
controller, MPDSC provides a non-cascade form with a higher
dynamic response. However, all these strategies suffer from
the selection of WFs, and the selection process is significantly
challenging when it comes to multiple WFs.

MPC strategies have been applied to the following four
popular AC electrical machines: induction machines (IMs)
[36], [37], permanent magnet synchronous machines (PMSMs)
[38], [39], switched reluctance machines (SRMs) [40], [41],
and synchronous reluctance machines (SynRMs) [42], [43].
Due to the popularity of PMSMs today, this section introduces
MPC strategies over PMSM control.

Before introducing MPC strategies, giving the mathematical
model of PMSM is useful. A PMSM model defined in the
synchronously rotating reference (dq−) frame can be defined
in the following form:

ẋt = f(xt,ut) +wt (1a)
zt = h(xt) + vt (1b)

where f is the nonlinear system model, h is the measurement
model, xt is the state vector, ut is the input vector, zt is the
output vector, wt and vt are the system and measurement
noises that are independent, zero-mean, Gaussian noise pro-
cesses of covariance matrices Qt and Rt, respectively. The
vectors in (1) for the dq−frame are

xt =



id
iq
ωm


 ,ut =

[
vd
vq

]
,h(xt) =



id
iq
ωm


 ,

and

f(xt,ut) =




1
Ls
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Ls
id + ppωmiq

1
Ls
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Fig. 2. Block diagram of MPCC and MPTC strategies (x1 = iq , x2 = id
for MPCC; x1 = τe, x2 =∥ ψs ∥ for MPTC)

where vd, vq , id, and iq are the dq−axis components of stator
voltages and currents, respectively, ωm is the mechanical angu-
lar speed, Rs and Ls are the stator resistance and inductance,
respectively, ψpm is the permanent magnet flux linkage, τl is
the load torque, pp is the pole-pairs, Jt and Bt are the inertia
and viscous friction, respectively.

After applying the following first-order forward Euler ap-
proximation,

ẋt ≈
xk+1 − xk

Ts
, (2)

the discrete PMSM model can be obtained as follows:

xk+1 = I3 · xk + Ts · f(xt,ut) (3)

where Ts is the sampling time and I is the identity matrix.

A. Model Predictive Current Control

MPCC is certainly the most common MPC strategy as it is
suitable for both power converters and electric drives. MPCC is
reported to provide less current harmonics than MPTC [44]. It
also has lower computational complexity compared to MPTC
and MPDSC. It uses the following predicted stator currents
obtained using the discrete PMSM model in (3):

ipd,k+1 =

(
1− RsTs

Ls

)
id,k + ppTsωm,kiq,k +

Ts
Ls
vq,k (4a)

ipq,k+1 =

(
1− RsTs

Ls

)
iq,k − ppTsωm,kid,k

− Tspp
Ls

ωm,kψpm +
Ts
Ls
vq,k (4b)

The basic cost function used to evaluate voltage vectors in
MPCC only includes current error terms and does not require
any WFs since both terms are of the same unit. However, this
flexible structure can be expanded by additional control ob-
jectives in different units, such as overcurrent protection term,
switching frequency regulation term, input voltage balancing
term, and so on. In this case, each additional control objective
is included in the cost function with a WF as follows:

g =
∣∣i∗d − ipd,k+1

∣∣+
∣∣i∗q − ipq,k+1

∣∣+ λjfj (5)

where fj is the jth additional control objective, λj is the WF
of the jth additional control objective, and j ∈ {1, 2, . . . , n}.
The block diagram of the MPCC can be found in Fig. 2.
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Fig. 3. Block diagram of MPDSC strategy

B. Model Predictive Torque Control

MPTC is one of the other popular MPC strategies with
high dynamic response and lower torque ripples than MPCC.
Unlike MPCC, which controls the current in the internal
control loop, MPTC directly controls electromagnetic torque
and flux. To predict the electromagnetic torque, it uses stator
current predictions in (4) and stator flux predictions in (6).
Finally, the predicted electromagnetic torque can be obtained
as in (7).

ψpd,k+1 = Ldi
p
d,k+1 + ψpm (6a)

ψpq,k+1 = Lqi
p
q,k+1 (6b)

τpe,k+1 = 1.5pp
(
ψpd,k+1i

p
q,k+1 − ψpq,k+1i

p
d,k+1

)
(7)

The cost function of MPTC consists of errors of torque and
flux, which are different units; therefore, even the simplest
cost function needs a WF. Similarly to MPCC, it is possible
to extend this cost function with additional control objectives
as follows:

g =
∣∣τ∗e − τpe,k+1

∣∣+ λψ
∣∣|ψ∗

s| − |ψps,k+1|
∣∣+ λjfj (8)

where λψ is the WF of stator flux errors and |ψs| is the
amplitude of stator flux vector. The block diagram of MPTC
is shown in Fig. 2.

C. Model Predictive Direct Speed Control

MPDSC eliminates the outer control loop and provides a
non-cascade form, providing better dynamic performance and
the ability to reject disturbances [45]. It uses the equation of
motion to predict the speed in addition to the stator current,
stator flux, and electromagnetic torque predictions, as depicted
in (9). However, speed prediction requires unknown load
torque information, which is costly to measure. The well-
accepted and cost-effective way to obtain the load torque is
to estimate it with an estimator/observer [46], [47]. This ob-
viously means MPDSC has higher computational complexity
than MPCC and MPTC. But, it can be ignored in applications
where higher control performance is required.

ωpm,k+1 =
Ts
Jt
τpe,k+1 +

(
1− TsBt

Jt

)
ωm,k −

Ts
Jt
τel,k (9)

The cost function of MPDSC consists of the sum of different
quantities; therefore, it inherently needs WFs to balance their
effects on the cost function.

g = λω
(
ω∗
m − ωpm,k+1

)2
+ λτ

(
τpe,k+1 − τel,k+1

)2

+ λi
(
i∗d − ipd,k+1

)2
+ λjfj (10)

where λω , λτ , and λi are the WFs of speed error, torque
error, and current error, respectively. The block diagram of
the MPDSC is presented in Fig. 3.

III. WEIGHTING FACTOR DESIGN METHODS

As aforementioned in Section I, the proposed WF design
methods can be divided into two main groups: WF selection
methods and WF elimination methods. The following sections
first introduce WF selection methods, followed by WF elimi-
nation methods.

A. Weighting Factor Selection Methods

WF selection methods can be considered in four main
groups: classic approaches, numerical/algebraic methods,
meta-heuristic optimization methods, and artificial intelligence
(AI)-based methods.

1) Classic Approaches: The most common WF selection
method is the trial-and-error method [48]. Besides its tedious
and time-consuming nature, the electric drive is unlikely to
determine the optimum voltage vectors under different operat-
ing conditions with this method. Another well-known method
is to choose the WF as the ratio of the nominal values of the
control objectives; for example, WF for MPTC is as follows
[49], [50]:

λψ =
τeN
|ψsN | (11)

where τeN and ψsN are the nominal values of electromagnetic
torque and flux, respectively. In this method, both control
objectives are of equal importance. However, this method fails
in the presence of multiple WFs. To circumvent this limitation,
each control objective can be normalized individually and then
combined [51]:

g =

∣∣τ∗e − τpe,k+1

∣∣
τeN

+ λψ

∣∣|ψ∗
s| − |ψps,k+1|

∣∣
ψsN

+ λj
fj
fjN

(12)

When λψ = λj = 1 in (12), all control objectives are of
equal importance in the cost function. Similar to the previous
method, the application of the normalization method is limited
only by the presence of main (or primary) control objectives,
such as current control in MPCC and torque and flux control
in MPTC. If additional (or secondary) control objectives, such
as common-mode voltage reduction and switching frequency
regulation, are present, these terms will have equal weight
with the main control objectives and will directly affect the
voltage vector selection, resulting in poor control performance.
Therefore, classic approaches are not effective solutions in the
presence of secondary control objectives.
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2) Numerical/Algebraic Methods: Various numerical and
algebraic methods have been proposed to overcome the prob-
lems caused by fixed WFs in classical approaches [52]–[55].
In [52], a flux limit is set for the flux error and if the flux
error term is less than this limit, the flux is set to a minimum
value. Otherwise, WF is changed to a higher value to increase
the effect of flux control in the cost function. The authors
note that this simple approach improves steady-state torque
and flux control in a variety of operating conditions without
sacrificing dynamic performance. In [53], a variable WF based
on speed variation is designed to reduce THDs of phase
currents in steady states and improve dynamic control perfor-
mance in transient states. In the proposed method, depending
on the variation of the speed, the WF is increased linearly
or quadratically to improve the THDs of the phase currents,
and the WF is decreased linearly or quadratically to obtain a
better transient control performance. That is, it prioritizes flux
control in steady states and torque control in transient states.
A variable WF for switching frequency regulation term is also
proposed in [54]. The authors derived an expression between
the current ripple and the magnitude and phase angle of the
voltage reference. Based on this expression, they indicate that
switching frequency reduction can lead to reference tracking
failure or current spikes in some areas of the voltage space
plane. To mitigate this adverse effect, the WF of the switching
frequency regulation term is reduced in these areas over a
newly designed cost function as follows:

g = Cv + kCvn (13)

where k is a constant for scaling, n indicates the number of
commutations between two consecutive switching states, and
Cv is voltage error defined according to the following equation

Cv =
∣∣v∗α − vpα

∣∣+
∣∣v∗β − vpβ

∣∣. (14)

This method still includes a parameter k to tune, and no
analysis has been made on the effect of this parameter.

In [55], an algebraically WF design method has been pro-
posed for the PDSC of PMSM. However, the WF of the speed
error term requires accurate knowledge of Jt and ψpm, which
are time-varying. The authors note that any inconsistencies in
these parameters cause steady-state errors in speed and current
controls. To overcome this difficulty, they incorporate integral
terms into the cost function.

3) Meta-Heuristic Optimization Methods: Meta-heuristic
optimization algorithms have been successfully applied to
various engineering optimization problems. Unlike gradient-
based optimization methods, they do not need a mathematical
model between the system output and the parameters to be
optimized [58]. This is why they are so popular in engi-
neering applications. Various papers have also been reported
on the optimization of WFs with meta-heuristic optimization
algorithms such as genetic algorithms (GAs), particle swarm
optimization (PSO), and simulated annealing (SA). These
papers mainly focus on the WF design of MPTC strategy and
can be divided into two groups in terms of different points
of view: offline/online optimization studies and multi/single-
objective optimization studies.

Fig. 4. Block diagram of WF design of MPTC based on meta-heuristic
optimization [56].

Offline optimization studies can be regarded as multi-
objective and single-objective optimization studies. The first
group considers the WF optimization problem as a multi-
objective optimization problem [59]–[61]. This approach
yields a set of solutions, called the Pareto set, rather than
a single solution; therefore, a final solution must be chosen
from the Pareto set. This raises another tedious process. To
overcome this difficulty, several papers choose a final solution
by applying different DM methods to the Pareto set [60],
[61]. In [59] and [60], the non-dominated sorting genetic
algorithm-II (NSGA-II) is used to optimize WFs. While in [59]
three parameters related to electromagnetic torque, flux, and
average switching frequency are optimized, in [60] a similar
approach is used to optimize the two parameters related to
electromagnetic torque and flux. [60] also takes advantage of
the TOPSIS DM method to easily get a final result. In [61], the
WF of the flux error term is optimized by NSGA-II through
electromagnetic torque and flux errors. To choose a better WF
considering the overall performance, it compares the effect of
TOPSIS-based, ranking-based, and Euclidean distance-based
DM methods on the control performance. It is reported that
TOPSIS and Eucledian distance-based DM methods mostly
choose the same WF and ranking-based DM provides better
control performance than the other methods. To throw off the
multi-objective optimization and the resulting DM process, a
few authors consider this problem to be single-objective and
use speed errors to tune the WF associated with the flux term
[61]. Despite good control performance, it can be difficult to
correlate speed errors with additional control objectives when
multiple WFs are involved.

In addition to offline WF optimizations, some researchers
use these meta-heuristic optimization algorithms online [56],
[62]. An SA is used in [62] to optimize the WF of the flux error
term in MPTC while a PSO is used in [56], as shown in Fig. 4,
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Fig. 5. Block diagram of GA-ANN-based WF design for MPCC of a PMSM drive fed by a three-level T-type inverter [57].

to optimize the WFs of both flux error and switching frequency
regulation terms. Both optimization algorithms use cost func-
tions that consist of the sum of different control objectives,
such as MPC strategies. This raises a similar problem with
the cost function of MPCs. However, metaheuristic algorithms
are not suitable for use online due to their low convergence
rates and excessively high computational loads. Although their
simplified or micro versions have been proposed for online
optimizations, they are unlikely to adapt to the rapid dynamic
changes of electric drives due to their low convergence rate.

4) Artificial Intelligence-Based Methods: AI has spread to
many engineering fields today and its influence is increasing
day by day. As a result of this popularity, various AI-based
applications have emerged in electric drive systems, and this
trend can also be seen in the WF design of MPC strategies
[57], [63], [64]. AI-based techniques can be divided into
three groups: meta-heuristic optimization algorithms, fuzzy
logic (FL), and artificial neural networks (ANN). Since meta-
heuristic optimization algorithms were covered in the previous
section, this section focuses on the remaining techniques.

The authors in [63] introduce an FL-based WF design for
MPTC of IM drive fed by a three-level neutral-point clamped
(3L-NPC) converter. The proposed method is capable of tuning
online the WFs associated with the flux error term (λψ) and
neutral point voltage balance term (λu) through two sub-FL
systems. Finally, better control performance is achieved than
conventional MPTC.

The authors in [64] propose an ANN-based WF design for
the MPTC of IM. The proposed ANN can update online the
WFs of the flux error term (λψ) and switching frequency
regulation term (λsw) in addition to flux reference (ψ∗

s),
which is always considered fixed in the previous studies. The
results show that it provides satisfactory control performance.
An artificial neural network (ANN)-based WF design for
MPCC of PMSM drive fed by a three-level T-type inverter is
presented in [57]. The proposed method also uses a GA as the
backpropagation algorithm to train the ANN; hence it is called
GA-ANN by the authors. With the proposed GA-ANN, the
WFs of switching frequency regulation (λsw) and neutral point
voltage balance (λu) are tuned and finally improved control
performance is achieved compared to conventional ANN. The

entire block diagram can be found in Fig. 5.

B. Weighting Factor Elimination Methods

This section reviews the WF elimination techniques: model
predictive flux/power control, direct vector selection methods,
sequential/parallel MPC strategies, and decision-making-based
approaches.

1) MPCs with Unifying Cost Functions: Model predictive
flux control (MPFC) [65], [66], model predictive power control
(MPPC) [67], [68], and model predictive active/reactive torque
control (MPARTC) [69], [70] are designed to eliminate the
WFs in MPTC. MPFC has been applied to electric drives
in many studies, but there are a limited number of papers
using MPPC in electric drives despite their popularity in power
converters. MPARTC has been proposed as an alternative to
MPPC in the control of electric drives.

As for the MPFC of PMSM, the amplitude of stator flux
vector reference |ψ∗

s | is taken equal to the reference value of
stator flux amplitude |ψs|∗ in MPTC as given in (15) [65],
[66].

|ψ∗
s | = |ψs|∗ (15)

Also, the angle of stator flux vector reference ψ∗
s needs to

be determined. This can be calculated using electromagnetic
torque definition in (16), where θs,k+1 and θr,k+1 are the
electrical position of stator and rotor fluxes, respectively,
δsr = θr,k+1 − θs,k+1 is the difference between the angles
of stator and rotor fluxes.

τe,k+1 =
3

2

pp
Ls
ψr,k+1 ×ψs,k+1

=
3

2

pp
Ls
ψpme

jθr,k+1 × ψs,k+1e
jθs,k+1

=
3

2

pp
Ls

|ψpm||ψs,k+1| sin δsr (16)

θr,k+1 = θr,k + Tsppωm,k+1 (17)

Using (16), the angle reference δ∗sr between the rotor flux
vector and stator flux vector can be calculated as follows:

δ∗sr = arcsin
2Lsτ

∗
e

3pp|ψpm||ψs,k+1|∗
(18)
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It is now possible to calculate the stator flux reference as
follows:

ψ∗
s,k+1 = |ψs,k+1|∗ eθ

∗
s,k+1 , (19)

where

θ∗s,k+1 = θr,k + Tsppωm,k+1 + δ∗sr. (20)

Since the stator flux is the main control purpose in MPFC,
the cost function is described as the difference between its
reference and predicted values. Compared to (8), the cost
function in (21) does not include a weighting factor.

g =
∣∣∣ψ∗
s,k+1 − ψps,k+1

∣∣∣ (21)

Unlike MPTC, MPPC uses active and reactive powers
instead of torque and flux, which have different units [67],
[68]. Thus, both quantities used in the cost function have the
same unit (power) and no longer need to use WF, similar
to MPCC. The active and reactive power expressions can be
calculated by the predicted stator currents in (4) and predicted
stator fluxes in (6) as follows:

P pk+1 = 1.5ppωm

(
ψpd,k+1i

p
q,k+1 − ψpq,k+1i

p
d,k+1

)
(22a)

Qpk+1 = 1.5ppωm

(
ψpd,k+1i

p
d,k+1 + ψpq,k+1i

p
q,k+1

)
(22b)

Using the definitions in (22), the cost function can be
defined given below.

g =
∣∣P ∗
k+1 − P pk+1

∣∣+
∣∣Q∗

k+1 −Qpk+1

∣∣ (23)

where P ∗
k+1 and Q∗

k+1 can be obtained by substituting (6) and
(7) into (22) as follows:

P ∗
k+1 = ω∗

mτ
∗
e (24)

Q∗
k+1 =

Lsω
∗
m(τ∗e )

2

1.5pp(ψpm)2
(25)

As an alternative to MPPC in which active and reactive
powers are used in the cost function, MPARTC makes use of
active and reactive torques [69], [70]. Thus, the cost function
consists of the same units, and the need for WF is eliminated.
The expressions for the predicted active/reactive torques are
as follows:

τpea,k+1 = 1.5pp

(
ψpd,k+1i

p
q,k+1 − ψpq,k+1i

p
d,k+1

)
(26a)

τper,k+1 = 1.5pp

(
ψpd,k+1i

p
d,k+1 + ψpq,k+1i

p
q,k+1

)
(26b)

The resulting cost function is

g =
∣∣∣τ∗ea,k+1 − τpea,k+1

∣∣∣+
∣∣∣τ∗er,k+1 − τper,k+1

∣∣∣ (27)

where

τ∗er,k+1 =
Ls(τ

∗
e )

2

1.5pp(ψpm)2
. (28)

The authors in [69] note that control of active/reactive
torques is equivalent to control of active/reactive powers,
respectively. Therefore, there is no need to design a WF as
in MPPC.

Despite the advantages of these three MPC strategies, they
are all designed under the assumption that there are no addi-
tional control objectives. When it comes to additional control
objectives, they require the use of WFs. Such an application
is reported in [66].

2) Direct Vector Selection Methods: Traditional MPC
strategies have the following two steps: 1) prediction step and
2) optimization step. In the prediction step, voltage vectors
produced by the power converter are used to predict the values
of control variables for k+1 time instant. Then, in the second
step, it is tested whether the predicted values are close to the
reference values. Direct vector selection (DVS) methods cal-
culate the reference voltage vector directly, taking the values
of control variables for k+ 1 time instant as reference values
[71]. This significantly reduces the computational complexity
as the prediction step is reduced to one, especially when
using multi-level converter topologies. The reference voltage
vector is then compared with the possible voltage vectors
generated by the power converter over the cost function in
(29). Similar to MPCC, MPFC, and MPPC, the cost function
consists only of variables (voltage error terms) with the same
unit, resulting in a cost function without WFs, and the use
of WFs is unavoidable in the presence of additional control
objectives [42], [72].

g = |v∗d − vpd|+
∣∣v∗q − vpq

∣∣ (29)

3) Sequential/Parallel MPC Strategies: Sequential and par-
allel MPC strategies are quite popular in controlling electric
drives as they simply eliminate WFs in MPC strategies.

Sequential MPCs evaluate each control objective sequen-
tially, as shown in Fig. 6, i.e. the first control objective
is optimized first and some candidate voltage vectors are
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selected for subsequent steps [73]–[80]. These vectors are then
sequentially evaluated for the second control objective and
further. Although this simple mechanism has been applied
to the MPTC strategy successfully, it is reported that this
technique is inappropriate in the presence of equal importance
control objectives, such as MPCC, MPFC, and MPPC [74].
The same authors also state that torque control should be the
first control objective for MPTC, otherwise, stability issues
arise. This may result in non-optimal control of flux. To deal
with this problem, they have proposed a sequential MPTC
(S-MPTC) with an interchangeable order, called generalized
S-MPTC. Also, the number of selected candidate voltage
vectors is increased in this method from two to three compared
to conventional S-MPTC. To tackle the priority selection
problem in conventional S-MPTC, another approach, called
even-handed S-MPTC, is proposed in [75] with the voltage
vector selection based on a modified form of the sequential
method. This method solves the priority selection of control
objectives in a simple way, but its computational complexity
is quite high due to the need to sort the cost values. A
comparison between conventional MPTC, S-MPTC, and even-
handed S-MPTC can be found in [81]. To further improve
control performance, the lexicographic method with tolerance
values is adapted to S-MPTC in [76]. Although a better control
performance is obtained than conventional and generalized
S-MPTCs, it is a disadvantage that it needs some tuning
parameters. In [77], the objective function of MPTC with
dual T-type converter is split into main (torque and flux)
and additional (capacitor voltage balancing) control objectives.
The proposed method first optimizes main control objectives
and then four candidate voltage vectors minimizing the main
cost function are evaluated for additional control objectives.
Finally, it selects a voltage vector minimizing the additional
cost function. Thus, it eliminates the WF of additional control
objective but it still contains a WF in the main cost function.

Parallel MPCs evaluate control objectives simultaneously
and restrict the error term of each control objective within
the predetermined boundaries. Although this technique was

originally proposed for the MPTC strategy with the block
diagram in Fig. 7 [82]–[85], it has also been successfully
applied to the MPDSC strategy [86]. The conventional parallel
MPTC (P-MPTC) in [82] includes some parameters (thresh-
old values for flux and torque) to tune. To deal with this
problem, the authors in [85] demonstrate the importance of
proper threshold selection and propose an improved P-MPTC
by eliminating tuning parameters and updating the voltage
selection mechanism. However, similar to the conventional S-
MPTC, torque is assigned as the primary control objective,
which may result in the selection of non-suboptimal voltage
vectors under some operating conditions.

Both methods improve control performance over conven-
tional ones, but their designs are complicated when additional
control objectives are involved. Therefore, all past studies
ignore additional control objectives. Because all cases should
be kept in mind at the voltage vector selection phase and
determine the state-machine clearly. It is possible to see the
design process that started to become complicated in [86].

4) Decision-Making-Based Approaches: Various DM meth-
ods have been proposed for eliminating WFs of MPC strate-
gies, particularly MPTC, over the last decade [87]–[103].
These techniques consider the optimization problem in MPC
in a multi-objective way and each voltage vector is evaluated
for each control objective separately. Next, a voltage vector
selection technique, which is the key point of decision-making
methods, is applied to choose an optimal voltage vector
considering all control objectives.

The ranking-based DM, proposed in [87] for MPTC of
IM, assesses each voltage vector separately for both control
objectives, i.e. torque and flux control objectives, and then
assigns them a ranking value from smallest to largest of cost
values. Finally, it chooses the voltage vector with the minimum
average ranking value. However, it suffers from computational
complexity and issues with the inclusion of additional control
objectives. The necessity of a sorting algorithm to deter-
mine sorting values of voltage vectors raises computational
complexity excessively considering the increasing number of
voltage vectors and additional control objectives. To this end,
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Fig. 8. Experimental results of three DM-based MPC strategies under load changes of 6 Nm at 750 r/min (a) TOPSIS-MPTC in [93], (b) EDS-MPTC in
[100], (c) ADS-MPTC in [100].
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TABLE I
OVERVIEW OF WF DESIGN METHODS

Control Performance Flexibility Design Complexity Computational Complexity

Classic Approaches ✗✗ ✓✓ ✗✗ ✓✓

Numerical/Algebraic Methods ✗ ✗ ✗ ✓

Meta-Heuristic Optimization Methods ✗ ✓✓ ✗✗ ✓✓

AI-Based Methods ✓✓ ✗ ✗✗ ✗

MPCs with Unifying Cost Functions ✓ ✗✗ ✓✓ ✓

Direct Vector Selection Methods ✓ ✗✗ ✓✓ ✓✓

Sequential/Parallel MPC Strategies ✓✓ ✓ ✗ ✗

Decision-Making-Based Methods ✓✓ ✓ ✓ ✗

a novel hybrid sorting algorithm has been introduced in [88]
to reduce the computational burden. It also assumes that each
control objective is of equal importance in the selection of the
voltage vector. This leads to a balance issue between main
control objectives and additional control objectives, leading
to poor control performance and even stability issues. The
reported issue is clearly visible in [89], which uses the
same technique. Even though the authors add a switching
frequency regulation term to the cost function of MPTC, they
only manage to eliminate the WF associated with the flux
error term while manually tuning the WF of the switching
frequency regulation term. Another approach, called the top-
three voltage vector approach, has been proposed in [90].
Differently, it selects the first three candidate voltage vectors
for each control objective, which minimizes the corresponding
control objective, and then decides on one common voltage
vector. But this paper ignores the case that the intersection
set is null. To address these problems, the VIKOR-based
DM method in [91], multi-objective fuzzy DM method in
[92], TOPSIS-based DM method in [93], [94], coefficient of

III. THE PROPOSED ENSEMBLE REGULATION PRINCIPLE
FOR MULTI-OBJECTIVE FCS-MPC SCHEMES

The formulation of the optimization problem underlying
multi-objective FCS-MPC is illustrated in Fig. 3. As can be
understood, the multiple control targets are consisted of the
core control targets, system demands and physical constraints.

Multiple 
Control 

Objectives

Core Control 
Targets

System 
Demands

Physical 
Constraints

Fig. 3. Description of multiple control targets in the FCS-MPC scheme.

1) Core Control Targets: The core control targets are the
performance metrics of the IM, which are directly optimized
in the objective function of the FCS-MPC scheme. Torque
and stator flux-linkage are assigned as the core control targets,
because the proposed FCS-MPC scheme aims to minimize the
corresponding tracking errors.

2) System Demands: The system demands are regarded as
the soft constraints of the control plant, which are flexibly
penalized in the objective function. In this work, the switch-
ing frequency term is included in the formulated objective
function, to achieve a satisfactory control performance and a
considerably low switching frequency.

3) Physical Constraints: The physical constraint is the
limitation term of the current magnitude. The control system
suffers from a fatal failure when the magnitude of stator cur-
rent exceeds its limitation. Therefore, the physical constraints
must be satisfied by the selected optimal solution.

The main concept of the proposed ensemble regulation
principle is on the basis of separating the high dimension FCS-
MPC optimization problem into a series of 1-dimension sub-
optimization problems (see Fig. 4). In this work, the conven-
tional FCS-MPC is regarded as an optimization problem with
a dimension of 4, which is divided into 4 sub-optimization
problems.

Fig. 4. The separation from a high dimension optimization problem to
a series of 1-dimension sub-optimization problems (a) separation of the
optimization problem (b) splitting of the objective function.

The objective function (13) with a combination of weight-
ing parameters in the conventional FCS-MPC is rewritten as:

gTj =
[
T ∗ − T̂ (k + 2)j

]2
+ Im(k + 2), (16)

gFj =
[
‖ ψ∗

s ‖ − ‖ ψ̂s(k + 2)j ‖
]2

+ Im(k + 2), (17)

gswj = n2sw + Im(k + 2). (18)

The next step is to assign the priorities of the control
targets. As mentioned above, all the control targets in the FCS-
MPC schemes are categorized into the following groups: core
control targets, system demands and physical constraints. As
can be understood, the physical constraints have the highest
priorities because the violation of constraints results in the
damage of the hardware. Moreover, the core control targets
have a higher priority than the system demands, because the
performance metrics of the controller are mainly determined
by the core control targets. It is noteworthy that torque
is assigned with a higher priority than stator flux-linkage.
The reason for this is the predicted torque is calculated
by the product of the predicted stator flux-linkage and cur-
rent (see (12)). Based on the above, the priorities assignment
of the control targets in the proposed FCS-MPC scheme is
shown in Fig. 5.

Fig. 5. Priorities assignment of the control targets in the proposed FCS-MPC
scheme.

The sorting algorithm in the proposed scheme is similar
to that in the conventional FCS-MPC schemes. However, the
difference is how to collect the values and the correspond-
ing control inputs. In the conventional FCS-MPC, only the
minimal value and its control input are collected. Conversely,
several suboptimal solutions are collected in a register array,
because they are applied to find the optimal in the proposed
ensemble regulation principle. An example of gT sorting can
be found in Fig. 6. For the first control input j = 0, gT0

and j = 0 are registered in the first element (gT[0], b1[0]) of
the arrays, respectively. Then, gT1 for the next control input
is compared with gT0. If gT1 is smaller than gT[0], gT[0]
and b1[0] are saved in the next elements gT[1] and b1[1], and
gT[0] and b1[0] are replaced by gT1 and j = 1. Otherwise,
gT1 and j = 1 are saved in gT[1] and b1[1], respectively. The
aforementioned procedures are repeated until j = 6. It should
be mentioned that the value gTj are compared with the saved
elements in the array gT in turns. By doing so, the control
inputs are sorted based on the monotonic increased value of
the objective function. The sorting algorithms for gF and gsw
share the similar concept with Fig. 6.

In the proposed ensemble regulation principle, three sub-
optimal solutions are roughly selected for each control target.
The selected suboptimal solutions can obtain a overall decent
performance for each control criterion. To achieve a satisfac-
tory performance for all the criteria, the ensemble regulation
principle tries to find the optimal solution which is consistent
with as many suboptimal solutions as possible. As can be
understood, a smaller tracking error is obtained if a higher
number of suboptimal solutions are the same with the optimal.
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Fig. 9. Multiobjective problem definition in [102] (a) Description of multiple
control objectives (b) Prioritization of control objectives for the FCS-MPC
scheme proposed by [102].

variation-based DM method in [95], grey relational analysis-
based DM method in [96], [97], and weighted sum-based
DM [98], [99] have been proposed. While these solutions are
strong candidates for addressing these issues, they introduce
additional tuning parameters to weight the importance of
each control objective. In [100], two DM methods based on
Euclidean and absolute distances are proposed and compared
with TOPSIS DM-based MPTC. Both proposed DM methods
provide a higher dynamic response with lower computational
complexity than the TOPSIS DM method as shown in Fig. 8.
In [101], an equivalent weighting factor method is proposed
to achieve the optimal weighting factor online. The proposed
DM method achieves lower torque and flux fluctuations than
the ranking-based DM with less computational complexity.
However, the DM methods in [100] and [101] have similar
issues related to the inclusion of additional control objectives.
An ensemble regulation-based DM has been proposed in [102],
which assigns priorities to control objectives in terms of core
control objectives, system demands, and physical constraints.
With this method, the priorities of the MPTC strategy are
ranked as in Fig. 9. The results show that it improves the
control performance at the expense of computational com-
plexity. In addition, when the candidate voltage vector cannot
be determined, it is not discussed how the proposed method
works when the voltage vector cannot be found considering
the priorities of the control objectives. In [103], a cooperative
DM method, which considers control objectives as master
problems and sub-problems, allows the inclusion of additional
control objectives without any tuning parameters. Although
this method provides better control performance with the
reduced computational burden compared to generalized S-
MPTC in [74] and effective MPTC in [90], it needs a sorting
algorithm like the ranking-based DM method. This compli-
cates its applicability for multilevel inverter topologies due to
increased computational load. However, it is a state-of-the-art
method.

IV. CHALLENGES AND TRENDS

Various WF design techniques have been reported so far
in this paper, and Table I presents an overview of the main
characteristics of WF design techniques in terms of control
performance, flexibility in including additional control objec-
tives, design complexity, and computational complexity.
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The main challenges of WF selection methods are that they
need an offline training process or a cumbersome empirical
tuning phase. The empirical tuning phase may be very tedious,
especially when multiple additional control targets exist. In
addition, their control performance is limited under changing
operating conditions of electric drives as almost all provide
constant WFs. As for the online WF selection methods, they
either have extremely high computational complexity and/or
require expert knowledge to design.

WF elimination techniques have better control performance
but the inclusion of additional control objectives is still
problematic for direct vector selection methods, DM-based
MPCs, and MPCs with unifying cost functions. Although
sequential/parallel MPCs are more flexible in the inclusion
of additional control objectives, their design complexities
significantly increase with the number of additional control ob-
jectives. Direct vector selection methods allow reducing com-
putational complexity remarkably in the optimization stage.
DM-based methods provide satisfactory control performance
against changing operating conditions of electric drives but
their computational complexities also go up with the number
of additional control objectives.

Recent studies show that the trend is toward WF elimination
techniques. The efforts are intended for easily incorporating
additional control objectives in direct vector selection methods
and DM-based MPCs, reducing the design complexity of
sequential/parallel MPCs, and lessening the computational
complexity of DM-based MPCs.

Consequently, expectations from forthcoming WF design
techniques can be listed as follows:

1) Advanced control performance under changing operat-
ing conditions of electric drives,

2) Flexible design in the inclusion of additional control
objectives,

3) Simplified design for multiple additional control objec-
tives and multi-level power converter applications,

4) Acceptable computational complexity for multiple addi-
tional control objectives and multi-level power converter
applications.

V. CONCLUSION

MPC strategies for AC electric drives have been very
popular over the past decade, and the literature indicates that
this popularity will continue to grow in the next decade. To
contribute to researchers in their new research and spotlight
some state-of-the-art methods, this paper has focused on WF
design techniques, one of the main challenges in MPC design,
especially in AC electric drive applications. Although effective
solutions have been proposed for specific applications, it is
obvious that researchers are looking for more general WF
design techniques with improved control performance, greater
flexibility, and less design and computational complexity.

Considering the existing WF design techniques, AI-based
and DM-based methods stand out. It is obvious that AI will
dominate in many engineering fields in the near future as
many disciplines. New neural networks with lower computa-
tional complexity and open-source design tools will encourage

researchers to apply them to the WF design of MPC. On
the other hand, designing DM-based methods with lower
computational complexity and greater flexibility stimulates
researchers in this field.

Finally, the WF design problem of MPC strategies is still
open to research and awaits researchers to come up with new
promising solutions.
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Y. Benômar, M. E. Baghdadi, and O. Hegazy, “In-Wheel Motor Drive
Systems for Electric Vehicles: State of the Art, Challenges, and Future
Trends,” Energies 2023, Vol. 16, Page 3121, vol. 16, no. 7, p. 3121, 3
2023.

[6] S. Kouro, M. A. Perez, J. Rodriguez, A. M. Llor, and H. A. Young,
“Model Predictive Control: MPC’s Role in the Evolution of Power
Electronics,” IEEE Industrial Electronics Magazine, vol. 9, no. 4, pp.
8–21, 2015.

[7] F. Wang, Z. Zhang, X. Mei, J. Rodrı́guez, and R. Kennel, “Advanced
control strategies of induction machine: Field oriented control, direct
torque control and model predictive control,” Energies, vol. 11, no. 1,
p. 120, 1 2018.

[8] Z. Xue, S. Niu, A. M. H. Chau, Y. Luo, H. Lin, and X. Li, “Recent
Advances in Multi-Phase Electric Drives Model Predictive Control
in Renewable Energy Application: A State-of-the-Art Review,” World
Electric Vehicle Journal 2023, Vol. 14, Page 44, vol. 14, no. 2, p. 44,
2 2023.

[9] I. Harbi, J. Rodriguez, E. Liegmann, H. Makhamreh, M. L. Heldwein,
M. Novak, M. Rossi, M. Abdelrahem, M. Trabelsi, M. Ahmed, P. Kara-
manakos, S. Xu, T. Dragicevic, and R. Kennel, “Model Predictive
Control of Multilevel Inverters: Challenges, Recent Advances, and
Trends,” IEEE Transactions on Power Electronics, vol. 57, no. 8, pp.
1–24, 2023.

[10] H. Li, J. Shao, and Z. Liu, “Incremental Model Predictive Current Con-
trol for PMSM With Online Compensation for Parameter Mismatch,”
IEEE Transactions on Energy Conversion, vol. 38, no. 2, pp. 1050–
1059, 6 2023.

[11] M. Zhao, S. Zhang, X. Li, C. Zhang, and Y. Zhou, “Parameter Robust
Deadbeat Predictive Current Control for Open-Winding Surface Perma-
nent Magnet Synchronous Motor Drives,” IEEE Journal of Emerging
and Selected Topics in Power Electronics, vol. 11, no. 3, pp. 3117–
3126, 6 2023.

[12] X. An, G. Liu, Q. Chen, W. Zhao, and X. Song, “Robust Predictive
Current Control for Fault-Tolerant Operation of Five-Phase PM Motors
Based on Online Stator Inductance Identification,” IEEE Transactions
on Power Electronics, vol. 36, no. 11, pp. 13 162–13 175, 11 2021.

[13] Z. Sun, Y. Deng, J. Wang, T. Yang, Z. Wei, and H. Cao, “Finite Control
Set Model-Free Predictive Current Control of PMSM with Two Voltage
Vectors Based on Ultralocal Model,” IEEE Transactions on Power
Electronics, vol. 38, no. 1, pp. 776–788, 1 2023.

[14] I. D. De Martin, D. Pasqualotto, F. Tinazzi, and M. Zigliotto, “Model-
free predictive current control of synchronous reluctance motor drives
for pump applications,” Machines, vol. 9, no. 10, p. 217, 9 2021.

[15] M. Khalilzadeh, S. Vaez-Zadeh, J. Rodriguez, and R. Heydari, “Model-
Free Predictive Control of Motor Drives and Power Converters: A
Review,” IEEE Access, vol. 9, pp. 105 733–105 747, 2021.

[16] S. Li, Y. Xu, W. Zhang, and J. Zou, “Robust Deadbeat Predictive Direct
Speed Control for PMSM With Dual Second-Order Sliding-Mode
Disturbance Observers and Sensitivity Analysis,” IEEE Transactions
on Power Electronics, vol. 38, no. 7, pp. 8310–8326, 2023.



10

[17] L. Wang, J. Zhao, X. Yang, Z. Zheng, X. Zhang, and L. Wang, “Robust
Deadbeat Predictive Current Regulation for Permanent Magnet Syn-
chronous Linear Motor Drivers With Parallel Parameter Disturbance
and Load Observer,” IEEE Transactions on Power Electronics, vol. 37,
no. 7, pp. 7834–7845, 7 2022.

[18] O. Wallscheid and E. F. B. Ngoumtsa, “Investigation of Disturbance
Observers for Model Predictive Current Control in Electric Drives,”
IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13 563–
13 572, 5 2020.

[19] X. Yao, S. Huang, J. Wang, H. Ma, G. Zhang, and Y. Wang, “Improved
ROGI-FLL-Based Sensorless Model Predictive Current Control with
MRAS Parameter Identification for SPMSM Drives,” IEEE Journal of
Emerging and Selected Topics in Power Electronics, vol. 11, no. 2, pp.
1684–1695, 2023.

[20] S. G. Petkar and V. K. Thippiripati, “Effective Multi-vector Operated
Predictive Current Control of PMSM Drive with Reduced Torque and
Flux Ripple,” IEEE Transactions on Transportation Electrification,
vol. 9, no. 2, pp. 2217–2227, 6 2022.

[21] A. Gonzalez-Prieto, I. Gonzalez-Prieto, M. J. Duran, J. J. Aciego, and
P. Salas-Biedma, “Current Harmonic Mitigation using a Multi-vector
Solution for MPC in Six-phase Electric Drives,” IEEE Access, vol. 9,
pp. 117 761–117 771, 2021.

[22] T. Jin, H. Song, P. G. Ipoum-Ngome, D. L. Mon-Nzongo, J. Tang,
M. Zhu, and J. Rodriguez, “Low Complexity Model Predictive Flux
Control Based on Discrete Space Vector Modulation and Optimal
Switching Sequence for Induction Motors,” IEEE Transactions on
Industrial Electronics, vol. 71, no. 1, pp. 305–315, 1 2023.

[23] W. Zhang, Y. Yang, M. Fan, L. He, A. Ji, Y. Xiao, H. Wen, X. Zhang,
T. Yang, S. Mekhilef, and J. Rodriguez, “An Improved Model Predic-
tive Torque Control for PMSM Drives Based on Discrete Space Vector
Modulation,” IEEE Transactions on Power Electronics, vol. 38, no. 6,
pp. 7535–7545, 2023.

[24] H. Xie, F. Wang, Q. Chen, Y. He, J. Rodriguez, and R. Kennel,
“Computationally Efficient Predictive Current Control With Finite Set
Extension Using Derivative Projection for IM Drives,” IEEE Journal
of Emerging and Selected Topics in Power Electronics, vol. 11, no. 2,
pp. 1345–1357, 4 2023.

[25] W. Xu, D. Dong, J. Zou, and Y. Liu, “Low-Complexity Multistep
Model Predictive Current Control for Linear Induction Machines,”
IEEE Transactions on Power Electronics, vol. 36, no. 7, pp. 8388–
8398, 7 2021.

[26] M. A. Abbasi, A. R. Husain, N. R. Nik Idris, and S. M. Fasih ur
Rehman, “Computationally efficient predictive torque control for induc-
tion motor drives based on flux positional errors and extended Kalman
filter,” IET Electric Power Applications, vol. 15, no. 6, pp. 653–667, 6
2021.

[27] Q. Wang, H. Yu, C. Li, X. Lang, S. S. Yeoh, T. Yang, M. Rivera,
S. Bozhko, and P. Wheeler, “A Low-Complexity Optimal Switching
Time-Modulated Model-Predictive Control for PMSM with Three-
Level NPC Converter,” IEEE Transactions on Transportation Electri-
fication, vol. 6, no. 3, pp. 1188–1198, 9 2020.

[28] S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Noram-
buena, “Model Predictive Control for Power Converters and Drives:
Advances and Trends,” IEEE Transactions on Industrial Electronics,
vol. 64, no. 2, pp. 935–947, 2017.

[29] P. Karamanakos, E. Liegmann, T. Geyer, and R. Kennel, “Model
Predictive Control of Power Electronic Systems: Methods, Results, and
Challenges,” IEEE Open Journal of Industry Applications, vol. 1, no.
June, pp. 95–114, 2020.

[30] T. Li, X. Sun, G. Lei, Y. Guo, Z. Yang, and J. Zhu, “Finite-Control-Set
Model Predictive Control of Permanent Magnet Synchronous Motor
Drive Systems - An Overview,” IEEE/CAA Journal of Automatica
Sinica, vol. 9, no. 12, pp. 2087–2105, 2022.

[31] M. F. Elmorshedy, W. Xu, F. F. M. El-Sousy, M. R. Islam, and A. A.
Ahmed, “Recent Achievements in Model Predictive Control Techniques
for Industrial Motor: A Comprehensive State-of-the-Art,” IEEE Access,
vol. 9, pp. 58 170–58 191, 2021.

[32] J. Rodriguez, C. Garcia, A. Mora, F. Flores-Bahamonde, P. Acuna,
M. Novak, Y. Zhang, L. Tarisciotti, S. A. Davari, Z. Zhang, F. Wang,
M. Norambuena, T. Dragicevic, F. Blaabjerg, T. Geyer, R. Kennel, D. A.
Khaburi, M. Abdelrahem, Z. Zhang, N. Mijatovic, and R. P. Aguilera,
“Latest Advances of Model Predictive Control in Electrical Drives -
Part I: Basic Concepts and Advanced Strategies,” IEEE Transactions
on Power Electronics, vol. 37, no. 4, pp. 3927–3942, 2022.

[33] J. Rodriguez, C. Garcia, A. Mora, S. A. Davari, J. Rodas, D. F.
Valencia, M. Elmorshedy, F. Wang, K. Zuo, L. Tarisciotti, F. Flores-
Bahamonde, W. Xu, Z. Zhang, Y. Zhang, M. Norambuena, A. Emadi,

T. Geyer, R. Kennel, T. Dragicevic, D. A. Khaburi, Z. Zhang, M. Abdel-
rahem, and N. Mijatovic, “Latest Advances of Model Predictive Control
in Electrical Drives - Part II: Applications and Benchmarking With
Classical Control Methods,” IEEE Transactions on Power Electronics,
vol. 37, no. 5, pp. 5047–5061, 2022.

[34] J. Peng and M. Yao, “Overview of Predictive Control Technology for
Permanent Magnet Synchronous Motor Systems,” Applied Sciences
(Switzerland), vol. 13, no. 10, p. 6255, 5 2023.

[35] Y. Zhang, Z. Zhang, O. Babayomi, and Z. Li, “Weighting Factor Design
Techniques for Predictive Control of Power Electronics and Motor
Drives,” Symmetry, vol. 15, no. 6, p. 1219, 6 2023.

[36] Y. Zhang and H. Yang, “Two-Vector-Based Model Predictive Torque
Control Without Weighting Factors for Induction Motor Drives,” IEEE
Transactions on Power Electronics, vol. 31, no. 2, pp. 1381–1390,
2016.

[37] A. A. Ahmed, B. K. Koh, and Y. I. Lee, “A Comparison of Finite
Control Set and Continuous Control Set Model Predictive Control
Schemes for Speed Control of Induction Motors,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 4, pp. 1334–1346, 4 2018.

[38] X. Zhang, L. Zhang, and Y. Zhang, “Model predictive current control
for PMSM drives with parameter robustness improvement,” IEEE
Transactions on Power Electronics, vol. 34, no. 2, pp. 1645–1657,
2019.

[39] X. Zhang and B. Hou, “Double Vectors Model Predictive Torque
Control Without Weighting Factor Based on Voltage Tracking Error,”
IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2368–2380,
2018.

[40] D. F. Valencia, R. Tarvirdilu-Asl, C. Garcia, J. Rodriguez, and
A. Emadi, “A review of predictive control techniques for switched
reluctance machine drives. Part I: Fundamentals and current control,”
IEEE Transactions on Energy Conversion, vol. 36, no. 2, pp. 1313–
1322, 6 2021.

[41] ——, “A review of predictive control techniques for switched re-
luctance machine drives. Part II: Torque control, assessment and
challenges,” IEEE Transactions on Energy Conversion, vol. 36, no. 2,
pp. 1323–1335, 6 2021.

[42] B. Nikmaram, S. A. Davari, P. Naderi, C. Garcia, and J. Rodriguez,
“Sensorless Simplified Finite Control Set Model Predictive Control of
SynRM Using Finite Position Set Algorithm,” IEEE Access, vol. 9, pp.
47 184–47 193, 2021.

[43] J. Riccio, P. Karamanakos, S. Odhano, M. Tang, M. D. Nardo, and
P. Zanchetta, “Direct Model Predictive Control of Synchronous Re-
luctance Motor Drives,” IEEE Transactions on Industry Applications,
vol. 59, no. 1, pp. 1054–1063, 1 2023.

[44] F. Wang, S. Li, X. Mei, W. Xie, J. Rodrı́guez, and R. M. Kennel,
“Model-based predictive direct control strategies for electrical drives:
An experimental evaluation of PTC and PCC methods,” IEEE Trans-
actions on Industrial Informatics, vol. 11, no. 3, pp. 671–681, 2015.

[45] L. Yang, H. Li, J. Huang, Z. Zhang, and H. Zhao, “Model Predictive
Direct Speed Control With Novel Cost Function for SMPMSM Drives,”
IEEE Transactions on Power Electronics, vol. 37, no. 8, pp. 9586–9595,
2022.

[46] Y. Xu, J. Ren, L. Fan, and Z. Yin, “Multidisturbance Suppressed
Model Predictive Direct Speed Control With Low Pulsation for PMSM
Drives,” IEEE Journal of Emerging and Selected Topics in Power
Electronics, vol. 10, no. 5, pp. 6135–6147, 2022.

[47] C. Gong, Y. Hu, K. Ni, J. Liu, and J. Gao, “SM load torque observer-
based FCS-MPDSC with single prediction horizon for high dynamics
of surface-mounted PMSM,” IEEE Transactions on Power Electronics,
vol. 35, no. 1, pp. 20–24, 2020.

[48] P. Cortes, S. Kouro, B. La Rocca, R. Vargas, J. Rodriguez, J. I. Leon,
S. Vazquez, and L. G. Franquelo, “Guidelines for weighting factors
design in Model Predictive Control of power converters and drives,” in
2009 IEEE International Conference on Industrial Technology. IEEE,
2 2009, pp. 1–7.

[49] A. Bhowate, M. V. Aware, and S. Sharma, “Speed Sensor-Less Pre-
dictive Torque Control for Five-Phase Induction Motor Drive Using
Synthetic Voltage Vectors,” IEEE Journal of Emerging and Selected
Topics in Power Electronics, vol. 9, no. 3, pp. 2698–2709, 6 2021.

[50] W. Wang, C. Liu, S. Liu, and H. Zhao, “Model Predictive Torque Con-
trol for Dual Three-Phase PMSMs with Simplified Deadbeat Solution
and Discrete Space-Vector Modulation,” IEEE Transactions on Energy
Conversion, vol. 36, no. 2, pp. 1491–1499, 6 2021.

[51] Z. Li, Y. Guo, J. Xia, H. Li, and X. Zhang, “Variable Sampling
Frequency Model Predictive Torque Control for VSI-Fed im Drives
without Current Sensors,” IEEE Journal of Emerging and Selected
Topics in Power Electronics, vol. 9, no. 2, pp. 1507–1517, 4 2021.



11

[52] K. M. Ravi Eswar, K. Venkata Praveen Kumar, and T. Vinay Kumar,
“Enhanced Predictive Torque Control with Auto-Tuning Feature for
Induction Motor Drive,” Electric Power Components and Systems,
vol. 46, no. 7, pp. 825–836, 4 2018.

[53] I. Sahin, O. Keysan, and E. Monmasson, “Experimental tuning and
design guidelines of a dynamically reconfigured weighting factor for
the predictive torque control of an induction motor,” in 2020 22nd
European Conference on Power Electronics and Applications (EPE’20
ECCE Europe). IEEE, 9 2020, pp. P.1–P.8.

[54] A. Abbaszadeh, D. A. Khaburi, H. Mahmoudi, and J. Rodrı́guez,
“Simplified model predictive control with variable weighting factor for
current ripple reduction,” IET Power Electronics, vol. 10, no. 10, pp.
1165–1174, 2017.

[55] X. Liu, J. Wang, X. Gao, W. Tian, L. Zhou, and R. Kennel, “Robust
Predictive Speed Control of SPMSM Drives with Algebraically De-
signed Weighting Factors,” IEEE Transactions on Power Electronics,
vol. 37, no. 12, pp. 14 434–14 446, 12 2022.

[56] F. Wang, J. Li, Z. Li, D. Ke, J. Du, C. Garcia, and J. Rodriguez,
“Design of Model Predictive Control Weighting Factors for PMSM Us-
ing Gaussian Distribution-Based Particle Swarm Optimization,” IEEE
Transactions on Industrial Electronics, vol. 69, no. 11, pp. 10 935–
10 946, 11 2022.

[57] C. Yao, Z. Sun, S. Xu, H. Zhang, G. Ren, and G. Ma, “ANN
Optimization of Weighting Factors Using Genetic Algorithm for Model
Predictive Control of PMSM Drives,” IEEE Transactions on Industry
Applications, vol. 58, no. 6, pp. 7346–7362, 2022.

[58] E. Zerdali and M. Barut, “The Comparisons of Optimized Extended
Kalman Filters for Speed-Sensorless Control of Induction Motors,”
IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 4340–
4351, 6 2017.

[59] P. R. U. Guazzelli, W. C. de Andrade Pereira, C. M. R. de Oliveira,
A. G. de Castro, and M. L. de Aguiar, “Weighting Factors Optimization
of Predictive Torque Control of Induction Motor by Multiobjective
Genetic Algorithm,” IEEE Transactions on Power Electronics, vol. 34,
no. 7, pp. 6628–6638, 7 2018.

[60] M. H. Arshad, M. A. Abido, A. Salem, and A. H. Elsayed, “Weighting
Factors Optimization of Model Predictive Torque Control of Induction
Motor Using NSGA-II with TOPSIS Decision Making,” IEEE Access,
vol. 7, pp. 177 595–177 606, 2019.

[61] A. Gurel and E. Zerdali, “The Effect of Different Decision-Making
Methods on Multi-Objective Optimisation of Predictive Torque Control
Strategy,” Power Electronics and Drives, vol. 6, no. 1, pp. 289–300, 1
2021.

[62] S. A. Davari, V. Nekoukar, C. Garcia, and J. Rodriguez, “Online
Weighting Factor Optimization by Simplified Simulated Annealing
for Finite Set Predictive Control,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 1, pp. 31–40, 1 2021.

[63] Z. Zhang, W. Tian, W. Xiong, and R. Kennel, “Predictive torque control
of induction machines fed by 3L-NPC converters with online weighting
factor adjustment using Fuzzy Logic,” in 2017 IEEE Transportation
and Electrification Conference and Expo, ITEC 2017, no. 2. IEEE, 6
2017, pp. 84–89.

[64] M. Novak, H. Xie, T. Dragicevic, F. Wang, J. Rodriguez, and F. Blaab-
jerg, “Optimal Cost Function Parameter Design in Predictive Torque
Control (PTC) Using Artificial Neural Networks (ANN),” IEEE Trans-
actions on Industrial Electronics, vol. 68, no. 8, pp. 7309–7319, 2021.

[65] R. Fu, “Robust Model Predictive Flux Control of PMSM Drive Using a
Compensated Stator Flux Predictor,” IEEE Access, vol. 9, pp. 136 736–
136 743, 2021.

[66] Z. Song, X. Ma, and R. Zhang, “Enhanced Finite-Control-Set Model
Predictive Flux Control of Permanent Magnet Synchronous Machines
with Minimum Torque Ripples,” IEEE Transactions on Industrial
Electronics, vol. 68, no. 9, pp. 7804–7813, 9 2021.

[67] J. Zhang, G. Ai, Z. Liang, M. Zhang, Y. Wang, Y. Wang, Z. Li,
J. Rodriguez, and Z. Zhang, “Predictive Power Control of Induction
Motor Drives,” in 6th IEEE International Conference on Predictive
Control of Electrical Drives and Power Electronics, PRECEDE 2021.
IEEE, 11 2021, pp. 524–529.

[68] J. Zhang, Z. Zhang, X. Liu, Z. Li, and O. Babayomi, “Predictive power
control of induction motor drives with improved efficiency,” Energy
Reports, vol. 9, pp. 496–503, 4 2023.

[69] L. Guo, X. Zhang, S. Yang, Z. Xie, L. Wang, and R. Cao, “Simplified
model predictive direct torque control method without weighting fac-
tors for permanent magnet synchronous generator-based wind power
system,” IET Electric Power Applications, vol. 11, no. 5, pp. 793–804,
2017.

[70] Z. Lu, R. Zhang, L. Hu, L. Gan, J. Lin, and P. Gong, “Model predictive
control of induction motor based on amplitude–phase motion equation,”
IET Power Electronics, vol. 12, no. 9, pp. 2400–2406, 8 2019.

[71] C. Xia, T. Liu, T. Shi, and Z. Song, “A simplified finite-control-set
model-predictive control for power converters,” IEEE Transactions on
Industrial Informatics, vol. 10, no. 2, pp. 991–1002, 2014.

[72] X. Zhang and Y. He, “Direct Voltage-Selection Based Model Predictive
Direct Speed Control for PMSM Drives Without Weighting Factor,”
IEEE Transactions on Power Electronics, vol. 34, no. 8, pp. 7838–
7851, 8 2019.

[73] M. Norambuena, J. Rodriguez, Z. Zhang, F. Wang, C. Garcia, and
R. Kennel, “A Very Simple Strategy for High-Quality Performance of
AC Machines Using Model Predictive Control,” IEEE Transactions on
Power Electronics, vol. 34, no. 1, pp. 794–800, 2018.

[74] Y. Zhang, B. Zhang, H. Yang, M. Norambuena, and J. Rodriguez,
“Generalized sequential model predictive control of im drives with
field-weakening ability,” IEEE Transactions on Power Electronics,
vol. 34, no. 9, pp. 8944–8955, 9 2019.

[75] S. A. Davari, M. Norambuena, V. Nekoukar, C. Garcia, and J. Ro-
driguez, “Even-Handed Sequential Predictive Torque and Flux Con-
trol,” IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp.
7334–7342, 9 2020.

[76] K. Zhang, M. Fan, Y. Yang, R. Chen, Z. Zhu, C. Garcia, and
J. Rodriguez, “Tolerant Sequential Model Predictive Direct Torque
Control of Permanent Magnet Synchronous Machine Drives,” IEEE
Transactions on Transportation Electrification, vol. 6, no. 3, pp. 1167–
1176, 2020.

[77] A. Salem, M. Mamdouh, and M. A. Abido, “Predictive Torque Control
and Capacitor Balancing of a SiC-Based Dual T-Type Drive System,”
IEEE Transactions on Power Electronics, vol. 35, no. 3, pp. 2871–2881,
3 2020.

[78] Y. Tang, W. Xu, D. Dong, Y. Liu, and M. M. Ismail, “Low-Complexity
Multistep Sequential Model Predictive Current Control for Three-
Level Inverter-Fed Linear Induction Machines,” IEEE Transactions on
Industrial Electronics, vol. 70, no. 6, pp. 5537–5548, 6 2023.

[79] Z. Sun, S. Xu, G. Ren, C. Yao, G. Ma, and J. Jatskevich, “Weighting-
Factor-Less Model Predictive Control with Multi-Objectives for 3-
Level Hybrid ANPC Inverter Drives,” IEEE Journal of Emerging and
Selected Topics in Power Electronics, pp. 1–1, 2023.

[80] K. Bharath Kumar and K. V. Praveen Kumar, “Simple predictive torque
control of an open-end winding interior permanent magnet synchronous
motor drive without weighting factor for electric vehicle applications,”
International Journal of Circuit Theory and Applications, no. March,
pp. 1–22, 7 2023.

[81] T. Wang, Y. Wang, Z. Zhang, Z. Li, C. Hu, and F. Wang, “Comparison
and analysis of predictive control of induction motor without weighting
factors,” Energy Reports, vol. 9, pp. 558–568, 4 2023.

[82] F. Wang, H. Xie, Q. Chen, S. A. Davari, J. Rodriguez, and R. Kennel,
“Parallel Predictive Torque Control for Induction Machines without
Weighting Factors,” IEEE Transactions on Power Electronics, vol. 35,
no. 2, pp. 1779–1788, 2 2020.

[83] H. Xie, F. Wang, Y. He, J. Rodrı́guez, and R. Kennel, “Encoderless
Parallel Predictive Torque Control for Induction Machine Using a
Robust Model Reference Adaptive System,” IEEE Transactions on
Energy Conversion, vol. 37, no. 1, pp. 232–242, 3 2022.

[84] M. Lv, S. Gao, Y. Wei, D. Zhang, and H. Qi, “Model-Free Parallel
Predictive Torque Control Based on Ultra-Local Model of Permanent
Magnet Synchronous Machine,” Actuators, vol. 11, no. 2, p. 31, 1 2022.

[85] X. Wang, X. Lin, Q. Huang, and W. Xie, “An Improved Parallel
Predictive Torque Control for Permanent Magnet Synchronous Motor,”
IEEE Access, vol. 11, no. March, pp. 32 496–32 507, 2023.

[86] S. Gao, Y. Wei, D. Zhang, H. Qi, Y. Wei, and Z. Yang, “Model-Free
Hybrid Parallel Predictive Speed Control Based On Ultralocal Model
of PMSM for Electric Vehicles,” IEEE Transactions on Industrial
Electronics, vol. 69, no. 10, pp. 9739–9748, 2022.

[87] C. A. Rojas, J. Rodriguez, F. Villarroel, J. R. Espinoza, C. A. Silva,
and M. Trincado, “Predictive torque and flux control without weighting
factors,” IEEE Transactions on Industrial Electronics, vol. 60, no. 2,
pp. 681–690, 2 2013.

[88] K. Bandy and P. Stumpf, “Model Predictive Torque Control for
Multilevel Inverter fed Induction Machines Using Sorting Networks,”
IEEE Access, vol. 9, pp. 13 800–13 813, 2021.

[89] M. Chebaani, M. Ebeed, W. S. Abdellatif, Z. M. Salem Elbarbary, and
N. A. Nouraldin, “Design and Implementation of an Improved Finite-
State Predictive Direct Torque Control for Induction Motor With New
Weighting Factor Elimination,” IEEE Access, vol. 11, no. June, pp.
58 169–58 187, 2023.



12

[90] E. Kusuma, K. M. R. Eswar, and T. Vinay Kumar, “An Effective Pre-
dictive Torque Control Scheme for PMSM Drive without Involvement
of Weighting Factors,” IEEE Journal of Emerging and Selected Topics
in Power Electronics, vol. 9, no. 3, pp. 2685–2697, 2021.

[91] V. P. Muddineni, A. K. Bonala, and S. R. Sandepudi, “Enhanced
weighting factor selection for predictive torque control of induction
motor drive based on VIKOR method,” IET Electric Power Applica-
tions, vol. 10, no. 9, pp. 877–888, 11 2016.

[92] C. A. Rojas, J. R. Rodriguez, S. Kouro, and F. Villarroel, “Multiobjec-
tive Fuzzy-Decision-Making Predictive Torque Control for an Induction
Motor Drive,” IEEE Transactions on Power Electronics, vol. 32, no. 8,
pp. 6245–6260, 8 2017.

[93] V. P. Muddineni, S. R. Sandepudi, and A. K. Bonala, “Finite control
set predictive torque control for induction motor drive with simplified
weighting factor selection using TOPSIS method,” IET Electric Power
Applications, vol. 11, no. 5, pp. 749–760, 5 2017.

[94] A. Vujji, Y. B. S. S. Gupta, R. Dahiya, M. S. Bhaskar, and B. Khan,
“Experimental verification for cost function optimization using TOPSIS
approach for predictive control of surface mounted PMSM,” IET Power
Electronics, vol. 16, no. 6, pp. 948–960, 1 2023.

[95] A. Bhowate, M. Aware, and S. Sharma, “Predictive Torque Control
with Online Weighting Factor Computation Technique to Improve
Performance of Induction Motor Drive in Low Speed Region,” IEEE
Access, vol. 7, pp. 42 309–42 321, 2019.

[96] V. P. Muddineni, A. K. Bonala, and S. R. Sandepudi, “Grey Rela-
tional Analysis-Based Objective Function Optimization for Predictive
Torque Control of Induction Machine,” IEEE Transactions on Industry
Applications, vol. 57, no. 1, pp. 835–844, 1 2021.

[97] A. Vujji, R. Dahiya, A. Vujji, and R. Dahiya, “Enhancement of Weight-
ing Coefficient Selection using Grey Relational Analysis for Model
Predictive Torque Control of PMSM Drive: Analysis and Experiments,”
Distributed Generation & Alternative Energy Journal, vol. 38, no. 5,
pp. 1454–1433, 7 2023.

[98] V. P. Muddineni, S. R. Sandepudi, and A. K. Bonala, “Improved
Weighting Factor Selection for Predictive Torque Control of Induction
Motor Drive Based on a Simple Additive Weighting Method,” Electric
Power Components and Systems, vol. 45, no. 13, pp. 1450–1462, 8
2017.

[99] A. Vujji and R. Dahiya, “Real-Time Implementation for Improvement
of Weighting Coefficient Selection using Weighted Sum Method for
Predictive Torque Control of PMSM Drive,” Arabian Journal for
Science and Engineering, vol. 48, no. 5, pp. 6489–6505, 5 2023.

[100] E. Zerdali, M. Altintas, A. Bakbak, and E. Mese, “Computationally
efficient predictive torque control strategies without weighting factors,”
Turkish Journal of Electrical Engineering and Computer Sciences,
vol. 30, no. 7, pp. 2554–2567, 2022.

[101] R. Liu, H. Li, Y. Zhou, L. Yang, and J. Huang, “Equivalent Weighting
Factor-Based Model Predictive Torque Control of SMPMSM,” IEEE
Journal of Emerging and Selected Topics in Power Electronics, pp.
1–1, 2023.

[102] H. Xie, W. Tian, X. Gao, F. Wang, J. Rodriguez, and R. Kennel,
“An Ensemble Regulation Principle for Multiobjective Finite-Control-
Set Model-Predictive Control of Induction Machine Drives,” IEEE
Transactions on Power Electronics, vol. 38, no. 3, pp. 3069–3083, 3
2023.

[103] H. Xie, M. Novak, F. Wang, T. Dragicevic, J. Rodrı́guez, F. Blaab-
jerg, R. Kennel, and M. L. Heldwein, “Cooperative Decision-making
Approach for Multi-objective Finite Control Set Model Predictive Con-
trol without Weighting Parameters,” IEEE Transactions on Industrial
Electronics, pp. 1–11, 2023.

PLACE
PHOTO
HERE

Emrah Zerdali (Senior Member, IEEE) received the
B.Sc. degree from Pamukkale University, Denizli,
Türkiye, in 2009, and the M.Sc. and Ph.D. degrees
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