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Abstract

Background: Ecological processes are increasingly being viewed as an important mode of diversification in the
marine environment, where the high dispersal potential of pelagic organisms, and a lack of absolute barriers to
gene flow may limit the occurrence of allopatric speciation through vicariance. Here we focus on the potential role
of ecological partitioning in the diversification of a widely distributed group of marine protists, the planktonic
foraminifera. Sampling was conducted in the tropical Arabian Sea, during the southwest (summer) monsoon, when
pronounced environmental conditions result in a strong disparity in temperature, salinity and productivity between
distinct northern and southern water masses.

Results: We uncovered extensive genetic diversity within the Arabian Sea planktonic foraminifera, identifying 13
morphospecies, represented by 20 distinct SSU rRNA genetic types. Several morphospecies/genetic types displayed
non-random biogeographical distributions, partitioning between the northern and southern water masses, giving a
strong indication of independent ecological adaptations.

Conclusions: We propose sea-surface primary productivity as the main factor driving the geographical segregation
of Arabian Sea planktonic foraminifera, during the SW monsoon, with variations in symbiotic associations possibly
playing a role in the specific ecological adaptations observed. Our findings suggest that ecological partitioning
could be contributing to the high levels of ‘cryptic’ genetic diversity observed within the planktonic foraminifera,

organisms.

and support the view that ecological processes may play a key role in the diversification of marine pelagic

Background

The vast environment of the global ocean presents a
challenge to the study of speciation. Marine planktonic
microorganisms exist in huge populations, and carry a
high passive dispersal potential [1]. With the presence
of few physical barriers to gene flow in the open ocean,
the occurrence of speciation through vicariant processes
should be severely reduced, leading to large cosmopoli-
tan, and genetically uniform populations [2,3]. Yet
genetic data is increasingly highlighting the presence of
“cryptic” diversity within many marine organisms [4-18],
indicating that species diversity within the pelagic realm
is significantly higher than suggested from many mor-
phological taxonomies (reviewed in [2]). While vicar-
iance clearly does play a role in the diversification of
pelagic organisms [9,19], ecological speciation is
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increasingly being viewed as an important mode of
diversification in the marine environment [2,20-22].
Here reproductive isolation can be achieved in the
absence of intrinsic barriers to gene flow, by means of
divergent selection for alternative environmental condi-
tions or food resources [22-26]. Ecological partitioning
has now been demonstrated to play a role in the specia-
tion of a number of marine organisms [4,7-9,20,27-30],
however, a great deal of further study will be necessary
before the process can be fully understood.

Here we focus on the potential role of ecological par-
titioning in the diversification of the Planktonic Forami-
nifera, a highly diverse and widespread group of marine
pelagic protists. The foraminifera are an important
group, used frequently for paleoceanographic studies,
and as a proxy for past climate change. Their utility is
owed to an exceptional fossil record, spanning over 180
million years (Ma), and to the fact that individual “mor-
phospecies” (identified by shell morphology) display
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characteristic environmental preferences, which are
reflected in their spatial and temporal distribution in the
oceans, and in the chemistry of their calcite shells. High
levels of sequence variation have been found in the
small subunit (SSU) ribosomal (r) RNA gene of the
planktonic foraminiferal morphospecies, indicating the
presence of numerous ‘cryptic’ genetic types [4-13,15],
with mounting evidence indicating that these individual
genetic types may display non-random geographical dis-
tributions, indicative of distinct ecological adaptations
(ecotypes) [4-13,15].

Genetic surveys of the planktonic foraminifera have
been undertaken over a wide range of oceanic water
masses [4-6,8,10,11,13,22,31-36], though these ranged
largely towards the mid to higher latitudes, with the spe-
cies-rich tropics [37] remaining relatively under-sampled
by comparison. Studies of high latitude planktonic fora-
minifera indicate that both vicariant [6-9,38,39] and eco-
logical [4,7-9] processes may play a role in their
diversification. Vicariance is implied by the presence of
isolated or endemic genetic types within some morphos-
pecies, likely resulting from the presence of physical bar-
riers, such as the shallow Bering and Chukchi seas [8],
or from oceanographic barriers such as the tropics and
subtropics [4,8]. However, Darling and Wade [9] con-
cluded that ecological constraints appeared to be major
drivers of divergence in planktonic foraminifers in the
high latitudes and anticipated that ecological factors
would prove to be of prime importance in diversification
in the mid to lower latitudes, where vertical niche parti-
tioning is thought to be the principle factor controlling
the distribution of foraminiferal morphospecies diversity
[37].

For this study, the Arabian Sea was chosen as a tropi-
cal region of high priority. This unique marine environ-
ment is one of the richest marine biological areas in the
world, and harbours a broad range of planktonic forami-
niferal morphospecies [40]. It is subject to greater seaso-
nal variability than any other ocean basin on the globe
[41,42], with seasonally reversing monsoon winds invert-
ing its circulation completely on a biannual basis
[43,44]. In the winter months (November - February)
prevailing winds progress in a northeasterly direction
(the northeast monsoon), while in the summer months
(June - September) they progress in a southwesterly
direction (the southwest monsoon). During the summer
monsoon, the formation of a major low-level air current,
the Findlater jet [45], promotes upwelling in the coastal
regions of Somalia, Yemen, and Oman [46], bringing
nutrients into the euphotic zone. An enormous increase
in primary productivity in the region results [47,48],
transforming the normally nutrient poor (oligotrophic)
waters of the northern Arabian Sea into one of the most
productive (eutrophic) marine environments on Earth.
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At the same time, current circulations prevent the effect
of this influx extending to the southern reaches of the
Arabian Sea, which remain low in nutrients.

The Arabian Sea has been the focus of a number of
studies linking physical oceanographic conditions to the
distribution of planktonic foraminiferal morphospecies
[49-52], however, this is the first time that the genetic
diversity of the foraminifera within this region has been
examined. This study investigates the biogeographical
distributions of planktonic foraminiferal SSU rRNA
genetic types in the Arabian Sea mixed layer during the
SW (summer) monsoon, when pronounced environmen-
tal conditions lead to a distinct disparity in temperature,
salinity and productivity between adjacent northern and
southern water masses. Our results reveal non-random
biogeographical distributions in several planktonic fora-
miniferal morphospecies/genetic types within the Ara-
bian Sea during the SW monsoon, providing clear
evidence of ecological partitioning.

Methods

Cruise track and oceanographic setting

Specimens of planktonic foraminifera were collected at
nine stations along a north/south cruise transect in the
central Arabian Sea (20°22.81 N/64°29.36E-02°36.03 S/
56°54.75E) during the summer monsoon of late June/
July 2003 (Figure 1A; cruise Charles Darwin CD148,
NERC). The oceanography of the Arabian Sea during
the SW monsoon is shown in Figure 1B-E. Cyclonic sur-
face circulation during the SW monsoon drives an east-
ward flowing monsoon current (MC) north of 10°S
across the equatorial region (Figure 1B). A temperature
gradient forms from west to east (Figure 1C) and there
is a clear north/south differentiation in salinity (Figure
1D). Levels of primary productivity are elevated in the
north of the Arabian Sea, but remain low in the oligo-
trophic south, with a water mass interface around sta-
tions 3-4 of the cruise transect (Figure 1E).
Conductivity, temperature, depth (CTD) profiles from
station 3 (15°01.11 N/65°00.02E) indicate that the mixed
layer was 75 m deep at this position with a temperature
of 28.5°C and a salinity of 36.7 psu, consistent with the
maps in Figure 1C and 1D. The thermocline dipped
steeply between 75 and 150 m (19°C) and then reduced
its steepness coincident with a salinity minimum of 35.7
psu. Projections of mixed layer depth in July from Pra-
sanna Kumar & Narvekar [53] indicate a mixed layer
depth of ~50 m north of station 3, shoaling to a 40 m
mixed layer depth south of station 5.

Planktonic foraminiferal sampling

Samples were collected by pumping (5 m depth) from
the ships’ non-toxic water supply through a plankton
screen (83 um mesh) or by vertical net tow (0-100 and
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Figure 1 Maps of the Arabian Sea showing the cruise transect and environmental conditions during the SW monsoon. (A) CD148 cruise
transect and stations, (B) Surface currents during August at the SW monsoon peak. Regions of intense seasonal upwelling (dark grey), weak
sporadic upwelling (hatched) SC = Somali Current, MC = Monsoon Current, SEC = Southern Equatorial Current (modified from [50]), (C) Average
sea-surface temperature for the SW Monsoon in July 2005 (adapted from [54]), (D) Average sea-surface salinity for the SW Monsoon in July 2005
(adapted from [55]), (E) Average primary productivity during the SW monsoon in July - September 1979 (adapted from Coastal Zone Colour
Scanner composite images of the region, NASA Earth-Sun System Division, Earth Sciences (GES) Data and Information Services Center (DISC)
Distributed Active Archive Center (DAAQ)).
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0-200 m depth, 83 pm mesh) in waters with an average
depth of 3,500 m. For genetic analysis, a representative
sample of specimens was collected at each station. Indi-
vidual specimens were identified using a stereomicro-
scope, and morphotype and cytoplasmic colouration
were recorded by digital video imaging. Only adult spe-
cimens containing cytoplasm were selected for genetic
analysis. These were crushed in a lysis buffer [56] and
incubated for 1 hour at 60°C, before being transported
to the lab where they were stored at -80°C. For assem-
blage assessment, bulk samples were taken at each sta-
tion with the specimens either dried on slides directly
or collected as bulk samples in ethanol. The preserved
assemblages were then individually picked and placed
onto micropalaeontological slides. The high incidence of
small juveniles compared to the low incidence of mature
specimens made identification too uncertain to carry out
relative abundance counts along the transect, however,
visual assessment of the bulk assemblages was
undertaken.

PCR amplification and sequencing

The PCR amplification of an approximately 1,000 bp
region of the terminal 3’ end of the foraminiferal SSU
rRNA gene was carried out using a nested PCR
approach. 3 pl of template were used in the first round
of PCR, using primer C5 coupled with either primer 138
or NS8 (Table 1). 1 ul of product from the first round
was used as the template in the second round, initially
using primers 2082F and 2514R (Table 1) for the identi-
fication of genetic types. For sequences found to be
novel to the Arabian Sea, an ~1,000 bp fragment was
amplified using primers 2082F and 3014R (Table 1) for
use in phylogenetic tree reconstruction. PCR amplifica-
tion was performed using 1 unit of Taq polymerase
(Qiagen) or Venty polymerase (New England BioLabs)
dependent upon success, with 200 pM each primer, 0.2
uM dNTPs, and 1.5 mM magnesium chloride in a 50 pl
final volume. Thermal cycling (with a Perkin Elmer
cycler) was performed with cycling parameters of 96°C

Table 1 SSU rRNA primer sequences

SsuU Sequence Reference

primer

c5 5-GTAGTATGCACGCAAGTGTGA-3'

138 5-TGATCCTGCAGGTTCACCTAC-3' [57]

N8 5-TCCGCAGGTTCACCTACGGA-3' [58]

2082 F 5- Modified from NS5,

TGAAACTTGAAGGAATTGACGGAAG-  [58]
3

5-GGCATCACAGACCTGTTATTGCC-3"

2514R Modified from NS6,

[58]

3014R 5-GTCGTAACAAGGCATCGGTAG-3
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for 2 mins, followed by 35 cycles of 96°C for 30 sec, 55°
C for 30 sec and 72°C for 2 mins. Amplification pro-
ducts were purified from an agarose gel using a QIA-
prep spin miniprep (Qiagen). For taxa where direct
sequencing was impossible due to the presence of multi-
ple templates, cloning of the 1,000 bp fragment was car-
ried out prior to sequencing using the TOPO TA®
method (Invitrogen). Both sense and antisense strands
were sequenced directly on an Applied Biosystems 377
DNA sequencer using BigDye terminator cycle
sequencing.

Sequence analysis

Sequences were assembled using Gap4 in the Staden
package [59] and then aligned manually within version
2.2 of the Genetic Data Environment (GDE) package
[60]. 90 foraminiferal taxa were selected for use in the
main phylogenetic analysis, including all species/genetic
types obtained from the Arabian Sea, together with
examples of every species and genetic type of planktonic
foraminifera currently available in GenBank, plus a
representative group of benthic foraminifera (1 per
family in GenBank, see Additional file 1). Great care
was taken during the process of sequence alignment and
in the selection of sites for use in subsequent analyses.
The unusually high levels of sequence divergence
observed among foraminiferal taxa in their rRNA genes
makes the selection of unambiguously aligned sites for
use in phylogenetic analysis particularly challenging. To
ensure the accuracy of our phylogenetic analyses we
adopted a conservative approach, utilising only those
sites for which positional homology across all taxa was
certain. In total, 407 base pairs (bp) could be unambigu-
ously aligned across all foraminiferal taxa. To improve
resolution, additional phylogenies were constructed for
four of the most common Arabian Sea morphospecies,
thus allowing a greater number of unambiguously
aligned sites to be recruited into the analyses (Globigeri-
nella siphonifera/Globigerinella calida (668 bp), Globi-
gerinoides ruber/Globigerinoides conglobatus (589 bp),
Globigerina bulloides (669 bp), Turborotalita quinque-
loba (748 bp)). DNA sequence alignments are shown in
Additional file 2 and Additional file 3.

Phylogenetic trees were constructed using Bayesian
inference (BI) [61,62], maximum likelihood (ML) [63]),
neighbour-joining (NJ) [64] and maximum parsimony
(MP) [65]. BI was performed using the MrBayes (version
3.1.2) package [61] with multiple hits accounted for
using a GTR + I' model [66,67] and with the tree space
explored using four chains of a Markov Chain Monte
Carlo algorithm for 5 million generations (1 million for
subset analyses), sampling every 100 generations. The
run was terminated only after the Bayesian MCMC
searches had reached a stationary phase (plateau),
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indicating convergence of the chain onto the target dis-
tribution, and a consensus tree built using the last 1000
trees (burn-in = 49001 samples for main tree, 9001 sam-
ples for subset analyses). ML analysis was undertaken
within the Phyml package [68] using a GTR + I' model
[66,67], with parameters estimated within Phyml. NJ
and MP analyses were performed using PAUP* (version
4.0d65; [69]). For NJ, distances were corrected using a
GTR + T model [66,67] with the rate matrix, base fre-
quencies, and shape parameter (o) of the gamma distri-
bution (based on 16 rate categories) estimated using
likelihood by iteration from an initial NJ tree. Bootstrap
resampling [70] was undertaken using ML, NJ and MP
with 1000 bootstrap replicates in order to assign support
to particular branches within the tree. Bayesian posterior
probabilities were obtained within MrBayes from the
last 1000 trees generated.

The planktonic foraminiferal SSU rDNA sequences
presented in this study are deposited in GenBank, acces-
sion numbers JQ799892 to JQ799900.

Results

363 specimens of planktonic foraminifera were collected
from 8 stations along a cruise transect in the Arabian
Sea during the summer monsoon of 2003 (Figure 1A).
Small subunit rRNA gene sequences were successfully
amplified for 213 individual specimens. Examination of
the SSU rDNA sequences revealed high levels of genetic
diversity within the Arabian Sea mixed layer planktonic
foraminiferal population, with 20 different genetic types
being recognised from 13 different morphospecies

Phylogenetic placement of the Arabian Sea foraminiferal
genetic types

A comprehensive foraminiferal phylogeny, based on 407
bp of the SSU rRNA gene (Figure 2) highlights the pla-
cement of the Arabian Sea taxa. All methods of phylo-
geny reconstruction utilised were largely consistent in
their inferred trees, and the phylogeny is in general
agreement with previous studies [4,5,7,10,22,35]. The
planktonic foraminifera appear polyphyletic, falling in at
least 4 separate areas of the tree (Figure 2), consistent
with the morphological groupings of the spinose (Globi-
gerinidae and Hastigerinidae), non-spinose macroperfo-
rate (Globorotaliidae & Pulleniatinidae), non-spinose
microperforate (Candeinidae), and the non-spiral plank-
tonic foraminifera (see [71]).

The spinose planktonic foraminifera were represented
by seven morphospecies within the Arabian Sea mixed
layer (Orbulina universa, Globigerinoides sacculifer, Glo-
bigerinella siphonifera, Globigerinoides ruber (white),
Globoturborotalita rubescens (pink), Globigerina bul-
loides, and Turborotalita quinqueloba). Only a single O.
universa Type I individual was genotyped, falling
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together with G. sacculifer (Figure 2). Four genetic types
of G. siphonifera were identified (Types Ia(), Iag), Ilag),
and the novel Ila)) (668 bp SSU rDNA phylogeny; Fig-
ure 3A). The subtle G. siphonifera Type Ila sub-types,
shown previously as the Ila complex by Darling and
Wade [9], are named here as subtypes Ila(;) (Genbank:
U80788), Ila,) (Genbank:AF102227, Genbank:
AJ3905674, Genbank:Z83960), and Ila) (this study).
Globoturborotalita rubescens (pink) is included in a fora-
miniferal phylogeny for the first time and falls in a well-
supported clade as the sister taxon to G. ruber/G. con-
globatus (Bayesian posterior probability (pp) = 1.00, 93%
ML bootstrap support) (Figure 2). Globigerinoides ruber
(white) was represented by four genetic types (Types Ia,
Ib(1), the novel Ib(,), and IIa) (589 bp SSU rDNA phylo-
geny; Figure 3B). A subtly different variant of G. ruber
Type Ib was discovered in the Arabian Sea, splitting Ib
into subtypes Ib(;y and the new Ib(y). Globigerina bul-
loides was represented by Type Ia, which falls as a sister
to Type Ib (669 bp SSU rDNA phylogeny; Figure 3C). A
new variant of T. quinqueloba Type I was discovered,
though only a single individual was successfully
sequenced. It is named here as Type Ib and falls
together with Type Ia (748 bp SSU rDNA phylogeny;
Figure 3D).

Four non-spinose macroperforate morphospecies were
present in the Arabian Sea (Globorotalia menardii, Glo-
borotalia ungulata, Neogloboquadrina dutertrei, and
Pulleniatina obliquiloculata) (Figure 2). Globorotalia
menardii and the newly sequenced G. ungulata fell
together (pp = 1.00 BI, 100% ML, Figure 2) with the
other macroperforates, though the placement of G.
menardii was inconsistent across tree reconstruction
methods, possibly a result of its unusually high rate of
evolution. Very minor sequence variation was detected
in G. menardii, though insufficient to warrant sub-type
status. The three specimens of G. ungulata exhibited
the discriminating morphological features of this mor-
phospecies (e.g. a keel structure on the umbilical
shoulder of the test [71]), though some workers believe
G. ungulata to be an immature form of G. tumida. For
N. dutertrei, minor sequence variation was detected in
the most variable regions of the SSU gene, as noted in
other neogloboquadrinid morphospecies [9], however,
extensive cloning would be required to determine
whether individual genetic types are present. All Pulle-
niatina obliquiloculata sequences obtained were identi-
cal to each other, however differed subtly from those
currently in GenBank. Further investigation will be
necessary to determine if they represent a genetic sub-
type of the species.

Of the three microperforate planktonic morphospecies
sequenced to date; Globigerinita uvula [35], Globigeri-
nita glutinata [22] and Candeina nitida [36], only G.
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Figure 2 Bayesian inference SSU rDNA phylogenetic tree showing the position of the Arabian Sea morphospecies and genotypes
within the foraminifera. The phylogeny is based on 407 unambiguously aligned nucleotide sites and is rooted on the benthic foraminifer
Allogromia sp. Bayesian posterior probabilities (from the last 1000 trees, obtained within MrBayes) and ML bootstraps (expressed as a percentage,
1000 replicates) are shown on the tree (Bl posterior probabilities/ML bootstraps). The scale bar corresponds to a genetic distance of 2%. Benthic
foraminiferal taxa are shown in grey text, and planktonic foraminifera are shown in black. Morphospecies and genotypes found in the Arabian
Sea are shown on a grey background. A star indicates a novel sequence obtained from the Arabian Sea cruise (CD148). The sequence for S.
globigerus is also presented in [72].
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Figure 3 SSU rDNA phylogenetic trees of (A) Globigerinella siphonifera/Globigerinella calida (668 unambiguously aligned nucleotide
sites), (B) Globigerinoides ruber/Globigerinoides conglobatus (589 bp), (C) Globigerina bulloides (669 bp), (D) Turborotalita quinqueloba
(748 bp). The phylogenies were constructed using Bayesian Inference and are unrooted. Bayesian posterior probabilities and ML, NJ, and MP
bootstraps (expressed as a percentage) are shown on the trees (BI/ML/NJ/MP). The scale bar corresponds to a genetic distance of 1%.
Morphospecies and genotypes found in the Arabian Sea are shown on a grey background. A star indicates a novel sequence obtained from the

glutinata was found in the Arabian Sea mixed layer.
Examining all G. glutinata sequences available to date,
three subtly different genetic types can be identified,
named here as Type 1la(;) (Genbank:AF250105; and Ara-
bian Sea) la(y) (Genbank:Z83974), and la(s) (Genbank:
AY453136). Recent cloning of G. glutinata from North-
West Pacific assemblages [36] indicates that these are
most likely to be genuine subtype differences.

The non-spiral morphospecies, Streptochilus globigerus,
one of two extant biserial planktonic foraminifera, was
abundant in the Arabian Sea mixed layer and falls together
with infaunal benthic biserial species Bolivina variabilis in
the phylogeny (Figure 2; [72]). The morphospecies exhibits
minor intra-specific variation in the SSU sequences, as in
other benthic foraminiferal species [9].

Biogeographical distributions of the Arabian Sea
foraminiferal genetic types

Analysis of the morphospecies genetic type distribution
data (Figure 4) combined with a visual assessment of
the bulk assemblage data showed some distinct ecologi-
cal segregation related to the physical oceanography of
the Arabian Sea.

Globigerinella siphonifera

Globigerinella siphonifera was distributed throughout
the transect and was represented by four genetic types

(Figure 4A). The newly recognised Type Ilags) (n = 19)
was distributed throughout the cruise transect, thriving
equally in both the northern and southern water masses.
The other genetic types appeared more rare. Type Ia(,
(n = 1) was found only in the northern water mass and
Types Iag) (n = 1) and Ia;) (n = 3) were found in low
numbers in the southern water mass.

Globigerinoides ruber

Assessment of the bulk assemblage samples revealed
that G. ruber was the dominant morphospecies in the
Arabian Sea during the SW monsoon. It was found in
high numbers in the more eutrophic, high salinity
water of the north and occurred in significantly lower
numbers in the more oligotrophic lower salinity water
mass to the south. There are four genetic types of G.
ruber in the Arabian Sea assemblage (Figure 4B),
which have distinctive biogeographies. Only Type Ila
(n = 24) and Type Ib(y) (n = 46) were found in the
more eutrophic, higher salinity water mass of the
northern Arabian Sea. The other G. ruber genetic
types, Ia (n = 4) and Ib(;) (n = 1), were not found in
the northern water mass following extensive genotyp-
ing of the water column. These genetic types were
found in low numbers within the southern water mass,
with only a single specimen of G. ruber Type la identi-
fied at station 9.


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF250105
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Figure 4 Arabian Sea maps showing the spatial distribution of genetic types of the morphospecies identified along the cruise
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Globigerinita glutinata

Globigerinita glutinata was found throughout the trans-
ect. Two potentially distinct subtypes of Type Ia were
identified in the central Arabian Sea mixed layer; Types
lag) (n = 4) and lag) (n = 6), each distributed along the
length of the cruise transect (Figure 4C).

Globigerina bulloides

Globigerina bulloides was present in very low numbers
in the bulk samples and was distributed mainly in the
more eutrophic, high salinity water mass of the northern
region. Only genetic type Ia (n = 8) was found, confined
to the northern water mass (Figure 4D).

Globigerinoides sacculifer

Globigerinoides sacculifer was found only in the south-
ern waters, south of station 4. Only a single genetic type
was found (n = 14), which was identical to all other G.
sacculifer sequenced to date (Figure 4E).

Globorotalia menardii

The bulk assemblage data clearly showed that G. menar-
dii was present across the whole transect with numbers
increasing significantly towards the South, though this
pattern was not reflected in the number of specimens
collected for genotyping (Figure 4F). Despite the distri-
bution difference between the water masses, only a sin-
gle genetic type (n = 18) was found in the mixed layer
along the cruise transect.

Globorotalia ungulata

Assessment of the bulk assemblage showed that Globoro-
talia ungulata was more common in the southern part of
the cruise transect. Only three specimens were sequenced
and a single genetic type found (n = 3; Figure 4G).
Globoturborotalita rubescens (pink)

Globoturborotalita rubescens (pink) was present
throughout the transect, though only nine specimens
were successfully amplified (Figure 4H). This newly
sequenced morphospecies showed no sequence variation
in the specimens collected between stations 1-3.
Neogloboquadrina dutertrei

Neogloboquadrina dutertrei was distributed along the
length of the cruise transect, and is most likely repre-
sented by a single genetic type in the Arabian Sea (n =
22; Figure 41). However, as in most Neogloboquadrina,
N. dutertrei specimens exhibit intra-individual variation
in their SSU gene repeats and the presence of more
than one genetic type cannot be ruled out without
extensive cloning.

Pulleniatina obliquiloculata

Pulleniatina obliquiloculata was distributed along the
length of the cruise transect. Only a single genetic type
was found (n = 21; Figure 4]).

Orbulina universa

Orbulina universa was very rare in the water column.
Only a single specimen of Type I was identified in the
southern water mass at station 6 (Figure 4K).

Page 9 of 15

Turborotalita quinqueloba

It is difficult to differentiate 7. quinqueloba from tiny
juveniles of other morphospecies, but mature specimens
were rare. Only a single specimen of Type Ia was ampli-
fied at station 2 (Figure 4L).

Streptochilus globigerus

Assessment of the bulk assemblage showed that the
biserial morphospecies, S. globigerus, occurred in sub-
stantial numbers along the length of the cruise transect.
Only a single genetic type was identified (n = 7; Figure
4M).

Discussion
Sampling of the tropical Arabian Sea during the SW
monsoon uncovered a wealth of planktonic foraminiferal
diversity. The 13 morphospecies found displayed high
levels of SSU rRNA genetic diversity, with a total of 20
independent genetic types being recorded between them.
Three morphospecies: Globoturborotalita rubescens
(pink), Globorotalia ungulata and Streptochilus globi-
gerus were sequenced for the first time from Arabian
Sea cruise CD148. Globoturborotalita rubescens (pink)
falls at the base of a well-supported cluster with G.
ruber and G. conglobatus (Figure 2). Fossil record stu-
dies show that it first appeared in the Middle Pliocene,
around 3.6 million years ago [73] and may have evolved
from Globigerina woodi [74] via the morphospecies Glo-
bigerina decoraperta [73]. Globorotalia ungulata falls
together with the morphologically similar species, G.
menardii, at the end of a relatively long branch in the
main phylogeny (Figure 2). It appeared in the Late Plio-
cene around 2.5 million years ago and is thought to
have evolved from Globorotalia tumida [73], however
other extant globorotaliid morphospecies will need to be
sequenced before their exact ancestry can be deter-
mined. Streptochilus globigerus fell among the benthic
foraminifera in the main phylogeny (Figure 2), exhibiting
extremely high sequence identity to the benthic species
Bolivina variabilis, sufficient to suggest that S. globigerus
and B. variabilis are one and the same morphospecies
(discussed in more detail in [72]). In addition, four new
foraminiferal genetic types (G. ruber Type Ib(y), G.
siphonifera Type 1lag), T. quinqueloba Type Ib and G.
glutinata Type la(;)) were identified from this Arabian
Sea cruise.

Evidence for ecological partitioning among the Arabian
Sea morphospecies/genetic types

The varied hydrographic conditions and extreme seaso-
nal variation of the Arabian Sea provide a unique envir-
onment within which to study the ecological adaptations
of planktonic foraminiferal morphospecies and their
individual genetic types. The cruise transect was con-
ducted during the SW monsoon, when environmental
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conditions were most pronounced and a strong disparity
existed between a high salinity, more eutrophic water
mass in the north (Figure 1A-E; stations 1-3), and a low
salinity, oligotrophic water mass in the south (Figure
1A-E; stations 4-9). Analysis of the spatial distributions
of planktonic foraminiferal morphospecies and genetic
types within the Arabian Sea mixed layer at this time
revealed a number of non-random patterns of geogra-
phical distribution, suggestive of distinct ecological
adaptations.

The spinose morphospecies, Globigerinella siphonifera
(Figure 4A) and Globigerinoides ruber (Figure 4B),
appear to offer particularly excellent examples of diver-
gent biogeographies in their genetic types, each being
represented by four individual genetic types, exhibiting
apparently ecologically distinct distribution patterns.

Globigerinella siphonifera is represented by two highly
divergent SSU rRNA genetic lineages, Type I and Type
II, which from a wealth of biological evidence may be
considered as two distinct species [4,15,75]. The newly
recognised Type Ilag) was the dominant genetic type of
G. siphonifera in the Arabian Sea, and was distributed
throughout both water masses in large numbers (n =
19) (Figure 4A), suggesting a broad tolerance for the
varying hydrographic conditions. This new genetic type
has yet to be found elsewhere, but may eventually be
discovered in other parts of the Indo-Pacific, a region
that has not been sampled extensively. Type Ila, con-
versely, was found only in small numbers in the south-
ern water mass (n = 3), suggesting that despite the low
level of genetic distinction (Figure 3A), Type Ila;) may
have more specialised ecological requirements than
Type Ila(s). The closely related genetic types Iag) and Ia
(2, represented by only single individuals, also displayed
divergent ecologies, the former appearing in the oligo-
trophic southern water mass and the latter in the more
eutrophic north. It is interesting to note that the main
ecological divide between genetic types does not reflect
their phylogenetic separation into the Type I and Type
II lineages. Ecological partitioning instead appears to
play a greater role in the divergence of closely related
genetic types.

The SSU rRNA phylogeny of G. ruber is again charac-
terised by a deep divergence between two extant
lineages (lineage 1: G. ruber (white) types Ia, Ib(), Ib),
and G. ruber (pink), lineage 2: G. ruber (white) Type Ila
and G. conglobatus) (Figure 3B), indicative of a species
level distinction [5,9,31]. The biogeographical distribu-
tion of G. ruber genetic types in the Arabian Sea was
unmistakably correlated to the hydrographic provinces
during the SW monsoon (Figure 4B). Globigerinoides
ruber dominated the more eutrophic/higher salinity
water mass of the northern Arabian Sea, though geno-
typing revealed the presence of only two of the G. ruber
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genetic types here (Ib(;) and Ila), both occurring in
equally high numbers. The other two genetic types (Ia
and Ib(;)) were absent from the more eutrophic/higher
salinity waters of the northern Arabian Sea, being found
exclusively in the oligotrophic/low salinity southern
water mass. It can reasonably be deduced that primary
productivity is the main factor determining the distribu-
tion of the genetic types across the region, giving G.
ruber great potential as a paleoproxy for ocean
productivity.

To fulfil this role, a link must be demonstrated
between genetic type and subtle variations in shell mor-
phology, as has already been achieved for fellow spinose
morphospecies, O. universa [11]. Several morphological
variants or ‘morphotypes’ have already been recorded
within G. ruber (white) [76-79] and crucially, G. ruber
(white) genetic types I and II can be distinguished mor-
phologically [80], and are consistent with the G. ruber
senso stricto (s.s.) and G. ruber senso lato (s.l) morpho-
types of Wang [81]. Differences in ecological behaviour
have been noted between these two genetic types/mor-
photypes, with stable isotope and Mg/Ca data together
with field observations revealing differing depth habitats
and nutrient requirements between the two [78,81-83].
The combined findings suggest an adaptation of G.
ruber Type I to oligotrophic, shallow conditions, and an
adaptation of Type II to eutrophic, deeper conditions.

In the Arabian Sea we indeed see a clear ecological
distinction between the G. ruber Type la and Type II
lineages; Type la occupying only the oligotrophic south-
ern water mass, and Type Ila almost exclusively occupy-
ing the more eutrophic north. Type 1la has also been
found to be restricted to oligotrophic waters in both the
North Atlantic subtropical gyre and the eastern Medi-
terranean Sea [31]. It likely dominates during the more
oligotrophic periods of the seasonal cycle in the Arabian
Sea. Of the other Type I genetic types, Ibg also fits the
‘oligotrophic Type I profile’, being present in the low-
nutrient south of the Arabian Sea, though it was repre-
sented by only a single specimen. Type Ib(,), however, is
far from being adapted to oligotrophic conditions, occu-
pying the eutrophic northern water mass of the Arabian
Sea together with Type Ila. It seems then that as in G.
siphonifera, ecological partitioning of the G. ruber
genetic types may not always reflect the Type I and
Type II lineage differentiation. Globigerinoides ruber
Types Ib(y and Ib(y) appear ecologically distinct in their
distribution patterns, despite being only subtly different
at the genetic level.

The three planktonic foraminiferal morphospecies,
Globigerina bulloides, Globigerinoides sacculifer, and
Orbulina universa, were each represented by only single
genetic types in the Arabian Sea, which again displayed
non-random biogeographical distributions between the
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northern and southern water masses. The disparate dis-
tributions of Globigerina bulloides and G. sacculifer (Fig-
ures 4D, 3 and 4E) give strong indications of specific
ecological requirements, which are most likely related to
nutrient availability.

Globigerina bulloides is more typical of sub-polar
regions [84], but also characterises upwelling zones in
lower latitudes [85]. It is comprised of two major
lineages (Figure 3C), Type I occurring in warm waters,
and Type II occurring in cold waters [9]. In the Arabian
Sea only Type la was present, occurring predominately
towards the north of the region (Figure 3, 4D). It’s
absence from the most oligotrophic, lower salinity
waters (stations 6 - 9) (bulk sample assessment and Fig-
ure 3, 4D) perhaps indicates an adaptation to slightly
more eutrophic, higher salinity conditions. Interestingly,
Globigerina bulloides dominates the planktonic forami-
niferal assemblages in the cooler upwelling coastal
waters of the Arabian Sea [52]. It remains to be seen
whether the warm water genetic type of the central Ara-
bian Sea mixed layer (Type 1la) is ecologically distinct
from those found in high numbers in the upwelling
coastal regions of the Arabian Sea.

Globigerinoides sacculifer, by contrast, was the domi-
nant morphospecies in the southern Arabian Sea during
the SW monsoon. Only a single genetic type of G. sac-
culifer has been recorded globally. In this study it was
confined to the southern oligotrophic water mass (Fig-
ure 4E), reflecting a possible adaptation to more oligo-
trophic waters [86,87]. It has been postulated that other
factors such as the chlorophyll maximum or thermo-
cline development may affect its distribution [88], and
its status in the Arabian Sea water column has been
shown to vary with temperature, salinity, nutrients and
thermocline depth [52]. Salinity is an unlikely limiting
factor as G. sacculifer is a euryhaline species, capable of
tolerating salinities in a range of 24%o - 47%o [71].

One further morphospecies, O. wuniversa, was
restricted in its distribution. It was represented by only
a single Type la specimen, found in the oligotrophic
southern water mass. Though insufficient data prevents
us from drawing conclusions regarding its ecological
adaptations, this is consistent with the previous classifi-
cation of O. universa Type la as an oligotrophic-adapted
type [11].

Some morphospecies from the Arabian Sea displayed
broad distributions during the SW monsoon, indicating
that they are not restricted by adaptations to sea surface
productivity, the main discriminating ecological factor
between the northern & southern water masses. The
prominent morphospecies, G. menardii, G. rubescens
(pink), N. dutertrei and P. obliquiloculata (Figure 4F, H,
I and 4J) were each represented by only single genetic
types, exhibiting wide distributions along the whole

Page 11 of 15

transect. Bulk samples did indicate that G. menardii
numbers tended to increase in the assemblage towards
the most southern part of the cruise transect. It should
also be noted that different genetic types have poten-
tially been recognised within N. dutertrei [39] and P.
obliquiloculata (unpublished observation), though exten-
sive sampling and cloning will be required before their
individual biogeographical distributions can be
determined.

Other broadly distributed morphospecies included G.
glutinata (represented by 2 genetic types), G. ungulata,
T. quinqueloba (only one Type 1b specimen genotyped),
and S. globigerus (Figures 4C, G, L, and 4M). The tiny
spinose morphospecies 1. quinqueloba is likely to be
underrepresented in the data set; it’s small size leading
to difficulties in collection. Streptochilus globigerus was
found throughout the cruise transect and may be of par-
ticular interest. This sporadically occurring, biserial
planktonic foraminifer [89,90] displayed such high levels
of SSU rDNA sequence identity to the benthic species
Bolivina variabilis from the Kenyan coastal region [91]
(located south west of our central Arabian Sea sampling
stations) that they must represent the same species [72].
In the benthos, B. variabilis/S. globigerus lives as a shal-
low to intermediate infaunal dweller in the continental
shelf sediments. During the SW monsoon (Figure 1B),
its populations become expatriated by the winds and
currents far offshore, where they continue to live and
grow as plankton in the open ocean [72]. Streptochilus
globigerus is therefore tychopelagic [92] in nature,
exploiting both benthic and planktonic habitats [72].

Ecological processes are increasingly being viewed as a
vital mode of diversification in the marine environment,
with evidence of ecological partitioning being reported
for many marine taxa [4,7-9,20,27-30]. From our study
of the tropical Arabian Sea, we have demonstrated that
biogeographical distributions of the planktonic forami-
niferal morphospecies/genetic types can be influenced
by adaptations to differing hydrographic conditions. Sali-
nity is unlikely to be a limiting factor in the biogeo-
graphic distributions of planktonic foraminifera, as it
has previously been shown that planktonic foraminifera
are tolerant of extremes of salinity [93]. We therefore
propose that primary productivity is the principal vari-
able determining the disparate distributions observed.
Evidence of distinct ecological requirements between
closely related genetic types implies that ecological par-
titioning may indeed play a role in the diversification of
some planktonic foraminifera. Vicariant processes, how-
ever, have also been shown to play an important role in
the diversification of several planktonic foraminiferal
morphospecies, particularly in the higher latitudes
[6-9,38,39]. In reality, the mechanisms of diversification
and speciation within the marine environment are
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undoubtedly quite complex. It will only be with further
research that the relative roles of ecological and vicar-
iant processes can be fully elucidated.

Do algal symbionts play a role in divergent adaptations
to sea-surface nutrients?

In the Arabian Sea, primary productivity appeared to
represent the primary cause of divergent ecological
adaptation amongst foraminiferal genetic types, however,
we have yet to explore the biological mechanisms
involved. Storz et al. [94] proposed that planktonic fora-
miniferal species respond primarily to productivity, trig-
gered by the seasonal dynamics of vertical stratification
of the upper water column and speculated that the dis-
tinct nutrition strategies of strictly asymbiontic, faculta-
tively symbiontic, and symbiontic species may play a key
role in explaining their abundances and temporal
succession.

In fact differences in symbiont affiliations may indeed
help to explain the divergent adaptations to sea-surface
nutrients observed in the Arabian Sea morphospecies.
Globigerina bulloides, for example, was distributed
mainly towards the more eutrophic north of the Arabian
Sea and is known to be symbiont barren [71], reliant on
high levels of primary productivity and food availability
in the water column. Globigerinoides sacculifer conver-
sely was restricted to the oligotrophic waters of the
southern water mass, and is known to be obligatory
symbiont bearing [71], benefiting from photosynthetic
energy contributions. Finally, of the broadly distributed
morphospecies within the Arabian Sea, G. menardii, N.
dutertrei, P. obliquiloculata, and G. glutinata are all
known to harbour facultative symbionts [71], meaning
that they can either lack or possess symbionts. This may
result in their observed versatility, allowing them to
either exploit high nutrient conditions (e.g. those in the
northern Arabian Sea), or to survive under highly oligo-
trophic conditions (e.g. those in the southern Arabian
Sea), by means of photosynthesis.

It may be that variations in symbiont association could
also be involved in the ecological partitioning of indivi-
dual genetic types within morphospecies, driving their
diversification, though little data is available at present.
Differences in symbiotic associations have certainly been
cited as a possible explanation for the different depth
habits and nutrient requirements of the Type I and
Type II lineages in both G. siphonifera [15,75] and G.
ruber (corresponding to the G. ruber s.s. or type b
“platys” morphotype, and the G. ruber s.l. or type a
“normal” morphotype respectively) [79,82]. However,
such studies did not account for possible ecological par-
titioning between genetic sub-types within the major
Type I and Type II lineages in either G. siphonifera or
G. ruber. The results gained here certainly suggest that
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not all genetic types fall within the “Type I" and “Type II’
profiles as far as adaptation to nutrients is concerned.
The relationship between ecological partitioning in the
planktonic foraminifera genetic types and variations in
their symbiotic associations certainly warrants further
investigation.

Conclusions

During the SW monsoon, pronounced environmental
conditions lead to a strong disparity between the north-
ern and southern water masses of the Arabian Sea. We
find a distinct difference in the distribution and ecology
of the planktonic foraminifera of the Arabian Sea mixed
layer at this time, segregating morphospecies and
genetic types between the high salinity, more eutrophic
north and the lower salinity, oligotrophic south. In the
north, Globigerinoides ruber dominated, followed by
Neogloboquadrina dutertrei, Pulleniatina obliquilocu-
lata, Globorotalia menardii, and Globigerinita glutinata.
In the south Globigerinoides sacculifer dominated, fol-
lowed by Globigerinoides ruber and Globorotalia menar-
dii. For those morphospecies represented by complexes
of several discrete genetic types within the Arabian Sea
mixed layer, individual genetic types were found to have
distinct ecologies and novel adaptations to differing phy-
sical oceanographic conditions. Globigerinoides ruber
showed a clear ecological distinction between its Type
Ia/Ib(;y and Type II lineages, supporting past opinions
that Types I and II represent independent species
[5,9,31]. However, Type Ib(y), did not fit the typical G.
ruber Type I ‘oligotrophic’ profile [79,80,82], indicating
a divergent ecological adaptation from close relative,
Type Ib(y). Within both Globigerinoides ruber and Globi-
gerinella siphonifera, subtle sub-types were found to dis-
play differing geographical distributions, implicating sea-
surface productivity as a significant ecological source of
divergent selection in closely related planktonic forami-
niferal genetic types. Differing symbiotic associations are
a possible mechanism by which divergent nutrient-
related adaptations may have arisen in the planktonic
foraminiferal morphospecies and possibly even their
genetic types.

We have found compelling evidence for ecological
partitioning within the planktonic foraminifera of the
Arabian Sea. Future efforts should now concentrate on
gathering similar data from other global locations, to
build a more extensive picture of the ecological require-
ments of the different foraminiferal genetic types. The
ability of foraminiferal genetic types to become specia-
lised and adapted to life in regionally distinct ecosystems
is a likely driver of their divergence and speciation in
the open ocean, running counter to the apparent lack of
barriers to gene flow. If the ecologically divergent fora-
miniferal genetic types could also be identified from the
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morphology of their shells, it could represent a consid-
erable improvement to quantitative faunal and geochem-

ical palaeoenvironmental reconstructions.
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Additional file 1: Table S1. A list of all planktonic and benthic
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Additional file 2: Figure S1. SSU rDNA sequence alignment for the
foraminifera showing the 407 unambiguously aligned nucleotide sites
used to reconstruct the main phylogeny in Figure 2.

Additional file 3: Figure S2. SSU rDNA sequence alignments for four of
the most common Arabian Sea planktonic foraminiferal morphospecies,
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the phylogenies in Figure 3: Globigerinella siphonifera and Globigerinella
calida (668 bp), Globigerinoides ruber and Globigerinoides conglobatus (589
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