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A B S T R A C T

Tsunamis have caused many severe natural disasters in human history, such as in 2018 at Palu City located in
a narrow bay resulting in over 4340 fatalities. The tsunami propagation characteristics are greatly affected by
the water body geometry. For converging geometries such as fjords, bays and estuaries, the interaction between
incident tsunamis and lateral boundaries has not been extensively studied. Therefore, the propagation of
approximately linear, Stokes, cnoidal and solitary waves are studied numerically in converging, uniform depth
water bodies with side angles of 7.5◦, 15◦, 30◦ and 45◦. Both curved (without sidewall reflection) and straight
wave sources (involving sidewall reflection) are used. SWASH, an open-source numerical wave propagation
model based on the non-hydrostatic non-linear shallow water equations, is used. For a curved wave source,
the wave heights 𝐻 closely follow Green’s law and doubled as the water body width converged to 25% of
the original width. However, for wide geometries with a straight wave source, due to reflections from the
converging walls, Greens law is inappropriate to predict 𝐻 . Wave energy can be concentrated on the sides
or laterally transferred from stem wave growth and interaction, producing much larger 𝐻 than predicted by
Greens law. The water body width relative to the water depth ℎ is found to have a significant effect on this
transformation. Solitary wave amplitudes from 0.100 to 0.623 times ℎ are simulated. An equation is derived
for the solitary wave amplitude in a converging water body and an empirical equation is proposed for the
prediction of the stem angle. A method for evaluating wave amplification at sidewalls is further presented and
compared with the simulation results of this study. Finally, the application of this method is illustrated with
an example inspired by the 2018 Palu Bay event. These findings enhance the physical understanding of the
effect of the converging water body geometry on tsunami propagation and improve tsunami prediction and
hazard assessment.
1. Introduction

Tsunamis are long gravity waves caused by the displacement of
a large volume of water, e.g. by tectonic movements or landslides.
Tsunamis with large energy are serious threats to passing ships, dams
and buildings, and are sometimes the source of devastating disas-
ters (Mori et al., 2011; Goda et al., 2019; Heller and Ruffini, 2023;
Romano et al., 2023). During wave propagation, a series of transfor-
mations occur: wave shoaling, refraction, diffraction, reflection and
wave breaking. The bathymetry and water body geometry affect the
wave height, wavelength and wave direction, amongst other wave
characteristics (Knowles and Yeh, 2018; Ruffini et al., 2019, 2021;
Zhang et al., 2020). The conventional practice for generic studies is to
use idealised geometries (Heller and Ruffini, 2023). Several previous
studies showed that the effects of the bathymetry and water body
geometry on tsunamis are significant (Heller et al., 2012; Romano et al.,
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2013; Evers et al., 2019; Franco et al., 2021; Wuppukondur and Bal-
dock, 2022; Chen et al., 2023). However, compared to other scenarios,
tsunami hazard prediction tools for propagation in converging water
bodies are still underdeveloped.

As an example of a converging water body geometry, Fig. 1 shows
Palu Bay, affected by the 2018 Sulawesi earthquake and tsunami. The
Pantoloan tidal gauge recorded a wave height of up to 3.81 m (Pakok-
sung et al., 2019; Pudjaprasetya et al., 2021; Cecioni et al., 2023). Hei-
darzadeh et al. (2019) estimated the wavelength to be between 3.4 and
4.1 km, whereas the Palu Bay is 9.4 km wide and over 30 km long.
This event caused severe damage to Palu City located at the end of this
narrow bay, with over 4340 fatalities, 4438 injuries and widespread
destruction of infrastructure and buildings (Goda et al., 2019; Kraut-
wald et al., 2021). The geometry of Palu Bay can be simplified as a
symmetric water body with the side angle 𝜃 = 7.5◦ (Fig. 1). Note that
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378-3839/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.coastaleng.2024.104482
Received 13 October 2023; Received in revised form 18 January 2024; Accepted 5
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

February 2024

https://www.elsevier.com/locate/coastaleng
https://www.elsevier.com/locate/coastaleng
mailto:Zhiwen.Chen@nottingham.ac.uk
https://doi.org/10.1016/j.coastaleng.2024.104482
https://doi.org/10.1016/j.coastaleng.2024.104482
http://creativecommons.org/licenses/by/4.0/


Coastal Engineering 189 (2024) 104482Z. Chen et al.
Fig. 1. Satellite picture of Palu Bay and Palu City affected by the 2018 tsunami as an
example of a converging water body.
Source: Adapted from Google Earth.

when the tsunami propagates along the axis of symmetry towards the
converging direction of the water body, it will impact the sidewalls at
an oblique angle 𝜓 of the same value as 𝜃. Further severe tsunamis in
various water bodies include the 2014 Lake Askja tsunami, triggered
by a rockslide, which reached a run-up of 71 m with a wavelength of
approximately 1 km within a basin that is around 3.8 km in width and
5.0 km in length (Gylfadóttir et al., 2017). Additionally, in 1958, an 8.3
magnitude earthquake triggered a rockslide in Lituya Bay, generating
a soliton-like wave that ran up to a height of 524 m with a wavelength
of approximately 3 km (Fritz et al., 2001). Lituya Bay itself is about
3.3 km wide and 12.0 km long in the direction of the slide. To cover
a wide range of scenarios, water body geometries with different 𝜃 and
sizes should be considered systematically. The effect of a converging
water body geometry on tsunamis and the resulting wave field remains
inadequately understood due to limited systematic studies. Therefore,
this paper aims to elucidate this impact by exploring the associated
underlying physical phenomena for idealised converging geometries.

Theoretically, the change in wave height 𝐻 of non-breaking shallow
water waves propagating in water body geometries with decreasing wa-
ter depth ℎ and varying width 𝑏 can be described by Greens law (Green,
1838), which is based on the conservation of the wave energy flux
between two cross-sections, given by

𝐻
𝐻0

= (
ℎ0
ℎ
)1∕4(

𝑏0
𝑏
)1∕2, (1)

where the subscript 0 refers to the initial or reference state. Chang et al.
(1979) investigated the propagation of solitary waves in a converging
and a diverging flume, with one of the lateral walls at a side angle
of 𝜃 = 1.1◦ and a constant ℎ. They found that for a relative distance
𝑥∕ℎ < 40, the wave height 𝐻 can be approximated using Greens law.
Furthermore, Xian-chu (1981) derived a relation between 𝐻 of solitary
waves and the size of the water body using Korteweg-de Vries (KdV)
solutions, which was found to perform more accurately than Greens
law as it considers non-linear effects. For water bodies with rectangular
cross-sections, this equation is given as

𝐻 =
ℎ0 (

𝑏0 )2∕3. (2)
2

𝐻0 ℎ 𝑏
Landslide-tsunami generation and propagation in a range of ide-
alised diverging geometries were investigated for the first time in the
small-scale laboratory study of Heller et al. (2012). Diverging idealised
geometries with water body side angles 𝜃 = 7.5◦, 15◦, 30◦ and 45◦

were later also investigated numerically by Heller et al. (2016) for
subaerial landslide-tsunamis using Smoothed Particle Hydrodynamics
(SPH). A more systematic numerical investigation with different wave
types, including linear, Stokes, cnoidal and solitary waves, was reported
by Ruffini et al. (2019) with similar 𝜃 as in Heller et al. (2016).
They quantified the effect of the water body geometry and presented
a method to predict 𝐻 based on wave parameters in Two-Dimensional
(2D) flume geometries, where the 2D parameters are available from
studies such as Heller and Hager (2010), Zitti et al. (2016) or Xue et al.
(2019).

In contrast to diverging water body geometries, waves propagation
in converging geometries involves reflection from the sidewalls. Per-
roud (1957) conducted experiments and observed that when 45◦ <
𝜓 < 90◦, a wave pattern similar to regular reflection emerged, as
shown in Fig. 2a. The reflected wave maintains the characteristics of
the incident one, such as a reflected amplitude 𝑎𝑟 and angle 𝜓𝑟. In this
case, a stem or hump forms after the wave impingement and remains
stable thereafter. However, for smaller angles (e.g. 20◦ ≤ 𝜓 ≤ 40◦ in Li
et al., 2011), a continuously growing stem forms perpendicularly to the
wall for non-linear waves (Fig. 2b). A specific physical phenomenon
is called Mach reflection in which a solitary wave interacts with a
vertical wall at a sufficiently small angle. This interaction creates a
reflected wave that intersects with the incident wave and results in the
formation of a high-amplitude Mach stem wave (Perroud, 1957; Miles,
1977a,b; Li et al., 2011). As shown in Fig. 2b, the so-called stem length
𝑙𝑠 increases with a gradient determined by the stem angle 𝜓𝑤 as the
wave propagates. Note that 𝑙𝑠 increases linearly, while the stem wave
amplitude 𝑎𝑤 does not. The rate at which 𝑎𝑤 is amplified decreases,
approaching a theoretical asymptotic value as the process continues.
For example in the numerical study of Li et al. (2011), the distance
required to reach 95% of the asymptotic amplification is 103.8ℎ for
an incident solitary wave with a relative amplitude 𝑎∕ℎ = 0.277 and
𝜓 = 30◦.

The prediction equations for Mach reflection 𝑎𝑤 and 𝜓𝑤 in the
asymptotic state were first derived for KdV solitons by Miles (1977a)
with the assumption of shallow water conditions, small wave amplitude
and a small oblique angle. The stem wave amplification 𝛼𝑤 = 𝑎𝑤∕𝑎 and
𝜓𝑤 (in radians) are given by

𝛼𝑤 =

⎧

⎪

⎨

⎪

⎩

4

1 +
√

1 −𝐾−2
, for 𝐾 ⩾ 1,

(1 +𝐾)2, for 𝐾 < 1,
(3)

𝜓𝑤 =

⎧

⎪

⎨

⎪

⎩

0, for 𝐾 ⩾ 1,
√

𝑎
3ℎ

(1 −𝐾), for 𝐾 < 1,
(4)

where 𝐾 is the interaction parameter, defined as 𝐾 = 𝜓∕
√

3𝑎∕ℎ.
At 𝐾 = 1, the maximum value of 𝛼𝑤 is 4, with a regular reflec-
tion pattern observed when 𝐾 > 1 (Fig. 2a) and a Mach reflec-
tion when 𝐾 < 1 (Fig. 2b). Based on the Kadomtsev–Petviashvili
(KP) theory, Kodama et al. (2009) modified this critical condition to
𝐾𝐾 = tan𝜓∕(cos𝜓

√

3𝑎∕ℎ), which was experimentally verified by Li
et al. (2011). More recently, Kodama and Yeh (2016) derived 𝐾𝐾𝑌 =
tan𝜓

√

1 + √

1+5𝑎∕ℎ∕(cos𝜓
√

6𝑎∕ℎ) of the KP equation with higher-order
corrections. In a numerical simulation, Knowles and Yeh (2019)
achieved 𝛼𝑤 = 3.91 for 𝜓𝑤 = 10◦ and 𝑎∕ℎ = 0.01 (𝐾𝐾𝑌 = 1.0).
However, approaching this asymptotic state requires a considerable
amount of time (e.g. approximately 14 h of real time for the ℎ0 = 1 m
case). In practice, there is a lack of analytical solutions addressing the
stage of stem wave growth. In general, Mach reflection has important
implications for coastal engineering and tsunami hazard assessment, as
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Fig. 2. Schematic plan views of the evolution of an incident solitary wave interacting with the wall obliquely at two different times 𝑡1 and 𝑡2 (𝑡1 < 𝑡2): (a) regular reflection and
(b) Mach reflection. The widths of the lines representing the wave crests are indicative of the size of the wave amplitudes. When an incoming wave impinges onto a reflective
wall, the interaction can be considered as the interaction between the wave itself (solid lines) and its image (dashed lines) reflected about the axis of the wall as the frictionless
boundary conditions of the wall align with the conditions on the symmetric plane.
t

w

it can amplify wave heights with potential significant damage inland,
particularly in converging water body geometries (Gidel et al., 2017).

To better understand tsunami propagation in converging geome-
tries, Wuppukondur and Baldock (2022) studied solitary and bore wave
propagation and overtopping in a converging channel with 𝜃 = 5◦,
oth experimentally and numerically. They found that, in the absence
f overtopping, the solitary wave height variation is consistent with
reens law. However, they investigated a converging channel with a

ingle-side oblique wall and did not vary 𝜃. Therefore, further work is
eeded to study more general cases with both sidewalls oblique and a
ide range of geometries with different 𝜃.

To this end, the present study numerically addresses tsunami-
ike waves propagation in converging water body geometries using
WASH (Zijlema et al., 2011; Ruffini et al., 2019), based on the
on-hydrostatic Non-Linear Shallow Water Equations (NLSWEs). The
bjectives of this study are to

• Investigate the effect of converging water body geometries with
curved and straight wave sources on tsunami-like waves propa-
gation,

• Improve the physical understanding of solitary wave propagation
in converging geometries with straight wave sources and straight
side walls,

• Provide a new efficient prediction method accounting for the
effect of a wide range of water body side angles to improve
tsunami prediction and hazard assessment.

The remainder of this article is organised as follows. Section 2 pro-
ides information about the numerical setup, including the calibration
nd validation of the SWASH model. The results of the simulations for
oth curved and straight wave sources are presented in Section 3 along
ith new equations for the prediction of 𝜓𝑤 and wave amplification. In
ection 4 the results are analysed and a prediction method for evaluat-
ng wave amplification at the sidewalls is presented and illustrated with
n example. Finally, Section 5 highlights the conclusions and potential
uture work.

. Methodology

.1. Wave propagation model

SWASH v7.01, solving the non-hydrostatic NLSWEs (Stelling and
uinmeijer, 2003; Stelling and Zijlema, 2003; Zijlema and Stelling,
3

005; Zijlema et al., 2011), is used to simulate the propagation of
tsunamis in converging water body geometries. The mass and momen-
tum conservation equations are:
𝜕𝜂
𝜕𝑡

+ 𝜕𝑑𝑢
𝜕𝑥

+ 𝜕𝑑𝑣
𝜕𝑦

= 0, (5)

𝜕𝑢
𝜕𝑡

+𝑢 𝜕𝑢
𝜕𝑥

+𝑣 𝜕𝑢
𝜕𝑦

+𝑔
𝜕𝜂
𝜕𝑥

+ 1
𝑑 ∫

𝜂

−ℎ

𝜕𝑞
𝜕𝑥
𝑑𝑧+𝑐𝑓

𝑢
√

𝑢2 + 𝑣2

𝑑
= 1
𝑑
(
𝜕𝑑𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝑑𝜏𝑥𝑦
𝜕𝑦

),

(6)

𝜕𝑣
𝜕𝑡

+𝑢 𝜕𝑣
𝜕𝑥

+𝑣 𝜕𝑣
𝜕𝑦

+𝑔
𝜕𝜂
𝜕𝑦

+ 1
𝑑 ∫

𝜂

−ℎ

𝜕𝑞
𝜕𝑦
𝑑𝑧+𝑐𝑓

𝑣
√

𝑢2 + 𝑣2

𝑑
= 1
𝑑
(
𝜕𝑑𝜏𝑦𝑥
𝜕𝑥

+
𝜕𝑑𝜏𝑦𝑦
𝜕𝑦

),

(7)

where 𝑡 is the time and 𝑥, 𝑦 and 𝑧 are the coordinates with the origin lo-
cated at the still water surface. 𝜂 is the free surface elevation measured
from the still water level and 𝑑 = ℎ+ 𝜂 is the total water depth. 𝑢 and 𝑣
are the depth-averaged flow velocity components in the 𝑥 and 𝑦 direc-
tion, respectively. The non-hydrostatic pressure term 𝑞 is a component
of the total pressure 𝑝𝑡 (Zijlema and Stelling, 2005), defined as

𝑝𝑡 = 𝑔(𝜂 − 𝑧) + 𝑞. (8)

𝜏𝑥𝑥, 𝜏𝑥𝑦, 𝜏𝑦𝑥 and 𝜏𝑦𝑦 are the horizontal turbulent stresses, 𝑔 = 9.81 m∕s2 is
he gravitational acceleration and 𝑐𝑓 is the dimensionless bottom fric-

tion coefficient based on Manning’s roughness coefficient 𝑛, defined as

𝑐𝑓 =
𝑛2𝑔
𝑑1∕3

, (9)

where 𝑛 = 0.009 s/m1∕3 was selected in all geometries in this study to
simulate a typical flume made of glass. The time integration with the
explicit method in SWASH is regulated by the Courant–Friedrichs–Lewy
(CFL) condition to obtain a stable solution (SWASH, 2020) . The CFL
condition, in terms of Courant number 𝐶𝑟, is

𝐶𝑟 = Δ𝑡(
√

𝑔𝑑 +
√

𝑢2 + 𝑣2)

√

1
Δ𝑥2

+ 1
Δ𝑦2

≤ 1, (10)

here 𝑢 and 𝑣 are the flow velocity components in the 𝑥 and 𝑦 direction.
Δ𝑥 and Δ𝑦 are the distances between two points of adjacent cells in
the 𝑥 and 𝑦 directions, respectively. The time step Δ𝑡 is dynamically
adjusted to satisfy Eq. (10), with a minimum (subscript 𝑚𝑖𝑛) value of
𝐶𝑟,𝑚𝑖𝑛 ≤ 0.1 and a maximum (subscript 𝑚𝑎𝑥) value of 𝐶𝑟,𝑚𝑎𝑥 = 0.5 in this
study.

A major advantage of the SWASH model is that a low vertical resolu-
tion (e.g. 2 layers) is sufficient to accurately describe refraction, shoal-

ing, diffraction and non-linear wave–wave interaction (SWASH, 2020).
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Fig. 3. Profiles of investigated convergent water body geometries with 𝜃 = 15◦:
(a) curved and (b) straight wave sources with four gauges (black points) for the
convergence tests.

To account for wave breaking in converging water bodies with flat
bottoms, a hydrostatic computation approach was adopted in SWASH,
which divides the computational domain into two layers and enables
wave breaking with conservation of mass and momentum, providing a
similar effect to a higher vertical resolution typically required for wave
breaking (10 ∼ 20 layers). The Keller-box scheme (Lam and Simpson,
1976) is used as it gives good dispersive properties for two equidistant
layers (maximum error 1% with 𝑘ℎ ≤ 7.7, where 𝑘 is the wave number).

Parallel computing using the Message Passing Interface (MPI) stan-
dard is used by SWASH, reducing the simulation time of the Central
Processing Unit (CPU) calculations in this study. The High Performance
Computing (HPC) Augusta of the University of Nottingham is used
in this study, featuring 2 × 20 core processors (Intel Skylake 6138
2.0 GHz) per node. Most simulations are conducted using a single node.

2.2. Numerical domain and boundary conditions

This study simplifies the modelling by considering symmetric
tsunami propagation in a converging water body to preliminarily
investigate the underlying physical phenomena associated with far-
field tsunami generation or for tsunamis generated by a landslide
with a width that exceeds the width of the converging water body
entering e.g. narrow fjords or lakes sections (Løvholt et al., 2015;
Hilbe and Anselmetti, 2015). Two wave source shapes are used in the
investigated symmetric water bodies (Fig. 3) , namely curved (without
sidewall reflection) and straight (involving sidewall reflection). The
waves generated by both wave sources propagated in converging water
bodies with side angles 𝜃 = 7.5◦, 15◦, 30◦ and 45◦. The default unit for
angles herein is radians, including trigonometric functions, unless it is
explicitly stated as degrees (◦) . Although the governing equations are
formulated in Cartesian coordinates, for the purpose of representation,
polar coordinates are introduced to depict the radial propagation of
incident waves in geometries with a curved wave source (Fig. 3a).
This allows for a more intuitive visualisation of the wave behaviour
in a converging water body geometry with a length of 𝑙0, using the
coordinate system (𝑟, 𝛾). The parallel incident wave generated by a
straight wave source propagates through a uniform width portion of the
domain, with a length of 6 m, and reaches the origin of the Cartesian
coordinate system (𝑥, 𝑦). This is followed by a converging water body
with local width 𝑏 = 𝑏0 −2𝑥 tan 𝜃, where 𝑏0 is the initial width and also
the length of the wave source. The corresponding width for the radial
incident waves is 𝑏 = 𝑏0 − 2𝑟𝜃. The curvature of the wave source is
𝜆 = 2𝜃∕𝑏0.

Structured grids, similar as in Ruffini et al. (2019), were gener-
ated in Delft3D and used in this study. The number of grid cells in
the 𝑥 and 𝑦 directions was 1152 × 768 (𝑥 × 𝑦) for all geometries.
4

Convergence tests for other resolutions are addressed in Section 2.3.1.
The quality of the curvilinear grids is determined by the degree of
orthogonality, which is defined as the difference between the angle of
intersecting grid lines and 90◦ (SWASH, 2020), where zero indicates
perfectly orthogonal grid lines. The reason for extending the numerical
domain for geometries with straight wave sources is to improve the
orthogonality of the grids at the intersection of the rectangular and
converging part of the domain. In all computational domains of this
study, the value of orthogonality is less than 0.04 with smooth corners
if needed. Furthermore, the variation in the size of two adjacent cells
is ≤ 1.1 based on the smoothness parameter.

The wave parameters and water depth ℎ for all considered wave
types are summarised in Table 1. An approximated linear wave with a
height 𝐻 = 0.040 m, period 𝑇 = 0.876 s and wavelength 𝐿 = 1.19 m, in
a water depth of ℎ = 0.60 m, was considered (Ruffini et al., 2019).
The present study also involved non-linear Stokes (Fenton, 1985),
cnoidal (Fenton, 1999) and solitary waves (Boussinesq, 1872), based
on wave parameters measured in the subaerial landslide-tsunamis study
of Heller and Hager (2011). To validate the capability of modelling
Mach reflection, the solitary wave with 𝑎∕ℎ = 0.277 used in Li et al.
(2011) was also generated by a straight wave source. Solitary waves
with different 𝑎 were considered to examine the variation of the stem-
wave angle 𝜓𝑤. However, when 𝑎∕ℎ was large (e.g. 𝑎∕ℎ = 0.75),
the wave speed 𝑐 of the 1st order Boussinesq solution showed a non-
negligible error due to the unstable solitary wave generation in SWASH.
Thus, the algorithm developed by Teng (1997) for the exact Boussinesq
solution (Teng and Wu, 1992) was used to generate solitary waves with
𝑎∕ℎ = 0.75. Apart from the wavelength from Heller and Hager (2011),
an effective wavelength of 4.24𝑎−1∕2ℎ3∕2, including 95% of the wave
volume (Dean and Dalrymple, 1991), was computed for the remaining
theoretical solitary waves.

The water surface time series of each wave type were used as
the input for SWASH on the finite wave generation boundary. To
simulate incident waves without reflections at the offshore boundary, a
weakly reflective condition, allowing outgoing waves, was adopted. In
addition, a ramping-up function was used to simulate a smooth initial
stage of the wave train to avoid numerical instabilities. The analysis
only started once a stable wave height was reached. The wave height
decay due to bottom friction is negligible (e.g. 0.13% over 6 m for
solitary waves). A sponge layer with a length of at least 2𝐿 was added
at the end of the converging water bodies to absorb the waves.

2.3. Calibration and validation

A case based on the 1st order solitary wave theory and wave
parameters measured in Heller and Hager (2011) was replicated in a
uniform flume to validate the results of SWASH v4.01 in Ruffini et al.
(2019). Enabling the momentum conservation command in SWASH
v7.01 (which is applied by default in v4.01) resulted in identical results
between the two versions. In the present study, wave breaking was
enabled, which is a key difference from Ruffini et al. (2019). Once
wave breaking with 2 vertical layers is enabled in SWASH, certain
approximations on non-hydrostatic pressure (vertical accelerations are
not resolved) are made for the grid point located in front of a breaking
wave (SWASH, 2020). Herein, wave breaking is initiated when the local
surface steepness 𝜕𝜂∕𝜕𝑡 > 0.6

√

𝑔ℎ. Additionally, both the second-order
Backward Differentiation Formula (BDF) scheme (calibrated in Ruffini
et al., 2019) and the Central Differentiation Formula (CDF) scheme
(recommended option for enabling breaking in SWASH, 2020) were
tested. Using the BDF for the non-breaking solitary wave made essen-
tially no difference compared to the CDF scheme. However, for the
BDF scheme, when Mach reflection occurs in a geometry with straight
wave sources, the incident wave broke without steepening once the
amplified stem wave started breaking. Wave breaking and the CDF
scheme were therefore applied for simulations of straight wave sources,
while simulations with curved wave sources relied on the BDF scheme.
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Fig. 4. Convergence tests for the solitary wave profile with 𝑎∕ℎ = 0.277 in the geometry with 𝜃 = 30◦.
Table 1
Wave parameters of all simulations.
Wave type ℎ (m) 𝐻 (m) 𝑇 (s) 𝐿 (m) 𝑎 (m) 𝑐 (m/s) Wave source

Approximate linear
(Ruffini et al., 2019)

0.600 0.040 0.876 1.190 – – Curved

5th order Stokes
(Fenton, 1985; Heller
and Hager, 2011)

0.600 0.100 1.000 1.530 – – Curved

5th order cnoidal
(Fenton, 1999; Heller
and Hager, 2011)

0.300 0.155 1.740 2.830 0.110 1.630 Curved

1st order solitary
(Boussinesq, 1872;
Heller and Hager,
2011)

0.300 0.159 – 2.823 0.159 1.969 Curved and
straight

1st order solitary
(Goring, 1979; Li et al.,
2011)

0.300 0.083 – 2.322 0.083 1.939 Straight

1st order solitary
(Boussinesq, 1872)

0.300

0.030
0.060
0.090
0.120

–

4.022
2.844
2.322
2.011

0.030
0.060
0.090
0.120

1.799
1.879
1.956
2.030

Straight

Solitary (Teng, 1997) 0.300 0.225 – 1.469 0.225 2.213 Straight
2.3.1. Convergence tests
To assess grid convergence, multiple resolutions were examined for

a geometry with a straight wave source and 𝜃 = 30◦ and 𝑏0 = 60 m. Four
wave gauges were used to compare the solitary wave with 𝑎∕ℎ = 0.277:
gauge 1 (𝑥 = 0 m, 𝑦 = 0 m), 2 (0 m, 29.97 m), 3 (15 m, 0 m) and 4
15 m, 21.35 m), indicated by black circles in Fig. 3. Gauges 2 and 4
ere placed at the sidewall to measure stem wave convergence. Various

esolutions were tested, namely 288 × 192, 576 × 384, 1152 × 768
and 2304 × 1536 meshes. Fig. 4 shows the relative water surface
elevation 𝜂∕ℎ versus the normalised time 𝑡(𝑔∕ℎ)1∕2 at gauges 1 to 4.
From the zoomed wave profiles, the free surface at gauges 2 and 4,
where amplified stem waves are observed, are more sensitive to the
resolution in the tested range than incident waves at gauges 1 and 3.

Table 2 quantifies 𝑎 for a solitary wave at the four resolutions, and
their relative error 𝜖 in percentage, defined as the difference between 1
and the ratio of 𝑎 of the lower to the nearest higher resolution case. To
achieve the same degree of convergence, stem waves (Fig. 4b and d)
require a higher resolution than incident waves in the centre (Fig. 4a
5

and c). For the resolution 2304 × 1536, the model took approximately
33 h of real time to simulate 60 s using 40 CPU cores (Table 2).
Between 1152 × 768 and 2304 × 1536, even the largest 𝜖 = 1.68% is
small, and considering the computational cost and unstable excessive
grid refinement (Zijlema, 2020), the use of 1152 × 768 is considered
appropriate for the main tests of the current study.

2.3.2. Validation for mach reflection
A laboratory experiment from Li et al. (2011) was used to validate

the simulation of Mach reflection of a solitary wave 𝑎∕ℎ = 0.277
obliquely interacting with a vertical wall with 𝜃 = 30◦. The meniscus
effect is limited to a distance smaller than 0.167ℎ from the wall and
does not affect the rest of the profiles (Li et al., 2011). Therefore,
on a macroscopic level, it can be neglected, such that the sidewall
is modelled as frictionless in the SWASH model. The reflected wave
amplification is 𝛼𝑟 = 𝑎𝑟∕𝑎 with 𝑎𝑟 as the reflected wave amplitude.
Fig. 5 shows the development of 𝛼𝑤 and 𝛼𝑟 with relative stem wave
propagation distance 𝑥∕(ℎ cos 𝜃) along the sidewall. The results of 𝛼𝑤

and 𝛼𝑟 are both consistent with the experiments but slightly smaller.
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Table 2
Comparison of results for different grid resolutions for the solitary wave with 𝑎∕ℎ = 0.277 in the geometry with 𝜃 = 30◦.
Resolution Gauge 1 Gauge 2 Gauge 3 Gauge 4 Time

𝑎∕ℎ 𝜖 (%) 𝑎∕ℎ 𝜖 (%) 𝑎∕ℎ 𝜖 (%) 𝑎∕ℎ 𝜖 (%) (min)

288 × 192 0.2114 0.98 0.2185 7.61 0.1868 3.06 0.4144 4.27 21
576 × 384 0.2135 0.47 0.2365 3.94 0.1927 1.23 0.4329 1.79 84
1152 × 768 0.2145 0.09 0.2462 1.68 0.1951 0.26 0.4408 0.47 336
2304 × 1536 0.2147 – 0.2504 – 0.1956 – 0.4429 – 1977
Fig. 5. Amplification growth of the stem wave 𝛼𝑤 and the reflected wave 𝛼𝑟 from a
solitary wave 𝑎∕ℎ = 0.277 in a geometry with 𝜃 = 30◦.

Fig. 6. Plan view of relative water surface elevation 𝜂∕ℎ for approximate linear waves
in a geometry with the curved wave source and 𝜃 = 45◦ at 𝑡 = 50 s.

3. Results

3.1. Curved wave source

An idealised curved wavefront is first investigated as a relatively
simple case. This may occur in nature when a straight wavefront
interacts with a shoal. The curved wave source ensured the propaga-
tion of radial incident waves without reflection from the converging
sidewalls, resulting in a uniform wave height distribution across the
wavefront (Fig. 6). Therefore, unless specified, the analysed parameters
of waves along the symmetry line (𝛾 = 0◦) are presented in Section 3.1.
Specifically, the time series of 𝜂 and 𝐻 are investigated for the linear,
Stokes, cnoidal and solitary waves in geometries with 𝑏0 = 60 m and
𝜃 = 7.5◦, 15◦, 30◦ and 45◦.

3.1.1. Water surface time series
Figs. 7 and 8 show 𝜂∕ℎ at relative distances 𝑟∕ℎ = 5, 15, 25 and

35 for Stokes and solitary waves (the other wave types are shown in
Appendix A), respectively. Due to the smooth initiation for periodic
waves, the 5𝑇 after the waves were fully developed are considered.
Profiles for different 𝜃 are essentially identical at 𝑟∕ℎ = 5. However,
differences in 𝜂∕ℎ increase with increasing 𝑟∕ℎ within the investigated
domains.

The generated approximately linear waves propagated in deep wa-
ter (ℎ∕𝐿 = 0.50) with weak non-linearity 𝐻∕ℎ = 0.067. At 𝑟∕ℎ = 35,
6

the ratio of 𝐻 between geometries with 𝜃 = 45◦ and 𝜃 = 0◦ is 1.38.
For Stokes waves with the same ℎ as linear waves, ℎ∕𝐿 = 0.39 and the
corresponding ratio of 𝐻 is 1.36 (Fig. 7d). The cnoidal waves propa-
gated in relatively shallower water depths with ℎ∕𝐿 = 0.11. Different
𝜃 resulted in varying degrees of wave steepening as the propagation
distance increased from 𝑟∕ℎ = 5 to 35, but the troughs remained almost
unaffected. Fig. 8 shows 𝜂∕ℎ versus 𝑡(𝑔∕ℎ)1∕2 for solitary waves. This
steepening effect shows in increased 𝐻 and faster wave propagation.
In contrast to the diverging water body geometries examined in Ruffini
et al. (2019), no trailing depression is observed across all geometries
considered herein.

3.1.2. Wave height
Fig. 9 shows the relative wave heights 𝐻∕ℎ for linear, Stokes,

cnoidal and solitary waves at all tested 𝜃 as a function of 𝑟∕ℎ, re-
spectively. 𝐻 for periodic waves is averaged over the 5𝑇 analysed
in Section 3.1.1 for all 𝐻 in this Section 3.1.2. For solitary waves, 𝑎
is taken as the value of the crest of the leading wave. Fig. 9 clearly
confirms the increasing wave steepening of 𝐻 with 𝜃 for the results of
all four wave types.

For geometries with curved wave sources, the wavefront length
𝑙𝑤 = 𝑏0 − 2𝑟𝜃 (Fig. 6) is used to link the 𝐻 variation of idealised waves
across water body geometries with different 𝜃 (Ruffini et al., 2019). In
the idealised geometries with constant ℎ, the term (ℎ0∕ℎ)1∕4 of Eq. (1)
reduces to 1 and replacing 𝑏 with 𝑙𝑤, results in

𝐻
𝐻0

= (
𝑙𝑤0
𝑙𝑤

)1∕2 = (1 − 𝐿𝑤)−1∕2, (11)

where 𝐿𝑤 = 1− 𝑙𝑤∕𝑙𝑤0 is the relative loss of 𝑙𝑤. Similarly, the equation
for the 2/3 law by Xian-chu (1981) is
𝐻
𝐻0

= (
𝑙𝑤0
𝑙𝑤

)2∕3 = (1 − 𝐿𝑤)−2∕3. (12)

Fig. 10 illustrates that 𝐻∕𝐻0 increases as 𝑙𝑤 reduces (𝑎∕𝑎0 versus
𝐿𝑤 are shown in Fig. A.3). For a better comparison with the theories
of Green (1838) (Eq. (11)) and Xian-chu (1981) (Eq. (12)), all four
wave types and investigated 𝜃 are related as 𝐻∕𝐻0 versus 𝐿𝑤. 𝐻0 is the
wave height measured at the corresponding position in a 2D flume. The
overall trend agrees with Eqs. (11) and (12), but there is a noticeable
discrepancy as almost all points of cnoidal and solitary waves lie above
the prediction from Eq. (11) and towards predictions from Eq. (12) due
to the effect of wave non-linearity. Specifically, for 𝜃 = 7.5◦ and 15◦,
the variation of 𝐻∕𝐻0 is more gradual and closely follows Eq. (12).
Conversely, for steeper angles (𝜃 = 30◦ and 45◦), 𝐻∕𝐻0 initially follows
Eq. (11) and gradually approaches Eq. (12) with increasing 𝐿𝑤.

3.2. Straight wave source

This section starts with a theoretical analysis of the solitary wave
propagation in converging water body geometries with a straight wave
source, considering various wave conditions. The theoretical equations
are introduced in Section 3.2.1 following the theory of Miles (1977b)
for weakly non-linear waves and small oblique angles (small 𝑎∕ℎ and
𝜓). These main limitations are overcome in Section 3.2.2 by numer-
ically investigating the effect of 𝜓 for a range of 𝑎∕ℎ resulting in a
new empirical equation for 𝜓𝑤. The effect of the water body width
is then analysed in Section 3.2.3 which, in combination with findings
in Section 3.2.2, results in a new prediction method for the wave
amplification 𝛼 = 𝑎∕𝑎0 along the sidewalls in converging water body
geometries for a range of 𝑎∕ℎ, 𝑏∕ℎ and 𝜃.
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Fig. 7. Relative water surface elevation 𝜂∕ℎ versus time normalised with the wave period 𝑡∕𝑇 for Stokes waves in all geometries with the curved wave source at different relative
distances 𝑟∕ℎ.
Fig. 8. Relative water surface elevation 𝜂∕ℎ versus normalised time 𝑡(𝑔∕ℎ)1∕2 for solitary waves in all geometries with the curved wave source at different relative distances 𝑟∕ℎ.
Fig. 9. Relative wave height variation with relative distance 𝑟∕ℎ for the (a) linear, (b) Stokes, (c) cnoidal and (d) solitary waves in all converging water body geometries with
curved wave sources.
3.2.1. Theoretical considerations
The propagation of solitary waves in a geometry with a straight

wave source is analysed theoretically. In contrast to a curved wave
source, incident waves from straight wave sources impinge on sidewalls
7

with 𝜓 and generate reflections. To simplify the analysis and avoid
complications arising from the superposition and interaction between
incident and reflected waves, solitary waves are used in the following
study to represent the leading wave of a tsunami.
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Fig. 10. Normalised wave height 𝐻∕𝐻0 versus the relative loss of wavefront width
𝐿𝑤 for all four wave types and investigated 𝜃 with curved wave sources.

Two cases can be distinguished based on 𝜓 , giving rise to different
reflection patterns introduced in Section 1. For large 𝜓 , e.g. 𝜓 = 45◦

for 𝑎∕ℎ = 0.53 (𝐾 > 1), regular reflection occurs when the incident
solitary wave impinges on the wall, resulting in a linear reduction
in the wavefront length as the geometry converges. Except for the
stable stem at the wall, the characteristics of the incident wave should
remain unchanged. However, for smaller 𝜓 , Mach reflection occurs
and the front of the incident waves locally rotates to match the wall
boundary condition. This rotated front generates the so-called stem
wave, which grows along the sidewall (Perroud, 1957; Miles, 1977b;
Tanaka, 1993; Li et al., 2011). For the idealised geometry, assuming
that 𝜓 satisfies the condition to trigger Mach reflection for a given
solitary wave and the converging water body is sufficiently long and
wide, the transition slope from the stem wave to the incident wave
can be ignored compared to 𝑙𝑠 and the stem wave can be amplified
to approach its asymptotic value (see Section 1).

The evolution of a solitary wave, propagating in an idealised geom-
etry that satisfies aforementioned conditions, is shown in Fig. 11. As the
solitary wave propagates, the growing stem waves from the two sides
meet on the axis of symmetry and interact, resulting in a new wave
system (one symmetric half of the wave system is shown in the upper
half of Fig. 11). The location of the intersection point, where two stem
waves meet, is defined as 𝑥′. Note that the oblique interaction of two
identical solitons is equivalent to the interaction of one soliton with
an oblique frictionless wall (Fig. 2, Miles, 1977b). The former stem
wave becomes the new incident wave for the subsequent interaction
stage. Note that the stem wave is still essentially a solitary wave (Li
et al., 2011). The value of 𝐾 decreases for the amplified new incident
wave, leading to the interaction of the new incident wave still satisfying
Mach reflection. This process is iterated until wave breaking occurs.
The approximation of SWASH on wave breaking may underestimate the
energy dissipation (Section 2.3), as the computation of phase velocity at
the front face of the breaking wave could be inaccurate. Furthermore,
due to the lack of theoretical modelling for wave breaking in Mach
reflection, the present study did not analyse the post-breaking wave
propagation. In the lower half of Fig. 11, the stem wave growth at
different stages is represented by different shades of grey. Each stage
is defined as an interaction that generates corresponding stem waves,
with the subscript m indicating the stage number (positive integer).

Following the description of this iterative process, assuming that the
wave is weakly non-linear and 𝜓 is sufficiently small (sin𝜓 ≈ 𝜓), allows
for the predictions of 𝛼𝑤 and 𝜓𝑤 using the theory of Miles (1977b)
(Eqs. (3) and (4)) until 𝐾m → 0 (𝛼𝑤m

→ 1) or the wave breaking limit
s reached, according to the criterion stated in Section 2.3. A non-
imensional parameter 𝐵 is introduced as the relative loss of water
8

𝑙m t
body width, defined as 𝐵𝑙m = 1 − 𝑏m∕𝑏m−1. The equations for 𝐵𝑙m of
interaction at sidewalls (odd stage) and interaction at 𝑦∕ℎ = 0 (even
stage) are given by

𝐵𝑙m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

tan𝜓 ⋅ cot(𝜓 + 𝜓𝑤m
) + tan2 𝜓

1 + tan2 𝜓
for m = 2i − 1,

tan𝜓 − tan2 𝜓 ⋅ tan𝜓𝑤m

tan𝜓𝑤m
+ tan𝜓

for m = 2i,

(13)

here i is a positive integer. For a detailed derivation, see Appendix B.
ote that 𝑏m is a function of the abscissa (𝑥m) of the stem wave at

he sidewall, which is the most important location in an engineering
ontext (corresponding equations based on 𝑦∕ℎ = 0 are shown in
ppendix B). To calculate 𝐵𝑙m , the equation for 𝜓𝑤m

in a given stage
can be obtained by substituting the corresponding 𝐾m into Eq. (4),

resulting in

𝜓𝑤m
=

√

𝑎′m−1
3ℎ

(1 −𝐾m), (14)

here 𝑎′m−1 is 𝑎 at the end of the stage m − 1. Meanwhile, 𝑎′m can be
btained by the prediction of 𝛼𝑤m, given as

𝑤m
=

𝑎′m
𝑎′m−1

= (1 +𝐾m)2. (15)

Thus far, the intersection point can be theoretically calculated to locate
each stage and the upper limit of the corresponding 𝑎′ is predictable.
However, with the amplification at stages, the resulting wave eventu-
ally reaches a large 𝑎∕ℎ where the theory of Miles (1977b) becomes
ineffective. This may result in a significant deviation between the
theoretical model and the actual results (Tanaka, 1993; Li et al., 2011).
Furthermore, for the investigated case with large 𝑎∕ℎ = 0.53 and
𝜓 = 30◦, the deviation cannot be ignored even at the first stage. To
address the limitation of the analytical solution, additional simulations
are conducted for varying 𝑎∕ℎ and 𝜃.

3.2.2. Effect of side angle
Due to a non-uniform wave profile over the 𝑦-direction generated

by reflection, the Green’s law (Eq. (11)) is not applicable in most
positions, especially for relatively wide geometries. To investigate this,
the converging water body with 𝑏0 = 60 m, which is 200ℎ for solitary
waves, is simulated first. The snapshots and crest envelope contours
for geometries with different 𝜃 are presented in Fig. 12. After 6 m
propagation from the straight wave source, the measured 𝑎∕ℎ = 0.493
at 𝑥∕ℎ = 0, where the water body starts to converge.

The instantaneous snapshot contours in Fig. 12a-d show that 𝑎𝑟
learly increases from 𝜃 = 7.5◦ to 45◦. For the geometry with 𝜃 =
45◦ (𝐾𝐾𝑌 = 1.35 > 1) the wave system exhibits regular reflection,
consistently with the theories of Miles (1977b) and Kodama and Yeh
(2016). As expected, 𝑙𝑠 barely grows with 𝜓𝑤 ≈ 0 at this value of 𝜓
(identical to 𝜃 herein). For the remaining cases, 𝑙𝑠 increases as the wave
propagates (Fig. 12a-c), attributed to Mach reflection (𝐾𝐾𝑌 = 0.638
for 𝜓 = 30◦). Since 𝛼𝑟 < 1, the evolution of the wavefront for the
incidence and the amplified stem is more important in tsunami hazard
assessment. To facilitate the analysis of the crest envelope, Fig. 12e-h
shows 𝜂𝑚𝑎𝑥∕ℎ, defined as the relative maximum water surface elevation
during the propagation of the solitary wave in the water body. The
stem wave boundary grows approximately linearly along the sidewall
for geometries with 𝜃 = 7.5◦, 15◦ and 30◦. In the case of 𝜃 = 30◦

(𝐾𝐾𝑌 = 0.638), the stem wave first breaks at 𝑥∕ℎ = 28, then rapidly
grows and breaks again at 𝑥∕ℎ = 41. While wave breaking causes
significant reduction of 𝐻 , it appears that it is confined to the wall
egion where the stem waves are higher. However, due to the SWASH
pproximation on wave breaking (Section 2.3) and lack of validation on
tem wave breaking, the following analysis and discussion only apply

o waves without or before breaking.
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Fig. 11. Schematic view of a solitary wave propagation in an idealised converging geometry. Upper half: wave systems at different stages. The widths of the lines representing
the wave crests are indicative of the size of the wave amplitude. Lower half: stem wave growth for different stages represented by different shades of grey.
Fig. 12. Plan view of (a-d) 𝜂∕ℎ contour snapshots for every 3 s and (e-h) crest envelope contour for the solitary wave in geometries with 𝜃 = 7.5◦, 15◦, 30◦ and 45◦ (𝑏0∕ℎ = 200).
The relative wave amplitudes 𝑎∕ℎ for solitary waves in the four
geometries from Fig. 12 are shown in Fig. 13 along the sidewall and
centre (𝑦∕ℎ = 0) for 𝑥∕ℎ ≤ 50. Within this range, 𝑎∕ℎ along 𝑦∕ℎ = 0
in geometries with different 𝜃 remain unaffected by the converging
geometry. For the geometry with 𝜃 = 7.5◦, the stem wave approaches
its equilibrium 𝑎∕ℎ = 0.640 at 𝑥∕ℎ = 50. 𝛼𝑤 = 1.28 is slightly larger than
1.23 predicted by Eq. (3). However, for other geometries, due to 𝐾𝐾𝑌
being closer to the critical condition 𝐾𝐾𝑌 = 1, the distance to approach
its equilibrium value is relatively larger, in line with the experiments
of Li et al. (2011). Nevertheless, 𝛼𝑤 in the geometry with 𝜃 = 15◦ is 1.68
at 𝑥∕ℎ = 50, deviating 11% from the theoretical prediction of 1.51. This
is in agreement with Tanaka (1993) for large 𝑎∕ℎ, as investigated in
this study. The maximum stem wave height formed for 𝜃 = 30◦ prior to
the first time breaking is 𝑎∕ℎ = 1.035, exceeding the breaking criterion
of a two-dimensional solitary wave 𝑎∕ℎ = 0.827 (Longuet-Higgins and
Fenton, 1974) and stem wave 𝑎∕ℎ = 0.910 from Li et al. (2011).

𝜓𝑤 is calculated by tan𝜓𝑤 = 𝑙𝑠 cos𝜓∕𝑥 for each position of 𝑥, where
𝑙𝑠 is the distance from the sidewall to the intersection point between the
extension of the stem wave crest line perpendicular to the wall and the
extension of the incident wave crest line (Fig. 2, Li et al., 2011). Finally,
𝜓 is determined by performing linear regression on all measurements
9

𝑤

Fig. 13. Relative wave amplitude 𝑎∕ℎ variation with relative distance 𝑥∕ℎ for waves
along the sidewall and 𝑦∕ℎ = 0 in geometries with different 𝜃.



Coastal Engineering 189 (2024) 104482Z. Chen et al.

w
a
S
a

3

𝜃

Fig. 14. 𝜓 versus stem angle 𝜓𝑤 with different 𝑎∕ℎ compared with (a) previous experiments and (b) analytical solution (Eq. (4)) and a new empirical equation (Eq. (16)).
f
B
I
f
t
t
s
𝐵

0
b
s
t
𝑥
c
i
𝐵
w

w
N
w
w
g
𝜓
3
i
g
2
3

𝜃
d
c
h
t
s
i
o
t
w

s
w
a
w
a
o

Table 3
Fitting coefficients for Eq. (16).

Coefficient Initial value Fitting value 95% confidence interval

C1 1∕
√

3 0.376 (0.3457, 0.4063)
C2 1∕2 0.310 (0.2769, 0.3426)
C3 1∕

√

3 1.169 (1.065, 1.273)
C4 −1∕2 −0.0945 (−0.1268,−0.06219)
C5 1 0.868 (0.7008, 1.034)

until the waves either reach the sponge layer or break. 𝜓𝑤 is shown
in Fig. 14a as a function of 𝜓 for different 𝑎∕ℎ and the results are
compared with Tanaka (1993) (numerical simulation) and Li et al.
(2011) (laboratory experiment). The values decrease approximately
linearly with 𝜓 , consistently with the theory of Miles (1977b), and in
agreement with the results of Tanaka (1993) and Li et al. (2011).

The analytical solution Eq. (4) is not effective in predicting 𝜓𝑤
(Fig. 14b). As Tanaka (1993) concluded, large amplitude waves tend
to significantly deviate in important parameters such as 𝜓𝑤 and 𝛼𝑤.
This still applies to the results of the laboratory experiments of Li et al.
(2011) and present numerical results (Fig. 14). To address this issue, an
empirical equation is developed by modifying Eq. (4) as a polynomial
function of 𝜓 and 𝑎∕ℎ of the form 𝜓𝑤 = C1(𝑎∕ℎ)C2 [1 − C3(𝑎∕ℎ)C4𝜓C5 ].
To obtain the fitting coefficients C1 to C5, the Trust-Region reflective
algorithm for non-linear least squares fitting (a fitting function from the
Curve fitting toolbox in Matlab 2022b) is used for the numerical results,
with the coefficients in Eq. (4) as initial values. The Trust-Region
reflective algorithm is a variation of the Trust-Region method, based
on the interior-reflective Newton method, as described in Coleman and
Li (1994, 1996). The empirical equation with the resulting coefficients
(Table 3) is:

𝜓𝑤 = 0.376( 𝑎
ℎ
)0.310[1 − 1.169( 𝑎

ℎ
)−0.0945𝜓 0.868]. (16)

The normalised Root Mean Square Error (nRMSE), a measure of the
prediction error relative to the range of the observed data (nRMSE = 0
represents perfect agreement), is used for testing Eq. (16),

nRMSE =

√

1
N
∑N

i=1(�̇�i − �̂�i)2

�̇�𝑚𝑎𝑥 − �̇�𝑚𝑖𝑛
, (17)

here N is the number of data points, �̇� represents the observed values
nd �̂� denotes the predicted values. For the observed values from
WASH, Tanaka (1993) and Li et al. (2011), nRMSE = 0.0156, 0.046
nd 0.162, respectively.

.2.3. Effect of water body width
In contrast to the sidewall reflection in Fig. 12a (𝑏0∕ℎ = 200 and

= 7.5◦), reflection in a converging channel with 𝑏 ∕ℎ = 5.3 (𝜃 = 5◦)
10

0

or a single oblique sidewall was not observed in Wuppukondur and
aldock (2022). The main difference between the two cases is 𝑏0∕ℎ.
n order to study the influence of the water body width, 𝑏0 is varied
rom 5ℎ to 100ℎ. These numerical domains are designed to converge
o 25% of 𝑏0 (𝐵𝑙 = 0.75). More extreme values of 𝐵𝑙 were excluded due
o issues related to the aspect ratio of grids and excessive small time
teps. In addition, the waves break in most cases for 𝑎∕ℎ = 0.53 with
𝑙 ≥ 0.75.

Fig. 15 shows water surface snapshots at different times and interval
.1𝐵𝑙 for the geometry with 𝜃 = 7.5◦ and 𝑏0∕ℎ = 50. The narrower water
ody allows stem waves and transition slopes to reach 𝑦∕ℎ = 0 and
uperimpose. From the contour line of 𝜂∕ℎ at 𝐵𝑙 = 0.2, slopes reaching
he centre superimpose resulting in an increased 𝜂. With the increase of
∕ℎ, this effect intensifies, leading to a higher 𝜂 observed at the centre
ompared to both sides. In addition to affecting the wavefront, the time
nterval to propagate 10% of 𝑏0 keeps decreasing (Fig. 15). Note that
𝑙 is based on the wavefront at 𝑦∕ℎ = 0 as the wavefront shapes change
ith 𝐵𝑙.

In Fig. 16, the 𝜂∕ℎ contour is shown in plan view for the geometry
ith 𝜃 = 7.5◦ and 𝑏0∕ℎ = 100, with snapshots taken every 0.05𝐵𝑙.
ote that due to the rough contour lines selected, the small reflected
aves (Fig. 12a) are not visible. However, the changing shape of the
avefront is clearly visible, with auxiliary dashed lines indicating the
rowth of the stem length during the first two stages, where the angles
𝑤1

and 𝜓𝑤2
are approximately 13.4◦ and 15.0◦, respectively. In stage

, wave breaking occurs at 𝐵𝑙 = 0.65. As per the idealised case proposed
n Section 3.2.1, new wave systems are generated either when the
rowing stem waves from both sides meet and interact at 𝑦∕ℎ = 0 (stage
) or when the growing stem wave reaches the wall and interacts (stage
).

Fig. 17 shows the wave crest in a half domain of the geometry with
= 7.5◦ and 𝑏0∕ℎ = 100, with snapshots taken every 0.01𝐵𝑙 along the
irection of wave propagation. Higher 𝜂𝑚𝑎𝑥∕ℎ can be observed in the
entre than at the sides for 0.34 < 𝐵𝑙 < 0.56. For 𝐵𝑙 > 0.56, the crest is
igher again at the sides than at the centre. Stem waves approaching
heir asymptotic state twice can clearly be observed for the first two
tages. However, due to the transition slope from the stem wave to the
ncident wave, this process gradually changes from linear superposition
f transition slope to non-linear interaction of stem waves. Therefore,
o distinguish stages, a critical point is used, defined as where the
avefront has uniform 𝜂𝑚𝑎𝑥∕ℎ, e.g. 𝐵𝑙 = 0.34 and 𝐵𝑙 = 0.56.

To further study the effect of stem wave growth on the wave crest
patial distribution, Fig. 18 shows contours of 𝜂𝑚𝑎𝑥∕𝐻0 in a half domain
ith 𝜃 = 7.5◦ for 𝑏0∕ℎ = 5, 10, 20, 50 and 100 from left to right (𝜃 = 15◦

nd 30◦ are shown in Appendix C). For the geometry shown in Fig. 18a,
hich closely resembles the experimental conditions of Wuppukondur
nd Baldock (2022) (𝜃 = 5◦ and 𝑏0∕ℎ = 5.3), minor reflections are
bserved and the cross-sections are almost uniform over the entire
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Fig. 15. Water surface snapshots of a solitary wave propagation in the geometry with 𝜃 = 7.5◦ and 𝑏0∕ℎ = 50 at different 𝑡 with corresponding 𝐵𝑙 .
Fig. 16. Plan view of 𝜂∕ℎ contour snapshots for every 0.05𝐵𝑙 in the geometry with 𝜃 = 7.5◦ and 𝑏0∕ℎ = 100.
Fig. 17. Relative maximum water surface elevation 𝜂𝑚𝑎𝑥∕ℎ across the symmetrical half
wavefront for solitary wave propagation in the geometry with 𝜃 = 7.5◦ and 𝑏0∕ℎ = 100
with snapshots taken every 0.01𝐵𝑙 .

domain. It is apparent that the smaller 𝜃 and 𝑏0∕ℎ, the more uniform
the distribution becomes. Conversely, the distinct stages become clearer
as wider water bodies have more space for stem wave growth. A
11
significant large wave can form when the stem waves with large 𝛼𝑤
superimpose and interact. Therefore, wave breaking is more likely to
occur in geometries with larger 𝑏0∕ℎ for a given 𝐵𝑙.

The areas of large wave amplitude are of particular interest, oc-
curring either at the sidewalls or at 𝑦∕ℎ = 0. Therefore, Fig. 19
shows 𝛼 along the sidewall (dashed lines) and 𝑦∕ℎ = 0 (dotted lines)
in geometries with different 𝑏0∕ℎ (line colour) as a function of 𝐵𝑙
compared with Green’s law (solid black line). Lines stopped before
𝐵𝑙 = 0.7 if wave breaking occurred, such as 𝛼 in the geometries with
𝜃 = 7.5◦ along the sidewall at 𝐵𝑙 = 0.65 for 𝑏0∕ℎ = 50 and 𝐵𝑙 = 0.62
for 𝑏0∕ℎ = 100 (Fig. 19a). After all, higher crests are hardly observed
thereafter (Fig. 13). The maximum 𝛼 prior to wave breaking is 1.87,
1.98 and 1.96 in cases where 𝜃 = 7.5◦, 15◦ and 30◦, respectively. As
shown in Fig. 19c, when wave breaking occurs, waves along 𝑦∕ℎ = 0
are not yet increased by the stem wave interaction. More importantly,
stem wave interaction and wave steepening can affect the maximum
𝐻 and the wave-breaking positions. For 𝑏0∕ℎ = 5 and 10 at 𝐵𝑙 = 0.6 to
0.7, the growth rates of 𝛼 were significantly decreased (Fig. 19c). This
is attributed to the fact that the converging water body starts from a
wide (wave generation) to narrow section (wave absorption) such that
the wavefront enters and leaves the converging water body ahead of the
crest. In smaller 𝑏0∕ℎ cases, 𝐿 compared to 𝑙0 becomes more significant,
causing the wavefront to lose the constraint of the oblique walls before
the crests reach the end of the converging water body.

Miles (1977b) theory only predicts the asymptotic value for wave
amplification, however, the stem wave growth is also important for
engineering applications. For geometries with 𝜃 = 7.5◦ and 15◦ (Fig. 19a
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Fig. 18. Crest envelope contour for a solitary wave in geometries with 𝜃 = 7.5◦ and (a) 𝑏0∕ℎ = 5, (b) 10, (c) 20, (d) 50 and (e) 100.
and b), the maximum amplification between waves along the sidewall
and 𝑦∕ℎ = 0 are 𝛼𝑤 = 1.279 (𝑏0∕ℎ = 100, 𝐵𝑙 = 0.195) and 𝛼𝑤 = 1.623
(𝑏0∕ℎ = 100, 𝐵𝑙 = 0.397). The maximum 𝛼𝑤 becomes smaller and the
crest envelope appears to approach Green’s law better in geometries
with smaller 𝑏0∕ℎ. 𝛼 and 𝐵𝑙 substituted in Eq. (11) results in

𝛼 = ( 𝑏
𝑏0

)−
1
2 = (1 − 𝐵𝑙)

− 1
2 . (18)

The maximum relative error between measurement and prediction of
Eq. (18) for the wave along sidewalls is 𝜖 = 42% in the geometry with
𝜃 = 30◦ and 𝑏0∕ℎ = 100. However, even when 𝑎 is uniform across the
wavefront, such as at the intersection point 𝐵𝑙 = 0.58 for the geometry
with 𝜃 = 15◦ and 𝑏0∕ℎ = 100, 𝛼 = 1.66 is still up to 8% larger than
predicted by Greens law.

4. Discussion

4.1. Effect of the water body geometry

The effect of the water body geometry with a curved wave source on
tsunami propagation is significant, with increasing 𝜃 leading to larger
wave steepening for a given propagation distance. After removing the
initial decay, weakly non-linear waves follow Green’s law (Green, 1838,
Eq. (11)) closely, while strongly non-linear waves (cnoidal and solitary)
follow a 2∕3 law (Xian-chu, 1981, Eq. (12)) more closely (Fig. 10).
For solitary waves generated by straight wave sources, not only 𝜃, but
also 𝑏0∕ℎ significantly affect tsunami propagation. Comparing results
for different 𝑏0∕ℎ shows that a stem wave from Mach reflection in
constrained converging water bodies requires a certain distance to
approach the asymptotic value. As a result, for different water body
widths, the available growth distance affects energy distribution during
12
solitary wave propagation (Fig. C.1). Hence, for geometries with 𝑏0∕ℎ =
5, waves essentially follow the wave steepening law only without Mach
reflection, as observed by Wuppukondur and Baldock (2022). In addi-
tion, the stem wave propagates 6%–14% faster than the solitary wave
with the same amplitude (Li et al., 2011). Hence, the wave gradually
becomes faster whilst the stem wave expands across the entire section
of the converging water body.

4.2. Effect of the solitary wave amplitude on stem angle

Based on the theory of Miles (1977b), 𝜓𝑤 depends on both 𝜓 and
𝑎∕ℎ (Eq. (4)). However, for the investigated cases, the assumptions of
weak non-linearity and small oblique angle cannot be ignored. There-
fore, different 𝑎 have been simulated and the corresponding 𝜓𝑤 have
been measured. The results were compared with numerical simulations
of Tanaka (1993) and laboratory experiments of Li et al. (2011) in
Fig. 14. Only some values for small 𝑎∕ℎ (e.g. 𝑎∕ℎ < 0.2) do not match
well. The empirical Eq. (16) was fitted to the new results and used to
predict the corresponding cases in Tanaka (1993) and Li et al. (2011).
The accuracy of the prediction was assessed using nRMSE to provide
an overall indication of reliability. Eq. (16) can successfully be used to
overcome the limitation of the theory of Miles (1977b) in predicting
𝜓𝑤, particularly for large 𝜓 and 𝑎∕ℎ within the investigation range.

4.3. Prediction method

For curved wave fronts at the entrance of a bay, channel or estu-
ary, Green’s law (Eq. (11)) can be used to predict linear and weakly
non-linear waves. However, for strong non-linear cnoidal and solitary
waves, Eq. (12) is more appropriate and conservative. For straight wave
sources, existing theories do not cover 𝑎∕ℎ > 0.1. Therefore, a new
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Fig. 19. Wave amplification 𝛼 versus the relative loss of water body width 𝐵𝑙 for
solitary waves in geometries with different 𝑏0∕ℎ and (a) 𝜃 = 7.5◦, (b) 15◦ and (c) 30◦.

ethod to predict 𝑎 for solitary waves in converging geometries is
roposed herein. Eq. (2) is used to obtain 𝛼 for large 𝑏0∕ℎ (e.g. 𝑏0∕ℎ >
0). Substituting 𝐿𝑤 with 𝐵𝑙 in Eq. (2) yields

= ( 𝑏
𝑏0

)−
2
3 = (1 − 𝐵𝑙)

− 2
3 . (19)

he wave amplitude 𝑎′m at the end of the stage m can be calculated
ith Eq. (19), given as

′
m = (

𝑏m
𝑏0

)−
2
3 =

m
∏

i=1
(1 − 𝐵𝑙i )

− 2
3 . (20)

onsidering the wave along the sidewall, 𝑎′m calculated from Eq. (20)
an be used to cover the corresponding stages of interaction at the wall
nd 𝛼 from Eq. (19) can be used for the stages of interaction at 𝑦∕ℎ = 0,
ritten as

(𝑏m−1<𝑏≤𝑏m) =

⎧

⎪

⎨

⎪

𝛼′m for m = 2i − 1,

( 𝑏 )−
2
3 for m = 2i.

(21)
13

⎩

𝑏0
Fig. 20. Flow chart of the new prediction method for solitary wave propagation in
converging geometries.

An equation for predicting 𝜓𝑤m
can be obtained by replacing 𝑎 with 𝑎m

n Eq. (16), which can be further simplified to

𝑤m
= 0.376(

𝑎m−1
ℎ

)0.310 − 0.440(
𝑎m−1
ℎ

)0.215𝜓 0.868. (22)

The theory of Miles (1977b) is limited to the asymptotic state and
assumptions whilst stem wave growth is more difficult to predict (Li
et al., 2011). The proposed method avoids assessing the difference
between the measured stem wave and its asymptotic value when prop-
agating in a relatively wide water body. In addition, the strong non-
linearity due to large 𝑎∕ℎ cause the asymptotic value to deviate from
the prediction of Miles (1977b). Eq. (20) is therefore applied to a given
wavefront with uniform 𝑎. A flow chart illustrating this method without
considering wave breaking is shown in Fig. 20.

Throughout the process, calculations can be performed using dimen-
sionless parameters such as 𝑎∕ℎ, 𝑏∕ℎ and 𝜃, enabling the application
of the method to different scales. Note that this method specifically
addresses the propagation of solitary waves in relatively long water
bodies, while not taking into account tsunami resonance and interac-
tion with shoreline boundaries, which can also significantly contribute
to tsunami amplification (Bellotti et al., 2012; Cortés et al., 2017). An
example to illustrate this approach is inspired by the 2018 Palu Bay
tsunami event. Inside Palu Bay, an average depth of 100 m is used
as reference (Heidarzadeh et al., 2019). Note that Heidarzadeh et al.
(2019) used a parabolic cross-section in their simulation. However,
the varying bathymetry is not taken into consideration in this study.
Instead, an idealised domain with a simplified geometry and flat bottom
is employed. As shown in Fig. 1, 𝜃 = 7.5◦ and 𝑏 = 9.4 km to 5 km lead
to 𝑏0∕ℎ = 94 and 𝐵𝑙 = 0.47, indicating a wide and long water body.

The 2018 Palu Bay event involved a complex wave pattern through
a combination of seismic-generated and landslide-generated tsunamis
originating from various locations along Palu Bay (Aránguiz et al.,
2020). Here, however, the incident tsunami is simply modelled as a
solitary wave with 𝑎0∕ℎ = 0.493 and an idealised incident direction
along the axis of symmetry. Note that the chosen 𝑎 ∕ℎ does not directly
0
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Fig. 21. Computation example of wave amplification 𝛼 for a geometry with 𝜃 = 7.5◦

ompared with the results of SWASH.

epresent the observed tsunami amplitude at Pantoloan tidal gauge
𝑎∕ℎ = 0.318, Pakoksung et al., 2019; Pudjaprasetya et al., 2021). How-
ver, by using a slightly larger wave amplitude and vertical sidewalls,
e can examine the tsunami’s behaviour under idealised conditions.
ote further that reflections at the end of the water body and reso-
ance may be important when considering long tsunamis generated by
eismic sources. Further studies are necessary to investigate the effect
f incident wave direction and non-uniform bathymetry on tsunami
ropagation in order to fully predict less idealised cases such as the
018 Palu Bay event.

The calculation of the idealised case is performed following the
lgorithm in Fig. 20. The stem angle for stage 1 using Eq. (22) is
𝑤1

= 0.376 × (0.493)0.310 − 0.440 × (0.493)0.215 × 0.1310.868 = 0.237.
ubstituting 𝜓𝑤1

in Eq. (13) allows for the location of the end of stage
to be determined, resulting in a relative loss of water body width of
𝑙1 = [tan(0.131) cot(0.131+ 0.237) + tan2(0.131)]∕[1 + tan2(0.131)] = 0.35.
he predicted wave amplification is calculated with Eq. (21), yielding
(𝑏0<𝑏≤𝑏1) = 𝛼′1 = (1 − 0.35)−2∕3 = 1.34, as shown in the shaded area of
ig. 21. 𝛼′ from present numerical results (Fig. 19a) are compared for
ifferent 𝑏0∕ℎ. The predicted position of the end of stage 1 lies between
he intersection point of the simulation cases with 𝑏0∕ℎ = 20 and
0∕ℎ = 50. Notably, the values of 𝑎 along the sidewall and 𝑦∕ℎ = 0 are
early uniform after the first intersection for the case with 𝑏0∕ℎ = 20.
he simulated 𝛼′1 for all cases fall between the prediction of Eqs. (18)
nd (19).

Due to 𝐵𝑙1 = 0.35 < 0.47, the calculations continue for stage 2 by
ubstituting 𝑎1 into Eq. (22) resulting in 𝜓𝑤2

= 0.376×(0.493×1.34)0.310−
.440 × (0.493 × 1.34)0.215 × 0.1310.868 = 0.262. The location of the end of
tage 2 can be determined by substituting 𝜓𝑤2

in Eq. (13), resulting in
𝑙2 = [tan(0.131) − tan2(0.131) tan(0.262)]∕[tan(0.262) + tan(0.131)] = 0.32.
ote that 𝐵𝑙2 is relative to 𝑏1, hence it is equal to 𝐵𝑙1+𝐵𝑙2(1−𝐵𝑙1) = 0.56

or 𝑏0. For this even stage, the predicted 𝑎 is a function of 𝐵𝑙 from
q. (21), yielding 𝛼(𝑏1<𝑏≤𝑏2) = (𝑏∕𝑏0)−2∕3 = (1 − 𝐵𝑙)−2∕3 and 0.35 < 𝐵𝑙 ≤
.56. Furthermore, 𝛼′2 = 𝛼(𝐵𝑙=0.56) = (1 − 0.56)−2∕3 = 1.72.

Thus far, different expressions have been applied to calculate 𝑎
long the sidewall at different stages (interaction at the wall and 𝑦∕ℎ =
). 𝛼′1 and 𝛼′2 are 5.85% and 8.55% greater than the simulated values of
he case with 𝑏0∕ℎ = 50, respectively, which tend to work on the safe
ide. This method could also be applicable to curved wave sources with
< 𝜆 < 2𝜃∕𝑏0. However, the method becomes increasingly conservative
ith increasing 𝜆.

. Conclusions

In this study, the effect of the converging water body geome-
ry on tsunami propagation was investigated numerically. The study
ocused on idealised converging, uniform-depth water bodies with
blique side walls with varying side angles 𝜃. Both curved and straight
14
ave sources were investigated to exclude or take sidewall reflec-
ion into account, respectively. The non-hydrostatic non-linear shallow
ater model SWASH was used. This was validated with numerical

imulations (Tanaka, 1993), laboratory experiments (Li et al., 2011)
nd analytical solutions (Green, 1838; Xian-chu, 1981), with a focus
n wave steepening.

For curved wave sources, the distribution of approximately linear,
tokes, cnoidal and solitary waves was analysed for geometries with
ifferent 𝜃 = 0◦ (2D), 7.5◦, 15◦, 30◦ and 45◦. The time series of
he normalised water surface elevation 𝜂∕ℎ profiles were compared at
alues of relative distance from 𝑟∕ℎ = 5 to 35 with the water depth ℎ.
urthermore, the analysis of wave characteristics, such as wave steep-
ning, was presented, where the normalised wave height𝐻∕ℎ increased
on-linearly with increasing 𝜃. The relative loss of the wavefront length
𝑤 was introduced and the comparison of these geometries using

he equations based on Green’s law (Eq. (11)) and Xian-chu (1981)
Eq. (12)) was presented. The overall propagation of linear and Stokes
aves agreed with the prediction of Eq. (11). However, for cnoidal and

olitary waves, most results were closer to Eq. (12) than Eq. (11).
For straight wave sources, tsunamis propagating along the axis of

ymmetry impact the sidewalls at an oblique angle 𝜓 , which has the
ame value as 𝜃. The wave field is not uniform across the water body
eometry. The propagation of solitary waves in a sufficiently long
nd wide converging water body were first discussed theoretically.
nder the approximations of the Miles (1977b) theory (weak non-

inearity and small oblique angle), theoretical multiple-stage equations
ere derived to predict the stem angle 𝜓𝑤 (Eq. (14)) and the stem
ave amplification 𝛼𝑤 for each ‘stage’, where a new wave system was
enerated from stem waves interaction. Furthermore, simulations were
onducted for a straight wave source to compare the results of 𝜓𝑤 with
heory and experimental results, particularly in scenarios involving
arge angles (𝜃 = 7.5◦, 15◦, 22.5◦ and 30◦) and amplitudes (𝑎∕ℎ =
.1 to 0.623). The obtained 𝜓𝑤 agreed with those of Tanaka (1993)
nd Li et al. (2011), but significant deviations were observed when
ompared to the analytical solution (Miles, 1977b; Kodama and Yeh,
016). Consequently, the empirical Eq. (16) was introduced to predict
𝑤. To study the effect of the water body width, additional simulations
ere conducted with the initial water body width 𝑏0 from 5ℎ to 100ℎ. It
as observed that as 𝜃 and 𝑏0/ℎ decreased, 𝑎∕ℎ became more uniform

across the water bodies. Conversely, wider water bodies provide more
space for stem wave growth, resulting in distinct stages of new wave
systems.

This work proposed a new prediction method for 𝑎 of solitary
waves in a converging water body, considering the identified multi-
stage propagation for interaction at the wall and centre. An example,
inspired by the 2018 Palu Bay event, illustrated this approach using
𝜃 = 7.5◦ compared with the results of the SWASH simulation. Although
errors can accumulate within a few stages before wave breaking occurs,
the results indicated that the method is conservative and has potential
for use in tsunami prediction and hazard assessment.

Future research will focus on modelling the propagation of tsunami-
like waves in geometries involving non-uniform bathymetries. Includ-
ing the effect of currents in wave height prediction tools is another
potential avenue for improving predictions across a wider range of
scenarios.

Notation

𝑎 wave amplitude [L]
𝑎′ amplified wave amplitude at the end of the corresponding

stage [L]
𝑎𝑟 reflected wave amplitude [L]
𝑎𝑤 stem wave amplitude [L]
𝐵𝑙 relative loss of water body width [-]
𝑏 water body width [L]

C fitting coefficient [-]
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𝐶𝑟 Courant number [-]
𝑐 wave speed [LT−1]
𝑐𝑓 bottom friction coefficient [-]
𝑑 total water depth [L]
𝑔 gravitational acceleration [LT−2]
𝐻 wave height [L]
ℎ water depth [L]
𝐾 interaction parameter of Miles (1977b) [-]
𝐾𝐾 interaction parameter of Kodama et al. (2009) [-]
𝐾𝐾𝑌 interaction parameter of Kodama and Yeh (2016) [-]
𝑘 wave number [L−1]
𝐿 wavelength [L]
𝐿𝑤 relative loss of wavefront length [-]
𝑙0 converging water body length [L]
𝑙𝑠 stem length [L]
𝑙𝑤 wavefront length [L]
N number of data points [-]
𝑛 Manning’s roughness coefficient [TL−1∕3]
𝑝𝑡 total pressure [ML−1T−2]
𝑞 non-hydrostatic pressure term [ML−1T−2]
𝑟 radial distance [L]
𝑇 wave period [T]
𝑡 time from when the wave is generated [T]
𝑢 velocity component in 𝑥 direction [LT−1]
𝑢 depth averaged velocity component in 𝑥 direction [LT−1]
𝑣 velocity component in 𝑦 direction [LT−1]
𝑣 depth averaged velocity component in 𝑦 direction [LT−1]
𝑥 𝑥-coordinate [L]
𝑥′ location where the offshore stem waves meet [L]
𝑦 𝑦-coordinate [L]
�̇� observed value [-]
�̂� predicted value [-]
𝑧 𝑧-coordinate [L]

reek symbols

𝛼 wave amplification [-]
𝛼𝑟 reflected wave amplification [-]
𝛼𝑤 stem wave amplification [-]
𝛾 wave propagation angle from the curved wave source [-]
Δ𝑡 time difference [T]
Δ𝑥 𝑥-direction grid size [L]
Δ𝑦 𝑦-direction grid size [L]
𝜖 relative error [-]
𝜂 free water surface elevation [L]
𝜃 water body side angle [-]
𝜆 curvature of curved wave source [L−1]
𝜏 turbulent stress [ML3T−2]
𝜓 angle between incident wave and lateral wall [-]
𝜓𝑟 reflected angle [-]
𝜓𝑤 stem angle [-]

ubscripts

i positive integer
m stage number
𝑚𝑎𝑥 maximum
𝑚𝑖𝑛 minimum
0 initial or reference

bbreviations

BDF Backward Differentiation Formula
CDF Central Differentiation Formula
15
CFL Courant–Friedrichs–Lewy
CPU Central Processing Unit
HPC High Performance Computing
KP Kadomtsev–Petviashvili
KdV Korteweg-de Vries
MPI Message Passing Interface
NLSWE Non-Linear Shallow Water Equation
SPH Smoothed Particle Hydrodynamics
nRMSE normalised Root Mean Square Error
2D Two-Dimensional
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Appendix A

Figs. A.1 and A.2 show 𝜂∕ℎ at relative distances 𝑟∕ℎ = 5, 15, 25
and 35 for linear and cnoidal waves, respectively. Fig. A.3 shows 𝑎∕𝑎0
as a function of 𝐿𝑤 for all four wave types and the investigated 𝜃, in
comparison with the theories of Green (1838) and Xian-chu (1981).

For the wave amplitude, similar equations to Eqs. (11) and (12) can
be obtained by using 𝐻 = 2𝑎

𝑎
𝑎0

= (
𝑙𝑤0
𝑙𝑤

)1∕2 = (1 − 𝐿𝑤)−1∕2, (A.1)

𝑎
𝑎0

= (
𝑙𝑤0
𝑙𝑤

)2∕3 = (1 − 𝐿𝑤)−2∕3. (A.2)

Appendix B

This appendix provides a detailed derivation of Eq. (13). Based on
the notation shown in Fig. 11, for the interaction at the wall (odd stage
m),

𝑥m − 𝑥m−1 =
𝑏𝑙m

2 tan𝜓
,

𝑥m − 𝑥′m =
𝑏m
2

tan𝜓 =
(𝑏m−1 − 𝑏𝑙m )

2
tan𝜓,

𝑥′m − 𝑥m−1 =
𝑏m−1
2

cot
(

𝜓 + 𝜓𝑤m

)

.

(B.1)

Eq. (B.1) is substituted into 𝑥m − 𝑥m−1 =
(

𝑥m − 𝑥′m
)

+
(

𝑥′m − 𝑥m−1
)

esulting in
𝑏𝑙m =

(

𝑏m−1 −
𝑏𝑙m

)

tan𝜓 +
𝑏m−1 cot

(

𝜓 + 𝜓𝑤
)

, (B.2)

2 tan𝜓 2 2 2 m
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Fig. A.1. Relative water surface elevation 𝜂∕ℎ versus time normalised with the wave period 𝑡∕𝑇 for approximate linear waves in all geometries with the curved wave source at
different relative distances 𝑟∕ℎ.
Fig. A.2. Relative water surface elevation 𝜂∕ℎ versus time normalised with the wave period 𝑡∕𝑇 for cnoidal waves in all geometries with the curved wave source at different
relative distances 𝑟∕ℎ.
𝐵

Fig. A.3. Normalised wave amplitude 𝑎∕𝑎0 versus the relative loss of water body width
𝐿𝑤 for all four wave types and investigated 𝜃.
16
yielding

𝑏𝑙m (1 + tan2 𝜓) = 𝑏m−1[tan𝜓 ⋅ cot(𝜓 + 𝜓𝑤m
) + tan2 𝜓]. (B.3)

The equation for 𝐵𝑙m is then given by

𝑙m =
𝑏𝑙m
𝑏m−1

=
tan𝜓 ⋅ cot(𝜓 + 𝜓𝑤m

) + tan2 𝜓

1 + tan2 𝜓
. (B.4)

Similarly, for the interaction at 𝑦∕ℎ = 0 (even stage m + 1),

𝑥m+1 − 𝑥′m =
𝑏m+1

2 tan𝜓𝑤m+1

=
𝑏m − 𝑏𝑙m+1

2 tan𝜓𝑤m+1

,

𝑥m+1 − 𝑥m =
𝑏𝑙m+1

2 tan𝜓
,

𝑥m − 𝑥′m =
𝑏m
2

tan𝜓.

(B.5)
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Fig. C.1. Crest envelope contour for a solitary wave in geometries with 𝜃 = 15◦ and (a) 𝑏0∕ℎ = 5, (b) 10, (c) 20, (d) 50 and (e) 100.
Fig. C.2. Crest envelope contour for a solitary wave in geometries with 𝜃 = 30◦ and (a) 𝑏0∕ℎ = 5, (b) 10, (c) 20, (d) 50 and (e) 100.
Eq. (B.5) is substituted into 𝑥m+1 − 𝑥′m =
(

𝑥m+1 − 𝑥m
)

+
(

𝑥m − 𝑥′m
)

resulting in
𝑏m − 𝑏𝑙m+1

2 tan𝜓𝑤m+1

=
𝑏𝑙m+1

2 tan𝜓
+
𝑏m
2

tan𝜓, (B.6)

yielding

𝑏𝑙m+1
(tan𝜓𝑤m+1

+ tan𝜓) = 𝑏m(tan𝜓 − tan2 𝜓 ⋅ tan𝜓𝑤m+1
). (B.7)

The equation for 𝐵𝑙m+1
is then given by

𝐵𝑙m+1
=
𝑏𝑙m+1

𝑏m
=

tan𝜓 − tan2 𝜓 ⋅ tan𝜓𝑤m+1

tan𝜓𝑤m+1
+ tan𝜓

. (B.8)

By considering the position of the stem wave at 𝑦∕ℎ = 0, the
equations for calculating 𝐵𝑙m can be obtained in the same manner,
given by

𝐵𝑙m =

⎧

⎪

⎨

⎪

⎩

tan𝜓 ⋅ cot(𝜓 + 𝜓𝑤m
) for m = 2i − 1,

tan𝜓
tan𝜓𝑤m

+ tan𝜓
for m = 2i.

(B.9)

Appendix C

Figs. C.1 and C.2 show contours of 𝜂𝑚𝑎𝑥∕𝐻0 in a half domain with
𝜃 = 15◦ and 30◦ for 𝑏0∕ℎ = 5, 10, 20, 50 and 100 from left to right.
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